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Diagonals and Partial Diagonals of Sum of
Matrices
Chi-Kwong Li and Yiu-Tung Poon

Abstract. Given a matrix A, let O(A) denote the orbit of A under a certain group action such as

(1) U (m)⊗U (n) acting on m× n complex matrices A by (U ,V ) ∗ A = UAV t ,
(2) O(m)⊗ O(n) or SO(m)⊗ SO(n) acting on m× n real matrices A by (U ,V ) ∗ A = UAV t ,
(3) U (n) acting on n× n complex symmetric or skew-symmetric matrices A by U ∗ A = UAU t ,
(4) O(n) or SO(n) acting on n× n real symmetric or skew-symmetric matrices A by U ∗ A = UAU t .

Denote by

O(A1, . . . ,Ak) = {X1 + · · · + Xk : Xi ∈ O(Ai), i = 1, . . . , k}

the joint orbit of the matrices A1, . . . ,Ak. We study the set of diagonals or partial diagonals of matrices
in O(A1, . . . ,Ak), i.e., the set of vectors (d1, . . . , dr) whose entries lie in the (1, j1), . . . , (r, jr) positions
of a matrix in O(A1, . . . ,Ak) for some distinct column indices j1, . . . , jr . In many cases, complete
description of these sets is given in terms of the inequalities involving the singular values of A1, . . . ,Ak.
We also characterize those extreme matrices for which the equality cases hold. Furthermore, some
convexity properties of the joint orbits are considered. These extend many classical results on matrix
inequalities, and answer some questions by Miranda. Related results on the joint orbit O(A1, . . . ,Ak)
of complex Hermitian matrices under the action of unitary similarities are also discussed.

1 Introduction

Let Mm,n(F) (respectively, Mn(F)) be the set of m×n (respectively, n×n) matrices over
F, where F is the complex field C or the real field R. Let U (n) denote the unitary group
in Mn(C), and let O(n) and SO(n) denote the orthogonal and special orthogonal
group in Mn(R). For notational convenience, we sometimes use Un(F) to denote the
unitary or real orthogonal group depending on F = C or R.

Given a matrix A, let O(A) denote the orbit of A under a certain group action such
as

(1) U (m)⊗U (n) acting on Mm,n(C) by (U ,V ) ∗ A = UAV t ,
(2) O(m)⊗ O(n) or SO(m)⊗ SO(n) acting on Mm,n(R) by (U ,V ) ∗ A = UAV t ,
(3) U (n) acting on n × n complex symmetric or skew-symmetric matrices A by

U ∗ A = UAU t ,
(4) O(n) or SO(n) acting on n× n real symmetric or skew-symmetric matrices A by

U ∗ A = UAU t .

Received by the editors November 23, 2000; revised June 7, 2001.
Research partially supported by an NSF grant.
AMS subject classification: 15A42, 15A18.
Keywords: orbit, group actions, unitary, orthogonal, Hermitian, (skew-)symmetric matrices, diago-

nal, singular values.
c©Canadian Mathematical Society 2002.

571

https://doi.org/10.4153/CJM-2002-020-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-020-1


572 Chi-Kwong Li and Yiu-Tung Poon

The joint (additive) orbit of the matrices A1, . . . ,Ak is defined by

O(A1, . . . ,Ak) = {X1 + · · · + Xk : Xi ∈ O(Ai), i = 1, . . . , k},

which has been studied extensively in connections with many subjects including ma-
trix inequalities, operator theory, combinatorial theory, Lie theory, and algebraic ge-
ometry, see for example, [1], [16] and their references.

In this paper we study the set of diagonal or partial diagonals of matrices in the
joint orbit O(A1, . . . ,Ak), i.e., the set of r tuples (d1, . . . , dr) whose entries lie in the
(1, j1), . . . , (r, jr) positions of a matrix X ∈ O(A1, . . . ,Ak) for some distinct column
indices j1, . . . , jr. In many cases, complete description of these sets is given in terms
of the inequalities involving the singular values of A1, . . . ,Ak. We also characterize
those extreme matrices for which the equality cases hold. Furthermore, some convex-
ity properties of the joint orbits are considered. These extend many results in matrix
inequalities, and answer some questions raised by Miranda [7] (see Theorem 2.7).

In our discussion, we shall make heavy use of the theory of majorizations. We
refer the readers to [6] for general background. Here we give some basic definitions
and notations. Given two real vectors x and y we say that x is weakly majorized by y,
denoted by x ≺w y if the sum of the r largest entries of x is not larger than that of y
for r = 1, . . . , n. If x ≺w y and the sum of entries of x is the same as that of y, we say
that x is majorized by y, denoted by x ≺ y. Let x = (x1, . . . , xn) be a complex vector,
define |x| = (|x1|, . . . , |xn|). We shall let

T = TF = {µ ∈ F : |µ| = 1}.

Furthermore, if X ∈ Mn(F), the vector of diagonal entries of X is denoted by diag(X).
The standard basis for Mm,n(F) will be denoted by {E11, E12, . . . , Emn}. For a given
A ∈ Mm,n(F), let s(A) =

(
s1(A), . . . , sm(A)

)
be the vector of singular values of A

with s1(A) ≥ · · · ≥ sm(A).

2 Matrices under the Action of Um(F)⊗Un(F)

In this section, we consider matrices in Mm,n(R) under the group action Um(F) ⊗
Un(F) defined by (U ,V )∗A = UAV t . It is well known the orbit O(A) of A ∈ Mm,n(F)
consists of all matrices X ∈ Mm,n(F) such that s(X) = s(A). Suppose A1, . . . ,Ak ∈
Mm,n(F) and

(2.1) O(A1, . . . ,Ak) =
{ k∑

i=1

Xi : Xi ∈ O(Ai), i = 1, . . . , k
}
.

We are interested in studying the set Dr(A1, . . . ,Ak) of r-tuples (d1, . . . , dr) such
that d j is the ( j, j) entry of a matrix in O(A1, . . . ,Ak) for j = 1, . . . , r. Since X ∈
O(A1, . . . ,Ak) if and only if PXQ ∈ O(A1, . . . ,Ak) for any permutation matrices P
and Q, the set Dr(A1, . . . ,Ak) can be viewed as the set of vectors with entries lying in
the (1, j1), . . . , (r, jr) positions of a matrix in O(A1, . . . ,Ak) for any distinct column
indices j1, . . . , jr.
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We divide our discussion into several subsections. First, some background is pre-
sented in Section 2.1. In Sections 2.2 and 2.3, we give a complete description of the
set Dr(A1, . . . ,Ak) in terms of inequalities involving the singular values of A1, . . . ,Ak.
Furthermore, the extremal matrices for which the inequalities become equalities are
characterized. A variation of the problem is considered in Section 2.4. Then we study
some convexity properties of the set Dr(A1, . . . ,Ak) in Section 2.5.

2.1 Background

In [18] (see also [12]), Thompson obtained necessary and sufficient conditions for a
vector (d1, . . . , dn) to be the vector of diagonal entries of a matrix in O(A) for a given
A ∈ Mn(F).

Proposition 2.1 Suppose A ∈ Mn(F) has singular values s1 ≥ · · · ≥ sn ≥ 0. Then
d1, . . . , dn ∈ F with |d1| ≥ · · · ≥ |dn| are the diagonal entries (in any order) of a
matrix in O(A) if and only if

(2.2)
r∑

j=1

|d j | ≤
r∑

j=1

s j , r = 1, . . . , n,

and

(2.3)
n−1∑
j=1

|d j | − |dn| ≤
n−1∑
j=1

s j − sn.

This result was later extended to the product of matrices as follows, see [8], [7],
[15].

Proposition 2.2 Suppose A1, . . . ,Ak ∈ Mn(F). Let s j =
∏k

i=1 s j(Ai) for j =
1, . . . , n. Then d1, . . . , dn ∈ F with |d1| ≥ · · · ≥ |dn| are the diagonal entries (in

any order) of a matrix of the form
∏k

i=1 Xi with Xi ∈ O(Ai) for each i if and only if
(2.2) and (2.3) hold.

It is interesting that the same conditions (2.2) and (2.3) are necessary and suffi-
cient in the extended result with a simple (natural) modification of the definition for
s1, . . . , sn. In particular, we have the following consequence.

Corollary 2.3 Let A1, . . . ,Ak ∈ Mn(F) and s1, . . . , sn satisfy the hypothesis of Propo-

sition 2.2. Then d1, . . . , dn are the diagonal entries (in any order) of a matrix
∏k

i=1 Xi

with Xi ∈ O(Ai) for each i if and only if d1, . . . , dn are the diagonal entries of a matrix
with singular values s1, . . . , sn.

