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EXTENSIONS OF CHARACTERS IN TYPE D AND THE
INDUCTIVE MCKAY CONDITION, I

BRITTA SPATH

Abstract. This is a contribution to the study of Irr(G) as an Aut(G)-set for G
a finite quasisimple group. Focusing on the last open case of groups of Lie type
D and 2D, a crucial property is the so-called A’(00) condition expressing that
diagonal automorphisms and graph-field automorphisms of G have transversal
orbits in Irr(G). This is part of the stronger A(co) condition introduced in
the context of the reduction of the McKay conjecture to a question about
quasisimple groups. Our main theorem is that a minimal counterexample to
condition A(co) for groups of type D would still satisfy A’(co). This will be
used in a second paper to fully establish A(co) for any type and rank. The
present paper uses Harish-Chandra induction as a parametrization tool. We
give a new, more effective proof of the theorem of Geck and Lusztig ensuring
that cuspidal characters of any standard Levi subgroup of G = D, s.(q) extend
to their stabilizers in the normalizer of that Levi subgroup. This allows us to
control the action of automorphisms on these extensions. From there, Harish-
Chandra theory leads naturally to a detailed study of associated relative Weyl
groups and other extendibility problems in that context.
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81. Introduction

After the classification of finite simple groups and with the knowledge on their
representations having also greatly expanded in the last decades, it seems overdue to
determine for each quasisimple group G the action of its outer automorphism group Out(QG)
on its set of irreducible (complex) characters Irr(G). This is important in order to use our
results on representations of simple groups to get theorems about arbitrary finite groups.
A crucial example is the McKay conjecture asserting

|Irryy (X)] = [Trry (Nx (P))

for p a prime, X a finite group, P one of its Sylow p-subgroups, and Irr,/(X) the set of
irreducible characters of X of degree prime to p. It is fairly clear that once this is solved for a
normal subgroup Y of X, the next step to deduce something for X is to determine the action
of X on at least Irr,/(Y). The McKay conjecture has been reduced to a so-called inductive
McKay condition about quasisimple groups by Isaacs—Malle-Navarro [IMN], and the first
requirement is an Out(X)-equivariant bijection realizing McKay’s equality. Knowing the
action of Out(G) on Irr(G) for all quasisimple groups G would also have applications to
other conjectures about characters with similar reductions such as the Alperin—-McKay
conjecture or the Dade conjecture (see [S5], [S6]) or even conjectures about modular
characters (see [NT11]) through the unitriangularity of decomposition matrices (see [BDT]).

For alternating and sporadic groups, the action of Out(G) on Irr(G) is easy to deduce
from the available description of Irr(G). When G is the universal covering group of a finite
simple group of Lie type, this is a question in [GM, §A.9]. Previous research on the subject
has left open only the case of groups of type D (see [CS4, 2.5]). The present paper is the
first part of a solution to that problem. A second part [S7] will finish the determination of
Irr(G) as an Out(G)-set. The splitting is due to the quite different methods used here and
in [S7]. A third part will focus on applications to the McKay conjecture [S8].

In order to be more specific about intermediate goals and results, let us introduce some
notation. Let G = G¥' for F: G — G be a Frobenius endomorphism of a simply connected
simple algebraic group G. Upon choosing an F-stable maximal torus and a Borel subgroup
containing it, one can define a group £ of so-called field and graph automorphisms of G. One
can also define a reductive group G realizing a regular embedding for G, that is, G = [é, (~}]
with connected Z(CN-}) and also assume that F extends to a Frobenius endomorphism of G
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with E also acting on G := G¥". Then Aut(G) is induced by the direct product G x E (see,
e.g., [GLS, 2.5.12]).

The determination of the action of G'x E on Irr(G) mostly relies on establishing that
G-orbits and E-orbits are somehow transversal. More precisely, one aims at showing the
following property:

A'(c0): There exists an E-stable G-transversal in Irr(G).

This, combined with the present knowledge of Irr(G), is enough to determine Irr(G)
as an Out(G)-set (see [CS4, 2.5]). However, in order to deduce any valuable statement
about representations of almost-simple groups, it is also important to answer extendibility
questions. For instance, a difficult theorem of Lusztig essentially focusing on the case of
type D shows that any element of Irr(G) extends to its stabilizer in G (see [L2], [L3]). This
notably leads to the determination of the action of E on the set of G-orbits in Irr(G).

The following strengthening of A’(co) was introduced in [S4] in order to check the
inductive McKay condition for the defining characteristic.

A(c0): There exists an E-stable G-transversal T in Irr(G) and any x € T extends to an
irreducible character of its stabilizer G x E,,.

The aim of the present paper and its sequel [S7] is to prove A(oc0) for G of type D and
2D. In the present paper, G will be indeed some D «.(q) (I >4, ¢ a power of an odd prime);
the case of twisted types ?D will also be deduced in [S7].

Our main theorem here can be seen as showing that a putative counterexample to A(oco)
with minimal [ still satisfies A’(00).

THEOREM A. Let G=D;s.(q) (1>4, q a power of an odd prime), and let G and E as
above (see also Notation 2.2). If any Dy s.(q) for 4 <1’ <1 satisfies A(c0), then G satisfies
A’ (00).

More precisely, we assume Hypothesis 2.14, that is, that condition A(oc) holds for the
cuspidal characters of any G’ =Dy s.(q) with 4 <’ <.

Our proof uses as a starting point a theorem of Malle [Mal2] showing the existence
part A’(co) of the above statement for cuspidal characters. Then, our strategy is through
the parametrization of Irr(G) given by Harish-Chandra theory. In particular, we take
the standard Levi supplement L of an F-stable parabolic subgroup P containing our
chosen Borel subgroup and consider parabolic induction Rf)\ of cuspidal characters
A € Irreysp (LE).

An essential ingredient of that parametrization is the deep theorem by Lusztig and
Geck (see [L 1, 8.6] and [G, Cor. 2]) that any A € Irreusp(LT) extends to its stabilizer
in N := Ng(L)¥. In order to put that parametrization to use for our purpose of tracking
automorphism actions, it is important to find an equivariant version of that statement.
This does not seem possible from the available proofs, so we devise a new one in this paper,
showing namely with the same notation for G =Dy 4.(q), G,L, N, E.

THEOREM B. Let \ € Irreysp(LY). Assume Hypothesis 2.1/ holds for Dy s.(q)

~ _F
(4 <l <1). Then some (Z(G)L) -conjugate Ao of X\ has an (NNg(L))x,-stable extension
to NAO.

Studying the group structure of N, our proof uses essentially the Steinberg relations
for the structure of G, not its realization as spin group, making probably more uniform a
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case-by-case but effective proof of Geck—Lusztig’s theorem for other quasisimple groups of
Lie type (see [BS, 4.3] and [CSS, 4.13] for types A and C).

We should point out that the above extendibility property is part of the following wider
problem where (H, F') is a reductive group defined over a finite field and F is its associated
Frobenius endomorphism.

(P) Let S be an F-stable torus of H. Does every 1 € Irr(Cu(S)F) extend to its stabilizer

This was answered in the affirmative in the case where S is a Sylow d-torus (d > 1) in the
sense of [MT, 25.6] (see [S1], [S2], [S3]). Lusztig’s theorem on the case where S is split and
1 is cuspidal was important in [L1] to turn Deligne-Lusztig theory into a parametrization
of Irr(H*") when H has connected center. It seems that even partial answers to (P) have
quite interesting applications (see also [B1, §15] and [Mall, 2.9]).

Let for now Irrc,s,(N) be the set of characters of N whose restriction to L is a sum
of cuspidal characters. Theorem B then can be seen as the starting point of a specific
parametrization of Irr.,s,(N) bearing similarities with the parametrizations of characters
of normalizers of Sylow d-tori given in the author’s work just mentioned but with a special
emphasis on outer automorphism actions.

Through preparations gathered at the start of the paper and similar to a method
developed in [MS] where L was a torus, our main goal Theorem A reduces to a weak analogue
of it for Irreysp(/N). This is Theorem 6.1. It is checked through a strategy prescribed by
Clifford theory. In particular, this entails a quite detailed analysis of the relative Weyl
groups

W(A) := Ny/LF
and their various embeddings related to G and E.

1.1 Structure of the paper.

In §2, we recall notation on quasisimple groups of Lie type, their automorphisms, and the
conditions A(oco) and A’(c0). Then we collect the basic facts about cuspidal characters and
Harish-Chandra theory for finite groups of Lie type. This leads to Theorem 2.8, which sums
up the methods from [MS] to establish condition A(co) through Harish-Chandra theory.
This is roughly the road map for the rest of the paper, in particular splitting the task into
two halves that will be addressed in §§3 and 4 and §§6 and 7.

The rest of the paper is specific to type D (untwisted) in odd characteristic. After
recalling a method from [CSS] for constructing extensions, the main objective of §§3 and 4
is Theorem B. Section 3 is a description of certain group theoretical aspects of the groups
L:=L" and N, using also the classic embedding G < G of type D; into type B;. The
root system @’ of L is the direct product of irreducible root systems of types A and D.
Roughly speaking, the factors of type Ayz_1 form a root system &, and the factor of type D
gives ®_1. Along the way, we introduce a set D determining the types occurring as factors
of ®'. This description will be used in the whole paper. For each d € D, we describe a normal
inclusion Hy<1Vy < N := Né(L)F , where Hy = LNV}, is an elementary abelian 2-group and
L(Vy|d € D) = N. This normal inclusion H, <1V, concentrates the equivariant extendibility
problem we have to solve.

In §4, we draw the consequences of the structure of N in terms of characters. One has to
take care of all the factors involved and deal with the inclusion in type B, which provides
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the graph automorphism specific to type D. Concerning the diagonal automorphisms, we
avoid choosing a regular embedding G and instead consider inclusions L <1£~1 (Z)NL where
Z <Z7(G) and L is the Lang map = +— z~'F(z) on G.

Theorem B being proved, we study in §5 how automorphisms act on cuspidal characters
in types A and D, making use in the latter case of Malle’s theorem [Mal2] mentioned above
and some results about semisimple characters already used in the study of the McKay
conjecture for the defining characteristic (see [Mas, §8]).

In §6, the most technical of the paper, the objective is to prove Theorem 6.1, showing
that Irre,s,(N) satisfies a version of A(co). As already shown in §2, this translates into
requirements on Irr(NNy/L), the characters of the relative Weyl group W (\) associated
with a cuspidal character A of L. The comparison of the action of diagonal versus graph-
field automorphisms on Irre,s,(NN) relates with the induced action of related characters of
relative Weyl groups. The proof splits naturally into the various cases for the stabilizer of A
in LNL~YZ(G))/L. This leads to Propositions 6.28 and 6.35 describing the situation in the
two main cases. In the proofs, graph-field automorphisms are taken care of by embedding
the relative Weyl group W () into overgroups K(\) and K()) (see Notation 6.4) for field
automorphisms and the embedding into type B for the graph automorphism of order 2.

In §7, we essentially put together all the material of the preceding section to establish
Theorem 6.1 and with some extra effort Theorem A.

§2. Basic considerations

We first gather here some notation around characters, recall Condition A(co), and
give a rephrasement that provides alternative approaches for the proof of Theorem A.
In §2.2, we collect relevant results from Harish-Chandra theory. We conclude with general
considerations on cuspidal characters in §2.3.

2.1 Notation and Condition A(oo)
In general, we follow the notation about characters as introduced in [I]. Additionally, we
use some terminology from [S1], [S2], [S3] that is recalled in the following paragraph.

NoTATION 2.1. Let X <Y be finite groups, and let T C Irr(X). An extension map
with respect to X <Y for T is a map A: T — [[y;oy Irr(Z) such that every A € T is
mapped to an extension of A to Yy, the inertia subgroup of A in Y. We say that mazimal
extendibility holds with respect to X QY for T if such an extension map exists (see also
[CS2, Def. 5.7]). In such a case, the map can be chosen Y-equivariant, provided T is Y-
stable (see [CS2, Th. 4.1]). Whenever T = Irr(X), we omit to mention T. For X € Irr(X)
and v € Irr(Y), we write A\Y for the character induced to Y and 1]y for the restricted
character. For any generalized character x, we denote by Irr(k) the set of (irreducible)
constituents of k. If 0 € Aut(X) and A € Irr(X), we write A7 = o'\ for the character with
o A\(@) = A (z) = A(o(z)) for z € X.

If two subgroups Hi,Hs <Y satisfy [Hy,Hs] =1, and A; € Irr(H;) for i = 1,2 with
Ir( A1l g, A, ) = (A2l g, A, ), then there exists a unique character ¢ € Irr((Hy, Ha)) with
Irr( ], ) = {Ai} according to [IMN, §5] and we write A; - Az for this character. Let I be a
finite set, and let Z, H, and H; (i € I) be finite groups with Z < H; < H. If [H;,H;| =1,
for every i,7’ € I with ¢ # ¢ and H;N(H,;|jel\{i}) = Z, we consider (H;|iel) < H
the central product of the groups H;. Given v € Irr(Z) and \; € Irr(H; | v), we denote by
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OierAi € Irr((H; | i € T)) the character ¢ € Irr((H; | i € 1)) with Trr(¢] ) = {A\i} for every
i €1 (see also [IMN, §5]).

Next, we introduce the groups and automorphisms considered in the following.

NOTATION 2.2 (Simple groups of Lie type). Let G be a simple linear algebraic group
of simply connected type over an algebraic closure F of IF,, for p a prime. Additionally, let
F : G — G be a Frobenius endomorphism defining an F,-structure on G for ¢, a power
of p. The automorphisms of G are restrictions to G of bijective endomorphisms of G
commuting to F (see [GLS, §1.15]), so it makes sense to consider stabilizers Aut(G")g for
F-stable subgroups H < G. Let Ty be an F-stable maximally split torus, and let B be an
F-stable Borel subgroup of G with Ty € B and Nj := Ng(Ty). According to [MT, Th.
24.11], the group G := G! has a split BN-pair with respect to B := B, Ty := TE', and
No := NE'. Let E(GF), often just E, be the subgroup of Aut(GF)(ByTO) generated by
the restrictions to G of graph automorphisms and some Frobenius endomorphism F,
stabilizing Ty and B as in [GLS, Th. 2.5.1] and [CS4, §2.A].

Let G <G be a regular embedding, that is, a closed inclusion of algebraic groups with
G = Z(G)G and connected Z(G) Then Ty := Z(G)Ty is a maximal torus of G. Let
To =T/ Assume that F : G — G is a Frobenius endomorphism extending the one of G
(see also [MS, §2]). Then GF has again a split BN-pair with respect to the groups B:=TyB
and N{ :=TyNy (see [MT, Th. 24.11]). Often the action of N} on G will be studied via
the group No := {z € Ng(To) | #71F(z) € Z(G)}, which will be shown to induce the same
automorphisms on G (see Remark 2.16).

Via the convention given in [MS, §2], E(GF) also acts on G and the semi-direct product
G % E(GF) induces on G the whole automorphism group Aut(GF).

