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EXTENSIONS OF CHARACTERS IN TYPE D AND THE
INDUCTIVE MCKAY CONDITION, I

BRITTA SPÄTH

Abstract. This is a contribution to the study of Irr(G) as an Aut(G)-set for G

a finite quasisimple group. Focusing on the last open case of groups of Lie type

D and 2D, a crucial property is the so-called A′(∞) condition expressing that

diagonal automorphisms and graph-field automorphisms of G have transversal

orbits in Irr(G). This is part of the stronger A(∞) condition introduced in

the context of the reduction of the McKay conjecture to a question about

quasisimple groups. Our main theorem is that a minimal counterexample to

condition A(∞) for groups of type D would still satisfy A′(∞). This will be

used in a second paper to fully establish A(∞) for any type and rank. The

present paper uses Harish-Chandra induction as a parametrization tool. We

give a new, more effective proof of the theorem of Geck and Lusztig ensuring

that cuspidal characters of any standard Levi subgroup of G=Dl,sc(q) extend

to their stabilizers in the normalizer of that Levi subgroup. This allows us to

control the action of automorphisms on these extensions. From there, Harish-

Chandra theory leads naturally to a detailed study of associated relative Weyl

groups and other extendibility problems in that context.
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§1. Introduction

After the classification of finite simple groups and with the knowledge on their

representations having also greatly expanded in the last decades, it seems overdue to

determine for each quasisimple group G the action of its outer automorphism group Out(G)

on its set of irreducible (complex) characters Irr(G). This is important in order to use our

results on representations of simple groups to get theorems about arbitrary finite groups.

A crucial example is the McKay conjecture asserting

|Irrp′(X)|= |Irrp′(NX(P ))|

for p a prime, X a finite group, P one of its Sylow p-subgroups, and Irrp′(X) the set of

irreducible characters of X of degree prime to p. It is fairly clear that once this is solved for a

normal subgroup Y of X, the next step to deduce something for X is to determine the action

of X on at least Irrp′(Y ). The McKay conjecture has been reduced to a so-called inductive

McKay condition about quasisimple groups by Isaacs–Malle–Navarro [IMN], and the first

requirement is an Out(X)-equivariant bijection realizing McKay’s equality. Knowing the

action of Out(G) on Irr(G) for all quasisimple groups G would also have applications to

other conjectures about characters with similar reductions such as the Alperin–McKay

conjecture or the Dade conjecture (see [S5], [S6]) or even conjectures about modular

characters (see [NT11]) through the unitriangularity of decomposition matrices (see [BDT]).

For alternating and sporadic groups, the action of Out(G) on Irr(G) is easy to deduce

from the available description of Irr(G). When G is the universal covering group of a finite

simple group of Lie type, this is a question in [GM, §A.9]. Previous research on the subject

has left open only the case of groups of type D (see [CS4, 2.5]). The present paper is the

first part of a solution to that problem. A second part [S7] will finish the determination of

Irr(G) as an Out(G)-set. The splitting is due to the quite different methods used here and

in [S7]. A third part will focus on applications to the McKay conjecture [S8].

In order to be more specific about intermediate goals and results, let us introduce some

notation. Let G=GF for F : G→G be a Frobenius endomorphism of a simply connected

simple algebraic group G. Upon choosing an F -stable maximal torus and a Borel subgroup

containing it, one can define a group E of so-called field and graph automorphisms of G. One

can also define a reductive group G̃ realizing a regular embedding for G, that is, G= [G̃,G̃]

with connected Z(G̃) and also assume that F extends to a Frobenius endomorphism of G̃
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with E also acting on G̃ := G̃F . Then Aut(G) is induced by the direct product G̃�E (see,

e.g., [GLS, 2.5.12]).

The determination of the action of G̃�E on Irr(G) mostly relies on establishing that

G̃-orbits and E -orbits are somehow transversal. More precisely, one aims at showing the

following property:

A′(∞): There exists an E-stable G̃-transversal in Irr(G).

This, combined with the present knowledge of Irr(G̃), is enough to determine Irr(G)

as an Out(G)-set (see [CS4, 2.5]). However, in order to deduce any valuable statement

about representations of almost-simple groups, it is also important to answer extendibility

questions. For instance, a difficult theorem of Lusztig essentially focusing on the case of

type D shows that any element of Irr(G) extends to its stabilizer in G̃ (see [L2], [L3]). This

notably leads to the determination of the action of E on the set of G̃-orbits in Irr(G).

The following strengthening of A′(∞) was introduced in [S4] in order to check the

inductive McKay condition for the defining characteristic.

A(∞): There exists an E-stable G̃-transversal T in Irr(G) and any χ ∈ T extends to an

irreducible character of its stabilizer G�Eχ.

The aim of the present paper and its sequel [S7] is to prove A(∞) for G of type D and
2D. In the present paper, G will be indeed some Dl,sc(q) (l≥ 4, q a power of an odd prime);

the case of twisted types 2D will also be deduced in [S7].

Our main theorem here can be seen as showing that a putative counterexample to A(∞)

with minimal l still satisfies A′(∞).

Theorem A. Let G=Dl,sc(q) (l ≥ 4, q a power of an odd prime), and let G̃ and E as

above (see also Notation 2.2). If any Dl′,sc(q) for 4≤ l′ < l satisfies A(∞), then G satisfies

A′(∞).

More precisely, we assume Hypothesis 2.14, that is, that condition A(∞) holds for the

cuspidal characters of any G′ =Dl′,sc(q) with 4≤ l′ < l.

Our proof uses as a starting point a theorem of Malle [Mal2] showing the existence

part A′(∞) of the above statement for cuspidal characters. Then, our strategy is through

the parametrization of Irr(G) given by Harish-Chandra theory. In particular, we take

the standard Levi supplement L of an F -stable parabolic subgroup P containing our

chosen Borel subgroup and consider parabolic induction RG
L λ of cuspidal characters

λ ∈ Irrcusp(L
F ).

An essential ingredient of that parametrization is the deep theorem by Lusztig and

Geck (see [L 1, 8.6] and [G, Cor. 2]) that any λ ∈ Irrcusp(L
F ) extends to its stabilizer

in N := NG(L)F . In order to put that parametrization to use for our purpose of tracking

automorphism actions, it is important to find an equivariant version of that statement.

This does not seem possible from the available proofs, so we devise a new one in this paper,

showing namely with the same notation for G=Dl,sc(q), G̃, L, N, E.

Theorem B. Let λ ∈ Irrcusp(L
F ). Assume Hypothesis 2.14 holds for Dl′,sc(q)

(4 ≤ l′ < l). Then some (Z(G̃)L)
F
-conjugate λ0 of λ has an (NNE(L))λ0-stable extension

to Nλ0.

Studying the group structure of N, our proof uses essentially the Steinberg relations

for the structure of G, not its realization as spin group, making probably more uniform a
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case-by-case but effective proof of Geck–Lusztig’s theorem for other quasisimple groups of

Lie type (see [BS, 4.3] and [CSS, 4.13] for types A and C).

We should point out that the above extendibility property is part of the following wider

problem where (H,F ) is a reductive group defined over a finite field and F is its associated

Frobenius endomorphism.

(P) Let S be an F-stable torus of H. Does every ψ ∈ Irr(CH(S)F ) extend to its stabilizer

in NH(S)F ?

This was answered in the affirmative in the case where S is a Sylow d -torus (d≥ 1) in the

sense of [MT, 25.6] (see [S1], [S2], [S3]). Lusztig’s theorem on the case where S is split and

ψ is cuspidal was important in [L1] to turn Deligne–Lusztig theory into a parametrization

of Irr(HF ) when H has connected center. It seems that even partial answers to (P) have

quite interesting applications (see also [B1, §15] and [Mal1, 2.9]).

Let for now Irrcusp(N) be the set of characters of N whose restriction to L is a sum

of cuspidal characters. Theorem B then can be seen as the starting point of a specific

parametrization of Irrcusp(N) bearing similarities with the parametrizations of characters

of normalizers of Sylow d -tori given in the author’s work just mentioned but with a special

emphasis on outer automorphism actions.

Through preparations gathered at the start of the paper and similar to a method

developed in [MS] where L was a torus, our main goal Theorem A reduces to a weak analogue

of it for Irrcusp(N). This is Theorem 6.1. It is checked through a strategy prescribed by

Clifford theory. In particular, this entails a quite detailed analysis of the relative Weyl

groups

W (λ) :=Nλ/L
F

and their various embeddings related to G̃ and E.

1.1 Structure of the paper.

In §2, we recall notation on quasisimple groups of Lie type, their automorphisms, and the

conditions A(∞) and A′(∞). Then we collect the basic facts about cuspidal characters and

Harish-Chandra theory for finite groups of Lie type. This leads to Theorem 2.8, which sums

up the methods from [MS] to establish condition A(∞) through Harish-Chandra theory.

This is roughly the road map for the rest of the paper, in particular splitting the task into

two halves that will be addressed in §§3 and 4 and §§6 and 7.

The rest of the paper is specific to type D (untwisted) in odd characteristic. After

recalling a method from [CSS] for constructing extensions, the main objective of §§3 and 4

is Theorem B. Section 3 is a description of certain group theoretical aspects of the groups

L := LF and N, using also the classic embedding G ≤ G of type Dl into type Bl. The

root system Φ′ of L is the direct product of irreducible root systems of types A and D.

Roughly speaking, the factors of type Ad−1 form a root system Φd and the factor of type D

gives Φ−1. Along the way, we introduce a set D determining the types occurring as factors

of Φ′. This description will be used in the whole paper. For each d∈D, we describe a normal

inclusion Hd�Vd ≤N := NG(L)F , where Hd =L∩Vd is an elementary abelian 2-group and

L〈Vd | d ∈ D〉=N . This normal inclusion Hd�Vd concentrates the equivariant extendibility

problem we have to solve.

In §4, we draw the consequences of the structure of N in terms of characters. One has to

take care of all the factors involved and deal with the inclusion in type B, which provides

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.14


910 B. SPÄTH

the graph automorphism specific to type D. Concerning the diagonal automorphisms, we

avoid choosing a regular embedding G̃ and instead consider inclusions L�L−1(Z)∩L where

Z ≤ Z(G) and L is the Lang map x 
→ x−1F (x) on G.

Theorem B being proved, we study in §5 how automorphisms act on cuspidal characters

in types A and D, making use in the latter case of Malle’s theorem [Mal2] mentioned above

and some results about semisimple characters already used in the study of the McKay

conjecture for the defining characteristic (see [Mas, §8]).
In §6, the most technical of the paper, the objective is to prove Theorem 6.1, showing

that Irrcusp(N) satisfies a version of A(∞). As already shown in §2, this translates into

requirements on Irr(Nλ/L), the characters of the relative Weyl group W (λ) associated

with a cuspidal character λ of L. The comparison of the action of diagonal versus graph-

field automorphisms on Irrcusp(N) relates with the induced action of related characters of

relative Weyl groups. The proof splits naturally into the various cases for the stabilizer of λ

in L∩L−1(Z(G))/L. This leads to Propositions 6.28 and 6.35 describing the situation in the

two main cases. In the proofs, graph-field automorphisms are taken care of by embedding

the relative Weyl group W (λ) into overgroups K(λ) and K̂(λ) (see Notation 6.4) for field

automorphisms and the embedding into type B for the graph automorphism of order 2.

In §7, we essentially put together all the material of the preceding section to establish

Theorem 6.1 and with some extra effort Theorem A.

§2. Basic considerations

We first gather here some notation around characters, recall Condition A(∞), and

give a rephrasement that provides alternative approaches for the proof of Theorem A.

In §2.2, we collect relevant results from Harish-Chandra theory. We conclude with general

considerations on cuspidal characters in §2.3.

2.1 Notation and Condition A(∞)

In general, we follow the notation about characters as introduced in [I]. Additionally, we

use some terminology from [S1], [S2], [S3] that is recalled in the following paragraph.

Notation 2.1. Let X � Y be finite groups, and let T ⊆ Irr(X). An extension map

with respect to X �Y for T is a map Λ : T −→
∐

X≤I≤Y Irr(I) such that every λ ∈ T is

mapped to an extension of λ to Yλ, the inertia subgroup of λ in Y. We say that maximal

extendibility holds with respect to X �Y for T if such an extension map exists (see also

[CS2, Def. 5.7]). In such a case, the map can be chosen Y -equivariant, provided T is Y -

stable (see [CS2, Th. 4.1]). Whenever T = Irr(X), we omit to mention T. For λ ∈ Irr(X)

and ψ ∈ Irr(Y ), we write λY for the character induced to Y and ψ�X for the restricted

character. For any generalized character κ, we denote by Irr(κ) the set of (irreducible)

constituents of κ. If σ ∈Aut(X) and λ ∈ Irr(X), we write λσ = σ−1

λ for the character with
σ−1

λ(x) = λσ(x) = λ(σ(x)) for x ∈X.

If two subgroups H1,H2 ≤ Y satisfy [H1,H2] = 1, and λi ∈ Irr(Hi) for i = 1,2 with

Irr(λ1�H1∩H2
) = Irr(λ2�H1∩H2

), then there exists a unique character φ ∈ Irr(〈H1,H2〉) with
Irr(φ�Hi

) = {λi} according to [IMN, §5] and we write λ1 ·λ2 for this character. Let I be a

finite set, and let Z, H, and Hi (i ∈ I) be finite groups with Z ≤Hi ≤H. If [Hi,Hi′ ] = 1,

for every i, i′ ∈ I with i 
= i′ and Hi ∩ 〈Hj | j ∈ I\{i}〉 = Z, we consider 〈Hi | i ∈ I〉 ≤ H

the central product of the groups Hi. Given ν ∈ Irr(Z) and λi ∈ Irr(Hi | ν), we denote by
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�i∈Iλi ∈ Irr(〈Hi | i ∈ I〉) the character φ ∈ Irr(〈Hi | i ∈ I〉) with Irr(φ�Hi
) = {λi} for every

i ∈ I (see also [IMN, §5]).
Next, we introduce the groups and automorphisms considered in the following.

Notation 2.2 (Simple groups of Lie type). Let G be a simple linear algebraic group

of simply connected type over an algebraic closure F of Fp for p a prime. Additionally, let

F : G → G be a Frobenius endomorphism defining an Fq-structure on G for q, a power

of p. The automorphisms of GF are restrictions to GF of bijective endomorphisms of G

commuting to F (see [GLS, §1.15]), so it makes sense to consider stabilizers Aut(GF )H for

F -stable subgroups H≤G. Let T0 be an F -stable maximally split torus, and let B be an

F -stable Borel subgroup of G with T0 ⊆ B and N0 := NG(T0). According to [MT, Th.

24.11], the group G := GF has a split BN -pair with respect to B := BF , T0 := TF
0 , and

N0 := NF
0 . Let E(GF ), often just E, be the subgroup of Aut(GF )(B,T0) generated by

the restrictions to GF of graph automorphisms and some Frobenius endomorphism F0

stabilizing T0 and B as in [GLS, Th. 2.5.1] and [CS4, §2.A].

Let G≤ G̃ be a regular embedding, that is, a closed inclusion of algebraic groups with

G̃ = Z(G̃)G and connected Z(G̃). Then T̃0 := Z(G̃)T0 is a maximal torus of G̃. Let

T̃0 := T̃F
0 . Assume that F : G̃→ G̃ is a Frobenius endomorphism extending the one of G

(see also [MS, §2]). Then G̃F has again a split BN -pair with respect to the groups B̃ := T̃0B

and Ñ ′
0 := T̃0N0 (see [MT, Th. 24.11]). Often the action of Ñ ′

0 on G will be studied via

the group Ñ0 := {x ∈NG(T0) | x−1F (x) ∈ Z(G)}, which will be shown to induce the same

automorphisms on G (see Remark 2.16).

Via the convention given in [MS, §2], E(GF ) also acts on G̃F and the semi-direct product

G̃F �E(GF ) induces on GF the whole automorphism group Aut(GF ).

We recall the conditions A(∞) and A′(∞) from [CS4, Def. 2.2].

Condition 2.3 (On stabilizers of irreducible characters of GF ).

A(∞): There exists some E -stable G̃F -transversal T in Irr(GF ), such that every χ ∈ T

extends to GFEχ.

A′(∞): There exists some E -stable G̃F -transversal T in Irr(GF ).

Condition A′(∞) implies a weak version of [S4, Assum. 2.12(v)].

Lemma 2.4. Let Ỹ and X̃ be two subgroups of a group Z with X̃�Z and Z = Ỹ X̃. For

X := X̃ ∩ Ỹ , let M⊆ Irr(X) be Z-stable. Then the following are equivalent:

(i) There is a Ỹ -stable X̃-transversal M0 in M.

(ii) Every ζ ′ ∈M is X̃-conjugate to some ζ such that (X̃Ỹ )ζ = X̃ζ Ỹζ.

(iii) Every ζ ′ ∈M satisfies (X̃Ỹ )ζ′ = (Ỹ x)ζ′X̃ζ′ for some x ∈ X̃.

Proof. This follows from [CSS, Rem. 3.3].

2.2 Action of Aut(G) on Harish-Chandra-induced characters

Using a detailed analysis of Harish-Chandra induction, the results of [MS] describe the

action of Aut(GF ) in terms of cuspidal characters and their relative Weyl groups. The

action is expressed in terms of the labels given by Howlett–Lehrer theory.

Notation 2.5. Let L be a standard Levi subgroup of G with respect to B and T0,

that is, L = LF for some standard Levi subgroup L of G such that T0 ≤ L and LB is an
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F -stable parabolic subgroup. We set N := NG(L)F , W :=N/L, and we abbreviate

EL = E(GF )L.

We write Irrcusp(L) for the set of cuspidal characters of L as defined in [C, 9.1] and

Irrcusp(N) :=
⋃

λ∈Irrcusp(L) Irr(λ
N ). Let us denote by RG

L the Harish-Chandra induction

from L to G. For λ ∈ Irrcusp(L), let

Irr(G | (L,λ)) := Irr(RG
L (λ))

(sometimes denoted as E(G,(L,λ)) in the literature). Let also Irr(G | (L,T)) :=
⋃

λ∈T
Irr(G |

(L,λ)) for T⊆ Irrcusp(L).

2.6. Let Aut(GF )L,HC be the subgroup of Aut(GF ) generated by the automorphisms

of GF induced by N and Aut(GF )(BL,L). Note EL ≤Aut(GF )L,HC. According to Howlett–

Lehrer theory (see [C, §10]), fixing an extension λ̃ ∈ Irr(Nλ) of λ ∈ Irrcusp(L) defines a

unique labeling of Irr(G | (L,λ)) by Irr(W (λ)) where W (λ) :=Nλ/L. We write RG
L (λ)η for

the character of Irr(G | (L,λ)) associated with η ∈ Irr(W (λ)) via the extension λ̃.

Accordingly, the parametrization of Irr(G | (L, Irrcusp(L))) depends on an extension map

ΛL with respect to L�N for Irrcusp(L). For λ ∈ Irrcusp(L), let R(λ)�W (λ) be defined as

in [C, Prop. 10.6.3]. If λ ∈ Irrcusp(L) and σ ∈ Aut(GF )L,HC, let δλ,σ be the unique linear

character of W (σλ) satisfying

σΛL(λ) = ΛL(
σλ)δλ,σ. (2.1)

We only use the formula with some simplifying assumptions on R(λ) and δλ,σ.

Theorem 2.7 (Malle–Späth [MS, Ths. 4.6 and 4.7]). Let σ ∈Aut(GF )L,HC and ΛL be

an N-equivariant extension map with respect to L�N for Irrcusp(L). Assume that RG
L (λ)η

(λ ∈ Irrcusp(L), η ∈ Irr(W (λ))) is defined using ΛL and

R(σλ)≤ ker(δλ,σ) for every λ ∈ Irrcusp(L). (2.2)

Then σ(RG
L (λ)η) = RG

L (
σλ)σηδ−1

λ,σ
for every λ ∈ T and η ∈ Irr(W (λ)).

In §5 of [MS], the analog of Theorem A was proved for characters in Irr(G |
(T0, Irrcusp(T0)) by studying Irrcusp(NG(T0)

F ). For other standard Levi subgroups, the

strategy from [MS] leads naturally to the following statement where we focus on a single

L and its stabilizer in E. Sections 3–6 will ensure the assumptions for the groups from

Notation 2.2 whenever GF =Dl,sc(q).

Theorem 2.8. Let L̃′ := T̃0L, Ñ
′ := T̃0N and N̂ :=NEL. Assume that there exist:

(i) an N̂ -stable L̃′-transversal T in Irrcusp(L), an N-equivariant extension map ΛL,T with

respect to L�N for T such that any λ ∈ T satisfies Equation (2.2); and

(ii) some EL-stable Ñ ′-transversal in Irrcusp(N).

Then there exists an EL-stable G̃F -transversal in Irr(GF | (L, Irrcusp(L))).

For the proof of Theorem 2.8, we parametrize Irrcusp(N) via a set P(L) using an extension

map ΛL with respect to L�N for Irrcusp(L) deduced from ΛL,T.
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Notation 2.9. Assume that T is an N̂ -stable L̃′-transversal in Irrcusp(L). For each

λ ∈ T, we denote by Oλ its N -orbit in Irrcusp(L). Note Oλ ⊆ Irrcusp(L). Let M(λ)⊆ L̃′ be

a set of representatives of the L̃′
λ-cosets in L̃′. We define an extension map ΛL on Oλ by

ΛL(λ
′m) = ΛL,T(λ

′)m for every λ′ ∈ Oλ and m ∈M(λ).

Hence, ΛL is defined, but depends on the choice of M(λ). The map Λ′
L : Irrcusp(L) −→∐

L≤I≤N Irr(I) with Λ′
L(μ) := ΛL(μ)�Nμ̃

for every μ ∈ Irrcusp(L) is well defined, where

μ̃ ∈ Irr(L̃′
μ) is an extension of μ. In contrast to ΛL, we see that Λ′

L is independent of the

choice of M(λ). Observe that [N/L,L̃′/L] = 1. The map Λ′
L is even N̂L̃′-equivariant since

ΛL is N -equivariant and ΛL,T is N̂ -equivariant.

We write P ′(L) for the set of pairs (λ,η) with λ ∈ Irrcusp(L) and η ∈ Irr(W (λ)). The

groups N and W act naturally via conjugation on P ′(L). We denote by P(L) the set of

N -orbits in P ′(L) and by (λ,η) the N -orbit containing (λ,η). Since L is mostly clear from

the context, we omit it, writing P ′ and P.

The parametrization of Irrcusp(N) is given by the following.

Proposition 2.10. Let ΛL, P ′, and P be as in 2.8 and 2.9.

(a) Then the map

Υ : P −→ Irrcusp(N) with (λ,η) 
−→ (ΛL(λ)η)
N

is a well-defined bijection.

(b) σΥ((λ,η)) = Υ((σλ,σηδλ,σ)) for every σ ∈ Aut(G)L,HC and (λ,η) ∈ P, where δλ,σ ∈
Irr(W (σλ)) is as given in 2.6.

Proof. Clifford theory together with Gallagher’s lemma [I, 6.17] proves part (a). The

definition of δλ,σ in Equation (2.1) from 2.6 leads to part (b).

In combination with Theorem 2.7, we obtain a proof of Theorem 2.8.

Proof of Theorem 2.8. For the application of Theorem 2.7, we have to ensure that under

our assumptions, Equation (2.2) holds for characters λ∈T and σ ∈Aut(GF )L,HC. For every

λ ∈ Irrcusp(L), the character ΛL(λ) is an extension of Λ′
L(λ). Accordingly, δλ,σ defined

as the unique linear character of W (σλ) such that σΛL(λ) = ΛL(
σλ)δλ,σ satisfies as well

σΛL(λ)�N
˜λσ

= ΛL(
σλ) δλ,σ�N

˜λσ
. Since Λ′

L(λ) is Ñ ′EL-equivariant, we see that δλ,σ�N
˜λσ

is trivial. Accordingly, ker(δλ,σ) ≥ Nσλ̃/L for every λ ∈ Irrcusp(L) and σ ∈ Aut(GF )L,HC

where λ̃ denotes an extension of λ to L̃′
λ. Recall W (σλ̃) =Nσλ̃/L. In combination with the

inclusion R(σλ)≤W (σλ̃) from [CSS, Lem. 4.14], we obtain the required containment (2.2).