Evidently, Proposition 2.2 can be viewed as the description of vectors of diagonal
entries of matrices in the joint (multiplicative) orbit of A1, . . . ,Ak defined by

(2.4) P(A1, . . . ,Ak) =
{ k∏

j=1

X j : X j ∈ O(A j)
}
.
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It is natural to ask the corresponding question for the joint orbit O(A1, . . . ,Ak) de-
fined as in (2.1). In fact, the problem was raised explicitly in [7].

Problem 2.4 Let A1, . . . ,Ak ∈ Mn(F). Determine the necessary and sufficient con-
dition for (d1, . . . , dn) to be the vector of diagonal entries of a matrix in O(A1, . . . ,Ak)
in terms of the singular values A1, . . . ,Ak.

In view of Propositions 2.1 and 2.2, one might guess that (2.2) and (2.3) are the

necessary and sufficient conditions if s j =
∑k

i=1 s j(Ai). In fact, it follows easily from
Proposition 2.1 that the inequalities (2.2) and (2.3) are still sufficient, and that (2.2) is
necessary. However, (2.3) may not be necessary, as shown in the following example.

Example 2.5 Let A1 = I2, and A2 = [1] ⊕ [−1]. Then d1 = 2 and d2 = 0. Since
s1 = s2 = 2, we see that d1 − d2 � s1 − s2.

We shall give a complete answer of Problem 2.4 in the next subsection. The fol-
lowing observation is useful in our discussion.

Lemma 2.6 Let A1, . . . ,Ak ∈ Mm,n(F), and 1 ≤ r ≤ min{m, n}. Then (d1, . . . , dr)
∈ Dr(A1, . . . ,Ak) if and only if

(µ1di1 , . . . , µrdir ) ∈ Dr(A1, . . . ,Ak)

for any permutation (i1, . . . , ir) of (1, . . . , r) and µi ∈ T for all i = 1, . . . , r.

By the above lemma, we can always focus on those (d1, . . . , dr) ∈ Dr(A1, . . . ,Ak)
with d1 ≥ · · · ≥ dr ≥ 0.

2.2 Characterization of Dr(A1, . . . ,Ar) and Extremal Matrices: The Case m = n = r

In this subsection, we characterize the set Dn(A1, . . . ,Ak) for A1, . . . ,Ak ∈ Mn(F),
giving the solution for Problem 2.4. As mentioned before, the most challenging part
is to find a suitable replacement for condition (2.3). It turns out that the required
condition can be understood from the 1 × 1 case with an appropriate formulation.
We shall not distinguish 1× 1 matrices and scalars in our discussion. Thus for n = 1
and Ai = [s1(Ai)] for i = 1, . . . , k, we have

D1(A1, . . . ,Ak) = D1

(
s1(A1), . . . , s1(Ak)

)
=
{ k∑

i=1

µis1(Ai) : µi ∈ T
}
.

If F = R then D1(A1, . . . ,Ak) is a finite set with at most 2k points. If F = C,
then d ∈ D1(A1, . . . ,Ak) if and only if eit d ∈ D1(A1, . . . ,Ak) for all t ∈ R. Since
D1(A1, . . . ,Ak) is connected, it is an annulus centered at the origin in C. It is not hard

to see that the outer radius of the annulus is s1 =
∑k

i=1 s1(Ai). If for some j, s1(A j) >∑
i 6= j s1(Ai), then the inner radius of the annulus is ρ0 = s1(A j)−

∑
i 6= j s1(Ai). Oth-

erwise, ρ0 = 0. Thus,

ρ0 = min{|d| : d ∈ D1(A1, . . . ,Ak)} = max
(
{0} ∪ {2s1(Ai)− s1 : 1 ≤ i ≤ k}

)
.
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The result of the 1 × 1 case can be stated in terms of inequalities so that it can be
extended to higher dimensions, namely, d ∈ D1(A1, . . . ,Ak) if and only if

0 ≥ min
{
|d− ρ| : ρ ∈ D1

(
s1(A1), . . . , s1(Ak)

)}
= min

{∣∣ |d| − |ρ|∣∣ : ρ ∈ D1

(
s1(A1), . . . , s1(Ak)

)}
.

For higher dimensions, we have the following result.

Theorem 2.7 Let A1, . . . ,Ak ∈ Mn(F). Suppose s j =
∑k

i=1 s j(Ai), and d1, . . . , dn ∈
F satisfy |d1| ≥ · · · ≥ |dn|. Then Dn(A1, . . . ,Ak) contains a vector with entries
d1, . . . , dn in any order if and only if

(2.5)
r∑

j=1

|d j | ≤
r∑

j=1

s j , r = 1, . . . , n,

and

(2.6)
n−1∑
j=1

|d j | + min
{∣∣ |dn| − |ρ|

∣∣ : ρ ∈ D1

(
sn(A1), . . . , sn(An)

)}
≤

n−1∑
j=1

s j .

If F = C, (2.6) can be replaced by the inequality

(2.7)
n−1∑
j=1

|d j | − |dn| ≤
n−1∑
j=1

s j − ρ0,

where
ρ0 = min

{
|ρ| : ρ ∈ D1

(
sn(A1), . . . , sn(Ak)

)}
.

Moreover, suppose A =
∑k

i=1 Ãi , where Ãi = (a(i)
pq) ∈ O(Ai) for i = 1, . . . , k, satisfies

diag(A) = (|d1|, . . . , |dn|).

(a) Let 1 ≤ r ≤ n. The equality holds in (2.5) if and only if Ãi = Bi ⊕ Ci such that
Bi ∈ Mr(F) is positive semi-definite and has eigenvalues s1(Ai), . . . , sr(Ai), for all
i = 1, . . . , k.

(b) The equality holds in (2.6) if and only if a(i)
j j ≥ 0 for all i = 1, . . . , k, j = 1, . . . ,

n− 1,

k∑
i=1

∣∣ |a(i)
nn| − sn(Ai)

∣∣ = min
{
|dn − ρ| : ρ ∈ D1

(
sn(A1), . . . , sn(Ak)

)}
,

and there exists a diagonal matrix D = In−1 ⊕ [µ] ∈ Un(F) such that

(1) if |a(i)
nn| > sn(Ai), then µa(i)

nn = |a(i)
nn| and DAi is hermitian with eigenvalues

s1(Ai), . . . , sn−1(Ai), sn(Ai);
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(2) if |a(i)
nn| < sn(Ai), then µa(i)

nn = −|a(i)
nn| and DAi is hermitian with eigenvalues

s1(Ai), . . . , sn−1(Ai),−sn(Ai);

(3) if |a(i)
nn| = sn(Ai), then DAi = Bi ⊕ [µa(i)

nn], where Bi is hermitian with eigen-
values s1(Ai), . . . , sn−1(Ai).

Furthermore, if the equality holds in (2.6) and there exists i0, such that sn(Ai0 ) >
|a(i0)

nn | = 0, then sn(Ai) = |a(i)
nn| for all i 6= i0.

Note that one may replace (2.6) by

(2.8)
n−1∑
j=1

|d j | + min
{
|dn − ρ| : ρ ∈ D1

(
sn(A1), . . . , sn(Ak)

)}
≤

n−1∑
j=1

s j .

For F = R, there are more numbers of the form |dn − ρ| than the numbers of the
form

∣∣ |dn| − |ρ|
∣∣ with ρ ∈ D1

(
sn(A1), . . . , sn(Ak)

)
. Hence, there is an advantage for

considering (2.6). For F = C, if at least two of sn(A1), . . . , sn(Ak) are not equal to 0,
then there are infinite many numbers of the form |dn − ρ| or

∣∣ |dn| − |ρ|
∣∣ with ρ ∈

D1

(
sn(A1), . . . , sn(Ak)

)
. Nonetheless, (2.6) can be replaced by the single inequality

(2.7).

Proof of Theorem 2.7 Let us first prove the fact that the conditions (2.5) and (2.6)
are equivalent to (2.5) and (2.7) when F = C. Let

c = min
{∣∣ |dn| − |ρ|

∣∣ : ρ ∈ D1

(
sn(A1), . . . , sn(Ak)

)}
=
∣∣ |dn| − |ρ1|

∣∣ ,
where ρ1 ∈ D1

(
sn(A1), . . . , sn(Ak)

)
.

Suppose (2.5) and (2.6) hold. We have

n−1∑
j=1

|d j | + ρ0 − |dn| ≤
n−1∑
j=1

|d j | + |ρ1| − |dn| ≤
n−1∑
j=1

|d j | +
∣∣ |ρ1| − |dn|

∣∣ ≤ n−1∑
j=1

s j .

Hence,
n−1∑
j=1

|d j | − |dn| ≤
n−1∑
j=1

s j − ρ0.