We recall the conditions A(oo) and A’(c0) from [CS4, Def. 2.2].
CONDITION 2.3 (On stabilizers of irreducible characters of GI').

A(c<):  There exists some E-stable GP-transversal T in Irr(GF), such that every x € T
extends to GI'E,,. N
A'(o0): There exists some E-stable GF-transversal T in Irr(GT).

Condition A’(c0) implies a weak version of [S4, Assum. 2.12(v)].

LEMMA 2.4, Let Y and X be two subgroups of a group Z with X<Z and Z=YX. For
X:=XnY, let M CIrr(X) be Z-stable. Then the following are equivalent:

(i) Thereis a f’—stabie X -transversal Mg in M. - o
(i) Buvery (" € M is X-conjugate to some ( such that (XY)¢ = XcY¢.
(i) Ewvery (' € M satisfies (XY )¢ = (Y*)e X for some x € X.

Proof. This follows from [CSS, Rem. 3.3]. 0

2.2 Action of Aut(G) on Harish-Chandra-induced characters

Using a detailed analysis of Harish-Chandra induction, the results of [MS] describe the
action of Aut(G!") in terms of cuspidal characters and their relative Weyl groups. The
action is expressed in terms of the labels given by Howlett—Lehrer theory.

NoOTATION 2.5. Let L be a standard Levi subgroup of G with respect to B and Tp,
that is, L = LY for some standard Levi subgroup L of G such that Ty <L and LB is an
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F-stable parabolic subgroup. We set N := Ng(L)!', W := N/L, and we abbreviate
Ep=FE(G"),.

We write Irre,sp(L) for the set of cuspidal characters of L as defined in [C, 9.1] and
Irreysp(IN) := U/\elrrcusp(L)Irr()\N). Let us denote by RY the Harish-Chandra induction
from L to G. For X € Irrcysp(L), let

Irr(G | (L, \)) := Irr(RE (V)

(sometimes denoted as £(G, (L, \)) in the literature). Let also Irr(G | (L, T)) := Jy e Irr(G |
(L,\)) for T C Irreysp(L).

2.6. Let Aut(G!)L e be the subgroup of Aut(G*') generated by the automorphisms
of G induced by N and Aut(G*)(gy, 1) Note B, < Aut(G¥) ne. According to Howlett—

Lehrer theory (see [C, §10]), fixing an extension X e Ir(N A) of X € Irreysp(L) defines a
unique labeling of Trr(G' | (L, \)) by Irr(W(\)) where W ()) := Ny /L. We write RY (\),, for
the character of Irr(G | (L, )\)) associated with 7 € Irr(W (X)) via the extension .

Accordingly, the parametrization of Irr(G | (L,Irrcysp(L))) depends on an extension map
A, with respect to L QN for Irreysp(L). For A € Irreysp (L), let R(A) <W (A) be defined as
in [C, Prop. 10.6.3]. If A\ € Irtcysp (L) and o € Aut(G) ne, let 65, be the unique linear
character of W (7)) satisfying

TAL(N) =AL(°A)dr 6. (2.1)
We only use the formula with some simplifying assumptions on R(\) and dy ..

THEOREM 2.7 (Malle-Spiith [MS, Ths. 4.6 and 4.7]). Let o € Aut(G¥)r uc and Ar be
an N-equivariant extension map with respect to L<AN for Irteysp(L). Assume that RE (N),
(A € Irreysp(L), n € Irr(W(X))) is defined using A, and

R(°X) <ker(6x,0) for every X € Irrcysp(L). (2.2)
Then °(RE(N),) = Rf(oA)on(;;l for every A€ T and n € Irr(W(\)).

In §5 of [MS], the analog of Theorem A was proved for characters in Irr(G |
(To, Irr eusp(T0)) by studying Irreysp(Ng(To)). For other standard Levi subgroups, the
strategy from [MS] leads naturally to the following statement where we focus on a single
L and its stabilizer in E. Sections 3—6 will ensure the assumptions for the groups from
Notation 2.2 whenever G =D, (q).

THEOREM 2.8. Let L' := fOL, N':=TyN and N := NE. Assume that there exist:

(i) an N-stable L'-transversal T in Irreysp(L), an N-equivariant extension map A v with
respect to L < Nfor T such that any X\ € T satisfies Equation (2.2); and
(ii) some Ep-stable N'-transversal in Irreys,(N).

Then there exists an Ep-stable GF -transversal in Irr(GF | (L, Irteysp(L))).

For the proof of Theorem 2.8, we parametrize Irrq,, (V) via a set P(L) using an extension
map Ay, with respect to L QN for Irre,s,(L) deduced from Ay .
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NOTATION 2.9. Assume that T is an N-stable L/-transversal in Irreysp(L). F0r~each
A €T, we denote by O, its N-orbit in Irrcuip(L). Note Oy C Irreysp(L). Let M(X) C L' be
a set of representatives of the L' -cosets in L’. We define an extension map Az on Oy by

ANy =Apr(A)™ for every X' € O and m € M ().

Hence, Ay is defined, but depends on the choice of M(X). The map A : Irreysp(L) —
[Hr<r<nlrr(Z) with A7 (u) = AL(,uﬂNﬁ for every p € Irreysp(L) is well defined, where

€ Irr(f/;t) is an extension of p. In contrast to Ay, we see that A is independent of the
choice of M()). Observe that [N/L,L'/L] = 1. The map A/, is even NL'-equivariant since
Ar is N-equivariant and A 7 is N -equivariant.

We write P’(L) for the set of pairs (A,n) with A € Irreysp(L) and n € Irr(W(X)). The
groups N and W act naturally via conjugation on P’(L). We denote by P(L) the set of
N-orbits in P’/(L) and by (A,n) the N-orbit containing (\,7n). Since L is mostly clear from
the context, we omit it, writing P’ and P.

The parametrization of Irre,s,(IV) is given by the following.
PROPOSITION 2.10. Let Ap, P, and P be as in 2.8 and 2.9.
(a) Then the map
Y :P — Titeysp(N) with (A, n) — (AL (MN)n)

is a well-defined bijection.
(b) “Y((A,n) =T((°N\,7ndx)) for every o € Aut(G)r uc and (\,n) € P, where §y , €
Irr(W(9N)) is as given in 2.0.
Proof. Clifford theory together with Gallagher’s lemma [I, 6.17] proves part (a). The
definition of dy » in Equation (2.1) from 2.6 leads to part (b). 0

In combination with Theorem 2.7, we obtain a proof of Theorem 2.8.

Proof of Theorem 2.8. For the application of Theorem 2.7, we have to ensure that under
our assumptions, Equation (2.2) holds for characters A € T and o € Aut(G¥') 1, c. For every
A € Irreysp(L), the character Ar()) is an extension of A (A). Accordingly, dy , defined
as the unique linear character of W (7)) such that “Ar(X) = AL (7A)0x,, satisfies as well
UAL()‘HN;(, = AL(°N) 5,\,01]\[;0. Since A (A) is N’Ep-equivariant, we see that 5,\701]\[;0
is trivial. Accordingly, ker(dx ) > N,5/L for every A € Irrcusp( ) and o € Aut(GF)p ne
where X denotes an extension of A to L’ Recall W(°X) = N, 5/ L. In combination with the
inclusion R(°A) < W (°X) from [CSS, Lem. 4.14], we obtain the required containment (2.2).

Via Harish-Chandra induction, the map

TP —Trr(G | (L, IrTeysp (L)) with (A7) — RE(N),,

is well defined according to [MS, Th. 4.7] and bijective. Hence, Y’ oY1 is a bijection between
It eysp(N) and Trr(G | (L, Irreysp(L))). Via T and Y7, the group Aut(G*)r e and hence
N'Ep act on P. By the description of this action given in Theorem 2.7 and Proposition 2.10,
these actions coincide. Hence, Y o Y! is N'Ep- -equivariant. By Assumption 2.8(ii), every
Yo € Irreysp(N) has an L'- conjugate 1) such that (N’EL)UJ =N/ (EL) Hence, every

xo € Irr(G | (L,Irteysp(L))) has an N’-conjugate y with (GFEL)X = G(N'EL), =
G(N’ JEL)y = GF(EL) This implies the statement (see Lemma 2.4). [
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In the following sections, we verify the assumptions of Theorem 2.8: We prove
Assumption 2.8(ii), that is, that every 1 € Irreysp(IV) is L’-conjugate to some thy with
(]V’E,;)wO = N&O(EL)%, and prove the existence of an extension map as required in
Assumption 2.8(i). Note that by Lusztig [L1] and Geck [G], an extension map exists. Their
proofs are indirect, and we do not see how the required properties can be deduced from
their proofs. In later sections, we give an independent explicit construction of the required
extension map.

2.3 Action on characters of normalizers of Levi subgroups

In the following, we discuss some basic considerations that will be applied to ensure
Assumption 2.8(ii). In the case where L = Ty, Assumption 2.8(ii) holds, whenever
the underlying group G¥ is of simply connected type (see [MS, Proof of Cor. 5.3]). The
assumption on the characters Irr.,s,(IN) is very similar to the results [CS2, Prop. 5.13],
[CS3, Th. 5.1], and [CS4, 5.E] on Irr(Ng(S)F) for Sylow ®4-tori S of (H, F), where H is
a simple simply connected group of type different from D; and d is a positive integer. The
proof there relies on [, Th. 4.3], and we use here a similar strategy. The following proposition
gives the road map for the verification of Assumption 2.8(ii).

We set W(¢) = Ny /L for every L < M < TyL and ¢ € Irr(M).

PROPOSITION 2.11. Let ]/\7, L' = TOL be as in Theoviem 2% T and Apr as in
Assumption 2.8(i), and T from Proposition 2.10. Let A€ T, A € Irr(L) | X), n € Ier(W (X)),
and no € Irr(n] ). Weset W:=N/L=NEp/L and K(\) :=Wy. If n is K(\),-stable,
then

W)

=N

!
(NL) T, n)) (o)

T((m) —

We adapt_the arguments from the proof of [CS3, Th. 4.3], where 7 is assumed to be
Nw EL(W()\))nO—stable Note that K()) normalizes W (A), but this group is in general
different from Ny, (W(X)).

Proof. Recall ¥ =T((\,n)) = (Arr(A\)n)". By the assumptions on T, (NL') = ]V,\E’A
for every A € T. N
Let AeIrr(L) | ) and no € Irr(ﬂw(x)). According to [CE, 15.11], A is an extension of A.

The group L "/ (LZ(G 7)) acts by multiplication with linear characters of W (\)/W(X) on
Trr(W(A) | o). Computing the action of W (X)/W (X) on Irr(i’/\ | A) shows that the action of
E’A/L on Irr(W(A) [ 1) is transitive. Hence, the characters {(AL NN |0 €Ter(W(A) [ m0)}
are the L’ -conjugates of .

Let | € L’ and 1 € N with ! = (¢)™. Note that ¢™ € Irr(N | T) since T is N-stable.
Then Irr(v ] ) is the N-orbit of AL Recall T is an L'-transversal. If | ¢ L}, then A' # X and

AL¢ T, in particular ¢! ¢ Irr(N | T). This implies [ € L, and ¢! = (A7 (A)p)N for some linear
character v of Irr(W () /W (A)). Accordingly, ()" € Irr(N | A) and hence (¥)" = ()" for
some n’ € Ny. Note that

’

)" = (AL W)n)™ )N = (AL (™).

The equality ¢! =™ implies 5 = nv and hence n'L gW()\)IA(()\)no. Asnis I?(A)no—stable,
7™ =1 and hence ¢ = 1. This shows (NL'), = NyL,. 0
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The above proposition allows us to prove the following result showing how to construct
an N-stable L'-transversal in Irr.ys,(N).

PROPOSITION 2.12. In the situation of Lemma 2.8, assume that:

(i) (NL),= ]VAE’ Jor every A€ T,
(ii) there exists an N- -equivariant extension map A ;1 with respect to LAN for T, and
(i) for every A€ T, X € Irr(L’A | \), and no € Irr(W (X)), there exists some K()\),70 -stable

n € Irr(W(A) | mo)-

Let T C Irrcusp( ) be _the set of characters that are E’—conjugate to one in T. Then there
exists some N -stable L'-transversal in Irr(N | T).

Proof. By the assumptions, there exists P; C P such that:

eif (\,n) € Py, then A € T and 7 is [A(()\)no—stable for some \ € Irr(z’/\ | A) and 79 €
Irr(rﬂW(X)); and

o for cach A€ T, A € Irr(z’/\ | A) and 7o € Irr(W (X)), there exists some 7 € Irr(W(\) | 7o)
with (A\,n) € P;.

Proposition 2.11 tells us that the characters Y(P;) can form part of an Ep-stable
L/-transversal.

According to Proposition 2.10, for every A € T and ng € Irr(W(X)), the group Z’A acts
transitively on the set Irr(W(X) | no). Since for each A € T and no € Irr(W (X)) there exists
some 7 € Irr(W(X) | mo) such that (X,n) € Py, each L’-orbit has a nonempty intersection

with Y (P;). This implies that every character in Y(P;) has the property required (see
Lemma 2.4). 0

2.4 Reminder on cuspidal characters

The considerations of §2.2 explain how the action of automorphisms on non-cuspidal
characters depends on the underlying cuspidal character and a character of the relative
Weyl group associated with a cuspidal pair. For the proof of Theorem A, we require some
general results on cuspidal characters that we collect here. By a theorem of Malle, stabilizers
of cuspidal characters coincide with those of semisimple characters (see [B1, 15.A] for a
definition of semisimple characters).

THEOREM 2.13. Let H be a simply connected simple linear algebraic group with an
F,-structure given by a Frobenius map F':H — H. Let H — H be a regular embedding, and
let E(HT) be a group of automorphisms of HEY' generated by graph and field automorphisms
as in 2.2. Then there exists some E(HT)-stable HY -transversal in It e sp (HE).

Proof. We abbreviate E(HY) as E. Let x € 11 eysp (HE). According to Lemma 2.4, it is
sufficient to prove that y has some H-conjugate yo with (H E)y, = HF o Exo- By [Mal2,
Th. 1], there exists a semisimple character p of H, such that p and X have the same

stabilizer. By [S4, Proof of 3.4(c)], the semisimple character p has some (H)¥-conjugate pg
with (HYE),, = HE E,,. O

In our considerations on D; s.(q), we assume the following for all 4 <[’ <[, which amounts
to A(oo) for cuspidal characters in rank < [. This was called Agysp in our Introduction.
In [S7], we will see that it is actually always satisfied.
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HypoTHESIS 2.14 (Extension of cuspidal characters of Dy s.(¢)). Let H be a simply
connected simple group of type Dy (I’ > 4), and let F: H— H a standard Frobenius
endomorphism. Then there exists some E(HF)-stable H -transversal T in T ey sp ()
such that every x € T extends to HI E(HT), .

The following facts are well known (see also [B1, 12.1]).