Via Harish-Chandra induction, the map

Υ′ : P −→ Irr(G | (L, Irrcusp(L))) with (λ,η) 
−→ RG
L (λ)η

is well defined according to [MS, Th. 4.7] and bijective. Hence, Υ′◦Υ−1 is a bijection between

Irrcusp(N) and Irr(G | (L, Irrcusp(L))). Via Υ and Υ′, the group Aut(GF )L,HC and hence

Ñ ′EL act on P. By the description of this action given in Theorem 2.7 and Proposition 2.10,

these actions coincide. Hence, Υ′ ◦Υ−1 is Ñ ′EL-equivariant. By Assumption 2.8(ii), every

ψ0 ∈ Irrcusp(N) has an L̃′-conjugate ψ such that (Ñ ′EL)ψ = Ñ ′
ψ(EL)ψ. Hence, every

χ0 ∈ Irr(G | (L, Irrcusp(L))) has an Ñ ′-conjugate χ with (G̃FEL)χ = G(Ñ ′EL)χ =

G(Ñ ′
χ)(EL)χ = G̃F

χ (EL)χ. This implies the statement (see Lemma 2.4).
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In the following sections, we verify the assumptions of Theorem 2.8: We prove

Assumption 2.8(ii), that is, that every ψ ∈ Irrcusp(N) is L̃′-conjugate to some ψ0 with

(Ñ ′EL)ψ0 = Ñ ′
ψ0
(EL)ψ0 , and prove the existence of an extension map as required in

Assumption 2.8(i). Note that by Lusztig [L1] and Geck [G], an extension map exists. Their

proofs are indirect, and we do not see how the required properties can be deduced from

their proofs. In later sections, we give an independent explicit construction of the required

extension map.

2.3 Action on characters of normalizers of Levi subgroups

In the following, we discuss some basic considerations that will be applied to ensure

Assumption 2.8(ii). In the case where L = T0, Assumption 2.8(ii) holds, whenever

the underlying group GF is of simply connected type (see [MS, Proof of Cor. 5.3]). The

assumption on the characters Irrcusp(N) is very similar to the results [CS2, Prop. 5.13],

[CS3, Th. 5.1], and [CS4, 5.E] on Irr(NH(S)F ) for Sylow Φd-tori S of (H,F ), where H is

a simple simply connected group of type different from Dl and d is a positive integer. The

proof there relies on [, Th. 4.3], and we use here a similar strategy. The following proposition

gives the road map for the verification of Assumption 2.8(ii).

We set W (φ) =Nφ/L for every L≤M ≤ T̃0L and φ ∈ Irr(M).

Proposition 2.11. Let N̂ , L̃′ = T̃0L be as in Theorem 2.8, T and ΛL,T as in

Assumption 2.8(i), and Υ from Proposition 2.10. Let λ ∈ T, λ̃ ∈ Irr(L̃′
λ | λ), η ∈ Irr(W (λ)),

and η0 ∈ Irr(η�W (λ̃)). We set Ŵ := N̂/L=NEL/L and K̂(λ) := Ŵλ. If η is K̂(λ)η0-stable,

then

(N̂L̃′)Υ((λ,η)) = N̂Υ((λ,η))L̃
′
Υ((λ,η))

.

We adapt the arguments from the proof of [CS3, Th. 4.3], where η is assumed to be

NW�EL
(W (λ̃))η0-stable. Note that K̂(λ) normalizes W (λ), but this group is in general

different from NW�EL
(W (λ̃)).

Proof. Recall ψ = Υ((λ,η)) = (ΛL,T(λ)η)
N . By the assumptions on T, (N̂L̃′)λ = N̂λL̃

′
λ

for every λ ∈ T.

Let λ̃ ∈ Irr(L̃′
λ | λ) and η0 ∈ Irr(η�W (λ̃)). According to [CE, 15.11], λ̃ is an extension of λ.

The group L̃′
λ/(LZ(G̃)) acts by multiplication with linear characters of W (λ)/W (λ̃) on

Irr(W (λ) | η0). Computing the action of W (λ)/W (λ̃) on Irr(L̃′
λ | λ) shows that the action of

L̃′
λ/L on Irr(W (λ) | η0) is transitive. Hence, the characters {(ΛL(λ)η

′)N | η′ ∈ Irr(W (λ) | η0)}
are the L̃′

λ-conjugates of ψ.

Let l ∈ L̃′ and n̂ ∈ N̂ with ψl = (ψ)n̂. Note that ψn̂ ∈ Irr(N | T) since T is N̂ -stable.

Then Irr(ψl
⌉
L
) is the N -orbit of λl. Recall T is an L̃′-transversal. If l /∈ L̃′

λ, then λl 
= λ and

λl /∈T, in particular ψl /∈ Irr(N |T). This implies l∈ L̃′
λ and ψl = (ΛL(λ)ην)

N for some linear

character ν of Irr(W (λ)/W (λ̃)). Accordingly, (ψ)n̂ ∈ Irr(N | λ) and hence (ψ)n̂ = (ψ)n̂
′
for

some n̂′ ∈ N̂λ. Note that

(ψ)n̂
′
= ((ΛL(λ)η)

n̂′
)N = (ΛL(λ)η

n̂′
)N .

The equality ψl =ψn̂′
implies ηn̂

′
= ην and hence n̂′L∈W (λ)K̂(λ)η0 . As η is K̂(λ)η0-stable,

ηn̂
′
= η and hence ψn̂′

= ψ. This shows (N̂L̃′)ψ = N̂ψL̃
′
ψ.
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The above proposition allows us to prove the following result showing how to construct

an N̂ -stable L̃′-transversal in Irrcusp(N).

Proposition 2.12. In the situation of Lemma 2.8, assume that:

(i) (N̂L̃′)λ = N̂λL̃
′
λ for every λ ∈ T,

(ii) there exists an N̂ -equivariant extension map ΛL,T with respect to L�N for T, and

(iii) for every λ ∈ T, λ̃ ∈ Irr(L̃′
λ | λ), and η0 ∈ Irr(W (λ̃)), there exists some K̂(λ)η0-stable

η ∈ Irr(W (λ) | η0).

Let T ⊆ Irrcusp(L) be the set of characters that are L̃′-conjugate to one in T. Then there

exists some N̂ -stable L̃′-transversal in Irr(N | T).

Proof. By the assumptions, there exists P1 ⊆ P such that:

• if (λ,η) ∈ P1, then λ ∈ T and η is K̂(λ)η0-stable for some λ̃ ∈ Irr(L̃′
λ | λ) and η0 ∈

Irr(η�W (λ̃)); and

• for each λ ∈ T, λ̃ ∈ Irr(L̃′
λ | λ) and η0 ∈ Irr(W (λ̃)), there exists some η ∈ Irr(W (λ) | η0)

with (λ,η) ∈ P1.

Proposition 2.11 tells us that the characters Υ(P1) can form part of an EL-stable

L̃′-transversal.

According to Proposition 2.10, for every λ ∈ T and η0 ∈ Irr(W (λ̃)), the group L̃′
λ acts

transitively on the set Irr(W (λ) | η0). Since for each λ ∈ T and η0 ∈ Irr(W (λ̃)) there exists

some η ∈ Irr(W (λ) | η0) such that (λ,η) ∈ P1, each L̃′-orbit has a nonempty intersection

with Υ(P1). This implies that every character in Υ(P1) has the property required (see

Lemma 2.4).

2.4 Reminder on cuspidal characters

The considerations of §2.2 explain how the action of automorphisms on non-cuspidal

characters depends on the underlying cuspidal character and a character of the relative

Weyl group associated with a cuspidal pair. For the proof of Theorem A, we require some

general results on cuspidal characters that we collect here. By a theorem of Malle, stabilizers

of cuspidal characters coincide with those of semisimple characters (see [B1, 15.A] for a

definition of semisimple characters).

Theorem 2.13. Let H be a simply connected simple linear algebraic group with an

Fq-structure given by a Frobenius map F :H→H. Let H−→ H̃ be a regular embedding, and

let E(HF ) be a group of automorphisms of HF generated by graph and field automorphisms

as in 2.2. Then there exists some E(HF )-stable H̃F -transversal in Irrcusp(H
F ).

Proof. We abbreviate E(HF ) as E. Let χ ∈ Irrcusp(H
F ). According to Lemma 2.4, it is

sufficient to prove that χ has some H̃F -conjugate χ0 with (H̃FE)χ0 = H̃F
χ0
Eχ0 . By [Mal2,

Th. 1], there exists a semisimple character ρ of HF , such that ρ and χ have the same

stabilizer. By [S4, Proof of 3.4(c)], the semisimple character ρ has some (H̃)F -conjugate ρ0
with (H̃FE)ρ0 = H̃F

ρ0
Eρ0 .

In our considerations on Dl,sc(q), we assume the following for all 4≤ l′ < l, which amounts

to A(∞) for cuspidal characters in rank < l. This was called Acusp in our Introduction.

In [S7], we will see that it is actually always satisfied.
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Hypothesis 2.14 (Extension of cuspidal characters of Dl′,sc(q)). Let H be a simply

connected simple group of type Dl′ (l′ ≥ 4), and let F : H → H a standard Frobenius

endomorphism. Then there exists some E(HF )-stable H̃F -transversal T in Irrcusp(H
F )

such that every χ ∈ T extends to HFE(HF )χ.

The following facts are well known (see also [B1, 12.1]).

Lemma 2.15. Let G be a simply connected simple group with Frobenius endomorphism

F :G→G, L an F-stable Levi subgroup of G, L := LF , L0 := [L,L]F , and λ ∈ Irrcusp(L).

(a) Then Irr(λ�L0
)⊆ Irrcusp(L0).

(b) If [L,L] is a central product of F-stable semisimple groups H1 and H2, then Irr(λ�HF
1
)⊆

Irrcusp(H
F
1 ).

(c) Let G̃ be a reductive group with Fq-structure given by F : G̃→ G̃ extending F already

defined on G and such that [G̃,G̃] =G, then every λ̃ ∈ Irr((Z(G̃)L)F | λ) is cuspidal.

Proof. For a finite group H with a split BN-pair of characteristic p, a given χ ∈ Irr(H)

is cuspidal if and only if the corresponding representation space has no nonzero fixed point

under any Op(P ) for any proper parabolic subgroup P of H. It is then clear that for any

H ′ �H with p′-index, one has χ ∈ Irrcusp(H) if and only if χ�H′ has a cuspidal irreducible

component (and then all are). This gives (a) and (c). For (b), note that H1∩H2 is a group

of semi-simple elements, so that the Op(P )’s as above for H := LF
0 are direct products of

corresponding subgroups of HF
1 and HF

2 .

Remark 2.16.

(a) Let G be a simply connected simple group, and let G̃ be a connected algebraic group

with G̃=GZ(G̃). Let F : G̃→ G̃ be a Frobenius endomorphism stabilizing G. Then

x ∈ G̃F can be written as x = gz with g ∈ G and z ∈ Z(G̃), such that g−1F (g) =

zF (z−1). If L :G→G is defined by g 
→ g−1F (g) and G̃ := L−1(Z(G)), we see

G̃F ≤ G̃.Z̃,

where Z̃ := {z ∈ Z(G̃) | F (z) ∈ zZ(G)}. Note that G̃ by its construction is independent

of the choice of G̃. We also have G̃ = NG(GF ) as an easy consequence of [B1, Lem.

6.1].

(b) From now on, we assume additionally that Z(G̃) is connected. Then the (outer)

automorphisms of GF induced by conjugation by some element g ∈ G̃ are called

diagonal automorphisms and they are parametrized by L(g)[Z(G),F ]∈Z(G)/[Z(G),F ]

(see also [GM, 1.5.12]).

Note the difference with the convention used in the introduction where G̃ was used

to abbreviate G̃F . We still clearly have G̃/Z(GF ) = G̃F /Z(G̃F ).

This allows the following conclusion for the above group G̃.

Theorem 2.17. Maximal extendibility holds with respect to GF � G̃.

Proof. Let G̃ be a group with connected centre, such that there exists a regular

embedding G → G̃ that is also an Fq-morphism as in 2.2. Then, according to a theorem

of Lusztig (see [CE, 15.11]), maximal extendibility holds with respect to GF � G̃F , and χ

has an extension χ̃ to G̃F
χ . According to the above, G̃F ≤ G̃.Z̃. Clearly, χ̃ extends to G̃F

χ Z̃

since Z̃ is abelian and [Z̃,G̃F ] = 1. Now, we see that G̃F
χ Z̃ = G̃χZ̃ and hence χ extends to

G̃χ as well.
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Proposition 2.18. In the situation of Remark 2.16, let K≤G be an F-stable reductive

subgroup with T0 ≤K. Let K̃ :=KZ(G̃) and K̃ := L−1(Z(G))∩K. Let χ ∈ Irr(KF ), χ̃ ∈
Irr(K̃F | χ), and ν ∈ Irr( χ̃�Z(G̃F )). As said above, χ extends to K̃F

χ . Let γ ∈ E(GF )(χ,K)

and μ ∈ Irr(K̃F /KF ) with χ̃γ = χ̃μ. Then the following are equivalent:

(i) χ has a γ-stable extension to K̃χ.

(ii) For Z̃ ′ := L(K̃χ), there exists some extension ν̃ ∈ Irr(Z̃ ′) of ν such that μ(tz) =

ν̃(z)−1(ν̃γ(z)) for every t ∈ K̃χ and z ∈ Z̃ ′ with tz ∈ K̃F
χ .

Proof. We prove the statement only in the case where K=G. The results transfer to a

general K as only the quotient groups are relevant to our considerations. Let χ̃ be a γ-stable

extension to G̃χ, then there exists an extension ν̃ ∈ Irr(Z̃ ′) of ν such that χ̃ := ( χ̃.ν̃�G̃F
χ
)G̃

F

.

We observe (χ̃.ν̃)γ = χ̃.ν̃γ . This leads to the given formula for μ in (ii).

For the other direction, let χ0 be the extension of χ to G̃F
χ such that χ̃ = χG̃F

0 . Then

χγ
0 = χ0μ�G̃F

χ
and χ0.ν̃ is an extension of χ to G̃F

χ Z̃
′ = G̃χZ̃

′. The character χ̂ := (χ0.ν̃)�G̃χ

satisfies

χ̃γ .ν̃γ = (γ̃.ν̃)γ = (χ0.ν̃)
γ = χγ

0 .ν̃
γ = χ0μ�G̃F

χ
.ν̃γ .

There is some κ ∈ Irr(G̃χ/G
F ) with χ̃γ = χ̃κ. According to [I, (6.17)], the above equality

of characters implies κ(t)ν̃γ(z)(ν̃(z))−1 = μ(tz), whenever t ∈ G̃χ and z ∈ Z̃ ′ with tz ∈ G̃F
χ .

By the assumption on μ and ν̃, this leads to κ = 1. Then χ has a γ-stable extension

to G̃χ.

For later, we restate A(∞) for groups of type A (see [CS2]).

Proposition 2.19. Let G = SLn(q), G̃ := GLn(q), and write E(SLn(q)) for the group

of field and graph automorphisms of G and G̃ with regard to the usual BN-pair.

(a) Then there exists an E(SLn(q))-stable GLn(q)-transversal T in Irr(SLn(q)), such that

every χ ∈ T extends to SLn(q)E(SLn(q))χ.

(b) Let γ′ be the automorphism of SLn(q) given by transpose-inverse, and let E′(SLn(q))≤
Aut(SLn(q)) be the subgroup generated by γ′ and the field automorphisms described

above. Then E′(SLn(q)) is abelian and there exists an E′(SLn(q))-stable GLn(q)-

transversal T in Irr(SLn(q)), such that every χ ∈ T extends to SLn(q)E
′(SLn(q))χ.

Proof. Part (a) follows from [CS2, Th. 4.1] using Lemma 2.4.

Let γ ∈ E(SLn(q)) be the graph automorphism. Following the considerations in [CS2,

3.2], we see that γ′ and v0γ induce the same automorphism of SLn(q), where v0 ∈ SLn(p)

is defined as in [CS2, 3.2] and p is the prime dividing q. This proves that T is also

E′(SLn(q))-stable. For part (b), we have to prove that every χ ∈ T extends to its inertia

group in SLn(q)E
′(SLn(q)). This statement is clear whenever E′(SLn(q))χ is cyclic (see

[I, (9.12)]). If for χ ∈ T the group E′(SLn(q))χ is noncyclic, we see γ′ ∈ E′(SLn(q))χ. Let

Fq′ ∈ E′(SLn(q)) be a field automorphism such that E′(SLn(q))χ = 〈Fq′ ,γ
′〉. By (a), there

exists some γ-stable extension of χ to G〈Fq′〉. This extension is then also γ′ and hence

γv0-stable as [v0,Fq′ ] = 1. From this, we deduce that χ extends to SLn(q)E
′(SLn(q))χ.

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.14


918 B. SPÄTH

§3. The Levi subgroup and its normalizer

In this and the following section, we reprove with quite different methods that for every

standard Levi subgroup L of Dl,sc(q), every λ ∈ Irrcusp(L) extends to its stabilizer inside

NGF (L), which follows from the mentioned results by Geck and Lusztig. For E(GF ) ≤
Aut(GF ) from §2.2, we construct a T̃ -transversal T of Irrcusp(L) and an N StabE(GF )(L)-

equivariant extension map with respect to L�N for T.

Theorem 3.1. Let L be a standard Levi subgroup of GF = Dl,sc(q). Let EL :=

StabE(GF )(L), N, N̂ := NEL and L̃′ := T̃0L be associated with L as in 2.8. If Dl′,sc(q)

is a direct factor of [L,L], then assume Hypothesis 2.14 holds for Dl′,sc(q). Then:

(a) There exists an N̂ -stable L̃′-transversal T⊆ Irrcusp(L).

(b) There exists an N̂ -equivariant extension map ΛL�N with respect to L�N for T.

This implies Theorem B and ensures Assumptions (i) and (ii) of Proposition 2.12. In [BS,

Th. 4.3] and [CSS, Prop. 4.13], the analogous result was shown in the case where G is of

type Al or Cl. The interested reader may notice that without assuming Hypothesis 2.14 for

smaller ranks, the proof we give implies a version of the theorem without the equivariance

statement.

Like in the proofs given in [BS] and [CSS], we essentially apply the following statement

providing an extension map for nonlinear characters.

Proposition 3.2 [CSS, Prop. 4.1]. Let K �M be finite groups, let the group D act

on M, stabilizing K, and let K ⊆ Irr(K) be MD-stable. Assume that there exist D-stable

subgroups K0 and V of M such that:

(i) the groups satisfy:

(i.1) K =K0(K ∩V ) and H :=K ∩V ≤ Z(K),

(i.2) M =KV ;

(ii) for K0 :=
⋃

λ∈K
Irr(λ�K0

), there exist:

(ii.1) a V D-equivariant extension map Λ0 with respect to H �V ; and

(ii.2) an ε(V )D-equivariant extension map Λε with respect to K0 �K0� ε(V ) for K0,

where ε : V → V/H denotes the canonical epimorphism.

Then there exists an MD-equivariant extension map with respect to K �M for K.

In this section, we construct the set T for Theorem 3.1(a) and introduce groups H, K, K0

(see Lemma 3.11), M, D, and V (in Corollary 3.23) for a later application of Proposition 3.2

in the proof of Theorem 3.1(b). Here, we show that the groups introduced satisfy the group-

theoretic assumptions made in 3.2(i). Afterward, in §4, we ensure the character-theoretic

assumptions, namely 3.2(ii) in order to prove Theorem 3.1(b).

3.1 Subgroups of the Levi subgroup L

As a first step, we dissect the root system of L and introduce subgroups of L with those

new root systems. For a nonnegative integer i, let i := {1, . . . , i}. For computations with

elements of G, we use the Steinberg generators satisfying the Chevalley relations together

with an explicit embedding of Dl,sc(F) into Bl,sc(F).

Notation 3.3 (The groups G and G, roots, and generators). In this and the following

section, we assume that the simply connected simple group G from 2.2 is of type Dl (l≥ 4)
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over F the algebraic closure of Fp for p some odd prime. Hence, G ∼= Dl,sc(F). Denote

l := {1, . . . , l}. Let Φ := {±ei± ej | i, j ∈ l, i 
= j} be the root system of G with simple roots

α2 := e2+e1, α1 = e2−e1 and αi := ei−ei−1(i≥ 3),

Δ := {αi | i ∈ l}

(see [GLS, Rem. 1.8.8]), where the set {ei}i∈l is an orthonormal basis of Rl whose scalar

product is denoted by (x,y). The Chevalley generators xα(t), nα(t
′) and hα(t

′) (α ∈ Φ,

t, t′ ∈ F with t′ 
= 0) together with the Chevalley relations describe the group structure of

G (see [GLS, Th. 1.12.1]).

Let Φ := {±ei,±ei± ej | i, j ∈ l, i 
= j}, G := Bl,sc(F) with Chevalley generators xα(t),

nα(t
′) and hα(t

′) (α ∈ Φ, t, t′ ∈ F with t′ 
= 0). Assume that the structure constants of

G and G are chosen such that xα(t) 
→ xα(t) (α ∈ Φ, t ∈ F) defines an embedding ιD :

G→G. For simplicity of notation, we write xα(t), nα(t
′) = xα(t

′)x−α(−t′−1)xα(t
′), and

hα(t
′) = nα(t

′)nα(1)
−1 for the generators of G and thus identify G with the corresponding

subgroup of G. This is possible according to [S2, 10.1] (see also [MS, 2.C]). Among the

relations between Chevalley generators, the following will be the most useful to us. For

a,b ∈ Rl \{0}, recall 〈a,b〉= 2(a,b)/(b,b). Let α,β ∈ Φ, t ∈ F, t′ ∈ F×. Then

hα(t
′)hβ(t

′) = hα+β(t
′) whenever α+β ∈ Φ,

nα(t)
hβ(t

′) = nα(t
′〈α,β〉t),

hα(t)
nβ(1) = hα−〈α,β〉β(cα,βt),

where the first line is from [GLS, 1.12.1(e)], the second is easy from [GLS, 1.12.1(g)], and

the third, along with the definition of cα,β ∈ {±1}, is from [GLS, 1.12.1(i)].

Definition 3.4. Let Xα := 〈xα(t) | t ∈ F〉 for α ∈ Φ, T := 〈hα(t
′) | α ∈ Φ, t′ ∈ F×〉, and

T :=
〈
hα(t

′) | α ∈ Φ, t′ ∈ F×〉. Note T=T is the image of the map

(F×)l � (t′1, . . . , t
′
l) 
→ he1(t

′
1) . . .hel(t

′
l)

with kernel {(t′1, . . . , t′l)∈ {±1}l | t′1 . . . t′l =1} (see also [S2, 10.1]). The group T can be chosen

as the group T0 from 2.2 and T〈Xα | α ∈Δ〉 as the group B.

Denoting h0 =he1(−1), one has Z(G) = 〈h0〉 of order 2 (see [GLS, 1.12.6]) with G/〈h0〉=
SO2l+1(F)≥ SO2l(F) =G/〈h0〉.

For every positive integer i, let Fpi : G →G be the Frobenius endomorphism given by

xα(t) 
→ xα(t
pi

) for t ∈ F and α ∈ Φ. We write γ for the graph automorphism of G given

by xεα(t) 
→ xεγ0(α)(t) for t ∈ F, ε ∈ {±1} and α ∈ Δ, where γ0 denotes the symmetry of

the Dynkin diagram of Δ of order 2 with α2 
→ α1. If l = 4, we denote by γ3 the graph

automorphism of G induced by the symmetry of the Dynkin diagram of Δ with order 3

sending α2 
→ α1 and α1 
→ α4. We assume that F = Fq for q := pf , where f is a positive

integer. Note that the group E(GF ) from 2.2 satisfies accordingly E(GF ) =
〈
Fp�GF , γ�GF

〉
whenever l ≥ 5; otherwise, l = 4 and E(GF ) =

〈
Fp�GF , γ�GF , γ3�GF

〉
.

We recall that the graph automorphism γ of G is induced by an element of G (see [GLS,

2.7] for the corresponding statement in classical groups). Let � ∈ F× such that �2 = −1.

By [S2, 10.1] (see also [MS, 2.C]), the automorphism γ of G is induced by conjugating with

ne1(�) ∈G.
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Notation 3.5. Let L be a Levi subgroup of G such that BL is a parabolic subgroup of

G and T⊆L. Let L :=LF , and let Φ′ be the root system of L, that is, L=T〈Xα | α ∈ Φ′〉.
As Φ′ is a parabolic root subsystem of Φ, it has as basis Δ′ =Δ∩Φ′. We assume that one

of the following holds:

(i) Δ′ ⊆ {e2−e1, e3−e2, . . . , el−el−1}, or
(ii) {e2−e1, e2+e1} ⊆Δ′.

Recall that a split Levi subgroup of G containing T is called standard if it is generated

by T and the Xα’s such that α ∈±Δ′ for some subset Δ′ ⊆Δ. Recall that γ swaps e2−e1
and e2+e1 while fixing the other elements of Δ. Then any subset Δ′ ⊆Δ is such that Δ′ or

γ(Δ′) satisfies 3.5(i) or 3.5(ii). We then get that L can be assumed to satisfy Notation 3.5.

Lemma 3.6. Every standard Levi subgroup of G containing T is 〈γ〉-conjugate to a

standard Levi subgroup whose root system has a basis Δ′ ⊆Δ satisfying 3.5(i) or 3.5(ii).

3.7 (Decomposing Φ′). In the following, we decompose Φ′ into smaller root systems,

which are the disjoint union of irreducible root systems of the same type. By type(Ψ), we

denote the type of the root system Ψ. Whenever Ψ is a subset of Φ, we also denote by WΨ

the subgroup of NG(T)/T generated by reflections defined by elements of Ψ.