Conversely, suppose (2.5) and (2.7) hold. If |dn| ≤ ρ0, then c = ρ0 − |dn|; so (2.7)
gives

∑n−1
j=1 |d j | − |dn| ≤

∑n−1
j=1 s j − ρ0. It follows that

∑n−1
j=1 |d j | + c ≤

∑n−1
j=1 s j .

If ρ0 ≤ |dn| ≤ sn, then c = 0 and (2.6) reduces to (2.5) with r = n−1. If |dn| > sn,
then c = |dn| − sn and (2.6) follows from (2.5) for r = n.

For the sufficiency part of Theorem 2.7, let d = (d1, . . . , dn), with |d1| ≥ · · · ≥
|dn| satisfying (2.5) and (2.6). We are going to show that d ∈ Dn(A1, . . . ,Ak).

Suppose

min
{∣∣ |dn| − |ρ|

∣∣ : ρ ∈ D1

(
sn(A1), . . . , sn(Ak)

)}
=
∣∣ |dn| − |ρ1|

∣∣ ,
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where |ρ1| =
∑k

i=1 µisn(Ai) ∈ D1

(
sn(A1), . . . , sn(Ak)

)
. We have

n−1∑
j=1

|d j | + |ρ1| − |dn| ≤
n−1∑
j=1

|d j | +
∣∣ |dn| − |ρ1|

∣∣ ≤ n−1∑
j=1

s j .

Hence,
n−1∑
j=1

|d j | − |dn| ≤
n−1∑
j=1

s j − |ρ1|.

So, by Proposition 2.1, there exist U ,V ∈ Un(F) such that

d = diag

U


s1 0 · · · 0

0
. . .

. . . 0
...

. . . sn−1 0
0 · · · 0 |ρ1|

V



= diag


k∑

i=1

U


s1(Ai) 0 · · · 0

0
. . .

. . . 0
...

. . . sn−1(Ai) 0
0 · · · 0 µisn(Ai)

V

 ∈ Dn(A1, . . . ,An).

We finish the proof of Theorem 2.7 by proving the necessity of (2.5)–(2.7) and the
equality cases in (a) and (b). To achieve that, we need the following lemma adapted
from Theorems 3.1 and 3.4 in [5] (see also the proof of Lemma 5 in [18]).

Lemma 2.8 Let A = (apq) ∈ Mn(F) have nonnegative diagonal entries.

(a) Suppose 1 ≤ r ≤ n. Then
∑r

j=1 a j j =
∑r

j=1 s j(A) if and only if A = B⊕C such
that B ∈ Mr(F) satisfies B = B∗ with eigenvalues s1(A), . . . , sr(A).

(b) We have
∑n−1

j=1 a j j − ann =
∑n−1

j=1 s j(A) − sn(A) if and only if there exists D =
In−1 ⊕ [µ] ∈ Un(F) such that DA = A∗D∗ has eigenvalues s1(A), . . . , sn−1(A),
−sn(A).

To prove the necessity of (2.5), let d = diag(
∑k

i=1 UiAiVi), where U1, . . . ,Uk,
V1, . . . ,Vk ∈ Un(F), and d1 ≥ · · · ≥ dn ≥ 0. Let d(i) = diag(UiAiVi), s(i) =(

s1(Ai), . . . , sn(Ai)
)

and s = (s1, . . . , sn). By Proposition 2.1, we have |d(i)| ≺w s(i)

for 1 ≤ i ≤ k. Therefore,

d =
∣∣∣ k∑

i=1

d(i)
∣∣∣ ≺w

k∑
i=1

|d(i)| ≺w

k∑
i=1

s(i) = s.

This proves (2.5).
Suppose 1 ≤ r ≤ n and the equality holds in (2.5). Then the sum of the first r

diagonal entries of UiAiVi must equal
∑r

j=1 s j(Ai). By Lemma 2.8 (a), we see that
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UiAiVi = Bi ⊕Ci such that Bi ∈ Mr(F) is positive semi-definite and has eigenvalues
s1(Ai), . . . , sr(Ai). Conversely, if UiAiVi has the above structure, then clearly (2.5) is
an equality. Thus (a) is valid.

Next, we turn to (2.6). For the convenience of notation, let D1 = D1

(
sn(A1), . . . ,

sn(Ak)
)

, and let UiAiVi = (a(i)
pq). Choose ξi ∈ T such that a(i)

nn = ξi |a(i)
nn| for i =

1, . . . , k. We have

|a(i)
nn − ξisn(Ai)| =

∣∣ |a(i)
nn| − sn(Ai)

∣∣ for i = 1, . . . , k.

Let ρ1 =
∑k

i=1 ξisn(Ai) ∈ D1. Choose a partition {I1, I2, I3} of K = {1, 2, . . . , k}
such that

I1 = {i ∈ K : |a(i)
nn| > sn(Ai)}, I2 = {i ∈ K : |a(i)

nn| < sn(Ai)},

I3 = {i ∈ K : |a(i)
nn| = sn(Ai)}.

Then

n−1∑
j=1

|d j | + min
{∣∣ |dn| − |ρ|

∣∣ : ρ ∈ D1

}

=
n−1∑
j=1

|d j | + min{|dn − ρ| : ρ ∈ D1}

≤
n−1∑
j=1

|d j | + |dn − ρ1|

=
n−1∑
j=1

∣∣∣ k∑
i=1

a(i)
j j

∣∣∣ +
∣∣∣ k∑

i=1

ξi

(
|a(i)

nn| − sn(Ai)
) ∣∣∣

≤
k∑

i=1

{ n−1∑
j=1

|a(i)
j j | +

∣∣ξi

(
|a(i)

nn| − sn(Ai)
) ∣∣}

=
∑
i∈I1

{ n−1∑
j=1

|a(i)
j j | + |a

(i)
nn| − sn(Ai)

}

+
∑
i∈I2

{ n−1∑
j=1

|a(i)
j j | − |a

(i)
nn| + sn(Ai)

}
+
∑
i∈I3

n−1∑
j=1

|a(i)
j j |

≤
3∑
`=1

(∑
i∈I`

n−1∑
j=1

s j(Ai)
)

(applying Proposition 2.1 to each UiAiVi)

=
k∑

i=1

n−1∑
j=1

s j(Ai) =
n−1∑
j=1

s j .

https://doi.org/10.4153/CJM-2002-020-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-020-1


Diagonals and Partial Diagonals of Sum of Matrices 579

Furthermore, the equality holds in (2.6) if and only if all the above inequalities be-
come equalities. Thus, a(i)

j j is nonnegative for all i = 1, . . . , k, and j = 1, . . . , n − 1,
and

min{|dn − ρ| : ρ ∈ D1} =
∣∣∣∑

i∈I1

ξi

(
|a(i)

nn| − sn(Ai)
)

+
∑
i∈I2

−ξi

(
sn(Ai)− |a(i)

nn|
) ∣∣∣

=
∑
i∈I1

(
|a(i)

nn| − sn(Ai)
)

+
∑
i∈I2

(
sn(Ai)− |a(i)

nn|
)

=
n∑

i=1

∣∣ |a(i)
nn| − sn(Ai)

∣∣ .

(2.9)

If I1 ∪ I2 = ∅, set µ = 1; otherwise, we can set µ = ξi = −ξi ′ for all i ∈ I1 and
i ′ ∈ I2. Let D = In−1 ⊕ [µ]. Then, by Lemma 2.8,

1. for each i ∈ I1, we have µai
nn = |a(i)

nn| and tr DÃi =
∑n

j=1 |a
(i)
j j | =

∑n
j=1 s j(Ai),

hence DÃi is hermitian with eigenvalues s1(Ai), . . . , sn−1(Ai), sn(Ai);
2. for each i ∈ I2, we have µa(i)

nn = −|a(i)
nn| and

n−1∑
j=1

|a(i)
j j | − |a

(i)
nn| = tr DÃi =

n−1∑
j=1

s j(Ai)− sn(Ai),

hence DÃi is hermitian with eigenvalues s1(Ai), . . . , sn−1(Ai),−sn(Ai);
3. for each i ∈ I3, we have

∑n−1
j=1 |a

(i)
j j | =

∑n−1
j=1 s j(Ai), and hence Ãi = Bi ⊕ [a(i)

nn].

Finally, if inequalities (2.6) becomes an equality and there exists i0 such that
sn(Ai0 ) > |a(i0)

nn | = 0, then the equalities hold in (2.9) for any choice of ξi0 ∈ T.
It follows that sn(Ai) = |a(i)

nn| for all i 6= i0.