LEMMA 2.15. Let G be a simply connected simple group with Frobenius endomorphism
F:G — G, L an F-stable Levi subgroup of G, L:=L", Ly :=[L,L]¥, and \ € Irreusp(L).

(a) Then Irr(A]; ) € Irreusp(Lo)-

(b) If[L,L] is a central product of F-stable semisimple groups Hy and Ha, then Irr( \] Hf) -
Irrquj(H1 ).

(c) Let G be a reductive group with F,-structure given by F: G—G extending F already
defined on G and such that |G, G} G, then every X € Irr((Z(G)L)F | \) is cuspidal.

Proof. For a finite group H with a split BN-pair of characteristic p, a given x € Irr(H)
is cuspidal if and only if the corresponding representation space has no nonzero fixed point
under any O, (P) for any proper parabolic subgroup P of H. It is then clear that for any
H' < H with p’-index, one has x € Irreysp(H) if and only if x|, has a cuspidal irreducible
component (and then all are). This gives (a) and (c). For (b), note that H; NHy is a group
of semi-simple elements, so that the O,(P)’s as above for H := L{" are direct products of
corresponding subgroups of HY and HY'. 0

REMARK 2.16.

(a) Let G be a simply connected simple group, and let G be a connected algebraic group
with G = GZ(G). Let F: G — G be a Frobenius endomorphism stabilizing G. Then
2 € G can be written as 2 = gz with g € G and z € Z(G), such that g~ F(g) =
2F(z7Y). If £L: G — G is defined by g — g7 F(g) and G := L™ 1(Z(G)), we sce

GI'<a.z,

where Z:={z € Z( )| F(z) € 2Z(G)}. Note that G by its construction is independent
of the choice of G. We also have G = Ng(GT) as an easy consequence of [B1, Lem.
6.1].

(b) From now on, we assume additionally that Z(G) is connected. Then the (outer)
automorphisms of G¥ induced by conjugation by some element ¢ € G are called
diagonal automorphisms and they are parametrized by L(g)[Z(G), F| € Z(G)/|Z(G), F]
(see also [GM, 1.5.12]).

Note the difference with the convention used in the introduction where G was used
to abbreviate G¥. We still clearly have G/Z(G) = GF/ Z(GF).

This allows the following conclusion for the above group G.
THEOREM 2.17. Maximal extendibility holds with respect to GF < G.

Proof. Let G be a group with connected centre, such that there exists a regular
embedding G — G that is also an F,-morphism as in 2.2. Then, according to a theorem
of Lusztig (see [CE, 15.11]), maxnnal extendibility holds with respect to GF < GF, and X
has an extension Y to GF According to the above, GI'<G.Z. Clearly, X extends to GF A
since Z is abelian and [Z,GF} = 1. Now, we see that Gng = GXZ and hence x extends to
éx as well. [
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PROPOSITION 2.18. In the situation of Remark 2.16, let K < G be an F-stable reductive
subgroup with To <K. Let K:=KZ(G) and K := L7(Z(G))NK. Let x € Irr(K¥), ¥
Irr(KE | x), and v € Irr()ﬂZ(GF)) As said above, x extends to KF Let v € E(GF)(X K)

and p € Irr(KF/KF) with X7 = xp. Then the following are equivalent:

(i) x has a y-stable extension to I?X. N
(ii) For Z':= L(Ky), there exists some extension v € Irr(Z') of v such that u(tz) =
v(z) 2 (2)) for every t € Ky and z € Z' with tz € KE.

Proof. We prove the statement only in the case where K = G. The results transfer to a
general K as only the quotient groups are relevant to our considerations. Let X be a ~y-stable
extension to Gy, then there exists an extension ¥ € Irr(Z’) of v such that ¥ := (X. M|GF)GF.
We observe (Y.7)” = x.v7. This leads to the given formula for p in (ii).

For the other direction, let xo be the extension of X to (~}F such that x = X0~ G"  Then
Xo =XoH]& ar and (.7 is an extension of x to GFZ’ G Z'. The character { := (x0-”) & a,
satisfies

X = (39 = (00 )" = X35 = xonlgr -

There is some k € Irr(éX/GF) with X7 = Xx. According to [I, (6.17)], the above equality
of characters implies £(t)07(2)(D(2)) ! = u(tz), whenever t € G, and z € Z’ with tz € GE.
By the assumption on p and v, this leads to x = 1. Then x has a ~-stable extension

to Gy. 0
For later, we restate A(oo) for groups of type A (see [CS2]).

PROPOSITION 2.19. Let G =SLy(q), G := GLy(q), and write E(SLy(q)) for the group
of field and graph automorphisms of G and G with regard to the usual BN-pair.

(a) Then there exists an E(SLy(q))-stable GL,(q)-transversal T in Irr(SL,,(q)), such that
every x € T extends to SLy,(¢)E(SLy(q))y-

(b) Let " be the automorphism of SLy,(q) given by transpose-inverse, and let E'(SLy,(q)) <
Aut(SL,(q)) be the subgroup generated by ~' and the field automorphisms described
above. Then E'(SL,(q)) is abelian and there exists an E’'(SL,(q))-stable GL,(q)-
transversal T in Irr(SL,,(q)), such that every x € T extends to SL,(q)E'(SLy(q))y-

Proof. Part (a) follows from [CS2, Th. 4.1] using Lemma 2.4.

Let v € E(SL,(q)) be the graph automorphism. Following the considerations in [CS2,
3.2], we see that 4" and vy induce the same automorphism of SL,(¢), where vy € SL,,(p)
is defined as in [CS2, 3.2] and p is the prime dividing ¢. This proves that T is also
E’(SL,,(q))-stable. For part (b), we have to prove that every x € T extends to its inertia
group in SL,(¢)E’(SLy(¢q)). This statement is clear whenever E’(SL,(q)), is cyclic (see
[I, (9.12)]). If for x € T the group E’(SL,(q))y is noncyclic, we see v' € E'(SLy(q))y. Let
F, € E'(SL,(q)) be a field automorphism such that E’(SLy(q))y = (Fy,7"). By (a), there
exists some ~y-stable extension of x to G(Fy). This extension is then also 4" and hence
yvg-stable as [vg, Fy] = 1. From this, we deduce that y extends to SL,(q)E’'(SLy(q))y. U
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83. The Levi subgroup and its normalizer

In this and the following section, we reprove with quite different methods that for every
standard Levi subgroup L of Djs.(q), every X € Irrcysp(L) extends to its stabilizer inside
Ngr (L), which follows from the mentioned results by Geck and Lusztig. For E(G) <
Aut(GF) from §2.2, we construct a T-transversal T of Irreysp(L) and an N Stabggr)(L)-
equivariant extension map with respect to L <N for T.

THEOREM 3.1. Let L be a standard Levi subgroup of G =Dy s(q). Let Ep :=
Stabggry(L), N, N := NEr and L' :=ToL be associated with L as in 2.8. If Dy sc(q)
is a direct factor of [L,L], then assume Hypothesis 2.1/ holds for Dy s.(q). Then:

(a) There exists an N-stable L' -transversal T C Irreysp(L).
(b) There exists an N -equivariant extension map Apqn with respect to L<IN for T.

This implies Theorem B and ensures Assumptions (i) and (ii) of Proposition 2.12. In [BS,
Th. 4.3] and [CSS, Prop. 4.13], the analogous result was shown in the case where G is of
type A; or C;. The interested reader may notice that without assuming Hypothesis 2.14 for
smaller ranks, the proof we give implies a version of the theorem without the equivariance
statement.

Like in the proofs given in [BS] and [CSS], we essentially apply the following statement
providing an extension map for nonlinear characters.

PropoOSITION 3.2 [CSS, Prop. 4.1]. Let K M be finite groups, let the group D act
on M, stabilizing K, and let K C Irr(K) be M D-stable. Assume that there exist D-stable
subgroups Ko and V of M such that:

(i) the groups satisfy:
(i.1) K=Ko(KNV) and H:=KNV <Z(K),
(i.2) M=KV;
(i) for Ko :=Uy\exIrr(N g, ), there exist:
(ii.1) a V D-equivariant extension map Ay with respect to H<1V; and
(ii.2) an €(V)D-equivariant extension map A, with respect to Ko<t Ko xe(V') for Ko,
where e: V — V/H denotes the canonical epimorphism.

Then there exists an M D-equivariant extension map with respect to K <<M for K.

In this section, we construct the set T for Theorem 3.1(a) and introduce groups H, K, Ky
(see Lemma 3.11), M, D, and V (in Corollary 3.23) for a later application of Proposition 3.2
in the proof of Theorem 3.1(b). Here, we show that the groups introduced satisfy the group-
theoretic assumptions made in 3.2(i). Afterward, in §4, we ensure the character-theoretic
assumptions, namely 3.2(ii) in order to prove Theorem 3.1(b).

3.1 Subgroups of the Levi subgroup L

As a first step, we dissect the root system of L and introduce subgroups of L with those
new root systems. For a nonnegative integer i, let i := {1,...,i}. For computations with
elements of G, we use the Steinberg generators satisfying the Chevalley relations together
with an explicit embedding of D; 4.(IF) into B s.(F).

NoTATION 3.3 (The groups G and G, roots, and generators). In this and the following
section, we assume that the simply connected simple group G from 2.2 is of type D; (I > 4)
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over F the algebraic closure of F,, for p some odd prime. Hence, G = D; 4 (F). Denote
1:={1,...,l}. Let ®:={%xe;%e;|i,j €l,i# j} be the root system of G with simple roots
ag:=egster, a1 =ex—ep and a; :=e; —e;—1(i > 3),

A:=A{a;|iel}

(see [GLS, Rem. 1.8.8]), where the set {e;};c; is an orthonormal basis of R! whose scalar
product is denoted by (z,y). The Chevalley generators x,(t), n,(t') and h,(¢') (o« € ®,
t,t’ € F with ¢’ #0) together with the Chevalley relations describe the group structure of
G (see [GLS, Th. 1.12.1)).

Let ® := {+e;, te;tej|i,j €l,i#j}, G:=Bj(F) with Chevalley generators X, (),
n,(t') and h,(t') (o € @, t,t' € F with #' # 0). Assume that the structure constants of
G and G are chosen such that x,(t) — X, (t) (o € @, t € F) defines an embedding ¢p :
G — G. For simplicity of notation, we write X (t), ny(t') = X (t")x_o(—t' "1)x4(t'), and
h, () =n,(#')n, (1)~ for the generators of G and thus identify G with the corresponding
subgroup of G. This is possible according to [S2, 10.1] (see also [MS, 2.C]). Among the
relations between Chevalley generators, the following will be the most useful to us. For
a,b € R\ {0}, recall (a,b) = 2(a,b)/(b,b). Let a,3 € @, t €F, t' € F*. Then

h,(t)hs(t') =h,ip(t') whenever a+ € ®,
n, (1)) = n, (¢(@F)y),
ho (8" = ha_(a,)5(cast),

where the first line is from [GLS, 1.12.1(e)], the second is easy from [GLS, 1.12.1(g)], and
the third, along with the definition of ¢, g € {1}, is from [GLS, 1.12.1(i)].

DEFINITION 3.4. Let X, := (xo(t) [t € F) for a« € ®, T := (h,(t') | a € ®,#' € F*), and
T:= <ha(t’) |lacd,t' € IFX>. Note T =T is the image of the map

(F*)' > (t1,.. 1) = he, (#1) . he, (1)

with kernel {(#},...,t]) € {1} [#]...t; =1} (see also [S2, 10.1]). The group T can be chosen
as the group Ty from 2.2 and T(X,, | @ € A) as the group B.

Denoting ho = h,, (—1), one has Z(G) = (hg) of order 2 (see [GLS, 1.12.6]) with G/{hg) =
SO2141(F) > SO (F) = G/{hg). L

For every positive integer i, let Fi : G — G be the Frobenius endomorphism given by
Xo(t) = X (tP") for t € F and a € ®. We write 7 for the graph automorphism of G given
by Xea(t) = Xeyg(a)(t) for t € F, € € {£1} and o € A, where 7y denotes the symmetry of
the Dynkin diagram of A of order 2 with as +— aq. If [ =4, we denote by =3 the graph
automorphism of G induced by the symmetry of the Dynkin diagram of A with order 3
sending as — o1 and ag — os. We assume that F' = Fj, for ¢ := pf, where f is a positive
integer. Note that the group E(G*") from 2.2 satisfies accordingly E(G¥) = (F,]qr, V]gr)
whenever [ > 5; otherwise, [ =4 and E(GY) = (F,|qr. V]gr 13l gr)-

We recall that the graph automorphism « of G is induced by an element of G (see [GLS,
2.7] for the corresponding statement in classical groups). Let @ € FX such that w? = —1.
By [S2, 10.1] (see also [MS, 2.C]), the automorphism « of G is induced by conjugating with
n., (@) € G.
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NoTATION 3.5. Let L be a Levi subgroup of G such that BL is a parabolic subgroup of
G and T CL. Let L:=L¥ and let ® be the root system of L, that is, L = T(X,, |a € ®').
As @' is a parabolic root subsystem of ®, it has as basis A’ = AN®’. We assume that one
of the following holds:

(i) A’C{ex—ey,e3—ea,...,e—€;_1}, or
(11) {62—61,€2+€1}§A/.

Recall that a split Levi subgroup of G containing T is called standard if it is generated
by T and the X, ’s such that o € +A’ for some subset A’ C A. Recall that v swaps es — e
and e; + e; while fixing the other elements of A. Then any subset A’ C A is such that A’ or
~v(A") satisfies 3.5(1) or 3.5(ii). We then get that L can be assumed to satisfy Notation 3.5.

LEMMA 3.6. Every standard Levi subgroup of G containing T is (v)-conjugate to a
standard Levi subgroup whose root system has a basis A" C A satisfying 3.5(i) or 3.5(ii).

3.7 (Decomposing ®’). In the following, we decompose @’ into smaller root systems,
which are the disjoint union of irreducible root systems of the same type. By type(¥), we
denote the type of the root system W. Whenever ¥ is a subset of ®, we also denote by Wy
the subgroup of Ng(T)/T generated by reflections defined by elements of W.

Since ®’ is a parabolic root subsystem of ®, ® decomposes as a disjoint union of
indecomposable root systems of types D and A, that are called components of ®’.

If A’ satisfies Assumption 3.5(i), let ®4 be the union of the components of & of type
Agq (d>2). If A satisfies Assumption 3.5(ii), let ®_; be the union of components of
®’ that have a nontrivial intersection with {e3 —ej,e; +e2} and let &4 be the union of
components of '\ ®_; of type Ay_1 (d > 2). If A’ satisfies Assumption 3.5(ii), type(®_;) €
{Ag,Al X Al,Dm | m > 4}

Let D’ be the set of integers d such that ®, is defined and nonempty, that is, SLg(F) is
a summand of [L,L]. Then & =| |, ., ®4, a disjoint union.