Since Φ′ is a parabolic root subsystem of Φ, Φ′ decomposes as a disjoint union of

indecomposable root systems of types D and A, that are called components of Φ′.

If Δ′ satisfies Assumption 3.5(i), let Φd be the union of the components of Φ′ of type

Ad−1 (d ≥ 2). If Δ′ satisfies Assumption 3.5(ii), let Φ−1 be the union of components of

Φ′ that have a nontrivial intersection with {e2 − e1, e1 + e2} and let Φd be the union of

components of Φ′ \Φ−1 of type Ad−1 (d≥ 2). If Δ′ satisfies Assumption 3.5(ii), type(Φ−1)∈
{A3,A1×A1,Dm |m≥ 4}.

Let D′ be the set of integers d such that Φd is defined and nonempty, that is, SLd(F) is

a summand of [L,L]. Then Φ′ =
⊔

d∈D′ Φd, a disjoint union.

Recall that WΦ, the group generated by the reflections along the roots of Φ coincides

with W0 := N0/T0, can be identified with the permutations of l∪−l that commute with

the sign change, and hence acts on l (see [GLS, Rem. 1.8.8]).

3.8 (Orbits of WΦ′ on l). Let O be the set of orbits of WΦ′ on l, let O1 ⊆ O be the

set of singletons in O, and let Od be the set of orbits of WΦd
on l contained in O \O1,

whenever d ∈ D′. We define

D(L) = D=

{
D′∪{1}, if O1 
= ∅,
D′, otherwise.

For d ∈ D\{−1}, let ad := |Od| and note that |I|= d for any I ∈ Od.

For I ⊆ l, let ΦI :=Φ′∩〈ek | k ∈ I〉 and ΦI :=Φ∩〈ek | k ∈ I〉. For d∈D, let Jd :=
⋃

o∈Od
o,

and Φd := ΦJd
.

Next, we introduce groups K, K0, and H that will later be proved to satisfy Assumption

3.2(i) with a group M.

Notation 3.9 (Subgroups of L and L). Let � ∈ F× and h0 as in Defini-

tion 3.4. Define hI(t) :=
∏

i∈I hei(t) for I ⊆ l and t ∈ F×. For I ∈ O, let GI =

〈Xα | α ∈ ΦI〉 and GI := GF
I . Note that for I ∈ O1, the group GI is trivial. Let H0 :=
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h0,hei(�)hei′ (−�) | i, i′ ∈ l

〉
= 〈hα(−1) | α ∈ Φ〉. For d ∈D, let H̃d := 〈h0,hI(�) | I ∈ Od〉,

Hd := 〈h0,hI(�)hI′(−�) | I,I ′ ∈ Od〉 and

H :=
〈
H̃d | d ∈ D

〉
∩H0.

Lemma 3.10. Let Deven := D∩ 2Z and Dodd := D \Deven. If Hε :=
〈
H̃d | d ∈ Dε

〉
∩H0

for ε ∈ {odd,even}, then H =Heven.Hodd.

Proof. An element t ∈ T can be written as
∏l

i=1hei(ti) (ti ∈ F×). We have t ∈ H0 if

ti ∈ 〈�〉 and
∏l

i=1 t
2
i = 1. In particular, hI(�) ∈ H0 if and only if |I| even. This implies

Hd ≤H0 whenever 2 | d. On the other hand, H̃d 
≤H0 for every d ∈ Dodd.

With this notation, Z(G) =
〈
h0,hl(�)

〉
(see [GLS, Table 1.12.6]).

Lemma 3.11. H ≤ Z(L).

Proof. We see that [hI(�),GI ] = 1 by the Chevalley relations and this implies the

statement by the definition of H.

The groups K0 := 〈GI | I ∈ O〉 and K :=K0H then satisfy Assumption 3.2(i.1) for H.

To understand later the action of NGF (L) on Irr(K), we analyze the structure of L by

introducing several subgroups.

3.12 (Structure of L). We note that the Levi subgroup L satisfies L=T〈GI | I ∈ O〉.
Let TI := 〈hei(t) | i ∈ I, t ∈ F×〉 for I ∈O. For I,I ′ ∈O with I 
= I ′, we see that no nontrivial

linear combination of a root in ΦI and one in ΦI′ is a root in Φ as well. Therefore,

[GI ,GI′ ] = 1 according to Chevalley’s commutator formula. By the Steinberg relations,

we see [GI ,TI′ ] = 1. The group GI is either trivial or a simply connected simple group

unless I =O−1 and type(Φ−1) = A1×A1. Accordingly, [L,L] = 〈GI | I ∈ O〉.
We observe that GI ∩T≤TI and computations with the coroot lattices prove that T is

the central product of the groups TI (I ∈ O) over 〈h0〉. This implies that L is the central

product of the groups LI (I ∈ O) where LI :=TIGI .

Analogously, we see that L is the central product of the groups Ld (d∈D) over the group

〈h0〉, where Ld := 〈LI | I ∈ Od〉.
The structure of L studied above implies the following results on L. Recall K0 :=

〈GI | I ∈ O〉 from Lemma 3.11.

Lemma 3.13. Recall L : G → G the Lang map defined by g 
→ g−1F (g), let L̂ := L∩
L−1(〈h0〉), and let L̃ := L∩L−1(Z(G)).

(a) If LI := LF
I for every I ∈ O and L0 := 〈LI | I ∈ O〉, then L0 �L.

(b) Let I ∈O and L̂I :=LI ∩ L̂. Then L̂I = 〈LI , tI〉 for every tI ∈TI ∩L−1(h0). We assume

chosen such a tI for each I ∈ O.

The group L̂ is the central product of L̂I (I ∈ O) and for d ∈ D, L̂d := L̂∩Ld is the

central product of L̂I (I ∈ Od).

(c) L=
〈
LF
I , tItI′ | I,I ′ ∈ O

〉
.

(d) K0 is the direct product of all GI , K0 � L̃ and L̃/K0 is abelian.

(e) If ζ ∈ F× with ζ(q−1)2 =� and tQ,2 := hQ(ζ) for every Q⊆ l, then L̃= L̂
〈
tl,2
〉
.

The arguments of Remark 2.16 show that L̃′ from 2.8 and L̃ induce the same

automorphisms on G.
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Proof. Recall that L is the central product of the groups LI , where each LI is F -

stable. Every x ∈ L can be written as
∏

I∈O xI with xI ∈ LI . Clearly, x ∈ L if and only if

L(x) = 1. We see that L(x) =
∏

I∈OL(xI) by the structure of L and hence x ∈ L implies

L(xI) ∈ 〈h0〉. The group L0 is the group of elements
∏

I∈O xI with xI ∈ LI := LF
I . The

group L̂ :=L(〈h0〉)∩L is the group of elements
∏

xI with xI ∈LI and L(xI) ∈ 〈h0〉. Hence,
L̂ is the central product of L̂I (I ∈ O) over 〈h0〉. Clearly, L0 � L̂, L̂I = 〈LI , tI〉 and L =

L0〈tItI′ | I,I ′ ∈ O〉. This ensures the parts (a)–(c).

Part (d) follows from the fact that L/〈GI | I ∈ O〉 is isomorphic to a quotient of T and

hence abelian. For part (e), we observe L(hQ(ζ)) = hQ(�) for every Q⊆ l and recall that

Z(G) =
〈
h0,hl(�)

〉
.

3.2 The structure of N/L

We analyzeN :=NGF (L) andN :=N
G

F (L). In the following, we identifyWΦ with certain

permutation groups S±l via the action on {±ei | i ∈ l} and WΦ with SD
±l. We generalize the

notation of those permutation groups in order to describe N/L.

Notation 3.14 (Young-like subgroups, SM and YJ). Let M be a set. Given a map ‖.‖ :
M →Z withm 
→ ‖m‖, we define SM to be the group of bijections π :M →M with ‖π(m)‖=
‖m‖ for every m ∈ M and we write S±M for the bijections π : {±1}×M → {±1}×M

satisfying π(−1,m) = (−ε,m′) and ‖m‖= ‖m′‖, whenever m,m′ ∈M with π(1,m) = (ε,m′).

When no map ‖.‖ is specified, we assume it is a constant map.

In order to denote the elements of SM and S±M , we fix a bijection f :M →{1, . . . , |M |}.
This induces a canonical embedding ι : SM → S|M | and an embedding ι± : S±M → S±|M |.

For r pairwise distinct elements m1,m2, . . . ,mr ∈M , we write (m1,m2, . . . ,mr)∈SM for the

element ι−1(f(m1),f(m2), . . . ,f(mr)). Via ι±, we obtain also a cycle notation for elements

of S±M .

If J is a partition of M, we write J �M for short. For J �M , we set

YJ := {π ∈ SM | π(J ′) = J ′ for every J ′ ∈ J}, and
Y±J := {π ∈ S±M | π({±1}×J ′) = {±1}×J ′ for every J ′ ∈ J}.

Let Modd := {m ∈M | ‖m‖ odd } and

SD
±M =

{
π ∈ S±M | |({1}×Modd)∩π−1({−1}×Modd)| is even

}
.

We use the above notation for permutation groups on the set O from 3.8.

Definition 3.15. Let ‖.‖ :O −→ Z be given by ‖I‖= d for every I ∈Od, and let S±O,

SD
±O, and SO be the permutation groups on O defined as in 3.14 with respect to ‖.‖.

Recall that we have chosen a maximal torus T of G and that L is a standard Levi

subgroup of G with T⊆L (see 3.3 and 3.5). For N0 := NG(T), we identify the Weyl group

N0/T with S±l, the epimorphism ρT :N0 −→S±l is given by

ρT(nei(−1)) = (i,−i) and ρT(nei−ej (−1)) = (i, j)(−i,−j).

With this notation, we can compute the relative Weyl group of L in G. Recall N :=NG(L)F .

Proposition 3.16. Let N0 := NGF (T), N0 := N
G

F (T), and N := N
G

F (L). Then

ρT(N ∩N0)/ρT(L∩N0)∼= S±O and ρT(N ∩N0)/ρT(L∩N0)∼= SD
±O.
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Proof. According to the considerations in [C, 9.2], ρT(N ∩ N0)/ρT(L ∩ N0) ∼=
NW 0

(WΦ′)/WΦ′ , where W 0 := N0/T 0. We then make routine considerations inside W 0

(see, e.g., [H]). Note that NW 0
(WΦ′) = StabW 0

(Φ′) =WΦ′ StabW 0
(Δ′).

From the definition of Φ−1, one can check that StabW 0
(Δ′) stabilizes Φ−1 ∩Δ′. This

implies that StabW 0
(Δ′) stabilizes Φd∩Δ′ for every d ∈ D, and

StabWΦd
(Φd∩Δ′) = S±Od

.

We have NW 0
(WΦ′)=WΦ1

×
∏

d∈D
StabWΦd

(Φd)=StabWΦ−1
(Φ−1)×WΦ1

×
∏

d∈D

d>1
StabWΦd

(Φd) with

StabWΦ−1
(Φ−1) =WΦ−1〈(1,−1)〉=WΦ−1

,

and

StabWΦd
(Φd) =WΦd

�S±Od

for d ∈ D with d > 1. Hence, ρT(N ∩N0)/ρT(L∩N0)∼= SD
±O.

By the proof, we see that S±O corresponds to StabW 0
(Φ′ ∩Δ) and hence there exists

some embedding of S±O into S±l. We fix some more notation to describe explicitly the

permutations in S±l corresponding to StabW 0
(Δ′).

Notation 3.17. For d ∈D\{−1}, we fix orderings on Od and the sets I ∈Od: we write

Id,j (j ∈ ad) for the sets in Od and Id,j(k) ∈ Id,j (j ∈ ad, k ∈ d) for the elements of Id,j .

For each k ∈ d, let f
(d)
k : l −→ l be a bijection such that f

(d)
k (j) = Id,j(k) for every j ∈ ad

and f
(d)
k has the maximal number of fixed points. Then f

(d)
k defines an element of S±l

without sign changes, that we also denote by f
(d)
k by abuse of notation.

In the following, we use that for every Q ⊆ l, S±Q can be seen naturally as a subgroup

of S±l.

Lemma 3.18.

(a) Let d ∈D\{−1} and κd : S±ad
→S±Jd

be given by π 
→
∏

k∈dπ
f
(d)
k the latter a product

of conjugates of π in S±l. Then κd is injective and StabS±Jd
(Φd) =WΦd

�κd(S±ad
)

(b) If −1 ∈ D, let κ−1 : S±1 → S±J−1 be the morphism with κ−1(S±1) = 〈(1,−1)〉. Let

W d := κd(S±ad
) and W ◦(L) :=

∏
d∈D

W d. Then StabW 0
(Φ′) =WΦ′W ◦(L).

Proof. For (a), we observe that the sets
⋃

j∈ad
Id,j(k) (k ∈ d) form a partition of Jd. This

implies that the groups Sf
(d)
k

±ad
and Sf

(d)

k′
±ad

commute and are disjoint. We see that κd(S±ad
)

stabilizes Od. This proves (a). Part (b) is clear from the definitions.

We can choose Id,j(k) (d ∈D\{±1}, j ∈ ad, and k ∈ d) such that eId,j(k+1)−eId,j(k) ∈Δ′

for every j ∈ ad and k ∈ d−1. With this choice, κd(S±ad
) stabilizes Δ′ and hence coincides

with StabWΦd

(Δ′).

3.3 A supplement of L in N

In the following, we determine a supplement V ≤N0 with N = LV and ρT(V ) =W ◦(L)

where W ◦(L) is the group from Lemma 3.18. We construct the group V using extended

Weyl groups V
′
Weyl (see 3.19). Extended Weyl groups are known to be supplements of T0

in N0.

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.14


924 B. SPÄTH

In a first step, we define for every d ∈ D a subgroup V d ≤N0 with ρT(V d) = κd(S±ad
).

We construct κd, a lifting of κd via ρT. This construction will later simplify some arguments

by providing a tool to transfer results from [MS].

By definition, the group N0 is an extension of W 0 by T. It has proved to be more

convenient to work with an extension of W 0 by an elementary abelian 2-group, the extended

Weyl group (introduced first by Tits), here denoted by V
′
Weyl. (Note that if 2 | q, the

group N0 is the semi-direct product of T and a group isomorphic to the Weyl group.) In

consideration of Definition 3.4, we work here with the group V 0, a T-conjugate of V ′
Weyl.

Then the graph automorphism of G is induced by an element of V 0 (see Definition 3.4).

Notation 3.19 (The groups V 0, V I , and VI). The group V ′
Weyl := 〈n′

i | i ∈ l〉 with

n′
1 := ne1(1) and n′

i := nαi(−1), where αi = ei− ei−1 (2 ≤ i ≤ l) is known as the extended

Weyl group of type Bl.

Let ζ8 ∈ F with ζ28 =�. The group V 0 := (V ′
Weyl)

hl(ζ8) is accordingly generated by n1 :=

(n′
1)

hl(ζ8) = ne1(�) and ni := (n′
i)

hl(ζ8) = nαi(−1). The group V 0 satisfies V 0 ∩T 0 = H0

where H0 is defined as 〈hα(−1) | α ∈ Φ〉 in 3.19. According to Definition 3.4, n1 ∈ V 0 and

γ induce the same automorphism of G.

For I ⊆ l, we set

VI :=
〈
h0,n±ei±ei′ (1) | i, i

′ ∈ I with i 
= i′
〉
and V I := VI〈nei(�) | i ∈ I〉. (3.1)

Let H̃I := 〈hei(�) | i ∈ I〉 and H̃0 := H̃l.

3.20 (Facts around HI � V I). Maximal extendibility holds with respect to HI � V I ,

since those groups are conjugate to those considered in [MS, Prop. 3.8] for the case where

the underlying root system is of type B|I|. For HI :=
〈
h0,h±ei±ei′ (−1) | i, i′ ∈ I

〉
, we obtain

V I ∩T=HI .

For disjoint sets I,I ′ ⊆ l, the Steinberg relations imply

[V I ,VI′ ] = 1 and [V I ,V I′ ] = 〈h0〉. (3.2)

We introduce maps κd : H̃ad
Vad

−→ H̃0V 0 with ρT ◦ κd = κd ◦ ρad
for the canonical

epimorphism ρad
: V ad

−→S±ad
.

The following defines a lift of W d := κd(S±ad
) that is a subgroup of V 0. In 3.17, we

introduced the elements f
(d)
k ∈ S±l (d ∈ D\{−1}, k ∈ ad) without sign changes.

Lemma 3.21. Let d ∈ D\{−1}, m(d)
k ∈ V ∩ρ−1

T (f
(d)
k ) (k ∈ d), and

κd : H̃ad
V ad

−→ H̃0V 0 with x 
→
d∏

k=1

xm
(d)
k

for a fixed order in d. Set V d :=
〈
κd(V ad

)
〉
. Then:

(a) κd�Vad
is a morphism of groups;

(b) κd(v
x) = κd(v)

κd(x) for every x ∈ V ad
and v ∈ Vad

;

(c) κd(Had
) =
〈
hd
0,hI(�)hI′(−�) | I,I ′ ∈ Od

〉
≤Hd;

(d) κd(H̃ad
) =
〈
hd
0,hI(�) | I ∈ Od

〉
;

(e) ρT ◦ κd = κd ◦ ρad
for the canonical epimorphism ρad

: V ad
−→ S±ad

, in particular

ρT(V d) =W d = κd(S±ad
).
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Proof. The sets Jd(k) := f
(d)
k (ad) form a partition of Jd. For x∈Vad

, we see xm
(d)
k ∈VJd(k)

and hence κd�Vad
is independent of the order chosen in d. Then κd�Vad

is a diagonal

embedding of Vad
into the central product of the groups VJd(k) (k ∈ d) over 〈h0〉. This

implies that κd�Vad
is a morphism of groups. This proves (a).

By part (a), it is enough to prove part (b) for x= n1 and v ∈ {nn1
2 ,n2,n3, . . . ,nad

}, since
Vad

is generated by {nn1
2 ,n2,n3, . . . ,nad

}. The equation κd(n
n1
i ) = κd(ni)

κd(n1) for i≥ 3 is

clear since no nontrivial linear combination of those roots is a root. Computations show

κd(n
n1
2 ) = κd(n2)

κd(n1) and hence part (b).

For part (c), we note that ker(κd�Had
) =
〈
hd−1
0

〉
. The equation ρT ◦κd = κd ◦ρad

in (e)

follows from ρT(m
(d)
k ) = f

(d)
k .

Recall that the group H from Notation 3.9 is a subgroup associated with L. To understand

the above construction, we consider the following statement.

Theorem 3.22. If −1 ∈ D, set V −1 := 〈H−1,n1〉. Let V := H
〈
V d | d ∈ D

〉
and

VD := V ∩G.

(a) N = LVD.

(b) If γ ∈ EL, then n1 ∈ V .

Proof. Because of ρT(V d) =W d, we see ρT(V ) =W ◦(L). Clearly, VD ≤N . Additionally,

we see that V normalizes L and L by definition. If L is γ-stable, then n1 ∈ V . According

to Definition 3.4, n1 and γ induce the same automorphism of G.

Corollary 3.23. The groups K, K0, and H from Notation 3.9 and Lemma 3.11

together with V := VD, M :=KV , and D := EL satisfy Assumption 3.2(i).

Proof. According to Lemma 3.11, K = HK0 and H ≤ Z(K). This is Assumption

3.2(i.1). The equality M = KV follows from the definition of M. In order to prove

H = V ∩K, we show V d ∩L ≤ Hd for every d ∈ D. Since V d ≤ V 0 by construction and

V d :=
〈
κd(V ad

)
〉
=W d, we observe that κd(Had

)≤Hd according to Lemma 3.21(c).

By the construction, VD is V 〈Fp〉-stable and hence EL-stable. By the construction, we

also see that K0 and VD are D-stable.

§4. Extending cuspidal characters of Levi subgroups

This section now focuses on the character theory of our groups. We ensure the character-

theoretic Assumption 3.2(ii) and apply Proposition 3.2 in the proof of Theorem 3.1(b). We

analyze the action of V on K0 and consider subgroups of N and L associated with each

d ∈ D. For every d ∈ D, we define subgroups K0,d and Kd and study them separately for

d= 1, d≥ 2, and d=−1.

4.1 The inclusion H1 �V 1

We recall here some results on the extended Weyl groups. If 1 ∈ D, then H1
∼=HJ1 and

V 1
∼= V J1 for the group V J1 from 3.19. (Recall Jd =

⋃
I∈Od

I for d ∈ D [see Notation 3.9].)

We set K0,1 := 1 and K1 :=H1. In order to apply Proposition 3.2, we investigate the Clifford

theory for H1 �V 1. The results are also relevant for studying Hd �V d for d≥ 1.

Proposition 4.1. Let l′ ≤ l be some positive integer, H̃ ′ := H̃l′, H
′ := H̃ ′∩H0, V

′
:=

V l′, and ρ′ : V
′ →S±l′ the canonical epimorphism.
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(a) Maximal extendibility holds with respect to H ′ �V
′
.

(b) Let λ ∈ Irr(H ′) with h0 /∈ ker(λ). Then some V
′
-conjugate λ′ of λ has an extension λ̃′

to H̃ ′ such that ρ′(V
′
λ̃′) = Sl′ and V

′
λ = V

′
λ̃〈c〉 for some c∈ V

′
with ρT(c) =

∏
i∈l′(i,−i).

Proof. By [MS, Prop. 3.10], maximal extendibility holds with respect to H ′ �V
′
. Note

that V
′
coincides with the group V

t
considered in [MS]. This proves part (a).

Let λ ∈ Irr(H ′) with λ(h0) = −1 and λ̃ ∈ Irr(H̃ ′ | λ). Note that H̃ ′ is the l′-fold central

product of the cyclic groups 〈hei(�)〉 (i ∈ l′) over 〈h0〉. The group V acts by permutation

and inversion on the factors. It is then easy to see that some V
′
-conjugate λ′ of λ has an

extension λ̃′ ∈ Irr(H̃ ′) such that

λ̃′(hei(�)) = λ̃′(hei′ (�)) for every i, i′ ∈ l′.

The other extension of λ′ to H̃ is (λ̃′)−1. Observe that (λ̃′)2 is the character with kernel

H ′. (Recall H̃ ′/H ′ ∼= C2 and hence there is exactly one character with this property.) The

element c ∈ V
′
with ρ′(c) =

∏l′

i=1(i,−i) satisfies (λ̃′)c = (λ̃′)−1 and hence V
′
λ′ = V

′
λ̃′〈c〉.

According to (a), there exists some extension φ0 of λ′ to V λ′ . Then φ0�V
˜λ′

and λ̃′

determine a common extension φ to H̃ ′V
′
λ̃′ (see [S3, 4.1(a)]). By this construction, φ�V ′

˜λ
is

c-stable.

4.2 The inclusion Kd �KdV d for d ≥ 2

In the following, we investigate the groups Kd := Hd〈GI | I ∈ Od〉 and KdV d for

d∈D\{±1}, where GI = 〈Xα | α ∈ ΦI〉 and GI =GI
F (see Notation 3.9 and Lemma 3.13).

Lemma 4.2. Let I ∈ O\ ({J−1}∪O1) and ZI := hI(F
×). Then:

(a) GI
∼= SL|I|(F) and GI

∼= SL|I|(q);

(b) LI =GI .ZI , LI/〈h0〉 ∼=GL|I|(F) and |GI ∩ZI |=
|I|p′

gcd(2,|I|) ; and

(c) LI
∼=GL|I|(q) if 2 � |I|.

Proof. By the assumptions, d := |I| ≥ 1 and ΦI is a root system of type Ad. One has

GI = [TGI ,TGI ] where TGI is a Levi subgroup, so GI is simply connected ∼= SL|I|(F) by

[MT, 12.14]. Note I 
= J−1. This gives (a).

Any element of TI can be written as
∏

i∈I hei(ti) for some ti ∈ F×. Let κ ∈ F with

κ|I| =
∏

i∈I ti and fix j ∈ I. Then, by the Chevalley relations in G,∏
i∈I

hei(ti) = hej (tjκ
−1)hej (κ)

∏
i∈I
i 	=j

(
hej (t

−1
i κ)−1hej (t

−1
i κ)hei(tiκ

−1)hei(κ)
)
=

=

(
hej (κ

−|I|
∏
i∈I

ti)

)
hej (κ)

∏
i∈I
i 	=j

(
hei−ej ((tiκ

−1)2)hei(κ)
)
=

=

⎛⎜⎝∏
i∈I
i 	=j

hei−ej ((tiκ
−1)2)

⎞⎟⎠hI(κ).

Accordingly, TI = (TI ∩GI)ZI . We note that GI
∼= SL|I|(F) and GI

∼= SL|I|(q) as F acts

on GI as standard Frobenius endomorphism. By the Chevalley relations, ZI ≤CL(GI) and

LI =TIGI = ZIGI .
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The calculations above show that an element of ZI∩GI can be written as
∏

i∈I hei(t) with

t|I| = 1. For d ∈Deven, the element
∏l

i=1hei(−1) is trivial and hence |ZI ∩GI |=
|I|p′

gcd(2,|I|p′)
.