Remark 2.9 In [10] the authors give a necessary and sufficient condition for s1 ≥
· · · ≥ sn to be the singular values of a matrix in O(A1, . . . ,Ak). In principle, one
can solve Problem 2.4 by studying all the possible singular values of matrices in
O(A1, . . . ,Ak) and then applying Proposition 2.1. However, the condition in [10]
involves a large set of inequalities, which are difficult to write down especially for the
real case. It does not seem to be possible to deduce our result using this method.

2.3 Characterization of Dr(A1, . . . ,Ar) and Extremal Matrices: The Remaining Cases

Next, we turn to Dr(A1, . . . ,Ak) with A1, . . . ,Ak ∈ Mm,n(F) when m 6= n or r <
m = n, i.e., all other cases not covered by Theorem 2.7.

Theorem 2.10 Let A1, . . . ,Ak ∈ Mm,n(F). Suppose 1 ≤ r ≤ min{m, n} such that

m 6= n or r < m = n. Let s j =
∑k

i=1 s j(Ai) for i = 1, . . . , n. The following conditions
are equivalent.
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(a) The vector (d1, . . . , dr) is in Dr(A1, . . . ,Ak) up to a (any) permutation of the en-
tries.

(b) The vector (d1, . . . , dr) is in Dr(A) up to a (any) permutation of the entries, where
A =

∑p
j=1 s jE j j ∈ Mm,n(F) with p = min{m, n}.

(c) (|d1|, . . . , |dr|) ≺w (s1, . . . , sr).

Furthermore, suppose Xi ∈ O(Ai) for i = 1, . . . , k, and so that the first r diagonal
entries of X1 + · · · + Xk equal d1, . . . , dr. Then |d1| + · · · + |dr| = s1 + · · · + sr if and
only if there exists a diagonal matrix D ∈ Um(F) such that

DXi =
(

Yi 0
0 Zi

)
, i = 1, . . . , k,

where Yi ∈ Mr(F) is hermitian with eigenvalues s1(Ai), . . . , sr(Ai).

Proof The implication (a)⇒ (c) follows from Theorem 2.7. It is clear that (b)⇒
(a).

Consider the implication (c) ⇒ (b). First, assume that r < m = n. Suppose
(c) holds. Let d j = min{s j , |dr|} for j = r + 1, . . . , n. One easily checks that
d1, . . . , dn satisfy (2.5) and (2.6). By Theorem 2.7, there exists a matrix of the form∑k

j=1 U jA jV j with diagonal entries d1, . . . , dn. Thus condition (a) holds.
Next, consider the case when m 6= n. Without loss of generality, we may assume

that m > n. We prove (c)⇒ (b) by induction on n. We may assume that r = n by
setting d j = 0 for r < j ≤ n. Let A0 =

∑n
j=1 s jE j j ∈ Mm,n(F). It suffices to show

that one can construct a matrix of the form A = UA0V with (1, 1), . . . , (n, n) entries
equal to |d1|, . . . , |dn|.

If n = 1, then A = |d1|E11 +
√

s2
1 − |d1|2E21 is a required matrix. Suppose the

result holds for matrices with fewer than n columns. Let k be the largest integer such
that sk ≥ |d1|.

If k < n, then there exists a 2 × 2 unitary matrix U such that U ∗ diag(sk, sk+1)U
has diagonal entries |d1| and t = sk + sk+1−|d1|. Let B = diag(sk, sk+1, s1, s2, . . . , sk−1,
sk+2, . . . , sn)⊕ 0m−n. Then

(U ∗ ⊕ Im−2)

(
B

0m−n,n

)
(U ⊕ In−2) =

(
|d1| ∗
∗ B0

)
,

where B0 has vector of singular values (s1, . . . , sk−1, t, sk+2, . . . , sn). One easily checks
that (|d2|, . . . , |dn|) ≺w (s1, . . . , sk−1, t, sk+2, . . . , sn). By induction assumption, there
exist unitary W and V so that W B0V has diagonal entries |d2|, . . . , |dn|. Conse-
quently, the matrix

A = ([1]⊕W )(U ∗ ⊕ Im−2)B(U ⊕ In−2)([1]⊕V )

has (1, 1), . . . , (n, n) entries equal to |d1|, . . . , |dn|.
If k = n, then (|d1|, |d2|) ≺w (s1, s2) and (|d2|, . . . , |dn|) ≺w (|d2|, s3, . . . , sn). So

the result follows from an argument similar to the one in the previous paragraph.

https://doi.org/10.4153/CJM-2002-020-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-020-1


Diagonals and Partial Diagonals of Sum of Matrices 581

Next, we turn to the last assertion. The sufficiency part is clear. Conversely, sup-
pose

∑r
j=1 s j =

∑r
j=1 |d j |. Let D be a diagonal matrix in Um(F) such that the first

r diagonal entries of D(X1 + · · · + Xk) are nonnegative. Let DXi =
( Yi ∗
∗ Zi

)
with

Yi ∈ Mr(F). Since s j(Yi) ≤ s j(Ai) for j = 1, . . . , r, we have

r∑
j=1

s j =
k∑

i=1

tr Yi ≤
k∑

i=1

r∑
j=1

s j(Ai) =
r∑

j=1

s j .

This implies that s j(Yi) = s j(Ai) for j = 1, . . . , r, and tr Yi =
∑r

j=1 s j(Yi). Append
rows or columns to the matrix DAi to get a square matrix if necessary. By Lemma 2.8,
the resulting matrix is a direct sum of Yi and another matrix. The result follows.

2.4 A Variation Arising from Lie Theory

In this subsection, we consider the set

Re Dr(A1, . . . ,Ak) = {(Re z1, . . . ,Re zr) : (z1, . . . , zr) ∈ Dr(A1, . . . ,Ak)},

which arises naturally if one uses the Lie theory approach to matrix inequalities (see
[16]). By the results in the last two subsections, one easily deduce the following
statement using the approach in [16, Theorem 6].

Proposition 2.11 Let A1, . . . ,Ak ∈ Mm,n(C), and 1 ≤ r ≤ min{m, n}. Suppose

s j =
∑k

i=1 s j(Ai) for all j = 1, . . . ,m.

(a) The vector (d1, . . . , dr) is in Re Dr(A1, . . . ,Ak) up to a (any) permutation of the
entries.

(b) The vector (d1, . . . , dr) is in Re Dr(A) up to a (any) permutation of the entries,
where A =

∑p
i=1 siEii with p = min{m, n}.

(c) (|d1|, . . . , |dr|) ≺w (s1, . . . , sr).

Furthermore, suppose Xi ∈ O(Ai) for all i = 1, . . . , k, so that the first r diagonal entries
of X1 + · · · + Xk have real parts d1, . . . , dr. Then |d1| + · · · + |dr| = s1 + · · · + sr if and
only if there exists a diagonal matrix D ∈ Um(C) such that

DXi =
(

Yi 0
0 Zi

)
, i = 1, . . . , k,

where Yi ∈ Mr(C) is hermitian with eigenvalues s1(Ai), . . . , sr(Ai).

Proof The implication (b)⇒ (a) is clear. Suppose (d1, . . . , dr) = (Re z1, . . . ,Re zr)
where (z1, . . . , zr) ∈ Dr(A1, . . . ,Ak). Then by the previous results, we have

(|d1|, . . . , |dr|) ≺w (|z1|, . . . , |zr|) ≺w (s1, . . . , sr).

Thus the implication (a)⇒ (c) is proved.
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Suppose (c) holds. Then (see [6]) there exists a nonnegative vector (c1, . . . , cr)
such that |di | ≤ ci for 1 ≤ i ≤ r and (c1, . . . , cr) ≺ (s1, . . . , sr). By the result in
[2], there exists a real symmetric matrix A0 with eigenvalues s1, . . . , sr and diago-
nal entries c1, . . . , cr. One can multiply A0 by a diagonal unitary matrix D0 on the
left so that the diagonal entries of D0A0 are z1, . . . , zr with Re zi = di . Suppose
A ∈ Mm,n(R) such that the (i, i) entry equal si for i = 1, . . . ,min{m, n}, and zero
otherwise. Then there exists a matrix of the form

(
D0A0 0

0 ∗
)
∈ O(A), and hence

(d1, . . . , dr) ∈ Re Dr(A). So, condition (b) holds.
The proof of the last assertion is similar to that of Theorem 2.10.

2.5 Convexity Properties

A subset S of Fn is said to be star-shaped with star-center c ∈ S if ts + (1− t)c ∈ S for
all s ∈ S and 0 ≤ t ≤ 1. It follows from Proposition 2.1 that if n ≥ 2, Dr(A1, . . . ,Ak)
and Re Dr(A1, . . . ,Ak) are star-shaped with (0, . . . , 0) as a star-center. Next, we con-
sider the convexity property of Dr(A1, . . . ,Ak) and Re Dr(A1, . . . ,Ak).