Recall that W3, the group generated by the reflections along the roots of ® coincides
with Wy := No/Tp, can be identified with the permutations of [U —[ that commute with
the sign change, and hence acts on [ (see [GLS, Rem. 1.8.8]).

3.8 (Orbits of W4 on [). Let O be the set of orbits of Wy, on [, let O; C O be the
set of singletons in O, and let O, be the set of orbits of Wg, on [ contained in O\ Oy,
whenever d € D'. We define

D'u{1 if O
D(L):D: {}7 1 1#®7
D', otherwise.
For d e D\ {—1}, let ag:=|O4| and note that |I| =d for any I € O,.
For I Cl,let ®;:=®'N(ey |kel)and ®;:=®N(e; | ke I). FordeD,let Jg:=,c0, 0,
and Ed = 6‘]‘1.
Next, we introduce groups K, Ky, and H that will later be proved to satisfy Assumption
3.2(i) with a group M.

NoOTATION 3.9 (Subgroups of L and L). Let w € F* and hy as in Defini-
tion 3.4. Define hy(t) := [[,c;he,(t) for I €1 and t € F*. For I € O, let G; =
(X, | € ®r) and Gy := GI. Note that for I € Oy, the group Gy is trivial. Let Hp :=
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(ho,he,(@)h,,, (@) | 4,7’ €1) = (ho(~1) | @ € ®). For d€ D, let Hy:= (ho,hr(w) | I € O4),
H,:= <h0,h](’w)h1/(—w) | I,I/ € Od> and

H:= <ﬁd|dem>mHo.

LEMMA 3.10. Let Deyen := DN2Z and Doaq := D\ Deyen. If H. := <ﬁd |de 1D)5> N Hy
for e € {odd,even}, then H = Hoyen.-Hodd-

Proof. An element t € T can be written as Hl_l h.,(t;) (ti € F*). We have t € Hy if

t; € (w) and HZ (7 = 1. In particular, h;(w) € Hy if and only if |I| even. This implies
H; < Hy whenever 2 | d. On the other hand, Hy £ Hy for every d € Dyqq. U

With this notation, Z(G) = (ho,hy(w)) (see [GLS, Table 1.12.6]).
LemMA 3.11. H <Z(L).

Proof. We see that [h;(w),Gr] =1 by the Chevalley relations and this implies the
statement by the definition of H. U

The groups Ky := (G| I € O) and K := KoH then satisfy Assumption 3.2(i.1) for H.
To understand later the action of Ngr (L) on Irr(K), we analyze the structure of L by
introducing several subgroups.

3.12 (Structure of L). We note that the Levi subgroup L satisfies L=T(G; | € O).
Let T;:=(h,(t) |i€I,t € F*)for I € O.For I,I' € O with I # I’, we see that no nontrivial
linear combination of a root in ®; and one in ®;/ is a root in ® as well. Therefore,
[G1,G/] =1 according to Chevalley’s commutator formula. By the Steinberg relations,
we see [Gy,Tp/] =1. The group Gy is either trivial or a simply connected simple group
unless I = O_; and type(®_1) = Ay x A;. Accordingly, [L,L] = (G, | I € O).

We observe that G;N'T < T; and computations with the coroot lattices prove that T is
the central product of the groups T (I € O) over (hy). This implies that L is the central
product of the groups L; (I € O) where L; :=T;Gy.

Analogously, we see that L is the central product of the groups Ly (d € D) over the group
(ho), where Lg:= (L; | I € Oy).

The structure of L studied above implies the following results on L. Recall Kg :=
(Gr| I €O) from Lemma 3.11.

LEMMA 3.13. Recall £L: G — G the Lang map defined by g — g 1F(g), let L:=LnN
L71((hg)), and let L :=LNL YZ(G)).

(a) If Ly :=L¥ for every I € O and Lo:=(L; [I € O), then Ly<L.

(b) Let I €O and LI —LIHL Then LI = (Lyz,t1) for everytr € TrNL 1 (hg). We assume
chosen such aty for each I € O.
The group L is the central product of LI (I €O) and for d €D, Ld = LﬁLd is the
central product of L; (Ie€0y).

(C) L= <Lf,t[t[/ ‘ I,II S O>

(d) Ky is the direct product of all Gy, Ko <L and E/Ko s abelian.

(e) If ¢ € F* with ((9=Y2 = and tg o :=hg(() for every Q C 1, then L= E<tl72>.

The arguments of Remark 2.16 show that L' from 2.8 and L induce the same
automorphisms on G.
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Proof. Recall that L is the central product of the groups Lj, where each Lj is F-
stable. Every x € L can be written as Hleoxj with z; € L. Clearly, x € L if and only if
L(x) =1. We see that L(z) = [[;co L(x1) by the structure of £ and hence = € L implies
L(x1) € (ho). The group Ly is the group of elements [[,co2; with 2y € Ly := Lf. The
group L := £({ho))NL is the group of elements [Jz; with 27 € L; and £(z;) € (ho). Hence,
L is the central product of L; (I € O) over (hg). Clearly, Lo <1157 Lr= (Lr,t;) and L =
Lo(tstp | I,I' € O). This ensures the parts (a)—(c).

Part (d) follows from the fact that L/(G; | I € O) is isomorphic to a quotient of T and
hence abelian. For part (e), we observe L(hg(¢)) =hg(w) for every @ C [ and recall that
%(G) = (o, hy(=)). i

3.2 The structure of N/L

We analyze N :=Ngr (L) and N :=Ngr (L). In the following, we identify Wg with certain
permutation groups Sy via the action on {=*e; | i € [} and Wg with SP,. We generalize the
notation of those permutation groups in order to describe N/L. )

NOTATION 3.14 (Young-like subgroups, Sy and ;). Let M be a set. Given a map ||.| :
M — Z with m — ||m/||, we define Sy to be the group of bijections 7 : M — M with ||m(m)|| =
|lm|| for every m € M and we write Syp for the bijections 7 : {£1} x M — {£1} x M
satisfying m(—1,m) = (—e,m’) and ||m|| = ||m/||, whenever m,m’ € M with w(1,m) = (e,m’).
When no map ||.|| is specified, we assume it is a constant map.

In order to denote the elements of Sy and Si s, we fix a bijection f: M — {1,...,|M]|}.
This induces a canonical embedding ¢ : Spy — 8y and an embedding ¢+ : Sear — Sy jn)-

For r pairwise distinct elements m1,mo,...,m, € M, we write (m1,ma,...,m,) € Sy for the
element t=1(f(m1), f(mz2),..., f(m,)). Via 1+, we obtain also a cycle notation for elements
of S:I:M~

If J is a partition of M, we write J = M for short. For J - M, we set
Vy={r eS8y |n(J)=J for every J € J}, and
Vij={r€8Sin | m({£1} x J")={£1} x J' for every J' € J}.
Let Mygq:={m € M | ||m| odd } and
SPy={meSinm | |({1} x Moaa) N7~ ({1} X Moqa)| is even}.
We use the above notation for permutation groups on the set O from 3.8.

DEFINITION 3.15. Let ||.|| : O — Z be given by ||I|| = d for every I € Oq4, and let S10,
825, and Sp be the permutation groups on O defined as in 3.14 with respect to ||.]|.

Recall that we have chosen a maximal torus T of G and that L is a standard Levi
subgroup of G with T C L (see 3.3 and 3.5). For Ng := Ng(T), we identify the Weyl group
No/T with Si;, the epimorphism pr : Ng — Sy is given by

pr(ne,(—1)) = (i,—i) and pr(ne,—, (—1)) = (i,5)(—i,—j).
With this notation, we can compute the relative Weyl group of L in G. Recall N :=Ng(L)*".
PROPOSITION 3.16. Let No :=Ngr(T), Ng:=Ngr(T), and N := Ngr(L). Then

pr(NNNo)/pr(LNNo) = S+ and pr(N N No)/pr(LNNy) = SP0.
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Proof. According to the considerations in [C, 9.2], pr(N N No)/pr(L N Ny) =
Ny, (Wa:)/Wer, where Wy := No/To. We then make routine considerations inside W
(see, e.g., [H]). Note that Ny (War) = Stabyy () = War Stabgy (A”).

From the definition of ®_;, one can check that Staby; (A') stabilizes ®_; N A’. This

implies that Staby; (A’) stabilizes ®4NA’ for every d € D, and
Stangd ((I)d N A/) = S:I:Od .
‘We have NWO (Wq;/) = ng X Hde]D) StabWEd ((I)d) = StabW$_1 ((I)_l) X ng X Hjiml’ Stangd

(®4) with
Stabyr (@-1)=Ws_,((1,-1)) =W5_,
and
Stabwgd (Py) =Wo, xS10,
for d € D with d > 1. Hence, pr(NNNo)/pr(LNNy) =2 S2,. 0

By the proof, we see that Syo corresponds to Stabyy, (®’NA) and hence there exists
some embedding of S1p into Si;. We fix some more notation to describe explicitly the
permutations in Sy; corresponding to Stabyy, (A).

NOTATION 3.17. For d € D\ {—1}, we fix orderings on Oy and the sets I € O4: we write
Ii; (j € aq) for the sets in Oq and 14 (k) € 14, (j € aq, k € d) for the elements of I ;.

For each k € d, let f,gd) : 1 — [ be a bijection such that f,gd) (4) =14,;(k) for every j € aq
and f,id) has the maximal number of fixed points. Then f,gd) defines an element of Sy,

without sign changes, that we also denote by f,gd) by abuse of notation.

In the following, we use that for every ) C [, S+g can be seen naturally as a subgroup
of S:I:L'

LEMMA 3.18.

(a) LetdeD\{-1} and Kq:S+ta, — S+, be given by 7+ erdwflid) the latter a product
of conjugates of m in Sy;. Then Kq is injective and Stabs, (@q) = Wa, X Fa(S+ta,)
(b) If =1 €D, let R_1:S+1 — Sty_, be the morphism with ®_1(S4+1) = ((1,—1)). Let

Wd = Ed(Siﬂ) and W° (L) = Hde]D)Wd' Then StabWO ((I)/) = W@/WO(L).

Proof. For (a), we observe that the sets | J 14 (k) (k € d) form a partition of .J4. This

d) f(d)

(
implies that the groups Sikad and S3% commute and are disjoint. We see that %q(S+a,)

J€ad

stabilizes O4. This proves (a). Part (b) is clear from the definitions. 0

We can choose 1,,;(k) (d € D\ {+£1}, j € aq, and k € d) such that ey, (k1) —er, ;x) € A’
for every j € ag and k € d —1. With this choice, F4(S+a,) stabilizes A" and hence coincides
with Staby (A).

d

3.3 A supplement of L in N

In the following, we determine a supplement V < Ng with N = LV and p(V) = W°(L)
where W°(L) is the group from Lemma 3.18. We construct the group V using extended
Weyl groups V;,Veyl (see 3.19). Extended Weyl groups are known to be supplements of T
in No.
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In a first step, we define for every d € D a subgroup V4 < Ng with p1(V4) = Ka(S+a,)-
We construct kg4, a lifting of 4 via p. This construction will later simplify some arguments
by providing a tool to transfer results from [MS].

By definition, the group Ny is an extension of Wy by T. It has proved to be more
convenient to work with an extension of W by an elementary abelian 2-group, the extended
Weyl group (introduced first by Tits), here denoted by V;,Veyl. (Note that if 2 | g, the
group Ny is the semi-direct product of T and a group isomorphic to the Weyl group.) In
consideration of Definition 3.4, we work here with the group V, a T-conjugate of Vvlveyl-
Then the graph automorphism of G is induced by an element of V (see Definition 3.4).

NOTATION 3.19 (The groups Vo, Vi, and V7). The group Vi, = (@} |i€l) with
) :=n., (1) and 0} :=n,,(—1), where a; = e; —e;—1 (2 <7 <1) is known as the extended
Weyl group of type B;.

Let (g € F with (2 = @. The group V= (Vv’Veyl)hL(Cg) is accordingly generated by n; :=
(m))PelSs) = n, (w) and 7, := (A})P) = n,, (—1). The group V satisfies VoNTo = Hy
where Hj is defined as (h,(—1) |« € ®) in 3.19. According to Definition 3.4, fi; € V and
~ induce the same automorphism of G.

For I C 1, we set

Vii=(ho,nte 4, (1) |4, € I with i #4") and V:=Vi(n,, (@) | i€ I). (3.1)
Let H;:= (h,,(w) | i€ I) and Hy:= H,.

3.20 (Facts around H; <1V7). Maximal extendibility holds with respect to H; <1V,
since those groups are conjugate to those considered in [MS, Prop. 3.8] for the case where
the underlying root system is of type B;. For Hy := <h0, hici.,(—1)]4,i € I>, we obtain
ViNnT =Hj.

For disjoint sets I, 1’ C [, the Steinberg relations imply

[V],V]/] =1 and [V[,V[/] = <h0> (3.2)

We introduce maps kg : ﬁLdVLd — I:TOVO with prokg = Rqo0 Pay for the canonical
epimorphism py, Vai —> Stay-

The following defines a lift of W4 := %4(S+4,) that is a subgroup of V. In 3.17, we
introduced the elements f(d) €Sy (d € ]D)\{—l} k € aq) without sign changes.

LEMMA 3.21. Let de D\ {1}, m\” e Vrpz'(f\) (k€ d), and
~ ~ d (d)
Kd: HLdVLd — H()VO with x — H.Q?mk

k=1

for a fized order in d. Set Vg4 := <“d(va7d)>' Then:

1 is a morphism of groups;
ad

(a)
(b) ka(v®) = kg(v)*®) for every 2 € V,, and v € Vags
(c) ka(Hay) <hg,h, Yhy(—w) | I,I' € O4) < Hy;

(d) ”d(Hch (hdhy(w) |1 € Oy);
(

e) prokg = = Fd © Pay for the canonical epimorphism Pagy Vad — Siad, mn particular
pr(Va) =Wa=kKa(Sta,)-
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Proof. The sets Jy(k) := ,gd) (aq) form a partition of J4. For z € V,,, we see 2 e Viak)
and hence kq] Vi, is independent of the order chosen in d. Then kg4] Vi, is a diagonal

embedding of V,, into the central product of the groups Viaw (k€ d) over (hg). This

implies that 4| Va, is a morphism of groups. This proves (a).

By part (a), it is enough to prove part (b) for x =1, and v € {ny', My, A3, ...,N,, }, since
V., is generated by {n5', Ay, M3, ...,N,,}. The equation kg(M) = rg(m;) (™) for i >3 is
clear since no nontrivial linear combination of those roots is a root. Computations show
rka(A5Y) = kq(Ta)"¢ ™) and hence part (b).

For part (c), we note that ker(kq|, )= <hg*1>. The equation pr ok = K40 pg, in (e)
ay aq
follows from pT(m,(Cd)) = ,gd). 0

Recall that the group H from Notation 3.9 is a subgroup associated with L. To understand
the above construction, we consider the following statement.

THEOREM 3.22. If -1 €D, set V_y := (H_,ny). Let V := H<Vd |d€]D>> and
Vb =VNG.