If 2 | d, then with similar considerations as above, we see

h0 = hI(ζ)
∏
i∈I
i 	=j

hei−ej (ζ
−2), (4.1)

where ζ ∈ F× has order 2|I|2. This implies that LI/〈h0〉 is the central product of the one-

dimensional torus ZI/〈h0〉 with GI/〈h0〉 over Z(GI). Accordingly, LI/〈h0〉 ∼=GL|I|(F).

For odd d, this implies analogously LI
∼=GLd(F) and LI

∼=GLd(q). This is the statement

in (b) and (c). We could also have argued on Levi subgroups of G/〈h0〉= SO2l(F).

Next, we study how L̃ acts on K0,d, which includes the action induced by tI (I ∈ O)

and tl,2 from Lemma 3.13. Recall that L̂I := LI ∩L−1(〈h0〉) satisfies L̂I = 〈LI , tI〉 for

some tI ∈ TI ∩L−1(h0), and L−1(hl(�))∩L =
〈
L̂, tl,2

〉
with tl,2 = hl(ζ). According to

Remark 2.16)(b), diagonal automorphisms of GI are parametrized by Z(GI)/[Z(GI),F ].

Lemma 4.3. Let I ∈ O\ (O1∪{J−1}).

(a) If 2 � |I|, then L̂I = LICTI
(LI), in particular tI from Lemma 3.13(b) can be chosen

such that tI ∈ CTI
(LI).

(b) For 2 | |I|, the element tI induces on GI a diagonal automorphism corresponding to

g[Z(GI),F ] with g ∈ Z(GI) of order |Z(GI)|2.
(c) tl,2 ∈ CL̃(LI).

Proof. Keep d := |I|. According to the theorem of Lang, we can choose tI ∈ TI such

that tI
−1F (tI) = h0 as TI is connected.

If 2 � |I|, we see that h0 = hI(−1) and hence h0 ∈ ZI . Since ZI is again connected tI can

be chosen in Z(LI), whence (a).

Following (4.1), h0 = z1z2 for some z1 ∈ ZI and z2 ∈ Z(GI). Here, z2 is an element of

order |I|2 = d2. Then the element tI can be analogously written as zg with z ∈ Z(GI) and

g ∈ G such that L(z) = z1 and L(g) = z2. As g induces on G a diagonal automorphism

associated with z2[Z(GI),F ], the element tI ∈ G̃I with x−1F (x) = h0 induces the same

diagonal automorphism. This gives (b).

The element tl,2 = hl(ζ) from Lemma 3.13(e) centralizes GI since the Weyl group of GI

centralizes tl,2.

Recall the groups H̃d = 〈h0,hI(�) | I ∈ Od〉, H0 = 〈hα(−1) | α ∈ Φ〉, and Hd = H̃d∩H0

defined in Notation 3.9 for every d ∈D. Using the groups GI from Lemma 3.13, let K0,d :=

〈GI | I ∈ Od〉 and Kd :=HdK0,d. If D = {d}, then K0 =K0,d and K =Kd. As V d∩Kd ≤
CL(GI) as a consequence of Lemma 3.11, there is a well-defined action of V d/Hd on Kd.

Lemma 4.4 (The action of Vd on K0,d). Let d∈D. Let εd : V d → V d/Hd be the canonical

morphism and n
(d)
1 := κd(n1). Then:

(a) K0,d� ε(V d)∼= (GId,1 �
〈
ε(n

(d)
1 )
〉
) � Sad

.

(b) Then n
(d)
1 induces the graph automorphism transpose-inverse on GId,1.

(c) If 2 � d, n
(d)
1 induces on LId,1 a product of a nontrivial graph and an inner automorphism

via the isomorphism LId,1
∼=GLd(q) from Lemma 4.2(c).
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Proof. Part (a) follows from the Steinberg presentation.

For part (b), we see that G
n

(d)
1

Id,1
=GId,1 and GId,1∩〈h0〉= {1} from the Chevalley relations.

We compute the action of n
(d)
1 on GId,1 in the quotient G/〈h0〉 or GId,1 × 〈h0〉/〈h0〉,

respectively. In [GLS, 2.7], the groupG/〈h0〉 and its Steinberg generators are given explicitly

as subgroup and elements of SO2l(q). The element n
(d)
1 acts on GId,1〈h0〉/〈h0〉 by transpose-

inverse via GId,1
∼= SLd(q). Computations in that group show part (b).

The element n
(d)
1 acts by inversion on ZId,1 and hence n

(d)
1 satisfies the statement in part

(c) as LId,1 =GId,1ZId,1 .

Next, we study an analog of L̃ from Lemma 3.13 associated with d ∈ D, that is defined

using the Lang map L from there. Note that hl(�) /∈TJd
whenever D 
= {d}, but hl(�) =∏

d∈D
hJd

(�).

Proposition 4.5. Let d ∈ D \ {±1}, let εd : V d −→ V d/Hd be as in Lemma 4.4, let

T̃d :=TJd
∩L−1(〈h0,hJd

(�)〉), and let L̃d := T̃dK0,d. Then:

(a) There exists some V d〈Fp〉-stable L̃d-transversal T
◦
d in Irrcusp(K0,d).

(b) There exists an εd(V d)× 〈Fp〉-equivariant extension map Λεd with respect to K0,d �

K0,d� εd(Vd) for T◦
d.

(c) Maximal extendibility holds with respect to K0,d � L̃d and Kd � L̃d.

For the proof of part (b), we require a strengthening of a result on wreath products that

can, for example, be found in [K, Th. 2.10].

Lemma 4.6. Let X �Y be a finite group, and let A be a group of automorphisms of

X�Y , stabilizing X, Y and some K⊆ Irr(X). Let a be a positive integer. Note that A acts

on Xa � (X�Y ) �Sa by diagonally acting on (X�Y )a and trivially on Sa. In this context,

we write then ΔA for that group. If there exists an (X � Y )�A-equivariant extension

map with respect to X �X�Y for K, then there exists an ((X�Y ) � Sa)�ΔA-equivariant

extension map with respect to Xa � (X�Y ) � Sa for Ka := {χ1⊗·· ·⊗χa | χi ∈K}.

Proof. This follows by the considerations in the proof of [K, Th. 2.10] using the

construction of representations of wreath products given in [N, 10.1].

Proof of Proposition 4.5. Let I1 := Id,1. Via the isomorphism GI1
∼= SLd(q) from

Lemma 4.2, the E(SLd(q))-stable GLd(q)-transversal in Irr(SLd(q)) from Proposition

2.19(b) determines a subset TI1 ⊆ Irrcusp(GI1). According to Lemma 4.4(b), this set is

n
(d)
1 -stable. The E(SLd(q))-stable GLd(q)-transversal in Irr(SLd(q)) can even be chosen

such that each character extends to its inertia group in SLd(q)�E(SLd(q)). Accordingly,

maximal extendibility holds with respect to GI1 �GI1 �
〈
Fp, εd(n

(d)
1 )
〉
for TI1 .

Note that TI1 is NV d
(GI1)-stable, as NV d

(GI1) acts as
〈
nd
1

〉
. Accordingly, via conjugation

with elements of V d, the set TI1 determines characters TI ⊆ Irrcusp(GI) for every I ∈ Od.

Recall that by Lemma 3.13(d), the group K0 is the direct product of the groups GI (I ∈O).

Analogously, K0,d is the direct product of the groups GI (I ∈ Od).

The product T◦
d of these characters

∏
I∈Od

TI defines a V d〈Fp〉-stable set in Irrcusp(K0,d).

By this construction, T◦
d is V d〈Fp〉-stable. Following the description of the action of L̃ on

K0,d given in Lemma 4.3, we see that T◦
d is an L̃d-transversal in Irrcusp(K0,d). This proves

part (a).
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Recall K0,d � εd(V d) ∼=
(
GI1 �

〈
ε(n

(d)
1 )
〉)

� Sad
from Lemma 4.4. As stated above,

maximal extendibility holds with respect to GI1 �GI1 �
〈
Fp, ε(n

(d)
1 )
〉

for TI1 . According

to Lemma 4.6, this implies by the choice of T◦
d that there is an εd(V d)〈Fp〉-equivariant

extension map Λεd with respect to K0,d �K0,d� εd(Vd) for T
◦
d.

According to Theorem 2.17, maximal extendibility holds with respect to GI � G̃I where

G̃I :=GI ∩L−1(Z(GI)). Additionally, [GI ,ZI ] = 1 for ZI := hI(F
×) from Lemma 4.2. We

observe that L̃d ≤
〈
G̃I | I ∈ Od

〉
〈ZI | I ∈ Od〉, even more precisely

L̃d ≤
〈
G̃I | I ∈ Od

〉〈
ẐI | I ∈ Od

〉
,

where ẐI := L−1(Z(GI)∩ZI)∩ZI . We see that maximal extendibility holds with respect

to K0,d �

〈
G̃I | I ∈ Od

〉〈
ẐI | I ∈ Od

〉
. Hence, maximal extendibility holds with respect to

K0,d � L̃d and Kd � L̃d, as L̃d/K0,d is abelian.

Lemma 4.7. Let d ∈ D\{±1}.

(a) Maximal extendibility holds with respect to Hd �V d.

(b) If 2 � d, λ ∈ Irr(Hd) with λ(h0) =−1, and λ̃ ∈ Irr(H̃d|λ), then (V d)λ̃ ≤ VD and (V d)λ =

(V d)λ̃〈cd〉 for some cd ∈ V d.

Proof. Recall that by [MS, Prop. 3.8] maximal extendibility holds with respect to Had
�

V ad
. Via the map κd : V ad

−→ V d from Lemma 3.21, the maximal extendibility with respect

to Had
�V ad

gives a V d-equivariant extension map for κd(Had
)�κd(Vad

). This implies part

(a) according to [S2, 4.1(a)].

In part (b), we assume 2 � d and hence κd(Had
) = Hd. The character λ ∈ Irr(Hd) with

λ(h0) =−1 corresponds via κd to some λ0 ∈ Irr(Had
) with λ0(h0) =−1. Proposition 4.1(b)

implies that via κd there is some V d-conjugate λ′ of λ with ρT(V λ̃′) = SOd
for any λ̃′ ∈

Irr(H̃d | λ′) and (V d)λ′ = V λ̃′〈c′d〉 for some c′d ∈ Irr(V d) with ρT(c
′
d) =

∏
i∈Jd

(i,−i). We

observe that (V d)λ̃′ ≤VD. Because of VD�V , this implies (V d)λ̃ ≤VD and (V d)λ =(V d)λ̃〈cd〉
for some cd ∈ V d. This proves part (b).

4.3 Consideration of K−1 �K−1V −1

The group structure of GJ−1 depends on type(Φ−1). By its definition, type(Φ−1) ∈
{A1 × A1,A3,D|J−1|}. For the application of Proposition 3.2, we prove the following

statement. Recall V −1 = 〈ne1(�),h0〉, H̃−1 =
〈
hJ−1(�),h0

〉
, H−1 = H̃−1∩H0, and GJ−1 =

〈Xα | α ∈ Φ−1〉F . As before, we set K0,−1 :=GJ−1 and K−1 :=H−1GJ−1 .

Proposition 4.8. Assume Hypothesis 2.14 holds for GF
J−1

if Φ−1 is of type D. Let

ε−1 : V −1 −→ V −1/H−1 be the canonical epimorphism, and let L̃−1 := (GJ−1TJ−1) ∩
L−1(

〈
h0,hJ−1(�)

〉
). Then:

(a) There exists some V −1〈Fp〉-stable L̃−1-transversal T
◦
−1 in Irrcusp(K0,−1).

(b) There exists an ε−1(V −1)〈Fp〉-equivariant extension map Λε−1 with respect to K0,−1 �

K0,−1� ε−1(V −1) for T◦
−1.

(c) Maximal extendibility holds with respect to K0,−1 � L̃−1 and K−1 � L̃−1.
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Proof. As in the proof of Lemma 3.13, we see that L̃−1 = T−1GJ−1

〈
tJ−1 , tJ−1,2

〉
, where

T−1 :=TF
J−1

, ζ ∈ F× with ζ(q−1)2 =�, tJ−1 := he1(ζ
2) and tJ−1,2 := hJ−1(ζ). Note that the

action of L̃ on GJ−1 coincides with the one of
〈
T−1, tJ−1 , tJ−1,2

〉
up to inner automorphisms.

By the definition of GJ−1 , we see

GJ−1
∼=

⎧⎪⎨⎪⎩
D|J−1|,sc(q), if type(Φ−1) = D|J−1|,

SL4(q), if type(Φ−1) = A3,

SL2(q)×SL2(q), if type(Φ−1) = A1×A1.

Assume type(Φ−1) =Dl−1 with l−1 := |J−1| and l−1 > 3. Then T−1 ≤GJ−1 . The elements

tJ−1 and tJ−1,2 act as diagonal automorphisms on GJ−1 . Part (a) follows from Theorem 2.13.

By Hypothesis 2.14, we can choose a V −1〈Fp〉-stable L̃−1-transversal T
◦
−1 in Irrcusp(K0,−1)

such that maximal extendibility holds with respect to K0,−1 �K0,−1 � 〈γ,Fp〉 for T−1.

Note that K0,−1 � 〈γ,Fp〉 = K0,−1 � (ε−1(V −1)× 〈Fp〉). By this choice, we see that an

extension map Λε1 as required in part (b) exists. Note that the actions on GJ−1 induced

by γ and ne1(�) coincide by 3.3. According to Theorem 2.17, maximal extendibility holds

with respect to GJ−1 � L̃−1. This proves part (c) in the case where type(Φ−1) = Dl−1 with

l−1 > 3.

Assume type(Φ−1) = A1 ×A1, then tJ−1 induces on both factors a noninner diagonal

automorphism, while tJ−1,2 induces a noninner diagonal automorphism only on one factor,

since h0 = he2−e1(−1)he1+e2(−1) and he1(�)he2(�) = he1+e2(−1). Clearly, V −1 acts by

permutation of the two factors. Let T(SL2(q)) be an 〈Fp〉-stable GL2(q)-transversal in

Irrcusp(SL2(q)) (see Proposition 2.19). Then T◦
−1 := T(SL2(q))×T(SL2(q)) is a V −1〈Fp〉-

stable L̃−1-transversal in Irrcusp(GJ−1). This proves part (a) in that case. Part (b) follows

from the fact that K0,−1� ε−1(V −1) ∼= SL2(q) �C2 (see also Lemma 4.6). Part (c) follows

again from the fact that L̃−1 is (ŜL2(q))
2, where

ŜL2(q) := {x ∈ SL2(F) |Fq(x) =±x} .

Assume type(Φ−1) = A3. Recall α2 = e2+ e1, α1 = e2− e1, and αi := ei− ei−1(i≥ 3) for

the simple roots in Δ. In this case, GJ−1
∼= SL4(q) and ne1(�) acts on GJ−1 as a nontrivial

graph automorphism. In order to see the automorphisms induced by tJ−1 and tJ−1,2, we

use again the equation h0 = hα1(−1)hα2(−1) and additionally the equation

h3(�) = hα1(−�)hα2(−�)hα3(−1).

This implies that tJ−1 induces on GJ−1 some noninner diagonal automorphism of SL4(q)

corresponding via the Lang map (see Remark 2.16(b)) to the central involution, while tJ−1,2

induces a diagonal automorphism of SL4(q) associated with a generator of the center. Let

E(SL4(q)) be the subgroup of Aut(SL4(q)) from Proposition 2.19. According to Proposition

2.19(a), there exists a GL4(q)-transversal T(SL4(q)) in Irr(SL4(q)), that is stable under the

group E(SL4(q)) generated by graph and field automorphisms of SL4(q) and such that

maximal extendibility holds with respect to SL4(q)� SL4(q)�E(SL4(q)) for T(SL4(q)).

This choice guarantees part (b). As L̃−1/GJ−1 is cyclic, part (c) holds in that case,

as well.

Recall H̃1 :=
〈
h0,hJ−1(�)

〉
.
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Lemma 4.9.

(a) There exists some V −1-equivariant extension map Λ0,−1 with respect to H−1 �V −1.

(b) If λ ∈ Irr(H−1) with λ(h0) =−1 and λ̃ ∈ Irr(H̃−1 | λ), then (V −1)λ̃ =H−1.

Proof. As V −1/H−1 is cyclic, there exists an extension map as required in (a). For the

proof of (b), note that the equality [n1,hJ−1(�)] = h0 implies λ̃n1 
= λ̃ as λ̃(h0) =−1.

4.4 Proof of Theorem B

We now finish the proof of Theorem 3.1 and therefore Theorem B. The above allows us

now to verify the character-theoretic assumptions from Proposition 3.2 for the groups K,

K0, K0,d, and VD, introduced in Lemma 3.11 and Theorem 3.22. From the definitions of

K0,d before Lemma 4.4, we see K0 = 〈K0,d | d ∈ D〉, even more K0 is the central product

of the groups K0,d (d ∈ D).

By abuse of notation, we write Irrcusp(K) for
⋃

χ∈Irrcusp(L) Irr(χ�K)⊆ Irr(K).

Proposition 4.10. There exists a V 〈Fp〉-stable L̃-transversal K0 in Irrcusp(K0).

Moreover K := Irr(K |K0) and T= Irr(L |K) are NEL-stable L̃-transversals in Irrcusp(K)

and Irrcusp(L), respectively.

Note that this implies Theorem 3.1(a).

Proof. For d ∈ D\{1}, let T◦
d be the V d〈Fp〉-stable L̃d-transversal in Irrcusp(K0,d) from

Propositions 4.5 and 4.8. Note that K0,1 = 1. The group K0 is a central product of the

groups K0,d (d ∈ D) according to Lemma 3.13. Hence, the irreducible characters of K0

are obtained as the products of the irreducible characters of K0,d. The central product of

the characters in T◦
d form a subset K0 ⊆ Irr(K0). We see that K0 is VDEL-stable since VDEL

and V 〈Fp〉 act on each factor K0,d as V d〈Fp〉. Let T̂ :=T∩L−1(〈h0〉). The automorphisms

of L̃ induced on K0 are induced by K0, T̂ =
∏

d∈D
T̂d and tl,2 =

∏
d∈D

tJd,2 (see Lemma 4.2).

According to Lemma 4.3, the element tJd,2 acts trivially on Gd, whenever d≥ 1. Hence, K0

is an L̃-transversal of Irrcusp(K0) as well. According to Propositions 4.5 and 4.8, maximal

extendibility holds with respect to K0,d � L̃d. Since [L̃d, L̃d′ ] = 1 for every d,d′ ∈ D with

d 
= d′, this implies that maximal extendibility holds also with respect to K0 � L̃ as L̃ ≤〈
L̃d | d ∈ D

〉
. Since L̃/K0 is abelian by Lemma 3.13, K and T are again NEL-stable L̃-

transversals in Irrcusp(K) and Irrcusp(L), respectively.

We apply the following statement in order to construct some extension map with respect

to L�N for Irrcusp(L) satisfying Equation (2.2) from Theorem 2.7.

Proposition 4.11. There exists a VD�EL-equivariant extension map Λ0 with respect

to H �VD.

This ensures Assumption 3.2(ii.1) with the choice made in Lemma 3.11.

Proof. Recall V := H
〈
V d | d ∈ D

〉
and VD := V ∩G (see Theorem 3.22). Let H̃ε :=〈

H̃d | d ∈ Dε

〉
. We apply the extension maps from Proposition 4.1, Lemma 4.7, and

Proposition 4.8(c) for constructing a V -equivariant extension map for H �VD. Note that

by the definition of V , n1 ∈ V \VD whenever γ ∈ EL, and then n1 and γ induce the same

automorphism on G according to Definition 3.4. By Theorem 3.22, [Fp,VD] = 1. Altogether,

it is sufficient to prove that maximal extendibility holds with respect to H �V .
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Let λ ∈ Irr(H) and λ̃ ∈ Irr(H̃ | λ). Then λ̃= �d∈Dλ̃d for some λ̃d ∈ Irr(H̃d) (d ∈ D). Let

ψd be the extension of λd := λ�Hd
to (Vd)λd

given by Proposition 4.1, Lemma 4.7, and

Proposition 4.8(c).

Assume λ(h0) = 1. Let λ ∈ Irr(H/〈h0〉) be associated with λ. It is sufficient to show that

λ extends to V λ/〈h0〉. Since [V d/〈h0〉,V d′/〈h0〉] = 1 according to (3.2), the group V /〈h0〉 is
the central product of the groups V d/〈h0〉. The characters ψd (d ∈ D) define extensions ψd

of λd to (V d)λd
/〈h0〉 and ψ := �d∈Dψd lifts to a character ψ◦ of

〈
(V d)λd

| d ∈ D
〉
. Recall

H ≥ 〈Hd | d ∈ D〉. According to [S3, 4.1(a)] we see that λ has an extension ψ to V λ such

that ψ�〈 (Vd)λd
|d∈D〉

λ

= ψ◦�〈 (Vd)λd
|d∈D〉

λ

. The extension map with respect to H �VD for

Irr(H | 1〈h0〉) obtained this way is then automatically V � 〈Fp〉-equivariant.
Assume otherwise λ(h0) =−1. As in Lemma 3.10, let Dodd := {i∈D | i odd} and Deven :=

{i ∈ D | i even}. For ε ∈ {odd,even}, recall

H̃ε :=
〈
H̃d | d ∈ Dε

〉
, Hε := H̃ε∩H0,

and H =Heven×Hodd (see Lemma 3.10). Analogously, we define

V ε :=Hε

〈
V d | d ∈ Dε

〉
and Ṽε := H̃εVε.

Notice that by this definition Veven ≤ VD and hence VD =H(Veven.(Vodd∩VD)).

Let λ̃ε := λ̃
⌉
H̃ε

and λε := λ�Hε
. Since [V d,V d′ ] = 1 for every d ∈ Deven and d′ ∈ D by

(3.2), the extensions ψd (d ∈Deven) allow us to define an extension of λeven to (V even)λeven .

Now, Heven is the central product of the groups Hd (d ∈ Deven) and (Veven)λeven is

analogously the central product of the groups (V d)λd
. Hence, the product of the characters

ψd (d ∈ Deven) defines an extension λ̂even ∈ Irr((Veven)λeven) of λeven.

In order to extend λodd to (Vodd)λodd
, we first extend λ̃odd := λ̃

⌉
H̃odd

. Again, λ̃odd

is the central product of characters λ̃d (d ∈ Dodd). According to Proposition 4.1(b) and

Lemma 4.7(b), we have (V d)λ̃d
≤ VD. The same holds also for d = −1 by straight-forward

calculations.

Let ν ∈ Irr(H̃odd) with ker(ν) = Hodd. According to Lemma 4.7(b), there exists some

element cd ∈ V d such that (V d)λd
=
〈
(V d)λ̃d

, cd

〉
, which satisfies λ̃cd

d = λ̃d ν�H̃d
. The exten-

sions ψd�(V d)˜λd

define easily extensions ψ′
d of λ̃d to H̃d(V d)λ̃d

. The restriction ψ′
d�(Vd)˜λd

is then cd-stable. Since (V d)λ̃d
is contained in VD, the group (V odd)λ̃odd

is the central

product of the groups H̃d(V d)λ̃d
(d ∈ Dodd). The product ψ′ :=

∏
d∈Dodd

ψ′
d determines

uniquely an extension ψ′′ of λ̃odd to H̃odd(V odd)λ̃odd
. Routine calculations show that

(V odd)λodd
= (V odd)λ̃odd

〈codd〉 where codd =
∏

d∈Dodd
cd. The character ψ′′�Hodd(V odd)˜λodd

is then codd-stable and extends to (V odd)λodd
. This way we obtain an extension λ̂odd of

λodd to (V odd)λodd
.

Recall [V odd,V even] = 1. Hence, the extensions λ̂odd and λ̂even determine an extension of

λ to V λ (see [S1, Lem. 4.2]).

In the next step, we show that there exists an extension map with respect to K0 �K0�

ε(VD) for the set K0 from Proposition 4.10 as required in Proposition 3.2.
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Proposition 4.12. There exists a VDEL-equivariant extension map Λε with respect to

K0 �K0� ε(VD) for K0, where ε : VDEL → VDEL/H is the canonical morphism.

Proof. By Propositions 4.5 and 4.8, there exist V d〈Fp〉-equivariant extension maps Λεd

with respect to K0,d �K0,d� ε(V d) for T
◦
d, whenever d ∈ D with d 
= 1. Note that the case

d = 1 is trivial since K0,1 = 1. The group K0 � ε(V ) is the direct product of the groups

K0,d� εd(V d). Using the maps Λεd (d ∈ D), we therefore obtain an extension map Λε as

required.