Theorem 2.12 Let A1, . . . ,Ak ∈ Mm,n(F), and 1 ≤ r ≤ min{m, n}.

(a) The set Re Dr(A1, . . . ,Ak) is always convex.
(b) Except for the case when m = n = r the set Dr(A1, . . . ,Ak) is always convex.
(c) For m = n, and F = C, Dn(A1, . . . ,Ak) is convex if and only if

min
{
|ρ| : ρ ∈ D1

(
sn(A1), . . . , sn(An)

)}
= 0.

(d) For m = n, and F = R, Dn(A1, . . . ,Ak) is convex if and only if sn = 0.
(e) In all cases, the convex hull of Dr(A1, . . . ,Ak) is the set

C = {d ∈ Fr : |d| ≺w (s1, . . . , sr)}.

(f) For every d ∈ C, there exist a, b ∈ Dr(A1, . . . ,Ak) and 0 ≤ t ≤ 1 such that
d = ta + (1− t)b. If F = C, we can choose t = 1/2.

Proof Assertions (a) and (b) follow from Proposition 2.11 and Theorem 2.10.
For (c), suppose that m = n, and Dn(A1, . . . ,Ak) is convex. Since (s1, . . . , sn) and

(s1, . . . ,−sn) both are in Dn(A1, . . . ,Ak), we have

(s1, . . . , sn−1, 0) ∈ Dn(A1, . . . ,Ak).

Hence,

n−1∑
j=1

s j + min
{∣∣0− |ρ|∣∣ : ρ ∈ D1

(
sn(A1), . . . , sn(An)

)}
≤

n−1∑
j=1

s j

and thus,

ρ0 = min
{∣∣0− |ρ|∣∣ : ρ ∈ D1

(
sn(A1), . . . , sn(An)

)}
= 0.
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Conversely, suppose min
{
|ρ| : ρ ∈ D1

(
sn(A1), . . . , sn(An)

)}
= 0. Then (2.7)

follows from (2.5). Hence, Dn(A1, . . . ,Ak) is convex.
For (d), suppose that m = n, F = R, and Dn(A1, . . . ,Ak) is convex. Therefore,

(s1, . . . , sn−1, t) ∈ Dn(A1, . . . ,Ak) for all 0 ≤ t ≤ sn. Hence, D1

(
sn(A1), . . . , sn(Ak)

)
= [0, sn]. Since D1

(
sn(A1), . . . , sn(Ak)

)
is finite, we have sn = 0. Conversely, if

sn = 0, then sn(A1) = · · · = sn(Ak) = 0. Hence, D1

(
sn(A1), . . . , sn(Ak)

)
= {0}, and

(2.6) reduces to (2.5) when r = n. Therefore, Dn(A1, . . . ,Ak) is convex.
(e) follows from Theorem 2.7, Corollary 5 of [18] and [17].
(f) It suffices to prove the case when m = n = r. Suppose d = (d1, . . . , dn) ∈ C

with |d1| ≥ · · · ≥ |dn|. If |dn| > sn, then d ∈ Dn. So we may assume that |dn| < sn.
Let d = min(|dn−1|, sn). For µ ∈ T, let d(µ) = (d1, . . . , dn−1, µd). Since |dn| ≤

|d|, there exist µ1, µ2 ∈ T and 0 ≤ t ≤ 1 such that dn = tµ1d + (1 − t)µ2d. Hence,
d = td(µ1) + (1 − t)d(µ2). Furthermore, if F = C, we can choose t = 1/2. Clearly,
d(µ) ≺w (s1, . . . , sn). It remains to prove that d(µ) satisfies (2.6) for all µ ∈ T.

If |dn−1| > sn, we have d = sn and (2.6) is clearly satisfied.
If |dn−1| ≤ sn, we have d = |dn−1| and

n−1∑
j=1

|d j | + sn − |µdn−1| =
n−2∑
j=1

|d j | + sn ≤
n−2∑
j=1

s j + sn ≤
n−1∑
j=1

s j .

Therefore, (2.6) is satisfied.

Let p, q be positive integers satisfying p ≤ m, q ≤ n and r = min{p, q}. Define

Φp,q(A1, . . . ,Ak) = {X ∈ Mp,q(F) : X is a submatrix of Y ∈ O(A1, . . . ,Ak)}.

By an argument similar to the one in (e) in the last theorem, we can prove the follow-
ing extension of Theorem 10 in [18].

Proposition 2.13 Let A1, . . . ,An ∈ Mm,n(F), let p, q be positive integers satifying
p ≤ m, q ≤ n, and r = min{p, q}. The convex hull of Φp,q(A1, . . . ,Ak) is the set

{X ∈ Mp,q(F) : σ(X) ≺w (s1, . . . , sr)}.

3 Real Matrices under the Action of SO(m)⊗ SO(n)

In this section, we consider A ∈ Mm,n(R) under the action of SO(m)⊗ SO(n). Let

SO(A) = {UAV t : U ∈ SO(m),V ∈ SO(n)}.

The joint orbit of A1, . . . ,Ak ∈ Mm,n(R) is

SO(A1, . . . ,Ak) =
{ k∑

i=1

Xi : Xi ∈ SO(Ai), i = 1, . . . , k
}
.

We are interested in the set Dr(A1, . . . ,Ak) of r-tuples (d1, . . . , dr) whose entries are
the first r diagonal entries of a matrix in SO(A1, . . . ,Ak). Again, the set Dr(A1, . . . ,
Ak) can be viewed as the set of vectors with entries lying in the (1, j1), . . . , (r, jr)
positions of a matrix in SO(A1, . . . ,Ak) for any distinct column indices j1, . . . , jr.
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3.1 Background

In [18, Theorems 2 and 7] Thompson gave a complete description of Dn(A) for a
given A ∈ Mn(R) by proving the following result.

Proposition 3.1 Let A ∈ Mn(R) have nonnegative determinant and singular values
s1 ≥ · · · ≥ sn. Then there exists X ∈ SO(A) with diagonal entries d1, . . . , dn in any
order such that q of them are negative and |d1| ≥ · · · ≥ |dn| if and only if

(3.1)
r∑

j=1

|d j | ≤
r∑

j=1

s j , r = 1, . . . , n,

and

(3.2)
n−1∑
j=1

|d j | − (−1)q|dn| ≤
n−1∑
j=1

s j − sn.

In particular, Dn(A) is the convex hull of all vectors (±sπ(1), . . . ,±sπ(n)) with an even
number of negative signs and with π any permutation.

In [15, Theorem 2], the author showed that if A1, . . . ,Ak ∈ Mn(R) with
det(A1 · · ·Ak) ≥ 0, and if s j =

∏k
i=1 s j(Ai) for j = 1, . . . , n, then d1, . . . , dn ∈ R

are the diagonal entries of a matrix of the form
∏k

i=1 X j with X j ∈ SO(A j) for
j = 1, . . . , k, if and only if (3.1) and (3.2) hold.

Once again, the product version of Proposition 3.1 is relatively easy to prove,
and the summation version is not so simple. It is worth mentioning that the sets
SO(A1, . . . ,Ak) and Dr(A1, . . . ,Ak) arise naturally in the Lie group setting as pointed
out in [16].

In the next subsection, we give a complete description of the set Dr(A1, . . . ,Ak).
One easily checks (see also [16, Section 4]) that if m 6= n or r < m = n then

Dr(A1, . . . ,Ak) = Dr(A1, . . . ,Ak),

which is studied in the previous section. So, we only need to consider the case r =
m = n.

3.2 Characterization of Dr(A1, . . . ,Ak) and Extremal Matrices

The following results of Thompson [18, Lemma 5 ′ and the proof of Theorem 2] play
a crucial role in our discussion.

Lemma 3.2 Let A ∈ Mn(R) with diagonal entries d1, . . . , dn satisfy det(A) ≥ 0.
Then

n−1∑
j=1

d j − dn ≤
n−1∑
j=1

s j(A)− sn(A).

The equality holds if and only if (In−1 ⊕ [−1])A is symmetric with eigenvalues

s1(A), . . . , sn−1(A),−sn(A).
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Let J = In−1 ⊕ [−1]. We note that
∑n−1

j=1 d j − dn = tr JA = tr A J.

Lemma 3.3 Let A ∈ Mn(R) and (d1, . . . , dn) ∈ Dn(A). Then (d1, . . . , dn)P ∈
Dn(A) for any permutation matrix P or diagonal matrix P ∈ SO(n).

The next result treats the special case when all Ai have nonnegative determinants.
It turns out that the same set of conditions (3.1) and (3.2) are necessary and sufficient
if one defines s1, . . . , sn, appropriately.