(a) N:LVD
(b) Ify€ EL, thenn; €V.

Proof. Because of p1(V 4) =W 4, we see pr(V) = W°(L). Clearly, Vp < N. Additionally,
we see that V normalizes L and L by definition. If L is +-stable, then n; € V. According
to Definition 3.4, m; and v induce the same automorphism of G. 0

COROLLARY 3.23. The groups K, Ky, and H from Notation 3.9 and Lemma 3.11
together with V :=Vp, M := KV, and D := Ey, satisfy Assumption 3.2(i).

Proof. According to Lemma 3.11, K = HKy and H < Z(K). This is Assumption
3.2(1.1). The equality M = KV follows from the definition of M. In order to prove
H=VnNK, we show VyNL < Hy for every d € D. Since V4 < Vg by construction and
V= </~@d(Vad)> = W, we observe that k4(H,,) < Hy according to Lemma 3.21(c).

By the construction, Vp is V(F,)-stable and hence Ef-stable. By the construction, we
also see that Ky and Vp are D-stable. U

84. Extending cuspidal characters of Levi subgroups

This section now focuses on the character theory of our groups. We ensure the character-
theoretic Assumption 3.2(ii) and apply Proposition 3.2 in the proof of Theorem 3.1(b). We
analyze the action of V on K, and consider subgroups of N and L associated with each
d € D. For every d € D, we define subgroups Ko 4 and K, and study them separately for
d=1,d>2, and d=—1.

4.1 The inclusion H; <V,

We recall here some results on the extended Weyl groups. If 1 € D, then H; = H;, and
V12V, for the group V, from 3.19. (Recall Jg = ;cp, I for d € D [see Notation 3.9].)
We set Ky,1 :=1and K; := H;. In order to apply Proposition 3.2, we investigate the Clifford
theory for H; <1V 1. The results are also relevant for studying Hy <1V 4 for d > 1.

PROPOSITION 4.1. Let I' <1 be some positive integer, H' = ﬁb H':= H'NHy, V=
Vi, and p' V- Sy the canonical epimorphism.

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.14

926 B. SPATH

(a) Mazimal extendibility holds with respect to H' <V N
(b) Let A€ Trr(H') with ho ¢ ker(X). Then some V' -conjugate X of A has an extension N’
to H' such that p'(V5,) =Sy and V' =V5(c) for some c €V with pr(c) = [Licy (3, —1).

Proof By [MS, Prop. 3.10], maximal extendibility holds with respect to H' < V. Note

that V' coincides with the group V' considered in [MS]. This proves part (a).

Let A € Irr(H') with A(hg) = —1 and X € Irr(H' | A). Note that H' is the I'-fold central
product of the cyclic groups (h,,(w)) (i € I') over (hg). The group V acts by permutation
and inversion on the factors. It is then easy to see that some V/—conjugate X of X\ has an
extension X € Irr(H') such that

N (he, (w)) = X'(hei, (w)) for every i,i’ €l’.

The other extension of A’ to H is (N)™1. Observe that (X)? is the character with kernel
H'. (Recall H'/H' = C5 and hence there is exactly one character with this property.) The

element ¢ € V' with p'(c) = H{zl(z,—z) satisfies (\)¢ = (X')~! and hence V//\, = V/;, (c).
According to (a), there exists some extension ¢o of A to V. Then ¢q] v, and N
determine a common extension ¢ to H ’V/;, (see [S3, 4.1(a)]). By this construction, ¢|y is
c-stable. 0

4.2 The inclusion K; <1 K4V 4 for d > 2
In the following, we investigate the groups Ky := Hy(G;|I€ O4) and K4V, for
deD\{*1}, where G; = (X, | « € ®;) and G; = G;¥ (see Notation 3.9 and Lemma 3.13).

LEMMA 4.2. Let I € O\({J_l}Uol) and Z] = h[(]FX) Then:
(a) G[ = SLm(F) and G] = SLm(q),‘

(b) L;=G;.Z;, L]/<h0> = GLm(]F) and ’G]ﬁZ[’
(c) Lr=GLyy(q) if 21[1].

Proof. By the assumptions, d :=|I| > 1 and ®; is a root system of type Ay. One has
G| = [TG,TG;] where TGy is a Levi subgroup, so Gy is simply connected = SL;|(F) by
[MT, 12.14]. Note I # J_;. This gives (a).

Any element of T; can be written as [[,.;he,(t;) for some t; € F*. Let x € F with
k= [Tic;ti and fix j € I. Then, by the Chevalley relations in G,

Hhel i eg (tjk™ )hej(li) H (hej (t;lm)_lhej (ti_lli)hei (tm‘l)hei(/ﬁ)) =

11,

geaz.py7 ond

iel 15&[
el Z;g
— | T besme, ((tar™)?) | Br().
i€l
i)

Accordingly, T = (T;NGy)Z;. We note that Gy = SL;(F) and G; = SLj;|(q) as F acts
on Gy as standard Frobenius endomorphism. By the Chevalley relations, Z; < Cr(G;) and
L, =T;G;=7;Gj.
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The calculations above show that an element of Z; NG can be written as [ [, ; he, (t) with

tHl = 1. For d € Deyen, the element H£:1 h.,(—1) is trivial and hence |Z; NG| = %ﬂlp/).
If 2| d, then with similar considerations as above, we see
ho =hy(¢) [ [he,—c, (¢, (4.1)
iel
i#]

where ¢ € F* has order 2|I|5. This implies that L;/(ho) is the central product of the one-

dimensional torus Zy/(ho) with G/(ho) over Z(Gy). Accordingly, L;/(ho) = GL;|(FF).
For odd d, this implies analogously L; = GL4(F) and L; = GL4(q). This is the statement

in (b) and (c). We could also have argued on Levi subgroups of G/(hg) = SO (F). 0

Next, we study how L acts on Ky, 4, which includes the action induced by t; (I € O)
and t;2 from Lemma 3.13. Recall that L; := Ly N L7 ((ho)) satisfies L; = (Ly,t;) for

some t; € TyNL 1 (hy), and L7 (h(w))NL = <E,tl,2> with ¢;2 = hy(¢). According to
Remark 2.16)(b), diagonal automorphisms of G are parametrized by Z(Gy)/[Z(Gy), F].

LEMMA 4.3. Let I € O\ (O1U{J_1}).

(a) If 24 |I|, then Ly = L;Cr,(L;), in particular t; from Lemma 3.13(b) can be chosen
such that t; € Cr,(Ly).

(b) For 2| ||, the element t; induces on G a diagonal automorphism corresponding to
9lZ(Gy), F] with g € Z(Gr) of order |Z(Gr)|2.

(¢) tr2 € Cz(Ly).

Proof. Keep d := |I|. According to the theorem of Lang, we can choose ¢; € T such
that t; =1 F(t;) = ho as T is connected.

If 21 |1|, we see that ho =h;(—1) and hence hy € Z;. Since Z; is again connected ¢; can
be chosen in Z(L;), whence (a).

Following (4.1), hg = 2122 for some z; € Z; and z, € Z(Gy). Here, z5 is an element of
order |I|3 = ds. Then the element ¢; can be analogously written as zg with z € Z(Gy) and
g € G such that L(z) = z1 and L£(g) = 22. As g induces on G a diagonal automorphism
associated with 25[Z(Gy), F], the element t; € G; with 27 1F(z) = ho induces the same
diagonal automorphism. This gives (b).

The element t; o = h;(¢) from Lemma 3.13(e) centralizes G since the Weyl group of G;
centralizes ;5. 0

Recall the groups Hy = (ho,hy(@) | I € Og), Hy = (ha(—1) | € ®), and Hy = HyN H,
defined in Notation 3.9 for every d € D. Using the groups G from Lemma 3.13, let Ky 4:=
<G[ ’ Ie Od> and Kd = HdKO,d- IfDh= {d}, then K{) = KO,d and K = Kd. As VdﬂKd <
C(G7) as a consequence of Lemma 3.11, there is a well-defined action of V4/H4 on K.

LEMMA 4.4 (The action of Vg on Kq 4). Letd€D. Let eq: Vq— Va/Hg be the canonical

morphism and ﬁgd) = kq(n1). Then:

(8) Koaxe(Va) = (Gryy 2 (@)1 Sa,

(b) Then ﬁgd) induces the graph automorphism transpose-inverse on Gy, , .

(c) If21d, ﬁgd) induces on Ly, , a product of a nontrivial graph and an inner automorphism
via the isomorphism Ly, = GLqg(q) from Lemma 4.2(c).
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Proof. Part (a) follows from the Steinberg presentation.

—(d)
For part (b), we see that G?dl . =Gp,, and G, , N(hg) = {1} from the Chevalley relations.

We compute the action of ﬁgd) on Gy, in the quotient G/(ho) or Gr,, x (ho)/(ho),
respectively. In [GLS, 2.7], the group G/(h) and its Steinberg generators are given explicitly
as subgroup and elements of SO;(g). The element ﬁgd) acts on Gy, , (ho)/(ho) by transpose-
inverse via G, , = SL4(q). Computations in that group show part (b).

The element ﬁgd) acts by inversion on Zj, , and hence ﬁgd) satisfies the statement in part

(C) as L[dJ:G]dylz]dyl. D

Next, we study an analog of L from Lemma 3.13 associated with d € D, that is defined
using the Lang map £ from there. Note that h;(w) ¢ T ;, whenever D # {d}, but h;(w) =

[laep by (@)

__ ProposiTiON 4.5. Let d € ]D)\{:Izl}v, let €q Vaq—Va/Hy be as in Lemma 4./, let
Ty:=T;,NL 1 ((ho,hy,(w))), and let Ly :=TyKo 4. Then:

(a) There exists some V 4(F),)-stable zd—tmnsversal TG in Irveysp(Ko,q)-

(b) There exists an €4(Va) x (F,)-equivariant extension map A, with respect to Ko q <
Ko,qxeq(Vy) for TY. N N

(c) Mazimal extendibility holds with respect to Ko q4<\Lgq and Kq<1Lq.

For the proof of part (b), we require a strengthening of a result on wreath products that
can, for example, be found in [K, Th. 2.10].

LEMMA 4.6. Let X XY be a finite group, and let A be a group of automorphisms of
X %Y, stabilizing X, Y and some K CIrr(X). Let a be a positive integer. Note that A acts
on X< (X XY NS, by diagonally acting on (X XY )?® and trivially on S,. In this context,
we write then AA for that group. If there exists an (X xY) x A-equivariant extension
map with respect to X <X 1Y for K, then there exists an ((X xY)1S,) x AA-equivariant
extension map with respect to X <1(X xY)NS, for K*:={x1®---@xa | xi € K}.

Proof. This follows by the considerations in the proof of [K, Th. 2.10] using the
construction of representations of wreath products given in [N, 10.1]. O

Proof of Proposition 4.5. Let I; := I;;. Via the isomorphism Gy, = SL4(q) from
Lemma 4.2, the E(SL4(q))-stable GLg4(g)-transversal in Irr(SL4(g)) from Proposition
2.19(b) determines a subset Ty, C Irrc,sp(Gr,). According to Lemma 4.4(b), this set is
ﬁgd)—stable. The E(SL4(q))-stable GLg(q)-transversal in Irr(SLg(q)) can even be chosen
such that each character extends to its inertia group in SLg(q) % E(SL4(g)). Accordingly,
maximal extendibility holds with respect to G, <G, % <Fp,ed(ﬁ§d))> for Ty,.

Note that Ty, is Ny (G, )-stable, as Ny (G, ) acts as (nf). Accordingly, via conjugation
with elements of V4, the set Ty, determines characters T; C Irre,s,(Gr) for every I € Oy.
Recall that by Lemma 3.13(d), the group Ky is the direct product of the groups G (I € O).
Analogously, Ky q is the direct product of the groups G (I € Oy).

The product T§ of these characters [ ], 0, I defines a Vd<Fp>-stable set in Irreysp(Ko,q)-
By this construction, TS is V 4(F})-stable. Following the description of the action of L on
Ky 4 given in Lemma 4.3, we see that T is an zd—transversal in Irreysp(£Ko,q). This proves
part (a).
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Recall Ko g x €q(Vy) (GI1 X <e(ﬁ§d))>) 1S,, from Lemma 4.4. As stated above,

maximal extendibility holds with respect to G, <Gy, X <Fp,e(f(d))> for Ty,. According

to Lemma 4.6, this implies by the choice of TS that there is an €4(V 4)(F},)-equivariant
extension map A, with respect to Ko 4 <Ko 4% €eq(Vy) for TS.

According to Theorem 2.17, maximal extendibility holds with respect to Gy < G where
Gr =Gy NL™Y(Z(Gy)). Additionally, [G;,Z;] =1 for Z; :=h;(F*) from Lemma 4.2. We
observe that Ly < <C~¥I | I € Od><Z1 | I € Og), even more precisely

Li< <él 11e Od><21 1 Ie Od>,

where Z; := £L7Y(Z(G[)NZ;)NZ;. We sce that maximal extendibility holds with respect
to Ko q< <(~J 1 1€e (’)d><2 1€ Od>. Hence, maximal extendibility holds with respect to

Koa<tLg and K;< Lg, as Lq/ Ky q is abelian. U
LEMMA 4.7. Let de D\ {£1}.

(a) Mazimal extendibility holds with respect to Hgq < Vd
(b) If2+d, A € Irr(Hy) with Mho) = —1, and X € Irr(Hg|\), then (Va)s < Vb and (Va)a =
(Va)x(ca) for some cq € V.

Proof. Recall that by [MS, Prop. 3.8] maximal extendibility holds with respect to H,, <
Vai . Via the map kg :V,Ld — V4 from Lemma 3.21, the maximal extendibility with resI;ct
to Ha, <1V 4, gives a V g-equivariant extension map for r4(Ha, ) <#4(Va,). This implies part
(a) according to [S2, 4.1(a)].

In part (b), we assume 2t d and hence k4(H,,) = Hy. The character A € Irr(H,;) with
A(ho) = —1 corresponds via kg to some Ao € Irr(H,,) with Ao(ho) = —1. Proposition 4.1(b)
implies that via kg there is some V 4-conjugate X of A\ with pT(V;,) = Sp, for any N e
Irr(Hy | V) and (V) = V() for some ¢ € Trr(Vy) with pr(c)) = [, (i, —1). We
observe that (V 4)5, < Vp. Because of Vp <1V, this implies (V4)5 < Vp and (Va)a = (Va)5(ca)
for some ¢4 € V4. This proves part (b). U

4.3 Consideration of K_{ < K_1V _4
The group structure of G;_, depends on type(®_;). By its definition, type(®_1) €
{A1 x A1,A3,Dy; ,|}. For the application of Proposition 3.2, we prove the following

statement. Recall V_y = (n., (@), ho), H_1 = (hy_,(@),ho), H.1 = H_1NHy, and G;_, =
(Xo|ae <I>_1>F. As before, we set Ko _1: =Gy , and K_;:=H_1G;_,.