This leads to the following statement. We use the set

K := Irr(K |K0)

with K0 from Proposition 4.10. For the application of Proposition 3.2, we use the group

M =KVD (see also Corollary 3.23).

Proposition 4.13. There exists a V EL-equivariant extension map ΛK�M with respect

to K �M for K.

Proof. By the above, all the assumptions of Proposition 3.2 are satisfied. The groups

satisfy the required assumptions in Proposition 3.2(i) according to Corollary 3.23. Using the

set K, given as Irr(K |K0) from Proposition 4.10, the set K0 coincides with
⋃

λ∈K
Irr(λ�K0

).

With the VDEL-equivariant extension map Λ0 for H �VD from Proposition 4.11 and the

extension map Λε for K0�K0�ε(V ) from Proposition 4.12, Assumption 3.2(ii) is satisfied.

The application of this statement implies the result.

For the set T defined as Irr(L | K) in Proposition 4.10, we verify that there exists an

NEL-equivariant extension map with respect to L�N for T.

Proof of Theorems 3.1(b) and B. For the proof, it is sufficient to construct for every

λ ∈ T= Irr(L |K) some NEL-stable extension to Nλ. A character λ ∈ T lies above a unique

λ0 ∈K= Irr(K |K0). Moreover, some extension λ̃0 ∈ Irr(Lλ0) to Lλ0 satisfies (λ̃0)
L = λ. By

the properties of K, we seeNλ0 =Lλ0Mλ0 , which is normalized by (NEL)λ̃0
-. By Proposition

4.13, the character λ0 has a (V 〈Fp〉)λ0-stable extension to Mλ0 . According to [S3, 4.1], this

defines an extension φ of λ̃0 to Nλ̃0
since Nλ̃0

≤ Lλ0Mλ0 . By the construction, we see that

φNλ is an extension of λ.

As T is an M -stable L̃-transversal, Ñλ0 = L̃λ0Mλ0 and (ÑEL)λ0 = L̃λ0M̂λ0 . Hence, this

extension of λ0 defines an extension of λ as required.

Later this ensures Assumption 2.12(ii).

Remark 4.14. While Theorem 3.1(b) assumes q to be odd, the proof would give a

similar conclusion in the other case. For even q, every χ ∈ Irr(G) satisfies (G̃E)χ = G̃χEχ

since G̃ = G in the notation of 2.2. Nevertheless, the conclusion of Theorem 3.1(b) holds

as well. We observe that the arguments from before prove that there exists some NEL-

equivariant extension map K0 �K0VD for Irrcusp(L), where VD is isomorphic to N/L and

is defined as before with 1 =±� in the argument of the Chevalley generators.

§5. More on cuspidal characters

In order to prove our main theorem, we need more specific results on cuspidal characters,

especially with regard to automorphisms. We keep q a power of an odd prime.
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Proposition 5.1. Let n ≥ 3, χ ∈ Irrcusp(GLn(q)), and γ ∈ Aut(GLn(q)) given by

transpose-inverse up to some inner automorphism.

(a) If χγ = χ, then 2 | n and Z(GLn(q))≤ ker(χ).

(b) If χγ = χδ for δ ∈ Irr(GLn(q)), a linear character of multiplicative order 2, then 2 | n.

Proof. Let us recall the form of elements of Irrcusp(GLn(q)) (see also [B1, 16.1]). We

write K := GLn(F) and K∗ := GLn(F) as the dual with Fq-structures given by F. Let

s ∈ (K∗)F =GLn(q) be such that the Lusztig series E(KF ,(s)) associated with s contains

a cuspidal character. Combining [GM, 3.2.22] and the fact that the group CK∗(s)F of type

A can have cuspidal unipotent characters only when it is a torus (see, e.g., [GM, Exam.

2.4.20]), we get that s is regular and CK∗(s) is a Coxeter torus. This can be summed up

in the fact that the spectrum of s is a single orbit of length n under F, or equivalently

Fq [ζ] = Fqn for any eigenvalue ζ of s. Concerning the action of γ, note that an element of

E(KF ,(s)) is sent to an element of E(KF ,(s−1)) (apply [CS1, 3.1]).

For the proof of (a), let χ ∈ E(KF ,(s)) be invariant under γ. Then s and s−1 have the

same spectrum. If 1 or −1 is an eigenvalue of s, then s ∈ {Idn,− Idn} and n = 1 since the

eigenvalues of s form a single F -orbit. This is impossible, so inversion is without fixed point

on the spectrum of s. This implies that n is even and that the product of the eigenvalues of

s is 1. So s ∈ [K∗,K∗]F and this implies that all characters of E(KF ,(s)) have Z(GLn(q))

in their kernel (see [CE, p. 207]).

For the proof of part (b), note that by the assumptions q is odd and SLn(q) is perfect

(see [MT, 24.17]). By the correspondence induced by duality between (linear) characters

of KF /[K,K]F and elements of Z(K∗)F (see, e.g., [DM, 11.4.12]), we have δE(KF ,(s)) =

E(KF ,(−s)). Assuming χγ = χδ, the same considerations as above show that s and −s−1

have the same eigenvalues. The spectrum of s is of the form {F (ζ),F 2(ζ), . . . ,Fn(ζ) = ζ}
with Fq [ζ] = Fqn . Since s and −s−1 have the same eigenvalues, then −ζ−1 = F a(ζ) for

some 1 ≤ a ≤ n. We have F 2a(ζ) = −F a(ζ)−1 = ζ and therefore Fq2a ⊇ Fq [ζ] = Fqn . Then

n divides 2a. Assume now that n is odd. This implies that n divides a ≤ n. So a = n and

−ζ−1 = Fn(ζ) = ζ. But then, ζ2 =−1 and Fq [ζ]⊆ Fq2 , which contradicts n≥ 3. So we get

our claim that 2 | n.

The following statement is used later for computing the relative Weyl groups associated

with cuspidal characters of a Levi subgroup of Dl,sc(q).

Proposition 5.2. Let n ≥ 2, ψ ∈ Irrcusp(SLn(q)), and γ ∈ Aut(GLn(q)) given by

transpose-inverse up to some inner automorphism. If |GLn(q) : GLn(q)ψ| is even and

ψγ = ψ, then n = 2 and ψ is one of the two characters R′
σ(θ0) (σ ∈ {±1}) of degree q−1

2

from [B2, Table 5.4].

Proof. According to [B2, Table 5.4], the two characters R′
σ(θ0) (σ ∈ {±1}) are the only

characters of SL2(q) that are cuspidal and not GL2(q)-stable. The characters R(θ) given

there are GL2(q)-stable and the other characters Rσ(α0) (σ ∈ {±1}) are in the principal

Harish-Chandra series. Note that γ then restricts to an inner automorphism of SL2(q).

Now, consider n≥ 3. Let ψ be as in the proposition, and let χ ∈ Irr(GLn(q) | ψ), so that

χ is cuspidal thanks to Lemma 2.5(c). We keep the notation of the proof of Proposition 5.1

with χ ∈ E(GLn(q),(s)) and ζ some eigenvalue of s.
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By Clifford theory, χ is induced from a character of GLn(q)ψ. Then the assumption

2 | |GLn(q) : GLn(q)ψ| implies χ = ν1χ for ν1 ∈ Irr(GLn(q)) the linear character of

order 2 with kernel containing SLn(q). Hence, s is GLn(q)-conjugate to −s. Then −ζ ∈
{F (ζ),F 2(ζ), . . . ,Fn(ζ) = ζ} since this is the spectrum of s.

Clifford theory also tells us that the assumption ψγ = ψ implies χγ = ν2χ for some linear

character ν2 of GLn(q) with SLn(q) in its kernel. Then s−1 is conjugate to λs for some

λ ∈ F×
q . As before, we obtain ζ−1 ∈ {λF (ζ),λF 2(ζ), . . . ,λFn(ζ) = λζ}.

We can now write −ζ = F a(ζ) and λζ−1 = F b(ζ) for 1≤ a,b≤ n. The first equality gives

F 2a(ζ) =−F a(ζ) = ζ and the second F 2b(ζ) = λF b(ζ)−1 = ζ since λ∈ Fq. So ζ ∈ Fq2a ∩Fq2b ,

but since Fq[ζ] = Fqn , we get that n divides both 2a and 2b. The latter are at most 2n, so

2a,2b ∈ {n,2n}. Having a= n would imply −ζ = Fn(ζ) = ζ, which is impossible because q

is odd. So n is even and a = n
2 . On the other hand, if b = n, then ζ = Fn(ζ) = λζ−1 and

therefore ζ2 ∈ Fq. Then Fq[ζ]⊆ Fq2 and this implies n= 2.

There remains the case when b = n
2 = a. Then λζ−1 = F a(ζ) = −ζ and again ζ2 ∈ Fq.

This yields n= 2 as seen before.

We complement the above by a result on cuspidal characters of Dl,sc(q), which follows

from a combination of results from [Mal2] and [S4]. We use G, F, γ from Notation 3.3 and

h0 from Notation 3.9. Recall the Lang map L defined on G by L(g) = g−1F (g). Note that

L−1(〈h0〉)/〈h0〉= (G/〈h0〉)F = SO2l(Fq).

Proposition 5.3. Recall G̃ := L−1(Z(G)) = NG(GF ) (see Remark 2.16). If λ ∈
Irrcusp(G

F | 1〈h0〉) with G̃λ ≤ L−1(〈h0〉), then γ acts trivially on λ and Irr(L−1(〈h0〉) | λ).

Proof. Recall that a character of G̃F is called semisimple when it corresponds to a trivial

unipotent character through the Jordan decomposition of characters. The components of

their restrictions to GF are also called the semisimple characters of GF . In particular, both

are of degree prime to p (see [GM, 2.6.11]).

According to [Mal2, Th. 1], there exists a semisimple character ρ∈ Irr(GF ) with (G̃E)ρ =

(G̃E)λ, where ρ and λ lie in the same rational Lusztig series. We use now results from [S4] to

investigate ρ further. In a first step, we prove that γ acts trivially on ρ and Irr(L−1(〈h0〉) | ρ).
We assume that G, T, and Δ are as given in Notation 3.3, and let U := 〈Xα | α ∈Δ〉

and B := TU. As group G̃ introduced in 2.2, we use the particular choice from

[S4, 3.1]. Then G̃F and G̃ induce the same automorphisms on GF . Let B̃ := BZ(G̃).

Let Ω̃ : Irrp′(G̃F ) −→ Irrp′(B̃F ) be the Irr(G̃F /GF )�E(GF )-equivariant bijection with

Irr( ψ̃
⌉
Z(G̃F )

) = Irr(Ω̃(ψ̃)
⌉
Z(G̃F )

) for every ψ ∈ Irrp′(G̃F ) from [S4, 3.3(a)].

Let ρ̃∈ Irr(G̃F | ρ), φ̃ := Ω̃(ρ̃), and φ∈ Irr( φ̃
⌉
BF

). Let C be the Cartan matrix associated

with Δ and C−1 = (c′αβ) its inverse. Let ζ ∈ F× be a root of unity of order det(C)(q−1) =

4(q−1). For α ∈Δ, we set

t(0)α :=
∏
β∈Δ

hβ(ζ
det(C)c′αβ )

(see also [Mas, 8.1]). Then we can choose elements tα ∈ t
(0)
α Z(G̃)∩ T̃F such that T̃F =

Z(G̃F )〈tα | α ∈Δ〉 (see [Mas, §8]). Assume that Δ is given as in Notation 3.3, and let

α ∈ {e2±e1}. The entries of C−1 can be found in [OV, p. 296]. We see L(t(0)α ) = (t
(0)
α )q−1 ∈

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.14


936 B. SPÄTH

hl(�)〈h0〉. Hence, tα induces a diagonal automorphism of GF associated with some element

in hl(�)〈h0〉 in the notation of Remark 2.16(b).

We abbreviate Ĝ := L−1(〈h0〉). The assumption G̃λ ≤ Ĝ implies λtα 
= λ. Via the

construction, we have (G̃E)ρ = (G̃E)λ and hence ρtα 
= ρ. By Clifford theory, the character

ρ̃ satisfies ρ̃(tαG
F ) = 0 and is stable under multiplying with linear characters with kernel

{g ∈ G̃F | g induces diagonal autom. of GF associated with an element of 〈h0〉}

(see 2.16(b)). As Ω̃ is an Irr(G̃F /GF )-equivariant bijection, the character φ̃ has to satisfy

φ̃(tα)= 0 as well. As in Remark 2.16, φ̃ can be extended to some character κ on B̃F Z̃ = B̃0.Z̃,

where L̃ is the Lang map on G̃, Z̃ := L̃−1(Z(G))∩Z(G̃), and B̃0 := L−1(Z(G))∩B. Note

that B̃0 = Z(GF )
〈
t
(0)
β | β ∈Δ

〉
UF . Then κ(t

(0)
α ) = 0. The character κ�B̃0

is γ-stable, since

Irr(κ�Z(GF )|) = Irr(φ�Z(GF )) is γ-stable because of h0 ∈ ker(φ) and t
(0)
β is γ-fixed for every

β ∈Δ\{e2±e1} according to the explicit value of C−1.

As κ is γ-stable, φ ∈ Irr(κ�BF ) = Irr( φ̃
⌉
BF

) can be assumed to be γ-stable (see [S4,

3.6(a)]). By Clifford theory, κ�B̃0
is of the form φ̂B̃0 for a unique φ̂ ∈ Irr((B̃0)φ). As φ

extends to B̃F
φ according to [S4, Th. 3.5(a)], the character φ̂ is an extension of φ. As κ and

φ are γ-stable, φ̂ is γ-stable. Note that (B̃0)φ ≤ B̂ := L−1(〈h0〉)∩B.

Via the statement given in Proposition 2.18, some G̃-conjugate ρ′ of ρ is γ-stable and

has also a γ-stable extension to Ĝ. If ρ′ 
= ρ, we observe that (Ĝ〈γ〉)t′ = Ĝ〈γ〉 for every

t′ ∈ L−1(hl(�)). Hence, the character ρ extends to Ĝ〈γ〉, as well.
We deduce from this result on ρ the analogous property of λ. Recall that λ and ρ are

in the same rational Lusztig series and that (G̃FE)ρ = (G̃FE)λ, in particular G̃F
ρ = G̃F

λ .

Recall that ρ̃ ∈ Irr(G̃F | ρ) and Irr(G̃F /GF ) acts on Irr(G̃F ) by multiplication with linear

characters. As G̃F /GF is abelian and maximal extendibility holds with respect toGF �G̃F ,

we see

Irr(G̃F /GF )λ̃ = Irr(G̃F /G̃F
λ ) = Irr(G̃F /G̃F

ρ ) = Irr(G̃F /GF )ρ̃.

Let E(G̃F , s) be the rational Lusztig series containing ρ̃. The character ρ̃ is semisimple.

The series E(G̃F , s) contains exactly one regular character (see [DM, 12.4.10]). By the

definition of semisimple and regular in [DM, 12.4.1], we see that there exists also a unique

regular character in that series. Let ρ̃′ ∈ Irr(G̃F ) be the Alvis–Curtis dual of ρ̃ up to a

sign (see [DM, 7.2]). Then {ρ̃′}= Irr(Γ(G̃F ))∩E(G̃F , s), where Γ(G̃F ) denotes the Gelfand–

Graev character of G̃F . Since it vanishes outside unipotent elements, the Gelfand–Graev

character is stable under Irr(G̃F /GF ). Hence, Irr(G̃F /GF )ρ̃′ coincides with the stabilizer

of E(G̃F , s) in Irr(G̃F /GF ). This group is called B(s) in [CE, 15.13]. By the construction of

Alvis–Curtis duality, this implies Irr(G̃F /GF )ρ̃ = B(s). The characters ρ̃γ and λ̃γ belong

to E(G̃F ,γ−1(s)). As λ and ρ are γ-stable, ρ̃γ = ρ̃μ and λ̃γ = λ̃μ′ for linear characters

μ,μ′ ∈ Irr(G̃F ). Since ρ̃γ and λ̃γ are in the same rational series, μ ∈ μ′B(s) or equivalently

μ�G̃F
ρ
= μ′�G̃F

λ
.

Because of Irr( ρ̃�Z(G̃F )) = Irr( λ̃
⌉
Z(G̃F )

), Proposition 2.18 allows to conclude that λ has

a γ-stable extension to Ĝ as ρ has such an extension.
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§6. Character theory for the relative inertia groups W (λ)

The aim of this section is to ensure Assumption 2.8(ii), namely to prove (a main step

toward) the following statement.

Theorem 6.1. Let l ≥ 4. Let GF = Dl,sc(q) with odd q, and let L = LF be a standard

Levi subgroup of GF (see Notation 3.3). Let N, Ñ ′ := T̃0N , and EL := StabE(GF )(L
F ) be

associated with L as in Lemma 2.8. If Hypothesis 2.14 holds for every l′ with 4≤ l′ < l, then

there exists some EL-stable Ñ ′-transversal in Irrcusp(N).

Some technicalities (mainly in the case where G = D4,sc(F)) delay the complete proof

until §7. We construct the EL-stable Ñ ′-transversal as a subset of Irr(N | T), where T is

the N̂ -stable Ñ ′-transversal from Theorem 3.1(a). In Lemma 6.3, we find some EL-stable

Ñ ′-transversal of Irr(N | {λ ∈ Irrcusp(L) | L̃′
λ = L}) where L̃′ = T̃0L as in Theorem 2.8.

In order to find the transversal of Irr(N | {λ ∈ Irrcusp(L) | L̃′
λ 
= L}) with the required

properties, we apply the strategy mapped out by Proposition 2.12, itself based on the

parametrization of Proposition 2.10. Thanks to Theorem 3.1, the two first assumptions of

Proposition 2.12 can be assumed, in particular there exist some N̂ -equivariant extension

map ΛL,T with respect to L�N for T, where N̂ =NEL. We have to ensure the remaining

Assumption 2.12(iii) and study the characters of the relative Weyl groups and their Clifford

theory.

As already discussed in §2.3, characters in such a transversal have a stabilizer in Ñ ′EL

with a specific structure, namely such a ψ ∈ Irr(N) satisfies

(N̂L̃′)ψ = N̂ψL̃
′
ψ (6.1)

(see also Lemma 2.4). For studying a character ψ ∈ Irr(N |T), we apply the parametrization

Υ from Proposition 2.10(a) and the extension map ΛL,T with respect to L�N for T. Then

ψ =Υ((λ,η)) = (ΛL,T(λ)η)
N with λ ∈ T and η ∈ Irr(W (λ)). According to Proposition 2.11,

the character ψ =Υ((λ,η)) satisfies Equation (6.1) if

η is K̂(λ)η0-stable, where λ̃ ∈ Irr(L̃′
λ | λ) and η0 ∈ Irr(W (λ̃)),

where Ŵ =NEL/L and K̂(λ) = Ŵλ. The aim of this section is Corollary 6.36, namely to

prove that for every λ ∈ T, λ̃ ∈ Irr(L̃′
λ | λ), and η0 ∈ Irr(W (λ̃)),

there exists some K(λ)η0-stable η ∈ Irr(W (λ) | η0),

where K(λ) is the group from Notation 6.4. According to Lemma 6.5, such a character η

is also K̂(λ)η0-stable, whenever G is not of type D4.

In the proof, some arguments depend on the group L̃′
λ. As in Remark 2.16, we relate the

group L̃′ to subgroups of G.

Notation 6.2. Recall the definitions L̃ := L−1(Z(G))∩L and L̂ := L−1(〈h0〉)∩L from

Lemma 3.13, where L : G → G is given by x 
→ x−1F (x). Recall Ñ ′ := T̃0N and set

analogously Ñ := L̃N . Then L̃′ and Ñ ′ induce on G the same automorphisms as L̃ and Ñ ,

respectively.

Note that by an application of Lang’s theorem, L(L) = L⊇ Z(G) so that L� L̂� L̃.
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For λ ∈ T, the characters of W (λ) and W (λ̃) defined as above will be investigated

depending on the value of L̃λ. The set Irrcusp(L) can be partitioned in the following way:

Irrcusp(L) =M(L)�M(L̂)�M(L̃)�M0,

where M(X) := {λ∈ Irrcusp(L) | L̃λ =X} for any subgroup L≤X ≤ L̃ and M0 := Irrcusp(L)\
(M(L) ∪M(L̂) ∪M(L̃)). (In case of |Z(GF )| = 2, one has M(L) = ∅.) Note that the sets are

by definition ÑEL-stable as L, L̂, and L̃ are ÑEL-stable. In the following, we construct an

EL-stable Ñ -transversal in Irrcusp(N |M′) for each of those four given NEL-stable subsets

M′ ⊆ Irrcusp(L).

Lemma 6.3. Let T(L) := T∩M(L). Then Irr(N | T(L)) is an EL-stable Ñ ′-transversal in

Irr(N |M(L)).

Proof. The set T is by construction NEL-stable, and no two elements are L̃-conjugate.

Hence, for λ∈T(L), we have (NELL̃)λ = (NEL)λ by Lemma 2.4. By Clifford theory, Irr(N |
T(L)) is an Ñ -transversal in Irr(L |M(L)) and is NEL-stable.

Determining an NEL-stable L̃-transversal in Irr(N | M′) for the other sets M′ is

more involved. We start by some general descriptions of W (λ) and related groups for

λ ∈ Irrcusp(L) (see Proposition 6.28). Afterward, we collect some particular results on

cuspidal characters. In the following two subsections, we verify for characters of W (λ)

the above condition under the assumption that λ ∈M(L̃)∪M0 or λ ∈M(L̂).

In §6.4, we ensure a closely related condition on characters of W (λ) for λ ∈ Irrcusp(L)

with L̃λ = L̂. In §7, we show how these considerations prove Theorem 6.1 and how this

implies Theorem A.

6.1 Understanding Irrcusp(N) via characters of subgroups of W

We start by recalling some basic notation and introducing subgroups of Ŵ := N̂/L =

NEL/L as in 2.8. Additionally, let N := N
G

F (L) and W =N/L (see also Proposition 3.16).

Notation 6.4. Let G and F : G → G be as in Notation 3.3 with odd q. Let L be

the standard Levi subgroup of (G,F ) such that L = LF . For any J with L ≤ J ≤ L̃ and

λ ∈ ZIrr(J), we set W (λ) := Nλ/L. If additionally J is EL-stable, W acts on Char(J);

hence, we can define W (λ) :=Wλ and K(λ) :=W
λJ〈Fp〉

⌉
J

.

The groups K(λ) and K̂(λ) are strongly related; in particular, by the following result, it

is sufficient to consider K(λ) instead of K̂(λ) if G is not of type D4. Recall that γ is the

graph automorphism of G of order 2 swapping α1 and α2.

Lemma 6.5. Let E◦ := 〈Fp,γ〉, E◦
L :=E◦∩EL, λ∈T, λ̃ defined as above, η0 ∈ Irr(W (λ̃)),

and η ∈ Irr(W (λ)). Then η is K̂(λ)η0 ∩ (W �E◦
L)-stable if and only if it is K(λ)η0-stable.

Proof. Note that Fp ∈ Z(Ŵ ); hence, η and η0 are Fp-stable. Recall that W can be

identified with the quotient (Ŵ ∩(W�E◦
L))/〈Fp〉. The group K̂(λ)∩(W�E◦

L) then projects

to K(λ), that is, for every w ∈W and e ∈ 〈Fp〉 with λwe = λ, we see (λLE◦
L

⌉
L
)w = λ. This

implies K̂(λ)〈Fp〉∩W =K(λ) and K̂(λ)η0〈Fp〉∩W =K(λ)η0 . As Fp stabilizes η, this implies

the statement.
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For λ ∈ T and λ̃ ∈ Irr(L̃λ | λ), the group W (λ̃) is determined by λ̃
⌉
L
, as W acts trivially

on the characters of L̃λ/L. Note that W (λ̃) 
=W ( λ̃
⌉
L
) in general. We can work with the

group L̃ instead of L̃′ because of the following observation.

Lemma 6.6. Let λ ∈ Irrcusp(L), λ̂ ∈ Irr(L̂ | λ), and λ̃ ∈ Irr(L̃ | λ̂).

(a) Then W (λ̃) =W (λ̃′) and W (λ̃) =W (λ̃′) for every λ̃′ ∈ Irr(L̃′ | λ).
(b) Then W (λ̃)≤W (λ̂)≤W (λ) and W (λ̃)≤W (λ̂)≤W (λ).

Proof. By the construction of T, the character λ ∈ T satisfies (N̂L̃)λ = N̂λL̃λ. Because

of G̃ = Z(G̃)G, the group L̃′ is a subgroup of L̃Z(G̃) and L̃′ = L∩ L̃Z(G̃). This implies

(NEL)λ̃ = (NEL)λ̃′ and hence part (a) (see Remark 2.16 for a similar argument).

As h0 is centralized by N̂ , the group L̂ is normalized by N and N . The containments

from part (b) follow from this by straightforward considerations.