Proposition 3.4 Let A1, . . . ,Ak ∈ Mn(R) have nonnegative determinants, and
d1, . . . , dn be real numbers such that q of them are negative and |d1| ≥ · · · ≥ |dn|.
Suppose s j =

∑k
i=1 s j(Ai) for j = 1, . . . , n. The following conditions are equivalent.

(a) The vector (d1, . . . , dn) is in Dn(A1, . . . ,Ak) up to a (any) permutation of the en-
tries.

(b) The vector (d1, . . . , dn) is in Dn(A) up to a (any) permutation of the entries, where
A =

∑n
i=1 siEii .

(c) The inequalities (3.1) and (3.2) hold.

Proof Note that A ∈ Mn(R) has nonnegative determinant if and only if there exist
U ,V ∈ SO(n) such that A = U

(∑n
j=1 s j(A)E j j

)
V . So, without loss of generality, we

may assume that Ai =
∑n

j=1 s j(Ai)E j j for each i.
The equivalence of (b) and (c) follows from Proposition 3.1. The implication (b)

⇒ (a) is clear. Suppose (a) holds. Then (3.1) follows from Theorem 2.7. To prove

(3.2), let (d1, . . . , dn) = diag(
∑k

i=1 Xi) with Xi ∈ SO(Ai) for each i.

Applying Lemma 3.2 to each Xi , we see that tr JXi ≤
∑n−1

j=1 s j(Ai)− sn(Ai). Thus,
we have

(3.3)
n−1∑
j=1

d j − dn = tr J(X1 + · · · + Xk) ≤
n−1∑
j=1

s j − sn.

Suppose there is an even number of negative terms among d1, . . . , dn. By
Lemma 3.3, we may assume that all d j are nonnegative and (3.2) follows from (3.3).
If there is an odd number of negative terms, we may assume that d j ≥ 0 for j =
1, . . . , n− 1 and dn ≤ 0. Again, (3.2) follows from (3.3).

By a similar arguments, one may treat the case when A1, . . . ,Ak ∈ Mn(R) have
negative determinants. For the general case, we have the following result.

Theorem 3.5 Suppose A1, . . . ,Ak,Ak+1, . . . ,Am ∈ Mn(R) such that det Ai ≥ 0 for
1 ≤ i ≤ k and det Ai < 0 for k + 1 ≤ i ≤ m. Suppose s j =

∑m
i=1 s j(Ai) for

j = 1, . . . , n − 1 and sn =
∑k

i=1 sn(Ai) −
∑m

i=k+1 sn(Ai) (sn may be negative). Let
d1, . . . , dn ∈ R be such that q of the numbers are negative and |d1| ≥ · · · ≥ |dn|. The
following conditions are equivalent.

(a) Up to a (any) permutation of the entries, the vector (d1, . . . , dn) is in Dn(A1, . . . ,
Am).

https://doi.org/10.4153/CJM-2002-020-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2002-020-1


586 Chi-Kwong Li and Yiu-Tung Poon

(b) Up to a (any) permutation of the entries, the vector (d1, . . . , dn) is in Dn(B), where
B =

∑n
j=1 s jE j j .

(c) The following inequalities hold:

r∑
j=1

|d j | ≤
r∑

j=1

s j , r = 1, . . . , n− 1,(3.4)

n−1∑
j=1

|d j | + (−1)q|dn| ≤
n−1∑
j=1

s j + sn,(3.5)

and

(3.6)
n−1∑
j=1

|d j | − (−1)q|dn| ≤
n−1∑
j=1

s j − sn.

Furthermore, suppose Xi ∈ SO(Ai) for all i = 1, . . . , k, so that the diagonal entries of
X = X1 + · · · + Xk equal d1, . . . , dn.

(1) For 1 ≤ r < n, the equality holds in (3.4) if and only if there exists a diagonal
matrix D ∈ Un(R) such that

DXi =
(

Yi 0
0 Zi

)
, i = 1, . . . ,m,

where Yi ∈ Mr(R) is symmetric with eigenvalues s1(Ai), . . . , sr(Ai).
(2) The equality holds in (3.5) if and only if there exists a diagonal matrix D ∈ SO(n)

such that DX has diagonal entries |d1|, . . . , |dn−1|, (−1)q|dn|, DXi is symmetric
with eigenvalues s1(Ai), . . . , sn(Ai) for i = 1, . . . , k, and DX j is symmetric with
eigenvalues s1(A j), . . . , sn−1(Ai),−sn(A j) for j = k + 1, . . . ,m.

(3) The equality holds in (3.6) if and only if there exists a diagonal matrix D ∈ Un(R)
with det(D) = −1 such that DX has diagonal entries |d1|, . . . , |dn−1|, (−1)q+1|dn|,
DXi is symmetric with eigenvalues s1(Ai), . . . , sn−1(Ai),−sn(Ai) for i = 1, . . . , k,
and DX j is symmetric with eigenvalues s1(A j), . . . , sn(A j) for j = k + 1, . . . ,m.

Proof Let d = (d1, . . . , dn). Clearly (b) implies (a).
Suppose (c) holds. We consider two cases:

Case 1 Suppose sn ≥ 0. Then B has singular values s1, . . . , sn and (3.2) follows from
(3.6). For r = 1, . . . , n − 1, (3.1) follows from (3.4); for r = n, (3.1) follows from
(3.5) or (3.6). By (b) of Proposition 3.4, d ∈ Dn(B).

Case 2 Suppose sn < 0. Then B J has singular values s1, . . . , sn−1,−sn. Applying
the argument in Case 1 to d J and B J, there exist U ,V ∈ SOn(R) such that d J =
diag U (B J)V . Thus d = diag U B( JV J) with U , JV J ∈ SOn(R).
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Next, suppose condition (a) holds. By Proposition 3.4, we may assume that d =
diag(U1B1V1 + U2B2V2) where

B1 =
n∑

j=1

( k∑
i=1

s j(Ai)
)

E j j and B2 =
n−1∑
j=1

( m∑
i=k+1

s j(Ai)
)

E j j −
( m∑

i=k+1

sn(Ai)
)

Enn,

and U1, U2, V1 and V2 ∈ SOn(R). Let d(i) = diag(UiBiVi) for i = 1, 2. Then, for
r = 1, . . . , n− 1, we have

r∑
j=1

|d j | =
r∑

j=1

|d(1)
j + d(2)

j |

≤
r∑

j=1

(|d(1)
j | + |d

(2)
j |)

≤
r∑

j=1

(
s j(B1) + s j(B2)

)
by (3.1).

Hence (3.4) follows.
To prove (3.5) and (3.6), first consider the case where an even number of the

entries in d are negative. By Lemma 3.3, we may choose a suitable diagonal matrix
D in SO(n) so that dD have nonnegative entries. For simplicity, we assume that D
is the identity matrix; otherwise, replace d by dD. Applying Lemma 3.2 to d(1) and
d(2) J = diag

(
U2(B2 J)( JV2 J)

)
, we have

n−1∑
j=1

d(1)
j − d(1)

n ≤
n−1∑
j=1

s j(B1)− sn(B1) and
n−1∑
j=1

d(2)
j + d(2)

n ≤
n−1∑
j=1

s j(B2)− sn(B2).

From (3.1) we have

n−1∑
j=1

d(1)
j + d(1)

n ≤
n−1∑
j=1

s j(B1) + sn(B1) and
n−1∑
j=1

d(2)
j − d(2)

n ≤
n−1∑
j=1

s j(B2) + sn(B2).

Therefore, we have

n−1∑
j=1

d j + dn ≤
n−1∑
j=1

s j + sn and
n−1∑
j=1

d j − dn ≤
n−1∑
j=1

s j − sn,

from which (3.5) and (3.6) follow. If an odd number of the entries in d are nega-
tive, we can replace d by d J. Interchanging the roles of B1 and B2 in the previous
arguments, we get the conclusion.

Now, we turn to the characterization of the equality cases. First, condition (1) can
be proven by an argument similar to that in the proof of Theorem 2.7.
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Suppose Xi ∈ SO(Ai) so that X0 = X1 + · · · + Xm has diagonal entries d1, . . . , dn

attaining the equality in (3.5). Suppose q of the diagonal entries of X0 are negative.
Then there exists D ∈ SO(n) such that diag(DX0) =

(
|d1|, . . . , (−1)q|dn|

)
. For

i = 1, . . . , k, tr(DXi) ≤
∑n

j=1 s j(Ai), by (2.2). For j = k + 1, . . . ,m, det( JDXi) ≥ 0

for j = k + 1, . . . ,m, by Lemma 3.2, we have tr DXi = tr J( JDXi) ≤
∑n−1

j=1 s j(Ai)−
sn(Ai). Hence, we have

n∑
j=1

s j = tr(DX0) =
m∑

i=1

tr(DXi)

≤
k∑

i=1

n∑
j=1

s j(Ai) +
m∑

i=k+1

( n−1∑
j=1

s j(Ai)− sn(Ai)
)

=
n∑

j=1

s j .