PROPOSITION 4.8. Assume Hypothesis 2.1/ holds for G§ L if @1 1s of type D. Let

€.1:V_1 — V_1/H_| be the canonical epimorphism, and let I := (G, T, )N
£_1(<h0,hj_1< )>) Then:

(a) There exists some V _1(F,)-stable L_y-transversal T° | in Irreysp(Ko,—1).

(b) There exists an e_1(V _1){F},)-equivariant extension map A._, with respect to Ko _1 <
K0_1>4€ 1( )fOTTl

(¢) Mazimal extendibility holds with respect to Ko _1 < E,l and K_1 < Z,l.

https://doi.org/10.1017/nmj.2023.14 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.14

930 B. SPATH

Proof. As in the proof of Lemma 3.13, we see that L= T_lGLl<tJ71,tJ71,2>, where
T ,:= Tf}:l, ¢ €F* with (Y2 =, t;  :=h, (¢?) and t;_, »:=h;_ (¢). Note that the
action of L on G J_, coincides with the one of <T_1,t J_ist J_172> up to inner automorphisms.
By the definition of Gy ,, we see

Dys_y),s¢(q), if type(®_1) =Dj;_,,
GJ—I = SL4((]), if type(q)—l) = A3>
SLa(q) x SLa(q), if type(®_1) = A1 x Ay,

Assume type(®_1) =D;_, with [_;:=|J_1| and [_1 > 3. Then T_1 < G,_,. The elements
ty_, and t;_, o act as diagonal automorphisms on G;_,. Part (a) follows from Theorem 2.13.
By Hypothesis 2.14, we can choose a V_1 (F,)-stable L_;-transversal T° | in Irreysp (Ko,—1)
such that maximal extendibility holds with respect to Ky _1 < Ko —1 % (7, F,) for T_;.
Note that Ko _1 3 (vy,F,) = Ko _1 % (e_1(V _1) x (F},)). By this choice, we see that an
extension map A, as required in part (b) exists. Note that the actions on G;_, induced
by v and n., (w) coincide by 3.3. According to Theorem 2.17, maximal extendibility holds
with respect to G_, <t L_;. This proves part (c) in the case where type(®_1) = D;_, with
l_1>3.

Assume type(®_1) = A; x Ay, then t;_, induces on both factors a noninner diagonal
automorphism, while ¢; | » induces a noninner diagonal automorphism only on one factor,
since hg = he, ¢, (—1)he, 1¢,(—1) and h,, (@)h,, (@) = he, 4e,(—1). Clearly, V_; acts by
permutation of the two factors. Let T(SLz2(q)) be an (Fj)-stable GL3(g)-transversal in
IrTeusp(SLa(q)) (see Proposition 2.19). Then T°; := T(SLa(q)) x T(SLz2(q)) is a V _1(F})-
stable L_;-transversal in Irreysp(Gy_, ). This proves part (a) in that case. Part (b) follows
from the fact that Ko _1 xe_ 1(V 1) 2 SL2(q)Cs (see also Lemma 4.6). Part (c) follows
again from the fact that L_; is (SL2( )2, where

SLy(q) := {z € SLy(F) | F,(z) = £} .

Assume type(®_1) = A3. Recall ap =ea+e1, ay =es—e, and «; :=e; —e;_1(i > 3) for
the simple roots in A. In this case, G;_, = SL4(¢) and n., (w) acts on G;_, as a nontrivial
graph automorphism. In order to see the automorphisms induced by t; , and t; , 2, we
use again the equation hg = h,, (—1)h,,(—1) and additionally the equation

h3(w) = ha, (~@)ha, (—@)hay (=1).

This implies that ¢; , induces on G;_, some noninner diagonal automorphism of SLy(q)
corresponding via the Lang map (see Remark 2.16(b)) to the central involution, while t; | 5
induces a diagonal automorphism of SL4(q) associated with a generator of the center. Let
E(SL4(q)) be the subgroup of Aut(SL4(q)) from Proposition 2.19. According to Proposition
2.19(a), there exists a GL4(q)-transversal T(SL4(q)) in Irr(SL4(q)), that is stable under the
group E(SLy4(q)) generated by graph and field automorphisms of SL4(¢) and such that
maximal extendibility holds with respect to SL4(q) <<SL4(q) % E(SL4(q)) for T(SL4(q)).
This choice guarantees part (b). As L_i/Gy_, is cyclic, part (c) holds in that case,
as well. 0

Recall H; := (ho,h;_, (w)).
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LEMMA 4.9.

(a) There exists some V _1-equivariant extension map No,—1 with respect to H_; <V_,.
(b) If A€ Trr(H_1) with A(ho) = —1 and X € Irr(H_y | \), then (V_1)5 = H_,.

Proof. As V_y/H_; is cyclic, there exists an extension map as required in (a). For the
proof of (b), note that the equality [n1,h;_, (@)] = ho implies A™* # X as A\(hg) =—1. [

4.4 Proof of Theorem B

We now finish the proof of Theorem 3.1 and therefore Theorem B. The above allows us
now to verify the character-theoretic assumptions from Proposition 3.2 for the groups K,
Ky, Ko,q, and Vp, introduced in Lemma 3.11 and Theorem 3.22. From the definitions of
Ky q before Lemma 4.4, we see Ky = (Ko 4 | d € D), even more Ky is the central product
of the groups Ky 4 (d € D).

By abuse of notation, we write Irre,s,(K) for Uxemcuw(L) Irr( x| 5 ) C Irr(K).

PROPOSITION 4.10. There exists a V (F),)-stable z—traniversal Ko in Irreysp(Ko).
Moreover K :=Irr(K | Kg) and T =Irr(L | K) are N Ep-stable L-transversals in Irteys,(K)
and Irre,sp (L), respectively.

Note that this implies Theorem 3.1(a).

Proof. For d € D\ {1}, let T be the V 4(F,)-stable Ly-transversal in Irreysp (Ko,q) from
Propositions 4.5 and 4.8. Note that Ky ; = 1. The group K is a central product of the
groups Ko 4 (d € D) according to Lemma 3.13. Hence, the irreducible characters of K
are obtained as the products of the irreducible characters of Ky 4. The central product of
the characters in T form a subset Ko C Irr(Ky). We see that Ko is Vp E-stable since Vp Ep,
and V(F},) act on each factor Ky 4 as Vd< p)- Let T :=TNL " ((ho)). The automorphisms
of L induced on K are induced by Ko, T =[Luen T, and tr2 = [septsa2 (see Lemma 4.2).
According to Lemma 4.3, the element ¢, o acts trivially on G4, whenever d > 1. Hence, Ko
is an L-transversal of Irreysp (Ko) as well. Accordmg to Propositions 4.5 and 4.8, maximal
extendibility holds with respect to Koy 4 < Ly. Since [Ld,Ld/] =1 for every d,d’ € D with
d # d’, this implies that maximal extendibility holds also with respect to Ky < LasL<

<Ed |de ID)>. Since E/KO is abelian by Lemma 3.13, K and T are again N E}-stable L-

transversals in Irre,sp(K) and Irre,sp(L), respectively. U

We apply the following statement in order to construct some extension map with respect
to LN for Irre,sy,(L) satistying Equation (2.2) from Theorem 2.7.

PROPOSITION 4.11. There exists a Vp X Ep -equivariant extension map Ao with respect
to H<Vp.

This ensures Assumption 3.2(ii.1) with the choice made in Lemma 3.11.
Proof. Recall V := H(V4|deD) and Vp :=V NG (see Theorem 3.22). Let H, =
<f~Id |de ID)€>. We apply the extension maps from Proposition 4.1, Lemma 4.7, and

Proposition 4.8(c) for constructing a V-equivariant extension map for H <1 Vp. Note that
by the definition of V, n; € V\ Vb whenever v € Er, and then n; and v induce the same
automorphism on G according to Definition 3.4. By Theorem 3.22, [F,, Vp] = 1. Altogether,
it is sufficient to prove that maximal extendibility holds with respect to H <1 V.
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Let A€ Irr(H) and X € Irr(H | A). Then A = GgepAg for some Mg € Irr(Hy) (d € D). Let
14 be the extension of \j:= A m, to (Via)a, given by Proposition 4.1, Lemma 4.7, and
Proposition 4.8(c).

Assume A(hg) = 1. Let X € Irr(H/(ho)) be associated with \. It is sufficient to show that
X extends to V/(ho). Since [V 4/(ho),Va/{ho)] = 1 according to (3.2), the group V' /(ho) is
the central product of the groups V 4/(ho). The characters 14 (d € D) define extensions 1),
of Ag to (Vg)x,/{ho) and ¥ := ®gept), lifts to a character 9° of <(Vd)>\d |de ID)>. Recall
H > (Hq|deD). According to [S3, 4.1(a)] we see that A\ has an extension 1 to V') such
that 1/ﬂ<(vd)xd jden), = ¢°]<(Vd)xd deD) - The extension map with respect to H < Vp for

Irr(H | 1(,)) obtained this way is then automatically V x (F},)-equivariant.
Assume otherwise A(hg) = —1. As in Lemma 3.10, let Dogq :={i € D |7 odd} and Deyen :=
{i € D|i even}. For € € {odd,even}, recall

. ::<ﬁd \deDe>, H.:= H.NH,,
and H = Heyen X Hogq (see Lemma 3.10). Analogously, we define
V= H€<Vd |d€]D€> and V.:=H.V.

Notice that by this definition Voyen < Vp and hence Vp = H (Veyen-(Voaa N Vb)).
Let XE = X—‘ _and A\ := A .- Since [V4,Va]=1 for every d € Deyen and d €D by

€

(3.2), the extensions 14 (d € Deyen) allow us to define an extension of Aeven t0 (Veven)eyey -
Now, Heyen is the central product of the groups Hy (d € Deyven) and (Veven)aope, 1S

analogously the central product of the groups (V 4),. Hence, the product of the characters
a (d € Deyen) defines an extension Aeven € Irt((Veyen ) a of Aeven-

In order to extend Aoad to (Vodd)a,.q, We first extend Xodd = X-‘

even)

. Again, Xodd

Hoaa
is the central product of characters Xd (d € Dogq). According to Proposition 4.1(b) and
Lemma 4.7(b), we have (Vd)Xd < Vp. The same holds also for d = —1 by straight-forward
calculations.

Let v € Irr(Hoaq) with ker(v) = Hoqq. According to Lemma 4.7(b), there exists some

element cq € V4 such that (Vg), = <(Vd)decd>7 which satisfies de =\ V] 7, The exten-
sions 14| (V). define easily extensions Pl of Xg to ﬁd(vd);\d. The restriction tg] )
d Ad

is then cg4-stable. Since (Vd)Xd is contained in Vp, the group (Vodd)x - is the central

product of the groups ﬁd(Vd)Xd (d € Dogq). The product ¢ := HdeDodd !, determines

uniquely an extension v” of Aodd to Erodd(Vodd)X ., Routine calculations show that

(Vodd)roaa = (Voad)s_, (Coaa) where codd = [[4ep,,, ca- The character "] Hoaa (V

is then coqq-stable and extends to (Vodd)a

Aodd t0 (Vodd)Aoaa- - ~
Recall [V 544, Veven] = 1. Hence, the extensions Aoqq and Aeyen determine an extension of
A to V) (see [S1, Lem. 4.2]). 0

)\odd Odd);‘odd

_ ~

.aq- This way we obtain an extension A,qq of

In the next step, we show that there exists an extension map with respect to Kq <1 Kq X
€(Vp) for the set Ky from Proposition 4.10 as required in Proposition 3.2.
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PROPOSITION 4.12. There exists a VpEr -equivariant extension map A, with respect to
Ko< Ko xe(Vp) for Ko, where € : Vo Er, — Vb Er/H is the canonical morphism.

Proof. By Propositions 4.5 and 4.8, there exist V 4(F,)-equivariant extension maps A,
with respect to Ko 4 <1 Kqq % e(Vd) for Tg, whenever d € D with d # 1. Note that the case
d =1 is trivial since K1 = 1. The group Ko x €(V) is the direct product of the groups
Ko.a @ €a(V4). Using the maps A, (d € D), we therefore obtain an extension map A, as

required. 0
This leads to the following statement. We use the set
K:=TIrr(K | Ko)

with Kg from Proposition 4.10. For the application of Proposition 3.2, we use the group
M = KVp (see also Corollary 3.23).

PROPOSITION 4.13. There exists a V Ep-equivariant extension map A qn with respect
to K< M for K.

Proof. By the above, all the assumptions of Proposition 3.2 are satisfied. The groups
satisfy the required assumptions in Proposition 3.2(i) according to Corollary 3.23. Using the
set K, given as Irr(K | Kg) from Proposition 4.10, the set Ko coincides with [Jy g Irr(A] g )-
With the Vp Ep-equivariant extension map Ag for H << Vp from Proposition 4.11 and the

extension map A for Ko< Ky xe(V) from Proposition 4.12, Assumption 3.2(ii) is satisfied.
The application of this statement implies the result. 0

For the set T defined as Irr(L | K) in Proposition 4.10, we verify that there exists an
N E-equivariant extension map with respect to L <<N for T.

Proof of Theorems 3.1(b) and B. For the proof, it is sufficient to construct for every
A€ T =TIrr(L | K) some N Ep-stable extension to Ny. A character A € T lies above a unique
Ao € K =TIrr(K | Kg). Moreover, some extension Ao € Irr(Ly,) to Ly, satisfies (Ao)Z = A. By
the properties of K, we see Ny, = Ly, M), , which is normalized by (NEL)XO" By Proposition
4.13, the character Ao has a (V(F,)),,-stable extension to M),. According to [S3, 4.1], this
defines an extension ¢ of XO to NXO since NXO < Ly,M,,. By the construction, we see that
»™ is an extension of \.

As T is an M-stable E—transversal, NAO = EAOM/\O and (]\NIEL)AO = E,\OJ\/EAO. Hence, this
extension of Ay defines an extension of A\ as required. 0

Later this ensures Assumption 2.12(ii).

REMARK 4.14. While Theorem 3.1(b) assumes ¢ to be odd, the proof would give a
similar conclusion in the other case. For even ¢, every x € Irr(G) satisfies (éE)X = éxEx
since G = G in the notation of 2.2. Nevertheless, the conclusion of Theorem 3.1(b) holds
as well. We observe that the arguments from before prove that there exists some NFE|-
equivariant extension map Ko < KoVp for Irrey,s, (L), where Vp is isomorphic to N/L and
is defined as before with 1 = £w in the argument of the Chevalley generators.

85. More on cuspidal characters

In order to prove our main theorem, we need more specific results on cuspidal characters,
especially with regard to automorphisms. We keep ¢ a power of an odd prime.
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PROPOSITION 5.1. Let n >3, x € Irreysp(GL,(q)), and v € Aut(GL,(q)) given by
transpose-inverse up to some inner automorphism.