For λ ∈ T and λ̃ ∈ Irr(L̃ | λ), we compute W (λ̃) as an approximation of W (λ̃). For I ∈O
and d ∈D, we use the groups GI , LI , L̂I , and Ld from Notation 3.9 and Lemmas 3.12 and

3.13. In Lemma 3.13, the structure of L and some of its subgroups was already studied.

Additionally, we use the following properties of L̂.

Proposition 6.7 (The structure of L̂). For d ∈ D and I ∈ O, let L̂d := L̂∩Ld.

(a) L1 is a split torus of rank |J1|.
(b) L̂ is the central product of L̂d (d ∈ D) over 〈h0〉.
(c) L̂d is the central product of L̂I (I ∈ Od) over 〈h0〉.
(d) [L̂I , L̂I′ ] = 1 for all I,I ′ ∈ O with I 
= I ′.

Proof. The first three parts follow from Lemma 3.13(c).

Part (d) is clear if I ∈ O1 or I ′ ∈ O1. Note that the groups L̂I and L̂I′ contain the root

subgroups for ΦI and ΦI′ , which are orthogonal to each other. At least one of them is of

type Al. Hence, no nontrivial linear combination of roots from ΦI and ΦI′ is a root itself.

Hence, by Chevalley’s commutator formula, we see that the commutator of the groups is

trivial.

We continue using the groups V d from Lemma 3.21 for the description of W (λ̂). We write

Irrcusp(L̂) for Irr(L̂ | Irrcusp(L)).

Lemma 6.8 (Characters of L̂). Let λ̂ ∈ Irrcusp(L̂), λ̂d ∈ Irr( λ̂
⌉
L̂d

) for every d ∈ D and

λ̂I ∈ Irr( λ̂
⌉
L̂I

) for every I ∈ O. Then:

(a) λ̂=�d∈Dλ̂d and λ̂d =�I∈Od
λ̂I for every d ∈ D,

(b) λ̂d ∈ Irrcusp(L̂d) and λ̂I ∈ Irrcusp(L̂I),

(c) W (λ̂) is the direct product of the groups W d(λ̂) := (V d)λ̂/Hd (d ∈ D), and

(d) (V d)λ̂/Hd = (V d)λ̂d
/Hd.

Proof. The description of λ̂ and λ̂d in (a) follows from the structure of L̂ and L̂d given

in Proposition 6.7. The characters λ̂d and λ̂I cover a cuspidal character of Ld and LI ,

respectively, by Lemma 2.15, which then also gives (b). Considering the roots underlying

Vd and Ld′ , we see that the Chevalley relations imply [Vd,Ld′ ] = 1 for d,d′ ∈D with d 
= d′.

This implies the parts (c) and (d).
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For a more explicit description of the groups W (λ̂), we introduce some elements of V

using the maps κd (d ∈ D) from Lemma 3.21. For d ∈ D\{−1}, recall Od = {Id,1, . . . , Id,ad
}

from Notation 3.17.

Notation 6.9. Let d ∈ D \ {−1} and cId,j := κd(nej (�)) ∈ V d for every j ∈ ad. Note

that for every I ∈ Od, cI is some V d-conjugate of n
(d)
1 and ρT(cI) =

∏
i∈I(i,−i), where

ρT : N0 → S±l is the natural epimorphism (see before Proposition 3.16). If 2 � |I| and

I /∈O−1∪O1, then by considerations as in the proof of Lemma 4.4(b), cI acts as transpose-

inverting on LI via the identification of LI with GL|I|(q).

We define additionally the subgroups

V d,S :=Hd

〈
κd(nei−ei+1(−1)) | i ∈ ad−1

〉
(6.2)

and VS := 〈Vd,S | d ∈ D\{−1}〉. Then ρT(VS(L∩N0))/ρT(L∩N0) = SO ≤ S±O.

If −1 ∈ D, then we set cJ−1 := n1 from 3.19.

Using the notation of permutation groups given in Notation 3.14, we identify the group

W =N/L with S±O. Computations in W show that V =H〈cI | I ∈ O〉VS .

Definition 6.10. Let λ̂ ∈ Irr(L̂). We call λ̂ standardized if for every I,I ′ ∈ O the

characters λ̂I and λ̂I′ are either VS-conjugate or not V -conjugate. For such λ̂, we call

the characters in Irr( λ̂
⌉
L
) also standardized.

Computations show that every standardized character λ̂ satisfies V λ̂ = H〈cI | I ∈ O〉λ̂
(VS)λ̂ and every N -orbit in Irr(L̂) contains a standardized character. For a more explicit

description of W d(λ̂), we introduce the following notation.

Notation 6.11. Let E be a set, and let M be a subset of 2E , the set of all subsets of

E. For m′ ⊆ E, we write m′ ⊂⊂M if m′ ⊆m for some m ∈M .

Using the notation of permutation groups given in Notation 3.14, we identify the group

W =N/L with S±O. In the following, we describe W d(λ̂d) as a subgroup of S±Od
. We use

the Young-like subgroups of S±Od
from Notation 3.14 that are associated with a partition

of Od.

Lemma 6.12. Let λ ∈ Irrcusp(L) be standardized. We set

Oc(λ̂) := {I ∈ O | (λ̂I)
cI = λ̂I}.

Let Y (λ̂) �Oc(λ̂) and Y ′(λ̂) � (O(λ̂)\Oc(λ̂)) be the partitions such that {I,I ′} ⊂⊂ Y (λ̂) or

{I,I ′} ⊂⊂ Y ′(λ̂) if and only if λ̂I and λ̂I′ are VS-conjugate. Then

W (λ̂) = Y±Y (λ̂)×YY ′(λ̂),

where Y±Y (λ̂) and YY ′(λ̂) are defined as in Notation 3.14.

Proof. Note Y ′(λ̂)∪Y (λ̂) � O. As λ̂ is standardized,

W d(λ̂) = 〈(I,−I) | I ∈ Od〉λ̂� 〈(I,I ′)(−I,−I ′) | I,I ′ ∈ Od〉λ̂ for every d ∈ D.

This gives our claim.

Let ζ ∈ F× with � = ζ(q−1)2 and tI,2 := hI(ζ) for every I ⊆ l as in Lemma 3.13. For

I ∈ O\{J−1}, the element tI,2 satisfies [LI , tI,2] = 1.
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Lemma 6.13 (Structure of W (λ̃)). Let λ ∈ Irrcusp(L), λ̂ ∈ Irr(L̂ | λ), λ̃ ∈ Irr(L̃ | λ̂) λ̂I ∈
Irr( λ̂

⌉
L̂I

), and λ̃I ∈ Irr(L̃I | λ̂I) (I ∈ Oc(λ̂)). Assume that λ̂ is standardized and L̃λ̂ = L̃.

We set

Oc,1(λ̂) := {I ∈ Oc(λ̂) | (λ̃I)
cI = λ̃I} and Oc,−1(λ̂) := {I ∈ Oc(λ̂) | (λ̃I)

cI 
= λ̃I}.

(a) For I ∈ Oc(λ̂)\{J−1} and ε=±1, we have I ∈ Oc,ε(λ̂)⇔ λ̂I(t
2
I,2) = ελ̂I(1).

(b) W (λ̃)≤ S±Oc,1(λ̂)
×SD

±Oc,−1(λ̂)
, more precisely

W (λ̃) =
(〈

(I,−I) | I ∈ Oc,1(λ̂)
〉〈

(I,−I)(I ′,−I ′) | I,I ′ ∈ Oc,−1(λ̂)
〉)

�YY (λ̂)∪Y ′(λ̂).

If the character λ̂ is clear from the context, we write Oc,ε instead of Oc,ε(λ̂).

Proof. Note that the description of L̃ given in Lemma 3.13(e) shows that λ̂ extends to

L̃ if and only if λ̂I extends to L̃I := L̂I〈tI,2〉 for every I ∈ O.

We have tl,2 :=
∏

I∈O tI,2, L(tl,2) = hl(�), and L̃ =
〈
L̂, tl,2

〉
(see Lemma 3.13). This

implies L̃≤
〈
L̃I | I ∈ O

〉
. By the Chevalley relations, we see [VS , tl,2] = 1. Let I,I ′ ∈O such

that λ̂I and λ̂I′ are VS-conjugate. Then we can choose their extensions λ̃I and λ̃I′ to L̃I and

L̃I′ such that they are VS-conjugate, as NVS
(L̂I) =HCVS

(L̂I), and therefore λ̃I′ is uniquely

determined by λ̃I .

Let φ ∈ Irr(
〈
L̃I | I ∈ O

〉
) with φ�L̃I

= λ̃I for every I ∈ O. Without loss of generality,

we may assume φ�L̃ = λ̃. By the above construction, we have (VS)φ = (VS)λ̂. Because of

V λ̂ =H〈cI | I ∈ O〉λ̂(VS)λ̂, it is sufficient to determine 〈cI | I ∈ O〉λ̃ for computing V λ̃.

Let μI ∈ Irr(L̃I) be the linear character with ker(μI) = L̂I . For any Q ⊆ O, let μQ ∈
Irr(
〈
L̃I | I ∈ O

〉
) be the linear character with 〈LI | I ∈ O〉 ≤ ker(μQ) such that for every

I ∈ O, the inclusion L̃I ≤ ker(μQ) holds if and only if I /∈Q. Note that μQ(tl,2) = 1 if and

only if |Q| is even.
For Q ⊆ O, let cQ :=

∏
I∈Q cI ∈ V . If Q′ ⊆ Oc(λ̂), then cQ′ ∈ V λ̂ and we see that

φcQ′ = φμQ′∩Oc,−1 . As μQ′∩Oc,−1(tl,2) = (−1)|Q
′∩Oc,−1|, this leads to a proof of part (b),

in particular

W (λ̃) = (〈(I,−I) | I ∈ Oc,1〉 〈(I,−I)(I ′,−I ′) | I,I ′ ∈ Oc,−1〉)�YY (λ̂)∪Y ′(λ̂).

Let I ∈ Oc(λ̂) \ {J−1}. Then cI acts by inverting on TI , in particular tcII,2 = t−1
I,2 and

[cI , tI,2] = t−2
I,2. Because of tI,2 ∈ Z(LI), we see that [tl,V d]⊆ Z(L). Any extension λ̃I of λ̂I

to
〈
L̂I , tI,2

〉
satisfies λ̃I(tI,2) 
= 0 since tI,2 ∈ Z(L̃I).

Note that νI ∈ Irr( λ̃
⌉
Z(L̂I)

) is linear. As λ̂I is cI -stable, νI has multiplicative order 1 or 2.

We observe that tcII,2 = t−1
I,2 ∈ Z(L̃I) and hence

λ̃I(t
cI
I,2) = λI(1)νI(t

cI
I,2) = λ̃(tI,2)νI([tI,2, cI ]) = λ̃(tI,2)νI(t

−2
I,2).

Accordingly, λ̃I is cI-invariant if and only if [cI , tI,2] ∈ ker(νI) = ker(λ̂) ∩ Z(L̂I). This

proves (a).

The group W (λ) is then generated by W (λ̂) and an element that is described below.
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Lemma 6.14. Let μ ∈ Irr(L̂) with ker(μ) = L and λ̂ ∈ Irr(L̂). Additionally, for every

I ∈ O, let μI ∈ Irr(L̂I) with ker(μI) = LI , λ̂I ∈ Irr( λ̂
⌉
L̂I

) and λI ∈ Irr( λ̂I

⌉
LI

).

(a) Let x ∈ W \W (λ̂) and λ ∈ Irr( λ̂
⌉
L
). Then x ∈ W (λ) if and only if, for every I ∈ O,

the equality (λ̂I)
x = λ̂I′μI′ holds, where I ′ ∈ O with (L̂I)

x = L̂I′ .

(b) We set Oext := {I ∈O | λ̂I

⌉
LI

= λI} and Oind :=O\Oext. Then W (λ) stabilizes Oext

and Oind.

Proof. Since L̂/L has order 2, we see that μO, the product of the characters μ̂I (I ∈O)

defined as in the proof of Lemma 6.13, is an extension of μ. This implies part (a).

For part (b), we observe that for I ∈O, σ ∈W (λ) and I ′ := σ−1(I) the characters λ̂I

⌉
LI

and (λ̂I)
σ
⌉
LI′

= λ̂I′μI′

⌉
LI′

have the same number of constituents. This proves part (b)

since I ∈ Oind if and only if λ̂I

⌉
LI

is reducible.

6.2 Cuspidal characters of LI

The aim here is to describe the structure of W (λ̃) by analyzing Oc,−1(λ̂) (see

Lemma 6.13). We show in this section that for some I ∈O there exist no or only few cI -stable

cuspidal characters of LI and study the kernel of those characters (see Corollary 6.22).

For I ∈ O, let Irrcusp(L̂I) := Irr(L̂I | Irrcusp(LI)) and call those characters cuspidal as

well.

Lemma 6.15. Let I ∈Od for some d ∈ Dodd \{±1}. There exists no cI-stable character

in Irrcusp(L̂I).

Proof. According to Lemma 4.2(c), LI
∼= GLd(q) and the element cI defined in

Notation 6.9 induces on GI a combination of an inner automorphism and the nontrivial

graph automorphism according to Lemma 4.4(b). The element cI acts on the torus

ZI := hI(F
×) from Lemma 4.2 by inverting. Hence, via the isomorphism LI

∼= GLd(q),

the element cI induces on LI a combination of an inner automorphism and the nontrivial

graph automorphism.

According to Proposition 5.1(a), there is no cuspidal character of GLd(q) that is invariant

under transpose-inverse. So no character in Irrcusp(LI) is cI -stable. Now, the element tI from

Lemma 3.13 can be chosen such that [tI ,LI ] = 1 (see Lemma 4.3). This implies that every

cuspidal character of L̂I is an extension of a cuspidal character of LI . This proves that

there is no cI -stable character in Irrcusp(L̂I).

With the following statement, the above shows that Oc,1(λ̂)∩Od = ∅ for every d ∈ D \
{±1} and λ̂ ∈ Irrcusp(L̂) with h0 ∈ ker(λ̂).

Proposition 6.16. Let I ∈Od for some d∈D\{±1}. Then every ψ ∈ Irrcusp(L̂I | 1〈h0〉)

with ψcI = ψ satisfies ZF
I ≤ ker(ψ), where ZI := hI(F

×) is as in Lemma 4.2.

Proof. Under the isomorphism LI/〈h0〉 ∼=GLd(F) from Lemma 4.2, we obtain L̂I/〈h0〉 ∼=
GLd(q). Via this isomorphism, ZF

I is mapped to Z(GLd(q)). Let ψ ∈ Irrcusp(L̂I | 1〈h0〉). If ψ

is cI -invariant, then it corresponds to a cuspidal character of GLd(q) that is invariant under

transpose-inverse (see Lemma 4.4(b)). According to Proposition 5.1(a), such a character is

trivial on the center. This implies ZF
I ≤ ker(ψ).

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.14


INDUCTIVE MCKAY CONDITION IN TYPE D, I 943

Theorem 6.17. Let ν ∈ Irr(〈h0〉) be nontrivial, d ∈ Deven, I ∈ Od, and let tI,2 be as

defined before Lemma 6.13.

(a) If d≥ 4, every ψ ∈ Irrcusp(L̂I | ν) with ψcI = ψ satisfies t2I,2 ∈ ker(ψ).

(b) If d = 2 and 4 | (q− 1), there is a unique ψ ∈ Irrcusp(L̂I | ν) with ψcI = ψ and t2I,2 /∈
ker(ψ).

The proof goes through the next three lemmas. We keep ν the nontrivial irreducible

character of 〈h0〉. As a first step toward a proof of the above, we determine the inertia

group in L̂I of cuspidal cI-stable characters of LI .

Lemma 6.18. Let d ∈Deven, I ∈Od, ψ ∈ Irrcusp(LI | ν) with ψcI = ψ, and t2I,2 /∈ ker(ψ).

Then (L̂I)ψ = LI .

Proof. For the proof, it is sufficient to show that a character ψ with the above properties

and (L̂I)ψ = L̂I cannot exist. Recall t2I,2 = hI(ζ
′), where ζ ′ ∈ F× is a root of unity of order

2(q−1)2.

Let G′ := D2d,sc(F) with an Fq-structure given by a standard Frobenius endomorphism

F1 : G′ → G′. Let L′ be the Levi subgroup of G′ of type Ad−1 × Ad−1 such that

O(L′) = Od(L
′) = {I1, I2} be defined by L′ as in 3.8. Then ψ defines cuspidal characters

λI1 ∈ Irrcusp(LI1) and λI2 ∈ Irrcusp(LI2) that have extensions to L̂I1 and L̂I2 and are

V ′
S-stable, where V ′

S is associated with G′ and L′ as in Definition 6.10. We can choose

λ̂Ij ∈ Irr(L̂Ij | λIj ) (j = 1,2) such that they are not V ′
S-conjugate. The group L̂′ := L̂I1 .L̂I2

is a central product of the groups L̂Ij (j ∈ 2) over 〈h0〉. Let λ̂′ := λ̂I1 . λ̂I2 ∈ Irr(L̂′), λ′ = λ̂′
⌉
L′

and λ̃′ ∈ Irr(L̃′ | λ̂′) where L′ := (L′)F , L̂′ := L′−1
(〈h0〉)∩L′ and L̃′ := L′−1(Z(G′))∩L′ for

the Lang map L′ : x 
→ x−1F ′(x) of G′.

Defining W, W from the above for G′ and L′, note that W (λ̂′) = W (λ̂′) =

〈(I1,−I1),(I2,−I2)〉 and W (λ′) = W (λ′) = S±O(L′). Note also that W (λ̃′) =

〈(I1,−I1)(I2,−I2)〉 ≤ Z(W (λ′)) = [W (λ′),W (λ′)].

Now, observe that the nontrivial character of W (λ̃′) is W (λ′)-stable but does not extend

to W (λ′) as the kernel of any linear character of W (λ′) contains Z(W (λ′)) = [W (λ′),W (λ′)].

This also implies that for some character η ∈ Irr(W (λ′)), the constituent η0 of η�W (λ̃′)

has multiplicity 2 in η�W (λ̃′). The character RG̃′

L̃′ (λ̃
′)η0 restricts to (G′)F and has only

constituents with multiplicity 1 according to [CE, 15.11].

Like in other places, these results are considering first the situation of Harish-Chandra

induction for a group (G̃′)F1 that comes from a regular embedding of G′ into a group with

connected center. These results can then be applied to the groups G̃′ := L−1(Z(G′)) and

the subgroup L̃′.

On the other hand, according to [B1, 13.9(b)], the character RG′

L′ (λ′)η has multiplicity

2 in RG̃′

L̃′ (λ̃
′)η0 . This is a contradiction. This implies that a character ψ with the above

properties cannot exist and proves the statement.

In the next step, we continue to consider the case where I ∈ Od with 2 | d.
Lemma 6.19. Let ν ∈ Irr(〈h0〉) be nontrivial, and let I ∈ Od for some d ∈ Deven with

d > 2. Then every ψ ∈ Irrcusp(LI | ν) with ψcI = ψ satisfies t2I,2 ∈ ker(ψ).

Proof. Let z := t2I,2 = hl(ζ
′) for some ζ ′ ∈ F× a root of unity of order 2(q− 1)2, and

ψ ∈ Irrcusp(LI | ν) with ψcI =ψ and z /∈ ker(ψ). According to Lemma 6.18, ψL̂I is irreducible.
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Note z ∈ Z(LI). Since d ≥ 4, it is sufficient to show the statement in the case where I = l

and hence LI = L.

The group L0 := [L,L]F satisfies L0
∼= SLl(q) (see Lemma 4.2). Let ψ0 ∈ Irr(ψ�L0

).

According to Lemma 2.15, ψ0 is cuspidal. Following Lemma 4.3, the automorphisms of L0

induced by L̂ are diagonal automorphisms of L0. Since CL̂(L0)≤ Z(L) and L̂/(CL̂(L0)L0)

is cyclic, we can see that maximal extendibility holds with respect to L0 �L. As ψL̂ is

irreducible, L̂ψ = L. As L̂/L0 is abelian, this implies L̂ψ0 ≤ L.

We now use the fact L0
∼= SLl(q). Let H := GLl(F), and let F ′ :H−→H be a Frobenius

endomorphisms giving an Fq-structure such that HF ′ ∼= GLl(q). Via [H,H] ∼= [L,L], we

identify [H,H]F with L0. Hence, ψ0 defines ψ
′
0 ∈ Irrcusp([H,H]F ). By the above, this implies

2 | |HF :HF
ψ′

0
|.

The character ψL̂ is cI -stable. Hence, ψ�L0
is cI-stable. Following Notation 6.9, cI acts on

L0 by a graph automorphism and L̂ acts on L0 as diagonal automorphisms.

As ψ�L0
is cI -stable, we can choose ψ′ to be stable under the graph automorphism of

SLl(q) and it is cuspidal according to Lemma 2.15. In this situation, ψ0 only exists if l = 2

(see Proposition 5.2). By the assumption d > 2, so we get a contradiction. This implies our

claim that any cI -stable character ψ satisfies t2I,2 ∈ ker(ψ).

Lemma 6.20. Let I ∈ O2 and ν as in Lemma 6.19. There are exactly two characters

ψ ∈ Irrcusp(LI | ν) with ψcI = ψ and t2I,2 /∈ ker(ψ). Those characters are L̂-conjugate.

Proof. From the proof of Lemma 6.19 and Proposition 5.2, we see that there are two

GL2(q)-conjugate characters ψ0 ∈ Irr(ψ�[LI ,LI ]F
), that are the only possible constituents

of ψ. If I = {i, i′}, then ψ0(hei−ei′ (−1)) = (−1)
q+1
2 ψ0(1) according to [B 2, Table 5.4].

Then LF ∼= SL2(q)×ZF
I by Lemma 4.2, in particular h0 = hI(�)hei−ei′ (−1). Because of

ψ(h0) =−ψ(1), this implies ψ(hI(�)) =−(−1)
q+1
2 ψ(1) = (−1)

q−1
2 ψ(1).

Let κ ∈ Irr(ZF
I ) such that ψ = ψ0×κ. As cI acts by inverting on ZI , κ has multiplicative

order 1 or 2. The assumption t2I,2 /∈ ker(ψ) implies that κ has order 2. This proves that given

ψ0, the character κ is uniquely determined by the fact that ψ is cI -stable and t2I,2 
∈ ker(ψ).

Hence, the only characters with the given properties are L̂-conjugate.

Thanks to the above three statements, we can now show Theorem 6.17.

Proof of Theorem 6.17. Let ν ∈ Irr(〈h0〉) be nontrivial, d ∈ Deven, I ∈ Od, and ψ ∈
Irrcusp(L̂I | ν) with ψcI = ψ. If d > 2, then t2I,2 ∈ ker(ψ) according to Lemma 6.19. This

shows part (a).

Assume d = 2 and t2I,2 /∈ ker(ψ). The set Irr(ψ�LI
) contains two characters according

to Lemma 6.18. Following Lemma 4.4(b) together with Proposition 2.19(b), the character

ψ′ ∈ Irr(ψ�LI
) is cuspidal, and satisfies (ψ′)cI =ψ′ and t2I,2 /∈ ker(ψ′). Then there are exactly

two L̂I -conjugate characters in Irrcusp(LI | ν) with those properties (see Lemma 6.20). Since

|L̂I : LI |= 2, this implies that there is only one character ψ with the given properties. This

proves (b).

Lemma 6.21. If ν ∈ Irr(〈h0〉) is nontrivial, then every ψ ∈ Irrcusp(L̂J−1 | ν) satisfies

ψcJ−1 
= ψ.

Proof. Note hJ−1(�) ∈ Z(L−1) and [cJ−1 ,hJ−1(�)] = h0. No extension ν̂ ∈
Irr(Z(L−1)

F | ν) is cJ−1-stable. This implies that ψ−1 is not cJ−1-stable.
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The above leads to the following statement on the sets Oc(λ̂), Oc,−1(λ̂) and Y (λ̂)

introduced earlier in Lemmas 6.12 and 6.13. We use the notation o(μ) to denote the

multiplicative order of a linear character μ of a finite group.

Corollary 6.22. Let λ ∈ Irrcusp(L), λ̂ and λ̂I associated with λ as in Lemma 6.13.

If λ̂ is standardized, then:

(a) Oc(λ̂)⊆
⋃

d∈Deven∪{1,−1}Od.

(b) If h0 ∈ ker(λ), then Oc,−1(λ̂)⊆ {J−1}∪{I ∈ O1 | o(λ̂I) | 2}.
(c) If h0 /∈ ker(λ), then Oc,−1(λ̂) ⊆ O2 and all {λ̂I | I ∈ Oc,−1(λ̂)} are VS-conjugate, that

is, Oc,−1(λ̂) ∈ Y (λ̂).

Proof. Lemma 6.15 implies that Oc,−1(λ̂) ∩Od = ∅ for every d ∈ Dodd \ {±1}. This

gives (a).

For the proof of (b), assume h0 ∈ ker(λ). Then Corollary 6.16 implies Oc,−1(λ̂) ⊆
O−1∪O1. For I ∈ O1, the character λ̂I is cI -stable if and only if o(λ̂I) | 2.