It follows that tr(DXi) =
∑n

j=1 s j(Ai) for i = 1, . . . , k, and tr DXi = tr J( JDXi) =∑n−1
j=1 s j(Ai)− sn(Ai) for i = k + 1, . . . ,m. The result follows from Lemma 3.2.
The proof for the equality in (3.6) is similar.

3.3 Convexity Properties

Proposition 3.6 Under the assumption in Theorem 3.5, Dn(A1, . . . ,Am) is the convex
hull of all vectors (±sπ(1), . . . ,±sπ(n)) with an even number of negative signs and with
π any permutation. Furthermore, the set

conv{s(X) : X ∈ SO(A1, . . . ,Am)} = {s(X) : X ∈ conv SO(A1, . . . ,Am)}

consists of vector s(X) = (σ1, . . . , σn) such that σ1, . . . , εσn ∈ Dn(A1, . . . ,Am), where
ε = 1 if sn det(X) ≥ 0, ε = −1 if sn det(X) < 0.

Proof If sn ≥ 0, the result follows from the condition (b) in Theorem 3.5, Propo-
sition 3.1 and [18, Corollary 9]. Suppose sn < 0. Then d ∈ Dn(B) if and only if
d J ∈ Dn(B J), and X ∈ SO(B) if and only if X J ∈ SO(B J). The result follows from
the previous case.

4 Skew-Symmetric Matrices under the Action of Un(F)

Let A ∈ Mn(F) be a skew-symmetric matrix such that n = 2m or 2m + 1. There has
been considerable interest (see [13], [14], [16]) in studying the set D̃r(A) of r-tuples
(µ1, . . . , µr), where for j = 1, . . . , r, the number µ j is the ( j,m + j) entry of a matrix
of the form UAU t with U ∈ Un(F). In this section, we study the structure of the set
D̃r(A1, . . . ,Ak) of r-tuples (µ1, . . . , µr), where for j = 1, . . . , r, the number µ j is the
( j,m + j) entry of a matrix of the form X0 = X1 + · · ·+ Xk, where Xi = UiAiU t

i with
Ui ∈ Un(F) for all i. We begin with the following lemma.

Lemma 4.1 Let n = 2m or 2m + 1, and let A ∈ Mn(F) be a skew-symmetric matrix
with singular values s j = s2 j−1(A) = s2 j(A) for j = 1, . . . ,m, and s2m+1(A) = 0 if
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n = 2m + 1. Suppose 1 ≤ r ≤ m and µ1, . . . , µr ∈ F satisfy |µ1| ≥ · · · ≥ |µr|. The
following conditions are equivalent.

(a) Up to a (any) permutation of the entries, the vector (µ1, . . . , µr) is in D̃r(A).

(b) There exists U ∈ Un(F) such that UAU t =
(

0m X
−Xt 0n−m

)
and (µ1, . . . , µr) is in the

(1, 1), . . . , (r, r) positions of X.
(c) The following inequalities hold:

(|µ1|, . . . , |µr|) ≺w (s1, . . . , sr),

and if r = n/2
r−1∑
j=1

|µ j | − |µr| ≤
r−1∑
j=1

s j − sr.

Proof The implication (b)⇒ (a) is clear. For (a)⇒ (c), see [13, Theorem 1] and [14,
Theorems 2.1 and 2.2]. Suppose (c) holds. By Proposition 2.1 and Theorem 2.10, one
can construct an m×(n−m) matrix X with singular values s1, . . . , sm and ( j, j) entry
equal to µ j for j = 1, . . . , r. Then

(
0 X
−Xt 0

)
satisfies condition (b).

Lemma 4.2 Suppose n = 2m or 2m + 1, A1, . . . ,Ak ∈ Mn(R) are skew-symmetric
matrices and 1 ≤ r ≤ m. The following conditions are equivalent.

(a) The vector (µ1, . . . , µr) is in D̃r(A) up to a (any) permutation of the entries.

(b) There exist U1, . . . ,Uk ∈ Un(F) such that UiAiU t
i =

(
0m Xi

−Xt
i 0n−m

)
, i = 1, . . . , k,

and (µ1, . . . , µr) is in the (1, 1), . . . , (r, r) positions of X1 + · · · + Xk.
(c) The vector (µ1, . . . , µr) is in Dr(B1, . . . ,Br) (as defined in Section 2) up to a (any)

permutation of the entries, where Bi =
∑m

j=1 s2 j(Ai)E j j ∈ Mm,n−m(F) for i =
1, . . . , k.

Proof Suppose (a) holds. Then there exist V1, . . . ,Vk ∈ Un(F) so that µ j is the

( j,m + j) entry of a matrix of the form
∑k

i=1 ViAiV t
i . Applying the equivalence of

(a) and (b) of Lemma 4.1, we may replace each ViAiV t
i by a suitable matrix of the

form UiAiU t
i =

(
0m Xi

−Xt
i 0n−m

)
, which has the same (1, r + 1), . . . , (r, 2r) entries as

ViAiV t
i . Then X1, . . . ,Xr satisfy (b).

Suppose X1, . . . ,Xr satisfy (b). Then Xi has singular values s2(Ai), s4(Ai), . . . ,
s2m(Ai). Thus condition (c) holds.

If (c) holds, then clearly (b) and hence (a) holds.

By the above lemma, we can translate all the results in Section 2 to skew-symmetric
matrices. We summarize the result in the following.

Theorem 4.3 Suppose A1, . . . ,Ak ∈ Mn(F) are skew-symmetric matrices and r ≤
m = [n/2]. Let s j =

∑k
i=1 s2 j(Ai) for all j ≤ n/2. Then

(d1, . . . , dr) ∈ D̃r(A1, . . . ,Ak)
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if and only if

(4.1) (|d1|, . . . , |dr|) ≺w (s1, . . . , sr),

and if r = n/2 we have

(4.2)
r−1∑
j=1

|d j | + min
{∣∣ |dr| − |ρ|

∣∣ : ρ ∈ D1

(
sn(A1), . . . , sn(Ak)

)}
≤

r−1∑
j=1

s j .

In the complex case, (4.2) is equivalent to

r−1∑
j=1

|d j | − |dr| ≤
r−1∑
i=1

s j − ρ0,

where
ρ0 = min

{
|ρ| : ρ ∈ D1

(
sn(A1), . . . , sn(Ak)

)}
.

In particular, we have D̃r(A1, . . . ,Ak) = D̃r(A0) where A0 =
∑m

j=1 s j(E j,m+ j−Em+ j, j),

and the set is convex whenever r < n/2. For r = n/2, the set D̃r(A1, . . . ,Ak) = D̃r(A0)
is star-shaped with (0, . . . , 0) as a star-center; it is convex if and only if sn = 0.

Next, we consider the equality cases for (4.1) and (4.2).

Proposition 4.4 Suppose A1, . . . ,Ak, and s1, . . . , sm satisfy the hypotheses of Theo-
rem 4.3. Let

(4.3) A =
k∑

i=1

Ãi with Ãi = UiAiU
t
i = (a(i)

pq), Ui ∈ Un(F) for i = 1, . . . , k,

so that |d j | is the ( j,m + j) entry of A for j = 1, . . . ,m.

(a) Suppose 1 ≤ r ≤ m. Then

(4.4)
r∑

j=1

|d j | =
r∑

j=1

s j

if and only if for each i = 1, . . . , k,

Ãi =


Ci 0r,m−r Bi 0r,n−m−r

0m−r,r ∗ 0m−r,r ∗
−Bt

i 0r,m−r C i 0r,n−m−r

0n−m−r,r ∗ 0n−m−r,r ∗


such that Bi ∈ Mr(F) has trace

∑r
j=1 s2 j(Ai) and the matrix(
Bi Ci

−C i Bi

)
is positive semi-definite with eigenvalues s1(Ai), . . . , s2r(Ai).
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(b) Suppose r = n/2 and

(4.5) Ãi =
(
∗ Xi

−Xt
i ∗

)
with Xi ∈ Mr(F), for i = 1, . . . , k.

Then (4.2) becomes an equality if and only if for each i = 1, . . . , k,

(4.6) tr(Ir−1 ⊕ [−1])Xi =
r−1∑
j=1

s j(Xi)− sr(Xi) =
r−1∑
j=1

s2 j(Ai)− s2r(Ai),

and hence Theorem 2.7(b) is applicable to the matrix Xi .