(a) If x” =x, then 2 |n and Z(GL,(q)) < ker(x).
(b) If x” = x6 for § € rr(GL,(q)), a linear character of multiplicative order 2, then 2 | n.

Proof. Let us recall the form of elements of Irr.,s,(GL,(q)) (see also [B1, 16.1]). We
write K := GL,,(F) and K* := GL,(F) as the dual with F,-structures given by F. Let
s € (K*) = GL,(q) be such that the Lusztig series £(K*',(s)) associated with s contains
a cuspidal character. Combining [GM, 3.2.22] and the fact that the group Ck-(s)f" of type
A can have cuspidal unipotent characters only when it is a torus (see, e.g., [GM, Exam.
2.4.20]), we get that s is regular and Ck-(s) is a Coxeter torus. This can be summed up
in the fact that the spectrum of s is a single orbit of length n under F, or equivalently
F,[¢] =F4n for any eigenvalue ¢ of s. Concerning the action of v, note that an element of
E(K¥,(s)) is sent to an element of £(K¥',(s71)) (apply [CS1, 3.1]).

For the proof of (a), let x € £(K!,(s)) be invariant under 4. Then s and s~! have the
same spectrum. If 1 or —1 is an eigenvalue of s, then s € {Id,,—1Id,,} and n =1 since the
eigenvalues of s form a single F-orbit. This is impossible, so inversion is without fixed point
on the spectrum of s. This implies that n is even and that the product of the eigenvalues of
s is 1. So s € [K*, K*]¥" and this implies that all characters of £(K*',(s)) have Z(GLy,(q))
in their kernel (see [CE, p. 207]).

For the proof of part (b), note that by the assumptions ¢ is odd and SL,(q) is perfect
(see [MT, 24.17]). By the correspondence induced by duality between (linear) characters
of KI'/[K,K]¥ and elements of Z(K*)!" (see, e.g., [DM, 11.4.12]), we have d&(K¥',(s)) =
E(KF (—s)). Assuming x” = xd, the same considerations as above show that s and —s~*
have the same eigenvalues. The spectrum of s is of the form {F(¢),F2(¢),...,F"(¢) = (}
with Fy[¢] = Fyn. Since s and —s~! have the same eigenvalues, then —(~! = F*(¢) for
some 1 <a <n. We have F?*(¢) = —F*(¢)~! = ( and therefore F 2. O F,[¢] = Fgn. Then
n divides 2a. Assume now that n is odd. This implies that n divides a <n. So a =n and
—(~'=F"(¢) =¢. But then, ¢(? = —1 and F,[¢] C F,2, which contradicts n > 3. So we get
our claim that 2 | n. U

The following statement is used later for computing the relative Weyl groups associated
with cuspidal characters of a Levi subgroup of D; 4. (q).

PROPOSITION 5.2. Let n > 2, © € Irreysp(SLy(q)), and v € Aut(GL,(q)) given by
transpose-inverse up to some inner automorphism. If |GL,(q) : GL,(q)y| is even and
Y =1, then n =2 and 1 is one of the two characters R, (8) (0 € {£1}) of degree %
from [B2, Table 5.4].

Proof. According to [B2, Table 5.4], the two characters R, (6y) (o € {£1}) are the only
characters of SLa(q) that are cuspidal and not GLs(g)-stable. The characters R() given
there are GLo(g)-stable and the other characters R,(ag) (o € {£1}) are in the principal
Harish-Chandra series. Note that 7 then restricts to an inner automorphism of SLa(q).

Now, consider n > 3. Let 1) be as in the proposition, and let x € Irr(GL,(q) | 1), so that
X is cuspidal thanks to Lemma 2.5(c). We keep the notation of the proof of Proposition 5.1
with x € £(GL,(q),(s)) and ¢ some eigenvalue of s.
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By Clifford theory, x is induced from a character of GL,(q)y. Then the assumption
2 | |GL,(q) : GLn(q)y| implies x = v1x for v € Irr(GL,(¢g)) the linear character of
order 2 with kernel containing SL,(¢). Hence, s is GL,(q)-conjugate to —s. Then —( €
{F(¢),F?((),...,F™(¢) = ¢} since this is the spectrum of s.

Clifford theory also tells us that the assumption ¥? = implies x” = v5x for some linear
character vo of GL,(q) with SL,(q) in its kernel. Then s~! is conjugate to As for some
A eF¥. As before, we obtain (' € {AF({),AF?((),...,A\F"(¢) = A(}-

We can now write —¢ = F?(¢) and \(~! = F?(¢) for 1 < a,b < n. The first equality gives
F?%(¢) = —F*(¢) = ¢ and the second F?*(¢) = AF?(¢)~! = ( since A € Fy. So ¢ € F2a NF 20,
but since F,[¢] =F4n, we get that n divides both 2a and 2b. The latter are at most 2n, so
2a,2b € {n,2n}. Having a = n would imply —( = F"({) = ¢, which is impossible because ¢
is odd. So 7 is even and a = %. On the other hand, if b =n, then ¢ = F"(() = A1 and
therefore (% € F,. Then Fy[¢] CF,2 and this implies n = 2.

There remains the case when b= 2 =a. Then A(~' = F*(¢) = —( and again (* € F,.
This yields n = 2 as seen before. 0

We complement the above by a result on cuspidal characters of D;s.(g), which follows
from a combination of results from [Mal2] and [S4]. We use G, F, v from Notation 3.3 and
ho from Notation 3.9. Recall the Lang map £ defined on G by L£(g) = ¢ 'F(g). Note that

L7 (o)) / (ho) = (G/(ho))" = SO (Fy).

PROPOSITION 5.3. Recall G := LY (Z(G)) = Ng(GF) (see Remark 2.16). If X €
It cusp (G | 1)) with Gx < L7 ((ho)), then vy acts trivially on A and Irr(L7((ho)) | A).

Proof. Recall that a character of GT is called semisimple when it corresponds to a trivial
unipotent character through the Jordan decomposition of characters. The components of
their restrictions to G are also called the semisimple characters of G'. In particular, both
are of degree prime to p (see [GM, 2.6.11)).

According to [Mal2, Th. 1], there exists a semisimple character p € Irr(GF") with (éE)p =
(GE),, where p and A lie in the same rational Lusztig series. We use now results from [S4] to
investigate p further. In a first step, we prove that « acts trivially on p and Irr(£~1((ho)) | p).

We assume that G, T, and A are as given in Notation 3.3, and let U := (X, | a € A)
and B := TU. As group G introduced in 2.2, we use the particular choice from
[S4, 3.1]. Then G and @ induce the same automorphisms on G¥. Let B := BZ(G).
Let € : Irrpr(éF) — Irry (BY) be the Irr(GF /GF) x E(GF)-equivariant bijection with
Irr(J—‘ z(éF)) = Irr(ﬁ(&)—‘ ) for every 1 € Irr,y (GF) from [S4, 3.3(a)).

Z(GF)
Let peIrr(GE | p), ¢:=Q(p), and ¢ € Irr(g‘ BF)' Let C be the Cartan matrix associated

with A and C~! = (¢, 4) its inverse. Let ¢ € F* be a root of unity of order det(C)(¢—1) =
4(g—1). For a € A, we set

t((xO) - H hﬁ(cdet(C)caﬁ)
BeEA

(see also [Mas, 8.1]). Then we can choose elements t, € t&O)Z(CN-‘w) NTF such that TF =
Z(GF){(ty | a € A) (see [Mas, §8]). Assume that A is given as in Notation 3.3, and let
a € {ea te1}. The entries of C~! can be found in [OV, p. 296]. We see £( (O?)) = (t&o))qfl €
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h, (@) (ho). Hence, t,, induces a diagonal automorphism of G" associated with some element
in hy(w)(ho) in the notation of Remark 2.16(b).

We abbreviate G := £71((hg)). The assumption G, < G implies A« # X. Via the
construction, we have (GE) o= (GE)y and hence p'e # p. By Clifford theory, the character
p satisfies p(t,G¥') =0 and is stable under multiplying with linear characters with kernel

{g € G¥ | g induces diagonal autom. of G'" associated with an element of (hg)}

(see 2.16(b)). As Q is an Irr(éF/Gli)—equivariant bijection, the character ¢ has to satisfy
¢(ta) =0 as well. Asin Remark 2.16, ¢ cim be extended to some character x on BY'Z=DBy.Z,
where £ is the Lang map on G, Z := L 1(Z(G))NZ(G), and By := L~1(Z(G))NB. Note
that By = (GF)<t(O) | B e A>UF Then x( (0)) = 0. The character ]z, is 7-stable, since
Irr( k], gr)l) =Dr(@]zgry) is y-stable because of ho € ker(¢) and t(ﬁo)
B € A\ {ea+ter} according to the explicit value of C~1.

As kK is y-stable, ¢ € Irr(k|gr) = Irr(g‘ BF) can be assumed to be ~y-stable (see [S4,

3.6(a)]). By Clifford theory, r|g, is of the form ¢Po for a unique ¢ € Irr((§0)¢). As ¢
extends to ﬁg according to [S4, Th. 3.5(a)], the character ¢ is an extension of ¢. As x and
¢ are y-stable, ¢ is v-stable. Note that (EO) <B:= E‘1(<h0))

Via the statement given in Propos1t10n 2.18, some G- conJugate p of pis v-stable and
has also a v-stable extension to G. If p/ # p, we observe that (G(7))! = G(v) for every
t' € L7 (hy(w)). Hence, the character p extends to G(), as well.

We deduce from this result on p the analogous property of A. Recall that A and p are
in the same rational Lusztig series and that (GFE) = (GFE),, in particular GF GF
Recall that p € Irr(GF | p) and Irr(GF /GF) acts on Irr(GF) by multiplication with linear
characters. As G¥ /GT is abelian and maximal extendibility holds with respect to G < GF,
we see

is v-fixed for every

Ir(GF /G =Ir(GF/GY) = Iir(GF /G = e (GF /G5

Let £ (éF ,$) be the rational Lusztig series containing p. The character p is semisimple.
The series £(GF,s) contains exactly one regular character (see [DM, 12.4.10]). By the
definition of semisimple and regular in [DM, 12.4.1], we see that there exists also a unique
regular character in that series. Let 7/ € Irr(GF) be the Alvis-Curtis dual of 5 up to a
sign (see [DM, 7.2]). Then {p'} = Irr(I' INC)) NE(GF,s), where I'(G") denotes the Gelfand-
Graev character of GF. Since it vanishes outside unipotent elements, the Gelfand-Graev
character is stable under Irr(G¥ /G¥'). Hence, Irr(G¥ /GF )7 coincides with the stabilizer
of £(GFs) in Irr(GF /GF). This group is called B(s) in [CE, 15.13]. By the construction of
Alvis—Curtis duality, this implies Irr(GF /GF )5 = B(s). The characters p” and X7 belong
to E(GF,’y_l(s)). As X and p are y-stable, 57 = pu and A = Ay’ for linear characters
1 € Irr(GF ). Since p” and M7 are in the same rational series, 1 € /B (s) or equivalently
Mar = 1lar-

Because of Irr([ﬂz(éF)) = Irr(x—‘ z(éF))’ Proposition 2.18 allows to conclude that A\ has
a y-stable extension to G as p has such an extension. O
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§6. Character theory for the relative inertia groups W ()

The aim of this section is to ensure Assumption 2.8(ii), namely to prove (a main step
toward) the following statement.

THEOREM 6.1. Let | > 4. Let GI =D 4.(q) with odd q, and let L =L" be a standard
Levi subgroup of G (see Notation 3.3). Let N, N':=TyN, and Ey, := StabE(GF)(LF) be
associated with L as in Lemma 2.8. If Hypothesis 2.1/ holds for every " with 4 <1’ <I, then
there exists some Ep-stable N'-transversal in Irreysp (V).

Some technicalities (mainly in the case where G = Dy . (F)) delay the complete proof
until §7. We construct the Ep-stable N’-transversal as a subset of Irr(N | T), where T is
the N-stable N'-transversal from Theorem 3.1(a). In Lemma 6.3, we find some E-stable
N’-transversal of Irr(N | {\ € Irreysp(L) | L), = L}) where L' = TyL as in Theorem 2.8.

In order to find the transversal of Irr(INV | {\ € Irrcysp(L) | E’)\ # L}) with the required
properties, we apply the strategy mapped out by Proposition 2.12, itself based on the
parametrization of Proposition 2.10. Thanks to Theorem 3.1, the two first assumptions of
Proposition 2.12 can be assumed, in particular there exist some N -equivariant extension
map Ayt with respect to L <N for T, where N=NE 1. We have to ensure the remaining
Assumption 2.12(iii) and study the characters of the relative Weyl groups and their Clifford
theory.

As already discussed in §2.3, characters in such a transversal have a stabilizer in N’ Er
with a specific structure, namely such a v € Irr(N) satisfies

(NL')y = Ny L), (6.1)

(see also Lemma 2.4). For studying a character ¢ € Irr(IN | T), we apply the parametrization
T from Proposition 2.10(a) and the extension map Az r with respect to L<<N for T. Then
Yv="T((\,n)=ArLr(N)n)Y with A € T and 5 € Irr(W(X)). According to Proposition 2.11,
the character ¢ = T((\,n)) satisfies Equation (6.1) if

7 is I?()\)no-stable, where \ € Irr(z’/\ | A) and no € Irr(W(X)),

where W = NE[, /L and K (A) = /I/IZA. The aim of this section is Corollary 6.36, namely to
prove that for every A € T, A € Irr(L), | A), and ng € Irr(W (X)),

there exists some K (\),,-stable n € Irr(W(X) | no),

where K(A) is the group from Notation 6.4. According to Lemma 6.5, such a character 7
is also K (A)yy-stable, whenever G is not of type Dy.

In the proof, some arguments depend on the group E’)\ As in Remark 2.16, we relate the
group L' to subgroups of G.

NOTATION 6.2. Recall the definitions L := £~ 1(Z(G))NL and L := £7((hy)) NL from
Lemma 3.13, where £: G — G is given by 2 — z1F(z). Recall N’ := TyN and set
analogously N :=LN. Then L' and N’ induce on G the same automorphisms as L and N ,
respectively.

Note that by an application of Lang’s theorem, £(L) =L D Z(G) so that L < L < L.
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For A € T, the characters of W(A) and W(A) defined as above will be investigated
depending on the value of Ly. The set Irr.,sp(L) can be partitioned in the following way:

T usp (L) = ME UME UME) LM,

where M(X) := {\ € Trr oy (L) | Ly = X} for any subgroup L < X < L and M := Irreysp(L)\
(M) uME) QM(L)). (In case of \Z(Gj)\ = 2, one has M) = ().) Note that the sets are
by definition NV FEp-stable as L, L, and L are N E-stable. In the following, we construct an

E-stable N-transversal in Irreysp (N | M) for each of those four given N E-stable subsets
M’ C Irreysp(L).