For the proof of (c), assume h0 /∈ ker(λ). Then Oc,−1(λ̂)∩O1 = ∅ and Oc,−1(λ̂) ⊆ O2

according to Theorem 6.17. Lemma 6.20 proves that {λ̂I | I ∈ Oc,−1(λ̂)} are VS-conjugate.

Hence, the partition Y (λ̂) from Lemma 6.12 contains Oc,−1(λ̂).

Recall K(λ) := W
λL〈Fp〉

⌉
L

. For any W -stable L ≤ J ≤ L̃, κ ∈ Irr(J), and Q ⊆ O, let

W
Q
(κ) :=W (κ)∩S±Q and WQ(κ) :=W

Q
(κ)∩W .

Proposition 6.23. Let λ ∈ T, λ̂ ∈ Irrcusp(L̂ | λ), λ̂I ∈ Irr( λ̂
⌉
L̂I

) (I ∈ O), and λ̃ ∈

Irr(L̃ | λ̂). Assume that λ̂ is standardized in the sense of 6.10. We set

Q1(λ̂) :=

{
{I ∈ O1 | o(λ̂I) | 2}∪O−1, if h0 ∈ ker(λ),

Oc,−1(λ̂), otherwise.

Then:

(a) Q1(λ̂) is K(λ)-stable, and

(b) W (λ̃) =W 1(λ̃)×W 2(λ̃), where Q2(λ̂) :=O\Q1(λ̂), and W j(λ̃) :=WQj(λ̂)(λ̃) for j ∈ 2.

Proof. Let e ∈ 〈F0〉 such that λ and λe are N -conjugate. As λ̂ is standardized, then λ̂e

is also standardized. As the orders of λ̂I and (λ̂I)
e coincide for every I ∈ O, we see that

Q1(λ̂) =Q1(λ̂e) from the definition, whenever h0 ∈ ker(λ) = ker(λ̂e) and hence h0 ∈ ker(λ̂e).

Assume h0 /∈ ker(λ). Then h0 /∈ ker(λe). Let I ∈O\{J−1}. Because of ceI ∈ cI〈h0〉, we see

λ̂cI
I = λ̂I ⇔ Irr

(
λ̂e
⌉
L̂I

)cI

= Irr

(
λ̂e
⌉
L̂I

)
.

In the case of λ̂cI
I = λ̂I , the character λ̂I has some cI -stable extension to L̃I if and only if

the unique character in Irr( λ̂e
⌉
L̂I

) has some cI -stable extension to L̃I . (The set Irr(φ�L̂I
)

is a singleton for every φ ∈ Irrcusp(L̂), since L̂ is the central product of the groups L̂I over

〈h0〉.) This shows Oc,−1(λ̂) =Oc,−1(λ̂
e) and Q1(λ̂) =Q1(λ̂e) by the definition of those sets.

Let w ∈W and e ∈ 〈Fp〉 with we ∈ K̂(λ). Then λ̂w is standardized and Q1(λ̂)w =Q1(λ̂w).

Accordingly, w ∈K(λ) stabilizes Q1(λ̂). This implies part (a).
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For part (b), recall the description of W (λ̃) from Lemma 6.6:

W (λ̃) =
(〈

(I,−I) | I ∈ Oc,1(λ̂)
〉〈

(I,−I)(I ′,−I ′) | I,I ′ ∈ Oc,−1(λ̂)
〉)

�YY (λ̂)∪Y ′(λ̂).

First assume h0 ∈ ker(λ). By construction, Oc(λ̂) ⊆ Q1(λ̂) ∪
⋃

d∈Deven
Od and hence

W (λ̃) =W
1
(λ̃)×W

2
(λ̃). According to Corollary 6.22(a), we observe (I,−I) ∈W for every

I ∈ Oc(λ̂)\Q1(λ̂). This implies W
2
(λ̃)≤W and W (λ̃) =W 1(λ̃)×W 2(λ̃) by the definition

of W.

It remains to consider the case where h0 /∈ ker(λ). Then Q1(λ̂) = Oc,−1(λ̂) ⊆ O2 by

Corollary 6.22(c) and hence W
1
(λ̃)≤W . By the structure of W (λ̃) described in Lemma 6.6,

we see W (λ̃) =W 1(λ̃)×W 2(λ̃).

6.3 Clifford theory for W (λ̃)�W (λ) in the case of L̂L̃λ = L̃

In this section, we study the characters of W (λ̃), in particular their Clifford theory

with respect to K(λ). Assuming L̂L̃λ = L̃, we prove maximal extendibility with respect to

W (λ̃)�K(λ). This result is required for a later application of Proposition 2.11. We consider

the following situation.

Notation 6.24. Let λ ∈ Irrcusp(L), λ̂ ∈ Irr(L̂ | λ), and λ̃ ∈ Irr(L̃ | λ̂) such that λ̂ is

standardized and L̂L̃λ = L̃ (or equivalently λ̃
⌉
L̂
= λ̂).

For further computations, we use the groupsKj(λ) associated with the subsetsQj(λ)⊆O
from Proposition 6.23, where Kj(λ) := (K(λ)S±(O\Qj(λ)))∩S±Qj(λ) for j ∈ 2.

Lemma 6.25. If maximal extendibility holds with respect to W j(λ̃)�Kj(λ) for every

j ∈ 2, then maximal extendibility holds with respect to W (λ̃)�K(λ), in particular for every

η0 ∈ Irr(W (λ̃)) there exists some K(λ)η0-stable η ∈ Irr(W (λ) | η0).

In that situation, the above statement will ensure Assumption 2.12(iii) for (λ,η) ∈ P(L)

via Lemma 6.5.

Proof. Recall K(λ) :=W
λL〈Fp〉

⌉
L

by the definition in 6.4. As K(λ) stabilizes Q1(λ̂) and

Q2(λ̂) by Proposition 6.23, K(λ) ≤ S±Q1(λ̂) ×S±Q2(λ̂). This rewrites as K(λ) ≤ K1(λ)×
K2(λ). Recall that Oc,−1(λ̂)⊆Q1(λ̂).

Since maximal extendibility holds with respect toW j(λ̃)�Kj(λ) for j ∈ 2 by assumption,

maximal extendibility holds with respect to

W (λ̃) =W 1(λ̃)×W 2(λ̃)�K1(λ)×K2(λ).

This implies the statement as K(λ)≤K1(λ)×K2(λ).

For λ∈T with L̃λ = L̃, we study first the Clifford theory of W 2(λ̃)�K2(λ) for the groups

from Lemma 6.25.

Lemma 6.26. Let W 1(λ̃), W 2(λ̃), K1(λ), and K2(λ) be the groups from Lemma 6.25.

Then:

(a) maximal extendibility holds with respect to W 2(λ̃)�K2(λ), and

(b) maximal extendibility holds with respect to W 1(λ̃)�K1(λ), if h0 /∈ ker(λ).
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Table 6.1. Isomorphism types of W 1(˜λ) and K1(λ)

W 1(˜λ) K1(λ)

J−1 /∈ Oc(λ̂) W (Dl1)×W (Dl2) C2× (W (Bl1) �C2), if l1 = l2
C2×W (Bl1)×W (Bl2), if l1 
= l2

J−1 ∈ Oc,1 W (Bl1)×W (Dl2) C2×W (Bl1)×W (Bl2)
J−1 ∈ Oc,−1 W (Dl1)×W (Bl2) C2×W (Bl1)×W (Bl2)

Proof. Let Y (λ̂) � Oc(λ̂) and Y ′(λ̂) � O \Oc(λ̂) be the partitions from Lemma 6.12.

In order to prove part (a), we can assume Q2(λ̂) = O without loss of generality. We have

W (λ̃) =W
2
(λ) = Y±Y (λ̂)×YY ′(λ̂) (see Lemma 6.13).

If h0 ∈ ker(λ), then Oc(λ̂)∩ (O1∪O−1) = ∅ by the choice of Q1(λ̂) according to Corollary

6.22. If h0 /∈ ker(λ), Proposition 6.21 impliesOc(λ̂)∩O−1 = ∅ and analogously we seeOc(λ̂)∩
O1 = ∅.

This implies Oc(λ̂) ⊆
⋃

d∈Deven
Od. Accordingly, W (λ̃) is the direct product of groups

Wd(λ̃) for d ∈ D. It suffices to consider the case where O = Od = Q2(λ̂) for some d ∈ D

and Oc(λ̂) ∈ {O,∅}. Additionally, we can assume that Y (λ̂) and Y ′(λ̂) are partitions whose

elements have all the same cardinality. If Oc(λ̂) = O, then W 2(λ) ∼= (C2 � Sk)
a for some

positive integers k and a. Then K2(λ) ∼= (C2 � Sk) � Sa, and hence maximal extendibility

holds with respect to W 2(λ̃)�K2(λ).

If Oc(λ̂) = ∅, then W 2(λ) = YY ′ and hence it is isomorphic to a direct product of

symmetric groups. The group K2(λ) ≤ NS±Od
(YY ) is isomorphic to (CYY )�SY , where

C :=
〈∏

k∈y(k,−k) | y ∈ Y
〉
≤ S±Od

. By Lemma 4.6, maximal extendibility holds with

respect to W2(λ̃)�K2(λ). This proves part (a).

For part (b), we assume Oc,−1(λ) = O, h0 /∈ ker(λ), and as before Q1(λ̂) = O. By

Corollary 6.22(c), we have K(λ) = W and |W : W (λ̃)| = 2 (see Corollary 6.16(c)). As

W (λ)/W (λ̃) is cyclic, maximal extendibility holds with respect to W (λ̃)�K(λ).

It remains to prove the following.

Proposition 6.27. Maximal extendibility holds with respect to W 1(λ̃) � K1(λ), if

h0 ∈ ker(λ).

Proof. Let O1,i = {I ∈ O1 | o(λ̂I) = i} for i ∈ 4 and li := |O1,i|. By Lemmas 6.12 and

6.13, we have WQ1(λ̂)(λ̃)≤ C×S±O1,1 ×S±O1,2 , where C ≤WO−1(λ̂) and C is then either

trivial or a cyclic group of order 2. The group structures depend on J−1 and those groups

are described in Table 6.1, where W (Bj) and W (Dj) are Coxeter groups of type Bj and

Dj , respectively.

Note that in all cases WO1,1(λ̃) is a Coxeter group of type Bl1 . Considering the structure,

we observe that in all cases the statement holds according to Lemma 4.6.

Recall that M(X) = {λ ∈ Irrcusp(L) | L̃λ =X} and M0 := Irrcusp(L)\ (M(L)∪M(L̃)) for X

with L≤X ≤ L̃. For characters in M(L̃)∪M0, the above proves the following:

Proposition 6.28. Let λ ∈M(L̃)∪M0, that is, L̂L̃λ = L̃. For every λ̃ ∈ Irr(L̃ | λ) and

η0 ∈ Irr(W (λ̃)), there exists some K(λ)η0-stable η ∈ Irr(W (λ) | η0).
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Proof. According to Lemma 6.25, Proposition 6.27, and Lemma 6.26 imply the

statement.

6.4 Clifford theory for W (λ̂)�W (λ) in the case of L̃λ = L̂

We now study W (λ) and W (λ̂) for characters λ ∈ M(L̂), where λ̂ ∈ Irr(L̂ | λ) is

standardized. We prove statements on the characters of W (λ̂) and their possible extensions

to W (λ). The results later imply that there exists some EL-stable Ñ -transversal in

Irr(N |M(L̂)).

In the following, we study the Clifford theory of W (λ̂)�K(λ) for λ∈M(L̂), where K(λ) =

W
λL〈Fp〉

⌉
L

.

Lemma 6.29. Assume |Z(GF )| = 2 or equivalently q ≡ 3(4) and 2 � l. Every λ ∈
Irrcusp(L) satisfies L̂ ≤ L̃λ. Then Irrcusp(N | T∩M(L̂)) is an EL-stable L̃-transversal of

Irrcusp(N |M(L̂)).

Proof. The arguments given in Lemma 6.3 show the statement.

According to Lemma 6.29, we can now assume Z(GF ) = Z(G). We do that until the end

of the section.

Lemma 6.30. If |Z(GF )|= 4 and λ ∈ Irrcusp(L) with L̃λ = L̂, then −1 ∈ D and λ̂
tl,2
−1 
=

λ̂−1. Moreover, λ̂
ne1(�)
−1 = λ̂−1, if h0 ∈ ker(λ) or type(Φ−1) is not of type D|J−1|.

Proof. Recall that maximal extendibility holds with respect to L� L̃ (see Theorem

2.17). Accordingly, L̃λ = L̂ implies that λ is not tl,2-stable for the element tl,2 ∈ T from

Lemma 3.13. If ζ ∈ F× with ζ(q−1)2 = � and tI,2 := hI(ζ) as in Lemma 6.13, then tl,2 =∏
I∈O tI,2. Recall that L̃ = L̂

〈
tl,2
〉
. The character λ̂ is tl,2-stable, if λ̂I is tI,2-stable for

every I ∈ O. For I ∈ O\{J−1}, we see tI,2 ∈ CLI
(L̂I) and hence λ̂I is tI,2-stable. As λ̂ is

not tl,2-stable, −1 ∈ D and λ̂−1 is not tl,2-stable.

In the next step, we prove λ̂
ne1(�)
−1 = λ̂−1. Since λ

tl,2
−1 
= λ−1, Proposition 5.3 implies that

λ̂−1 is γ-stable, if type(Φ−1) = D|J−1|. We consider the other possible values of type(Φ−1).

We first assume type(Φ−1) = A1 ×A1. Then L−1 = SL2(q)× SL2(q). Let λ−1,1,λ−1,2 ∈
Irr(SL2(q)) such that λ�L−1

= λ−1,1×λ−1,2. By the proof of Proposition 4.8, L̃λ ≤ L̂ implies

that both characters λ−1,1 and λ−1,2 are not GL2(q)-stable. Additionally, they are cuspidal.

Following [B 2, Table 5.4], the characters λ−1,1 and λ−1,2 are uniquely determined up to

GL2(q)-conjugation. After applying some L̃-conjugation, we obtain that λ−1,1 and λ−1,2

are ne1(�)-conjugate. As L̂ induces on the SL2(q)-factors of L−1 simultaneous (non-inner)

diagonal automorphisms, the set Irr(L̂−1|λ−1) contains only one character; hence, λ̂−1 is

again ne1(�)-stable.

It remains to consider the case where type(Φ−1) = A3. Again, the character λ−1 is

not L̃-stable. Via the isomorphism L−1
∼= SL4(q), we see that tl,2 induces on SL4(q) a

diagonal automorphism corresponding to a generator of Z(SL4(q)) in the sense of 2.16(b)

(see also the proof of Proposition 4.8). We take any χ∈ Irr(GL4(q) | λ−1). Then χ is cuspidal

(see Lemma 2.15(c)). Using the description of cuspidal characters of general linear groups

recalled in the proof of Proposition 5.1, we let s∈GL4(q) and ζ ∈ F× such that χ belongs to

the rational Lusztig series of s and ζ ∈ Fq4 \Fq2 is an eigenvalue of s. Let det : GL4(F)→ F×

denote the determinant and det∗ the associated linear character of GL4(F) with kernel
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SL4(F). By the assumptions on χ, we see that χ = χ(det∗)
q−1
2 and hence s and −s are

conjugate. Then −ζ ∈ {ζ,ζq, ζq2 , ζq3}. Hence, using again o to denote multiplicative order,

o(ζ)2 = 2(q2− 1)2, as −ζ ∈ {ζ,ζq, ζq3} would imply that ζ ∈ Fq2 or ζ ∈ Fq6 , contradicting

ζ ∈Fq4 \Fq2 . In order to compute ker(χ�Z(SL4(q))
), we see that dets= ζ

q4−1
q−1 is not a square in

F×
q since o(ζ)2 = 2(q2−1)2. This contradicts h0 ∈ ker(λ), as h0 corresponds to the central

involution of SL4(q). Hence, there exists no cuspidal character λ−1 of L−1 that satisfies

h0 ∈ ker(λ) and λ
tl,2
−1 
= λ−1. This shows that type(Φ−1) = A3 is not possible. This finishes

our proof.

Lemma 6.31. Let λ ∈ Irrcusp(L) and λ̂ ∈ Irr(L̂ | λ) such that h0 /∈ ker(λ) and W (λ̂) 
=
W (λ). Then maximal extendibility holds with respect to W (λ̂)�K(λ).

Proof. We first determine W (λ̂). Denote c−1 := cJ−1 . As the character Irr(λ�Z(L−1)
) is

not c−1-stable, λ−1 is not c−1-stable. This implies J−1 /∈ Oc(λ̂).

If I ∈O1, λ̂I is a linear character. Since h0 /∈ ker(λ) and hence h0 /∈ ker(λ̂I), the order of

λ̂I is divisible by 2(q−1)2 ≥ 4. Hence, Oc(λ̂)∩O1 = ∅.
Together with Lemma 6.14 and Corollary 6.22(a), this leads to Oc(λ̂)⊆

⋃
d∈Deven

Od. The

structure of W (λ̂) is given by Lemma 6.13, and we observe W (λ̂) =W (λ̂). As in the proof

of Lemma 6.26, we can apply Lemma 4.6, and we see that maximal extendibility holds

with respect to W (λ̂)�NW (W (λ̂)). Because of K(λ) ≤ NW (W (λ̂)), this proves maximal

extendibility with respect to W (λ̂)�K(λ).

As in Lemma 6.25, we associate with λ subsets Q1(λ̂) and Q2(λ̂) of O. Recall K(λ) =

W
λL〈Fp〉

⌉
L

, whenever G is not of type D4.

Lemma 6.32. Let λ ∈M(L̂)∩ Irr(L | 1〈h0〉) and λ̂ ∈ Irr(L̂ | λ) with W (λ) 
=W (λ̂). Let

Q1(λ̂) := {I ∈ O1 | o(λ̂I) ∈ {1,2,4}}∪O−1 and Q2(λ̂) :=O\Q1(λ̂).

Let W
j
(λ̂) :=W (λ̂)∩S±Qj(λ̂), W

j(λ̂) :=W
j
(λ̂)∩W , L̂(i) :=

〈
L̂I | I ∈Qi(λ̂)

〉
, and L(i) :=

L∩ L̂(i), for i, j ∈ 2.

(a) Then K(λ) stabilizes Q1(λ̂) and

W (λ̂) =W 1(λ̂(1))×W 2(λ̂(2)),

where λ̂(i) ∈ Irr( λ̂
⌉
L̂(i)

).

(b) If x ∈ W (λ) \W (λ̂), then x = x1x2 for some xi ∈ W i(λ(i)) (i ∈ 2), where λ(i) ∈
Irr(λ�L(i)).

(c) |Od∩Q2(λ̂)| is even for every d ∈ Dodd \{−1}.
(d) Let W

i
:=W ∩S±Qi(λ̂) and Ki(λ) := (W

i
)
(λ(i))L

(i)〈Fp〉
⌉
L(i)

for i ∈ 2. If O1∩Q1(λ̂) 
= ∅,

then K(λ)≤K1(λ)×N
W

2(W 2(λ̂)).

Proof. First note that N̂ normalizes the groups LI (I ∈ O) and hence there is a well-

defined action of Ŵ on O. Now, Q1(λ̂) is defined using λ̂ (and is independent of the choice of

λ̂∈ Irr(L̂ | λ)). Note that by this definition any element in N̂λ stabilizes Q1(λ̂). Without loss

of generality, we can assume that λ̂ is standardized and hence W (λ) is given in Lemma 6.13.
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Accordingly,W (λ̂) =W
1
(λ̂)×W

2
(λ̂). As λ∈ Irr(L | 1〈h0〉), Corollary 6.22 impliesOc(λ̂)⊆⋃

d∈Deven
Od. By the definition of Q2(λ̂), we observe W

2
(λ̂) =W 2(λ̂).

According to Lemma 6.8(d), W (λ̂) is the direct product of the groups W d(λ̂), where

W d(λ̂) := (V d)λ̂/Hd. For W
1
(λ̂) we note that

W
1
(λ̂) =W

1,1
(λ̂)×W

1,2
(λ̂)×W

1,4
(λ̂),

where Q1,j(λ) := {I ∈ O1 | o(λ̂I) = j} and W
1,j

(λ̂) :=W
1
(λ̂)∩S±Q1,4(λ). This proves that

W (λ̂)=W
1
(λ̂)×W

2
(λ̂). By the aboveW 2(λ̂)=W

2
(λ̂) and henceW (λ̂)=W

1
(λ̂)×W 2(λ̂)=

W 1(λ̂)×W 2(λ̂). Since λ̂ = λ̂(1) × λ̂(2), we note that W 1(λ̂(1)) = W 1(λ̂(1)) and W 2(λ̂) =

W 2(λ̂(2)), proving (a).

As x ∈ K(λ) stabilizes Q1(λ̂) by (a), it can be written as product x1x2 where xi ∈
W

i
(λ(i)). Since λ̂x = λ̂μ for the faithful character μ of L̂/L, it satisfies (λ̂(i))x = λ̂(i)μ(i)

where μ(i) = μ�L̂(i) with L̂(i) :=
〈
L̂I | I ∈Qi(λ)

〉
. Hence, (λ̂(i))xi = λ̂(i)μ(i).

In the following, we show that any element x2 ∈W
2
with (λ̂(2))xi = λ̂(2)μ(i) also satisfies

x2 ∈ W . This then implies the statement in part (b). Recall that W d ≤ W for d ∈ Deven.

Hence, without loss of generality, we can assume that Q2(λ̂)⊆Od for some d∈Dodd \{−1}.
For I0 ∈ O and κ ∈ Irrcusp(L̃I0), we set

Oκ(λ̂) := {I ∈ O | λ̂I is VS-conjugate to κ or κcI0}.

Let μI be defined as in Lemma 6.14. Then x2(Oκ(λ̂)) = OκμI0
(λ̂) (see 6.14(a)). With

Oκ(λ̂) := Oκ(λ̂)∪OκμI0
(λ̂), the element x can be written as product of xOκ(λ)

∈ S±Oκ(λ)

where I ∈ O and κ ∈ Irrcusp(L̂I) runs over the 〈μI〉× 〈cI〉-orbits in Irrcusp(L̂I). To prove

x2 ∈W , it is sufficient to prove xOκ(λ)
∈W . Hence, we assume Q2(λ̂) =Oκ(λ̂)∪OκμI0

(λ̂)

for some κ ∈ Irr(L̂I0).

If I0 ∈O1, we observe that o(κ) /∈ {1,2,4} by the definition of Q2(λ̂). This implies κμI0 /∈
{κ,κcI0} and hence Oκ(λ̂)∩OκμI0

(λ̂) = ∅. Note that W
2
(λ̂)≤W . The element x2 satisfies

x2(Oκ(λ̂)) = OκμI0
(λ̂) as element of SQ2(λ̂). Recall λ̂ is standardized. Let I ∈ Oκ(λ̂) and

I ′ ∈ OκμI0
(λ̂). If λ̂I and λ̂I′ are VS-conjugate,

x2(εOκ(λ̂)) = εOκμI0
(λ̂) and x2(εOκμI0

(λ̂)) = εOκ(λ̂) (6.3)

for every ε ∈ {±1} as element of S±Q2(λ̂). Otherwise,

x2(εOκ(λ̂)) =−εOκμI0
(λ̂) and x2(εOκμI0

(λ̂)) =−εOκ(λ̂) (6.4)

for every ε ∈ {±1} as element of S±Q2(λ̂). In both cases, we see x2 ∈W .

Assume I0 ∈ Od for d ∈ Dodd \ {±1}. Hence, LI0
∼= GLd(q) by Lemma 4.2 and cI0 acts

on LI0 as a graph automorphism by Lemma 4.4(c). According to Lemma 6.15, we have

κ 
= κcI0 and W
2
(λ̂) ≤W . Proposition 5.1(b) leads to κμI0 /∈ {κ,κcI0}. We see again that

Oκ(λ̂) and OκμI0
(λ̂) are disjoint. This implies again that there exists some ε′ ∈ {±1} such

that

x2(εOκ(λ̂)) = ε′εOκμI0
(λ̂) and x2(εOκμI0

(λ̂)) = ε′εOκ(λ̂) (6.5)

for every ε ∈ {±1} as elements of S±Q2(λ̂). Again x2 ∈W . Altogether this proves part (b).
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The considerations above imply |Oκ(λ̂)|= |OκμI
(λ̂)| for every I ∈O and κ ∈ Irrcusp(L̂I).

If Oκ(λ̂) ⊆ Q2(λ̂), the sets are disjoint so that 2 | |Oκ(λ̂)|. This also applies if I ∈ O1 and

κ ∈ Irrcusp(L̂I) with o(κ) | 2. This gives part (c).
Recall K(λ) = W

λL〈Fp〉
⌉
L

. We see that Q1(κ) = Q1(λ) and Q2(κ) = Q2(λ) for every

constituent κ of λL〈Fp〉
⌉
L
. Accordingly, we see that K(λ)≤ S±Q1(λ)×S±Q2(λ).