Proof (a) Let 1 ≤ r ≤ n. If
∑r

j=1 |d j | =
∑r

j=1 s j , then one can multiply the

(m + j)-th row of Ãi by−1 for j = 1, . . . , r, and then permute the rows and columns
appropriately to get a matrix whose first 2r diagonal entries are nonnegative with
sum equal to

r∑
j=1

|a(i)
j,m+ j | + |a

(i)
m+ j, j | =

2r∑
j=1

s j(Ai).

By Lemma 2.8, the resulting matrix is of the form Qi ⊕ Ri such that Qi ∈ M2r(F) is
positive semi-definite with eigenvalues s1(Ai), . . . , s2r(Ai). Thus

Ãi =


Ci 0r,m−r Bi 0r,n−m−r

0m−r,r ∗ 0m−r,r ∗
−Bt

i 0r,m−r C i 0r,n−m−r

0n−m−r,r ∗ 0n−m−r,r ∗


such that Bi ∈ Mr(F) has trace

∑r
j=1 s2 j(Ai) and the matrix

Qi =
(

Bi Ci

−C i Bi

)
is positive semi-definite with eigenvalues s1(Ai), . . . , s2r(Ai), for all i = 1, . . . , k.
Conversely, if Ai has the said block form, then the equality (4.4) holds.

(b) Let n = 2r and (4.5) holds. By Proposition 2.1 and [14, Theorem 3.1], we
have

tr(Ir−1 ⊕ [−1])Xi ≤
r−1∑
j=1

s j(Xi)− sr(Xi) ≤
r−1∑
j=1

s2 j(Ai)− s2r(Ai).

Hence, (4.2) becomes an equality if and only if (4.6) holds for each i = 1, . . . , k.

Note that the convexity result on D̃r(A1, . . . ,Ak) in the last assertion of the theo-
rem can also be used to study the singular values of submatrices in the off-diagonal

blocks of a skew-symmetric matrix of the form
∑k

i=1 UiAiU t
i , Ui ∈ Un(F) for i =

1, . . . , k. One can easily apply a block permutation to move the p × q submatrix in
the off-diagonal position to the off-diagonal position of the leading (p + q)× (p + q)
principal submatrix. It is more convenient to state the result is this way, and we have
the following result in terms of the principal submatrices of skew-symmetric matrices
(cf. [16, Theorem 19]).
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Proposition 4.5 Let A1, . . . ,Ak ∈ Mn(F) be skew-symmetric matrices. Suppose 1 ≤
q ≤ n and Φ̃q(A1, . . . ,Ak) is the set of q × q principal submatrices of matrices of the

form
∑k

i=1 UiAiU t
i , Ui ∈ Un(F). Then the convex hull of Φ̃q(A1, . . . ,Ak) is the set of

skew-symmetric matrices X satisfying

r∑
j=1

s2 j(X) ≤
r∑

j=1

k∑
i=1

s2 j(Ai), 1 ≤ r ≤ q/2.

One can also consider Re D̃r(A1, . . . ,Ak). In such case, only (4.1) is needed to
determined whether (d1, . . . , dr) ∈ Re D̃r(A1, . . . ,Ak). Again, one easily translates
results on the characterization of equality cases, convexity, etc.

When F = R, given skew-symmetric matrices A1, . . . ,Ak, and 1 ≤ r ≤ n/2,
one can consider D̃r(A1, . . . ,Ak), the set of vectors (d1, . . . , dr) lying in the

(1,m + 1), . . . , (r,m + r) positions of a matrix of the form
∑k

i=1 UiAiU t
i , Ui ∈ SO(n)

for i = 1, . . . , k. Again, one can translate the results in Section 3 to D̃r(A1, . . . ,Ak).
We have the following lemma, which is crucial for the translation.

Lemma 4.6 Let n = 2m or 2m + 1, and let A ∈ Mn(R) with singular values s j =
s2 j−1(A) = s2 j(A) for j = 1, . . . ,m, and s2m+1(A) = 0 if n = 2m + 1. Then there exists
V ∈ SO(n) such that

(1) VAV t =
∑m

j=1 s j(E j,m+ j − Em+ j, j), or

(2) VAV t =
∑m−1

j=1 s j(E j,m+ j − Em+ j, j)− sm(Em,n − En,m) in case n = 2m.

Suppose 1 ≤ r ≤ m and µ1, . . . , µr ∈ R satisfy |µ1| ≥ · · · ≥ |µr|. The following
conditions are equivalent.

(a) Up to a (any) permutation, the vector (µ1, . . . , µr) is in D̃r(A).

(b) There exists U ∈ SO(n) such that UAU t =
(

0m X
−Xt 0n−m

)
and (µ1, . . . , µr) lies in

the (1, 1), . . . , (r, r) positions of X.
(c) The following inequalities hold:

(|µ1|, . . . , |µr|) ≺w (s1, . . . , sr),

and
r−1∑
j=1

|µ j | − (−1)p+q|µr| ≤
r−1∑
j=1

s j − sr if r = n/2,

where p = 0 or 1 according to (1) or (2) holds, and q is the number of negative
terms in µ1, . . . , µr.

Using the above lemma one can obtain results on D̃r(A1, . . . ,Ak). In particular,
one sees that except when r = n/2, D̃r(A1, . . . ,Ak) = D̃r(A1, . . . ,Ak). We omit the
details.
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5 Related Results and Problems

There are results and questions on other joint orbits of matrices under different types
of group actions. First, we consider complex Hermitian or real symmetric matrices
under the action of unitary and orthogonal similarity, respectively. It is not difficult
to prove the following.

Proposition 5.1 Suppose A1, . . . ,Ak are complex Hermitian or real symmetric matri-
ces. For 1 ≤ r ≤ n, let Dr(A1, . . . ,Ak) be the set of all r-tuples real numbers equal to

the first r diagonal entries of matrices of the form
∑k

j=1 U jA jU ∗j where U1, . . . ,Un ∈
Un(F). Then (d1, . . . , dr) ∈ Dr(A1, . . . ,Ak) if and only if (d1, . . . , dr) ≺w (λ1, . . . , λr)
where λ j is the sum of the j-th largest eigenvalues of the A1, . . . ,Ak, and if r = n then∑n

j=1 d j =
∑k

i=1 tr Ai . In particular, Dr(A1, . . . ,Ak) = Dr(
∑n

j=1 λ jE j j) is convex.

Given complex symmetric matrices A1, . . . ,Ak ∈ Mn(C) and 1 ≤ r ≤ n, one
may consider the set of all r-tuples of complex numbers lying on the (1, 1), . . . , (r, r)

positions of matrices of the form
∑k

j=1 U jA jU t
j where U1, . . . ,Un are unitary. The

result is rather complicated even when k = 1 and r = n. Thompson [19] showed that
the complex numbers d1, . . . , dn with |d1| ≥ · · · ≥ |dn| can be the diagonal entries
of a complex symmetric matrix with singular values s1 ≥ · · · ≥ sn if and only if

(|d1|, . . . , |dn|) ≺w (s1, . . . , sn),

r−1∑
j=1

|d j | −
n∑

j=r

|d j | ≤
n∑

j=1

s j − 2sr, r = 1, . . . , n,

and if n ≥ 3,
n−3∑
j=1

|d j | −
n∑

j=n−2

|d j | ≤
n−2∑
j=1

s j − sn−1 − sn.

It is challenging to solve the problem for general k and r. An even more difficult
problem is to restrict the choice of U j ’s to special unitary matrices, see [16], [20]. In
both cases, if one consider the real parts of the entries, then the problem is easy (cf.
[16, Theorem 18]) as shown in the following.

Proposition 5.2 Given complex symmetric matrices A1, . . . ,Ak ∈ Mn(C) and 1 ≤
r ≤ n. Let s j =

∑k
i=1 s j(Ai) for j = 1, . . . , n. The following conditions are equivalent.

(a) Up to a permutation, (d1, . . . , dr) is the real parts of an r-tuple of complex numbers

lying on the (1, 1), . . . , (r, r) positions of matrices of the form
∑k

j=1 U jA jU t
j , where

U1, . . . ,Un are unitary.
(b) Up to a permutation, (d1, . . . , dr) is the real parts of an r-tuple of complex numbers

lying on the (1, 1), . . . , (r, r) positions of matrices of the form
∑k

j=1 U jA jU t
j , where

U1, . . . ,Un are special unitary.
(c) (|d1|, . . . , |dr|) ≺w (s1, . . . , sr).

Consequently, the set of vectors in (a) or (b) is convex.
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Also, it is easy to describe the convex hull of the q × q principal submatrices of

matrices of the form
∑k

j=1 U jA jU t
j , where U1, . . . ,Un are unitary or special unitary

(cf. [16, Theorem 19]), namely, they are just the set of symmetric matrices X in
Mq(C) satisfying

r∑
j=1

s j(X) ≤
r∑

j=1

k∑
i=1

s j(Ai), r = 1, . . . , q.
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