By definition, λ(i) is uniquely determined by λ. Let w ∈K(λ), w1 ∈ S±Q1(λ), and w2 ∈
S±Q2(λ) with w = w1w2. As λw1w2 is some L〈Fp〉 conjugate of λ, the character (λ(1))w =

(λ(1))w1 is an L(1)〈Fp〉-conjugate of λ(1). Hence, w1 ∈K1(λ). Analogously, we can argue for

w2 and get w2 ∈N
W

2(W 2(λ̂)), as required in (d).

We study first the Clifford theory for W (λ̂)�W (λ) by considering subgroups associated

with Q1(λ̂) and Q2(λ̂).

Lemma 6.33. In the situation of Lemma 6.32, maximal extendibility holds with respect

to W 2(λ̂(2))�N
W

2(W (λ̂(2))).

Proof. Without loss of generality, we can assume that λ̂ is standardized. The structure of

W (λ̂) is then given by Lemma 6.12. As in the proof of Lemma 6.26(a), the groups W 2(λ̂(2))

and N
W

2(W (λ̂(2))) satisfy Lemma 4.6 and accordingly maximal extendibility holds.

Proposition 6.34. Let λ ∈ Irrcusp(L | 1〈h0〉), λ̂ ∈ Irr(L̂ | λ), and η0 ∈ Irr(W (λ̂)) with

L̃λ = L̂.

(a) If Q1(λ̂) =O, then every η ∈ Irr(W (λ) | η0) is K(λ)η0-stable.

(b) Maximal extendibility holds with respect to W 1(λ̂(1))�K1(λ(1)).

Proof. The statement in (a) is trivial ifW (λ̂) =W (λ). Hence, we assume in the following

W (λ̂) 
=W (λ) and Q1(λ̂) = O. According to Lemma 6.30, −1 ∈ D and λ̂−1 is cJ−1-stable,

that is,

|W−1(λ̂)|= 2.

In order to study those groups, we introduce more notation: For j ∈ {1,2,4}, let Q1,j =

{I ∈ O1 | o(λ̂I) = j} and lj := |Q1,j |. Then

W
Q1,j

(λ̂(1)) =

{
S±Q1,j , if j ∈ {1,2},
SQ1,4 , if j = 4.

Accordingly, W
1
(λ̂) =W−1(λ̂)×S±Q1,1 ×S±Q1,2 ×SQ1,4 . Additionally, W

λ̂
̂LEL

⌉
̂L

stabilizes

the sets J−1 and Q1,j (j ∈ {1,2,4}). If W (λ) 
= W (λ̂), every x ∈ W (λ) \W (λ̂) satisfies

x(Q1,1) = Q1,2 as element of SQ1(λ̂) (see the proof of Lemma 6.32). Hence, in that case

l1 = l2.

Following the arguments given in the proof of Lemma 6.32, the element x1 ∈ W 1(λ) \
W 1(λ̂) can be written as x−1x{1,2}x4, where x−1 ∈ 〈(J−1,−J−1)〉, x{1,2} ∈ S±(Q1,1∪Q1,2)

with x{1,2}(Q
1,1) =Q1,2 as element of S(Q1,1∪Q1,2) and x4 ∈ 〈x◦

4〉 with

x◦
4 :=

∏
i∈Q1,4

(i,−i) ∈ S±Q1,4 .

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.14


952 B. SPÄTH

Note that −1 ∈D according to Lemma 6.30 and hence γ ∈EL. In this notation, we have

K(λ)≤K1 := 〈(J−1,−J−1)〉×
(
(S±Q1,1 ×S±Q1,2)�

〈
x{1,2}

〉)
×
(
SQ1,4 � 〈x◦

4〉
)
.

We see W (λ̂)∼= S±Q1,1 ×S±Q1,2 ×SQ1,4 . Since K(λ) =W
λL〈Fp〉

⌉
L

, we have

K(λ)≤ 〈(J−1,−J−1)〉×
(
(S±Q1,1 ×S±Q1,2)�

〈
x{1,2}

〉)
×〈x4〉SQ1,4 ≤W (λ̂)〈x,c−1,x

◦
4〉

for the element x from above and with c−1 := ρT(cJ−1). Note W (λ̂)〈x,c−1,x4〉 ≤ K1 =

W (λ)〈c−1,x
◦
4〉. We observe c−1,x

◦
4 ∈ Z(W (λ)〈c−1,x

◦
4〉). This implies that every character

η ∈ Irr(W 1(λ)) isK1-stable. This proves part (a), and even that every character of Irr(W (λ))

extends to K1.

Now, by the definition of W 1(λ̂(1)) and K1(λ(1)), we see that in the general case the

groups obtained as K1(λ) coincide with K(λ) for a group of smaller rank where for the

character λ̂(1) part (a) can be applied. This then proves part (b).

We consider the general case.

Proposition 6.35. Let λ ∈ Irrcusp(L) with L̃λ = L̂ and η0 ∈ Irr(W (λ̂)). Then every

character in Irr(W (λ) | η0) is K(λ)η0-stable.

Proof. Note that because of |L̂λ : L| = 2 it is sufficient to prove that some character

in Irr(W (λ) | η0) is K(λ)η0-stable. According to Lemmas 6.33 and 6.34, we can assume

Q1(λ̂) 
=O 
=Q2(λ̂) for the sets Q1(λ̂) and Q2(λ̂) from Lemma 6.32.

By Lemma 6.31, we can assume h0 ∈ ker(λ). The groups W i(λ̂) (i ∈ 2) satisfy W (λ̂) =

W 1(λ̂)×W 2(λ̂) (see Lemma 6.32).

If O1 ∩Q1(λ̂) 
= ∅, then K(λ) ≤ K1(λ)×N
W

2(W 2(λ̂(2))) (see Lemma 6.32(d)). Let

ηi ∈ Irr(W i(λ̂)) such that η0 = η1 × η2. According to Lemma 6.34, η1 has a K1(λ)η1-

stable extension to W 1(λ)η1 and maximal extendibility holds with respect to W 2(λ̂)�

N
W

2(W 2(λ̂(2))) according to Lemma 6.33. This proves the statement in that case.

If O1∩Q1(λ̂) = ∅, then Q1(λ̂) = {J−1}. Then |W 1(λ̂)|= 1 and therefore W (λ̂) =W 2(λ̂).

Then the stability statement follows by applying again Lemma 6.33.

Together with Proposition 6.28, this leads to the following statement.

Corollary 6.36. Let λ ∈ T with L̃λ 
= L, λ̃ ∈ Irr(L̃λ | λ), and η0 ∈ Irr(W (λ̃)). Then

there exists some K(λ)η0-stable η ∈ Irr(W (λ) | η0).

Proof. For λ ∈M(L̃)∪M0, this is Proposition 6.28. For λ ∈ Irrcusp(L) with L̃λ = L̂, the

statement follows from Proposition 6.35.

§7. Proof of Theorem A

In the following, we explain how Corollary 6.36 about the action of K(λ) on Irr(W (λ))

proves Theorem 6.1. As already sketched in the beginning of §6 based on Proposition 2.11,

knowing the action of K̂(λ) on Irr(W (λ)) is crucial to verify Theorem 6.1. Unless G is of

type D4, the action K̂(λ) on Irr(W (λ)) is given by the action of K(λ) (see Lemma 6.5).

Via Harish-Chandra induction, we transfer the result of Theorem 6.1 on characters of

N to a weak version of Theorem A. Special considerations are needed to determine the

stabilizers in G̃E of characters χ ∈ Irr(GF | (L, Irrcusp(L))), whenever L is not E(GF )-

stable.
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Lemma 7.1. Let λ ∈ Irrcusp(L), λ̃ ∈ Irr(L̃λ | λ), and η0 ∈ Irr(W (λ)). Then some

character in Irr(W (λ) | η0) is K̂(λ)η0-stable.

Proof. According to Corollary 6.36, there exists some K(λ)η0-stable η in Irr(W (λ) | η0).
According to Lemma 6.5, the character η is K̂(λ)η0 ∩(W �E◦

L)-stable, where E
◦ := 〈Fp,γ0〉

and E◦
L := E◦∩EL. If G is not of type D4 or EL ≤ 〈Fp,γ0〉, this is the above statement.

Accordingly, we can assume in the following thatG is of type D4 and L is γ3-stable for the

graph automorphism γ3 of D4(F) from Notation 3.3. If L= T0, the statement follows from

[MS, Th. 3.7]. Otherwise, L is one of the other two possible γ3-stable Levi subgroups. In both

cases, easy calculations show thatW (L) is a 2-group. According to our considerations above,

we know that there is some K(λ)η0-stable η ∈ Irr(W (λ) | η0). As [K(λ) :W (λ)] ∈ {1,2}, the
character η0 extends to its inertia group K(λ)η0 . This shows that maximal extendibility

holds with respect to W (λ̃)�K(λ). Let K ′(λ) = (K̂(λ)〈Fp〉)∩ (W � 〈γ,γ3〉). When we

identify W with W �〈γ〉, we can see K(λ) as a subgroup of K ′(λ) with index 1 or 3. Hence,

K(λ)η0 has index 1 or 3 in K ′(λ)η0 . The character η0 extends to K(λ)η0 by the above.

Assume that K(λ)η0/W (λ̃) is a Sylow 2-subgroup of K ′(λ)/W (λ̃). Let K3 be a subgroup

ofK ′(λ)η0 withW (λ)η0 ≤K3 such thatK3/W (λ)η0 is a Sylow 3-subgroup ofK ′(λ)η0/W (λ̃).

The character η0 extends to K3 as |W (λ̃)| is coprime to 3 according to [I, (11.32)]. This

implies that η0 extends to K(λ)η0 . Maximal extendibility holds with respect to W (λ̃)�

K ′(λ) as well. (This can be seen via an application of [I, (11.31)].)

If K(λ)η0/W (λ̃) is not a Sylow 2-subgroup of K ′(λ)η0/W (λ̃), the group K(λγ3)ηγ3
0

=

(K(λ)η0)
γ3 contains a Sylow 2-subgroup of K ′(λγ3)ηγ3

0
and hence by the above (η0)

γ3

extends to K ′(λγ3)ηγ3
0
. Via conjugation, this implies that η0 extends to K ′(λ)η0 .

We can now show Theorem 6.1.

Proof of Theorem 6.1. Recall M(X) := {λ ∈ Irrcusp(L) | L̃ =X} for the subgroups L ≤
X ≤ L̃ andM0 := Irrcusp(L)\(M(L)∪M(L̂)∪M(L̃)) (see before Lemma 6.3). As the setsM(L),

M(L̂), M(L̃), and M0 are EL-stable, it is sufficient to construct an N̂ -stable L̃-transversal

in Irr(N | M′) for M′ ∈ {M(L),M(L̂),M(L̃)}. Note that since every character of N is N -

stable, one can equivalently also construct EL-stable Ñ ′-transversals. Lemma 6.3 provides

an N̂ -stable L̃-transversal in Irr(N |M(L)).

Lemma 7.1 shows that for every λ∈M0∪M(L̃)∪M(L̂) and every character η0 ∈ Irr(W (λ̃)),

there is some K(λ̃)η0-stable η ∈ Irr(W (λ) | η0), where λ̃ ∈ Irr(L̃λ | λ).
Assumptions (i) and (ii) of Proposition 2.11 are satisfied with T′ :=T∩(M0∪M(L̃)∪M(L̂))

from Proposition 4.10 and the extension map Λ from Theorem 3.1. For every λ ∈ T′ and

η0 ∈ Irr(W (λ̃)), there exists some K(λ)η0-stable η ∈ Irr(W (λ)). This allows us to apply

Proposition 2.12 and hence some N̂ -stable Ñ -transversal in Irrcusp(N |M0∪M(L̃)∪M(L̂))

exists.

Theorem 6.1 implies according to Theorem 2.8 that the equation (G̃EL)χ = G̃χ(EL)χ
holds for every character χ of a G̃-transversal in Irr(GF | (L, Irrcusp(L))). Accordingly, we

have constructed an EL-stable G̃-transversal of Irr(GF | (L, Irrcusp(L))) (see Lemma 2.4).

Corollary 7.2. Let G = Dl,sc(F), let F : G → G be a standard Frobenius endomor-

phism, and let E be defined as in Notation 3.3 and G̃ := L−1(Z(G)) for the Lang map L
defined by F on G. Let L be a standard Levi subgroup of GF , and let EL be its stabilizer in
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E(GF ). If Hypothesis 2.14 holds for every l′ < l, then there exists an EL-stable G̃-transversal

in Irr(GF | (L, Irrcusp(L))).
Proof. For a given fixed Levi subgroup L, we apply Theorem 2.8 whose assumptions

follow from Theorems 3.1 and 6.1.

Condition A′(∞) from 2.3 and equivalently Theorem A require to replace in the above

statement EL by E and study (G̃E)χ. Hence, we study the stabilizers of characters in

Irr(GF | (L, Irrcusp(L))) in the case where L is a standard Levi subgroup that is not

E -stable.

Proposition 7.3. We keep G = Dl,sc(F) and assume Hypothesis 2.14 holds for every

l′ < l. Let T and L as in Notation 2.5. Let E◦ := 〈Fp,γ〉 ≤E in the notation of 3.3. Assume

that no NGF (T)-conjugate of L is E-stable. Let χ ∈ Irr(GF | (L, Irrcusp(L))). Then G̃χ = G̃

or (G̃E◦)χ ≤ G̃χ(E
◦∩EL).

Proof. Let N0 := NGF (T). We consider first the possible structure of L, in particular

the values of D(L). Then we give the possible values of L̃χ via describing W (λ).

We see that L is Fp-stable. If L is γ-stable, then E(GF ) =EL. By our assumption EL 
=E,

we have γ /∈ EL. We observe that then −1 /∈ D(L), as otherwise the system of simple roots

Δ′, associated with L as in Notation 3.5 is γ-stable, which then implies γ ∈ EL.

If 1 ∈ D(L), then some N0-conjugate of L is γ-stable: the conjugation is given by some

element v ∈N0 :=NGF (T0) that corresponds to some σ ∈S±l with the following properties:

σ(l) = l, 1 ∈ σ(J1) and σ(Δ′)⊆Δ. The Levi subgroup L satisfies accordingly 1 /∈ D(L).

LetW0 =N0/T
F . For the proof of the statement, we consider χ∈ Irr(GF | (L, Irrcusp(L)))

with (G̃E)χ ≤ G̃EL. Then χγ and χ are G̃EL-conjugate. For the statement, we have to

show that G̃χ = G̃. We assume that χγ and χ are G̃EL-conjugate. Let λ ∈ Irrcusp(L) with

χ ∈ Irr(GF | (L,λ)). Then (L,λ) and (γ(L),λγ) are G̃EL-conjugate, in particular γ(L)

and L are N0-conjugate. This shows W (L) 
=W (L), or equivalently Dodd 
= ∅. Let Oodd =⋃
d∈Dodd

Od, Oeven =
⋃

d∈Deven
Od, and I0 ∈ Oodd. Without loss of generality, we assume

1∈ I0. Otherwise, we replace L by some N0-conjugate. Let w0 :=
∏

i∈I0
(i,−i)∈W0 and n0 ∈

N =N
G

F (T) the corresponding element. Hence, w0 ∈ γN0. We note that N induces on L the

outer automorphisms W, while any w′ ∈W \W is induced by elements of NGF 〈γ〉(L)\N .

This proves that in this case L and γ(L) are actually N0-conjugate. Hence, the Harish-

Chandra series satisfy Irr(GF | (L, Irrcusp(L)) = Irr(GF | (γ(L), Irrcusp(γ(L))).
Let λ ∈ Irrcusp(L). Assume that (L,λ) and (L,λ)eγ are GF -conjugate for some e ∈ 〈Fp〉.

This implies that (L,λ) = (L,λ)en for some n ∈N \N . Note that W (λ)n =W (λ). Because

of −1 /∈ D(L) and Dodd 
= ∅, we observe L̃λ = L̃, as
〈
L̂I0 , tl,2

〉
≤ CG(L)L.

Assume h0 ∈ ker(λ) and that some χ ∈ Irr(GF | (L,λ)) satisfies G̃χ 
= G̃. According to

Corollary 6.22, the equation W (λ̂) =W (λ̃) holds, as {±1}∩D(L) = ∅. If W (λ) =W (λ̂), then

G̃χ = G̃. Hence, we assume W (λ) 
=W (λ̂) in the following. Let W odd(λ) := (W (λ)S±Oeven)∩
S±Oodd

. Without loss of generality, we can assume λ to be standardized, as in every

N -orbit in Irrcusp(L) there is at least one standardized character (see after Definition 6.10).

As W (λ) 
= W (λ̂) and λ is standardized, W odd(λ̂) ≤ SOodd
and x ∈ W (λ) \W (λ̂) can be

chosen as an involution with no fixed point in Oodd. We note that NS±Oodd
(W odd(λ))≤W .

This implies NW (W (λ)) ≤W and hence (L,λ) and (L,λ)eγ are not GF -conjugate for any

e ∈ 〈Fp〉. This proves that (L,λ)γ is not GF -conjugate to any element of the EL-orbit of

(L,λ), when h0 ∈ ker(λ).

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.14


INDUCTIVE MCKAY CONDITION IN TYPE D, I 955

Assume h0 /∈ ker(λ) and ν ∈ Irr(λ�Z(GF )). In the following, we assume |Z(GF )|=4. Then

we observe that E◦
ν = 〈Fp〉 = CE(Z(G

F )) and hence (G̃E)χ ≤ G̃E◦
ν for every χ ∈ Irr(GF |

(L,λ)). If CE(Z(G
F )) =EL, this implies (G̃E)χ ≤ G̃EL as required. Note that if 2 | l, then

CE(Z(G
F )) = EL. In the following, we prove 2 | |Oodd| as this implies 2 | l.

For I ∈O, let ZI be defined as in Lemma 4.2, ZI :=ZF
I , and δI ∈ Irr(λ�ZI

). Fix d ∈Dodd

and Id ∈ Od. For κ ∈ Irr(ZId), we define

aκ(λ) := |{I ∈ Od | κ and δI are V d-conjugate}|.

Recall Id ∈Oodd and h0 /∈ ker(λ). Hence, ZId
∼=Cq−1 and o(δId)2 = (q−1)2. On the other

hand, we see that ∑
κ

aκ(λ) = |Od|,

where κ runs over the 〈cId〉-orbits in Irr(ZId). By the above, aκ(λ) = 0 for every κ∈ Irr(ZId)

with o(κ)2 
= (q−1)2. If λ
′ ∈ Irrcusp(L) is N -conjugate to λ, then aκ(λ) = aκ(λ

′) for every

κ ∈ Irr(ZId) according to the action of V d on the groups ZI (I ∈ Od). Note that aκ(λ) = 0

as o(δI)2 = (q−1)2 for every I ∈ Od.

Recall that we assume (L,λ) and (γ(L),λγe) are GF -conjugate. As the order of γe is

even, we can choose some F0 ∈ 〈Fp〉 such that 〈F0〉 is a Sylow 2-subgroup of 〈e〉. Then the

N -orbit of λ is F0-stable. Then F0 acts on the characters of Irr(ZId), inducing an action on

the set of 〈cId〉-orbits in Irr(ZId). We denote this set by Irr(ZId)/〈cId〉. If κ ∈ Irr(ZId) with

o(κ)2 = (q−1)2, the 〈cId〉-orbit of κ is not F0-stable. Hence, the F0-orbit in Irr(ZId)/〈cId〉
containing κ has an even length. Since the N -orbit of λ is F0-stable, we see that aκ(λ

F0) =

aκF0 (λ). Accordingly,

2 |
∑
κ

aκ(λ),

whenever κ runs over a 〈cId〉-transversal in {κ′ ∈ Irr(ZId) | o(κ′)2 = (q − 1)2}. By the

above, aκ(λ) = 0 for every κ ∈ Irr(ZId) with o(κ)2 
= (q − 1)2. Altogether, this implies

2 |
∑

κaκ(λ) = |Od|, where κ ∈ Irr(ZId) runs over a 〈cId〉-transversal.
As l =

∑
d∈D

d|Od| and hence l ≡ |Oodd|mod 2, the rank l is even and CE(Z(G
F )) =

〈Fp〉 = EL. As explained above, this leads to (G̃E)χ ≤ G̃Eχ�Z(GF )
= G̃EL and hence a

contradiction to the assumption on χ.

It remains to study the case of |Z(GF )|= 2. Then 2 � l and 4 � (q−1). Note that 4 � (q−1)

implies 2 � |EL| and hence |EL| and o(γ) = 2 are coprime. If (L,λ) and (γ(L),λγ) are

GFEL-conjugate, then the pairs are already GF -conjugate. In the following, we see that

the GF -orbit of (L,λ) cannot be γ-stable. By the above, we have Dodd 
= ∅ and −1 /∈D(L).

According to Lemma 4.3, λ is L̂-stable, as each λI is L̂I -stable for I ∈ Oodd. Hence, λ

is L̃-stable (see also Lemma 4.3). According to Lemma 6.14, the assumption 2 � l implies

W (λ) =W (λ̂), even more W (λ) =W (λ̂)≤W . But this implies that (L,λ) and (L,λ)γ are

not GF -conjugate. Hence, γ /∈ (G̃E)χ and hence (G̃E)χ ≤ G̃(EL)χ.

A last obstacle is formed by the groups D4,sc(q). We keep the same notation.

Proposition 7.4. If GF = D4,sc(q), every G̃-orbit in Irr(GF ) contains some χ with

(G̃E)χ = G̃χEχ.
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Proof. Let χ0 ∈ Irr(GF ) and E◦ := 〈γ,Fp〉. Then some Sylow 2-subgroup of E is

contained in E◦. We can assume that G̃E◦/GF contains a Sylow 2-subgroup of (G̃E◦)χ/G
F .

(Otherwise we can replace χ0 by one of its E -conjugates.) Some G̃-conjugate χ of χ0 satisfies

(G̃E◦)χ = G̃χE
◦
χ according to Proposition 7.3. This proves the statement if (G̃E)χ ≤ G̃E◦.

Additionally, (G̃E)χ = G̃χEχ holds if G̃χ = G̃.

Accordingly, there is some f ∈ 〈Fp〉 and t ∈ G̃ such that χ is γ3ft-stable and γ3ft has

3-power order in G̃E/GF . If t ∈ GF , the equation (G̃E)χ = G̃χEχ holds. Clearly, G̃χ �

(G̃E)χ. Hence, G̃χ is normalized by γ3ft. But via the 〈γ3,f〉-equivariant isomorphism

G̃/GF ∼= Z(GF ), we see that G̃χ = GF , as there is no γ3f -stable subgroups of Z(GF )

apart from {1} and Z(GF ).

The element γ3f acts on Z(GF ) such that only the trivial element is fixed by γ3f and

[γ3f,Z(G
F )] = Z(GF )\{1}.

Hence, some G̃-conjugate χ′ of χ satisfies γ3f ∈ (G̃E)χ′ . We observe that γ3f is a

3-element and hence o(f) is a power of 3. Note that f acts trivially on Z(G). Since χ satisfies

(G̃E◦)χ = GFE◦
χ and [Z(GF ),Fp] = 1, this leads to (G̃E◦)χ′ ∈ {GE◦

χ, GF
〈
Fp,γt̂

〉
χ′} for

some t̂ ∈ G̃ with L(t̂) = h0. Let Ĝ := L−1(〈h0〉). In the latter case,

t̂−1γ3(t̂)f
2 = γ3f(γ3f)

γt̂ ∈ (ĜE)χ′ .

Recalling that the orders of G̃/(Z(G̃)GF ) and f are coprime, we get t̂−1γ3(t̂)∈
〈
t̂−1γ3(t̂)f

2
〉
,

but t̂−1γ3(t̂) ∈ G̃χ and t̂−1γ3(t̂) /∈ GF . This leads to a contradiction, and we see that

(G̃E◦)χ′ =GFE◦
χ and hence (G̃E)χ′ =GF

〈
E◦

χ′ ,γ3f
〉
.

We can now deduce Theorem A from Theorem 2.8.

Proof of Theorem A. For a given fixed Levi subgroup L of GF , we apply Theorem 2.8

whose assumptions follow from Theorems 3.1 and 6.1. In this way, we obtain an EL-stable

G̃-transversal in Irr(GF | (L, Irrcusp(L))) (see Lemma 7.2). If L is E -stable, EL = E and

this gives the required statement. If L has an E -stable GF -conjugate L′, then we observe

that Irr(GF | (L, Irrcusp(L))) = Irr(GF | (L′, Irrcusp(L
′))) and there exists an E -stable G̃-

transversal in Irr(GF | (L′, Irrcusp(L
′))).

It remains to consider the case where EL 
= E and no GF -conjugate of L is E -stable.

Then according to Propositions 7.3 and 7.4, every χ′ ∈ Irr(GF | (L, Irrcusp(L))) has some

G̃-conjugate χ with (G̃E)χ = G̃χEχ.
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