LEMMA 6.3. Let T := TNM®). Then Irr(N | TE)) is an Ey-stable N'-transversal in
Irr(N | M(5)),

Proof.  The set T is by construction N Ey-stable, and no two elements are z—conjugate.
Hence, for A € T we have (NEL L)y = (NEL) by Lemma 2.4. By Clifford theory, Trr(V |
T(F) is an N-transversal in Trr(L | M) and is N Ep-stable. 0

Determining an NFEj-stable L-transversal in Irr(N | M) for the other sets M’ is
more involved. We start by some general descriptions of W(\) and related groups for
A € Irreysp(L) (see Proposition 6.28). Afterward, we collect some particular results on
cuspidal characters. In the following two subsections, we verify for characters of W(\)
the above condition under the assumption that A € M(X) UM, or X € M),

In §6.4, we ensure a closely related condition on characters of W (A) for A € Irreyqp (L)
with Ly = L. In 87, we show how these considerations prove Theorem 6.1 and how this
implies Theorem A.

6.1 Understanding Irrq,sp(/N) via characters of subgroups of W

We start by recalling some basic notation and introducing subgroups of W:=N /L =
NEL/L as in 2.8. Additionally, let N :=Ngr (L) and W = N/L (see also Proposition 3.16).

NOTATION 6.4. Let G and F: G — G be as in Notation 3.3 with odd ¢. Let L be
the standard Levi subgroup of (G, F) such that L = L¥. For any J with L <J < L and
A € ZIrr(J), we set W()) := Ny/L. If additionally J is Er-stable, W acts on Char(J);
hence, we can define W (\) := W and K () ::WX‘“FPY‘ .

J

The groups K (\) and K (M) are strongly related; in particular, by the following result, it
is sufficient to consider K () instead of K(\) if G is not of type Dy. Recall that + is the
graph automorphism of G of order 2 swapping a1 and as.

LEMMA 6.5. Let E°:=(F},,7)

), Ep=E°NEL, A€T, X defined as above, no € Irr(W (),
and n € Irr(W(X)). Then n is K(X\)y,

no V(W x E})-stable if and only if it is K (X)y,-stable.

Proof. Note that F), € Z(W); hence, n and 7y are F,-stable. Recall that W can be
identified with the quotient (W N (W x E?))/(F,). The group KN (W % E?) then projects
to K (), that is, for every w € W and e € (F},) with \¥¢ = X\, we see (/\LEE]L)“J = A. This
implies I?(A)(Fp) NW = K()\) and I?(/\)no (Fp)NW = K (X),,. As F), stabilizes 7, this implies
the statement. i
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For A€ T and X € Irr(Ly | A), the group W () is determined by X—‘ 88 W acts trivially
on the characters of Ly /L. Note that W (X) # W ( W ) in general. We can work with the

group L instead of L' because of the following observation.
LEMMA 6.6. Let A € Irreysp(L), Xelrr(L| A), and X € Irr(L | A).

(a) Then W(X)=W(X) and W(X) = W(X) for every X € rr(L' | )).
(b) Then W(X) < W) <W(A) and W(A) < W) < W(A).

Proof. By the construction of T, the character A € T satisfies (N L) A= =N L. Because
of G = Z(G)G, the group L’ is a subgroup of LZ(G) and L’ = LN LZ(G). This implies
(NEL)sx = (NEL)5, and hence part (a) (see Remark 2.16 for a similar argument).

As hg is centralized by N the group L is normalized by N and N. The containments
from part (b) follow from this by straightforward considerations. 0

For Ae T and X € Irr(L | A), we compute W () as an approximation of W(X). For I € O
and d € D, we use the groups Gy, Ly, ZI, and Ly from Notation 3.9 and Lemmas 3.12 and
3.13. In Lemma 3.13, the structure of L and some of its subgroups was already studied.
Additionally, we use the following properties of L.

PROPOSITION 6.7 (The structure of E). FordeD and I € O, let Ly:= LNLy.

(a) Ly is a split torus of rank |J1|.

(b) L is the central product of Ld (d € D) over (hg).
(c) Ld is the central product of Ly (I € Og) over (ho).
(d) [L1,Lp]=1 for all I,I'c O with I #1T".

Proof. The first three parts follow from Lemma 3.13(c).

Part (d) is clear if I € Oy or I’ € O;. Note that the groups ZI and E]/ contain the root
subgroups for ®; and ®;/, which are orthogonal to each other. At least one of them is of
type A;. Hence, no nontrivial linear combination of roots from ®; and ®;/ is a root itself.
Hence, by Chevalley’s commutator formula, we see that the commutator of the groups is
trivial. 0

We continue using the groups V4 from Lemma 3.21 for the description of W(X) We write
Irreysp(L) for Irr(L | Irreysp(L)).

LEMMA 6.8 (Characters of E) Let A € Irreysp (L ) A € Irr( -‘L ) for every d € D and

d

Ar € I —‘ ) for every I € O. Then:
(a)
(b)
()
(d) (

Proof. The description of X and Xd in (a) follows from the structure of L and fd given

E]D))\d and )\d = @Ieod)\l for every d € D,
GAI rcusp(Ld) and )\1 € Irrcusp(LI)
(N\) is the direct product of the groups Wd()\) (Va)z/Hg (d€D), and
a)5/Hi=(Va)s,/Ha.

%‘ >/>>4>

<l

in Proposition 6.7. The characters Ay and A; cover a cuspidal character of Ly and Ly,
respectively, by Lemma 2.15, which then also gives (b). Considering the roots underlying
Vg and Ly, we see that the Chevalley relations imply [V, Lg| =1 for d,d’ € D with d # d’.
This implies the parts (c¢) and (d). 0
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For a more explicit description of the groups W(X), we introduce some elements of V
using the maps kg (d € D) from Lemma 3.21. For d € D\ {—1}, recall Oy ={I41,...,14.a,}
from Notation 3.17.

NOTATION 6.9. Let d e D\{—1} and ¢;,, := ka(ne, (w)) € V4 for every j € aq. Note
that for every I € Og4, c¢r is some V 4-conjugate of ﬁgd) and pr(cr) = [[;¢;(i,—i), where
pr : No — S, is the natural epimorphism (see before Proposition 3.16). If 21 |I| and
I ¢ O_1UQO, then by considerations as in the proof of Lemma 4.4(b), ¢; acts as transpose-
inverting on Ly via the identification of Ly with GL7(q).

We define additionally the subgroups

Vas=Hg(ka(Me,—e, ,(—1)) |i€ag—1) (6.2)

and Vg := <Vd,S ’ de D\{—l}). Then pT(Vs(LﬂNO))/pT(LﬁNg) =8Sp <Si0.
If —1 €D, then we set c;_, :=1n; from 3.19.

Using the notation of permutation groups given in Notation 3.14, we identify the group
W = N/L with S1o. Computations in W show that V = H{cr | I € O)Vs.

DEFINITION 6.10. Let Xe Irr(L). We call X standardized if for every I, I' € O the
characters )\[ and )\p are either Vg-conjugate or not V-conjugate. For such )\ we call

the characters in Irr()\-‘ L) also standardized.

Computations show that every standardized character A satisfies Vi =Hlcr | I€0)5
(Vs); and every N-orbit in Irr(L) contains a standardized character. For a more explicit
description of Wy()), we introduce the following notation.

NOTATION 6.11. Let E be a set, and let M be a subset of 27, the set of all subsets of
E. For m' C E, we write m' cC M if m’ Cm for some m € M.

Using the notation of permutation groups given in Notation 3.14, we identify the group
W = N/L with S10. In the following, we describe W 4(A\4) as a subgroup of S1p,. We use
the Young-like subgroups of S1+p, from Notation 3.14 that are associated with a partition
of Od.

LEMMA 6.12. Let A € Irreysp(L) be standardized. We set
0.\ :={IeO| () =A}.

Let YA (}) and Y'(\) F (O %) JAY (X)) be the partitions such that {I,I'} CC Y () or
{I,LI'} cCY'(N) if and only if \r and \p are Vg- -conjugate. Then

W(X) = Yiv ) * Yy
where yim) and yy,(x) are defined as in Notation 3.1/.
Proof. Note Y/(A\)UY (A) - O. As X is standardized,
Wa\) = ((I,=1) | T € Og)5 x (I, I')(—=1,~I') | I,I' € Oy)5 for every d € D.
This gives our claim. 0

Let ¢ € F* with = ((¢=Y2 and ¢;5 := h;(¢) for every I C[ as in Lemma 3.13. For
I € O\{J_1}, the element t; 5 satisfies [Ly,t7 o] = 1.
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LEMMA 6.13 (Structure of W(X)). Let A € Irreysp(L), Nelrr(L|A), Aelrr(L|X) A; €

IH(XWE ), and A; € Irr(Ly | A1) (I € O,(X)). Assume that X is standardized and EX = L.
We set

Oci(N) :={I € O, | A1) =1} and O _1(N) :={I € O(N) | (A1) # A1}

(a) For I €O, M\)\{J_1} and e =+1, we have I € (9076()\) = )\I(t%g) =eA(1).

(b) W(\) < Sioc,l(i) X SEOC,,l(X)’ more precisely

W) = (((L=1) 1€ 0 0))( (1, =D, ~1') | LI € 0e1(N)) % Yy 3093
If the character \ is clear from the context, we write O, ¢ instead of (’)C,E(//\\).
Proof. Note that the description of L given in Lemma 3.13(e) shows that X extends to

L if and only if /\1 extends to Ly := L1<t1 9) for every I € O.
We have t;2 := [[;cotr2, L£(t12) = hi(w), and L= <L,tl72> (see Lemma 3.13). This

implies L< <LI | I € (9> By the Chevalley relations, we see [Vg,t; 2] = 1. Let I,I’ € O such

that A 7 and h) 1 are Vg-conjugate. Then we can choose their extensions Y I and hy I to L 7 and
Ly such that they are Vs-conjugate, as Ny (L;)=HCy,(L;), and therefore Ay is uniquely
determined by AL

Let ¢ € Irr L;|I€0O)) with oy = A; for every I € O. Without loss of generality,
Ly

we may assume ¢|; = A. By the above construction, we have (Vs)g = (Vs)5. Because of
Vs =H{cs | I € 0)5(Vs)s, it is sufficient to determine (¢; | I € O)5 for computing V.

Let py € Irr(zj) be the linear character with ker(uy) = LI. For any Q C O, let ug €
Irr(<z1 | I € O>) be the linear character with (L; | I € O) < ker(ug) such that for every
I € O, the inclusion L; < ker(yug) holds if and only if I ¢ Q. Note that pg(t;2) =1 if and
only if |Q| is even. R B

For Q C O, let cq :=[]jcqer € V. If @ C O(N), then cq € V5 and we see that
Q" = pugno.._,- As pgno.._, (tr2) = (=1)IQ'MOe. 11 this leads to a proof of part (b),
in particular

W) = ((L~D) [T€0et) (I~DI',~T) | LI'€ 0c 1) % Yy y0v (i

Let I € OC(X)\{le}- Then cr acts by inverting on Ty, in particular ¢7', = tl_é and
ler,tre] = tl_g Because of t7 5 € Z(Lyj), we see that [t;,V4] C Z(L). Any extension XI of XI

o <E1,t1,2> satisfies X[(tLQ) # 0 since t7 o € Z(EI).
Note that vy € Irr(X—‘ 20 )) is linear. As XI is ¢y-stable, vy has multiplicative order 1 or 2.

I

We observe that 7', = t;% € Z(Ly) and hence
Ar(t55) = A (Dvr(t51,) = At 2)vr([tr2,er]) = Mtr2)vi(t73).

Accordingly, A; is cj-invariant if and only if [cr,tr2] € ker(vy) = ker(X)ﬂZ(El). This
proves (a). 0

The group W () is then generated by W(X) and an element that is described below.
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LEMMA 6.14. Let p € Irr(f) with ker(p) = L and \e Irr(f). Additionally, for every
1€0, let ur € Irr(EI) with ker(uy) =Ly, XI € Irr(//\\wi ) and \f € Irr(/):[WL ).
I I
(a) Letxze W\W(X} and \ € Irr(X-‘ L). Then x € W(X) if and only if, for every I € O,
the equality (/)\\I)I = Xpup holds, where I' € O with (EI)‘”” = Ep.
(b) We set Oyt :={1 €O | XI—‘ L= A1} and Oing := O\ Ocyr. Then W (A) stabilizes Oyt

I
and Oind-

Proof. Since E/L has order 2, we see that pe, the product of the characters fiy (I € O)
defined as in the proof of Lemma 6.13, is an extension of p. This implies part (a).

For part (b), we observe that for I € O, 0 € W()) and I’ := o~ 1(I) the characters XI-‘ .

and (X[)"-| = A ,LL]/-‘ have the same number of constituents. This proves part (b)

Ly
since I € O;yq if and only if XI—‘ . is reducible. U

I

Ly

6.2 Cuspidal characters of Ly

The aim here is to describe the structure of W(A) by analyzing Oc,—l(}\\) (see
Lemma 6.13). We show in this section that for some I € O there exist no or only few c;-stable
cuspidal characters of L; and study the kernel of those characters (see Corollary 6.22).

For I € O, let Irrcusp(ff) = Irr(ff | Irrcysp(Lr)) and call those characters cuspidal as
well.

LEMMA 6.15. Let I € Oq4 for some d € Dogq \ {£1}. There exists no cr-stable character
in Irreysp(Lr).

Proof. According to Lemma 4.2(c), L; = GL4(q) and the element c¢; defined in
Notation 6.9 induces on GGy a combination of an inner automorphism and the nontrivial
graph automorphism according to Lemma 4.4(b). The element c¢; acts on the torus
Z; :=h;(F*) from Lemma 4.2 by inverting. Hence, via the isomorphism L; = GL4(q),
the element c; induces on L; a combination of an inner automorphism and the nontrivial
graph automorphism.

According to Proposition 5.1(a), there is no cuspidal character of GL4(q) that is invariant
under transpose-inverse. So no character in Irr,q,(Ly) is c;-stable. Now, the element ¢; from
Lemma 3.13 can be chosen such that [t;,L;] =1 (see Lemma 4.3). This implies that every
cuspidal character of L; is an extension of a cuspidal character of Lj. This proves that
there is no ¢y-stable character in Irrcusp(f 1) U

~

With the following statement, the above shows that O, 1(A)NOq =0 for every d € D\
{£1} and X € Irreysp (L) with hg € ker(A).

PROPOSITION 6.16. Let I € Oy for some d € D\{x1}. Then every ¢ € Irrcusp@[ | Liho))
with 1 =1 satisfies Z¥ <ker(v), where Zy :=hy(F*) is as in Lemma 4.2.

Proof. Under the isomorphism L;/(ho) = GL4(F) from Lemma 4.2, we obtain L; /{ho) =
GLq4(q). Via this isomorphism, Z£" is mapped to Z(GL4(q)). Let ¢ € Irrcusp(ff | Lingy)- If ¥
is cy-invariant, then it corresponds to a cuspidal character of GL4(g) that is invariant under
transpose-inverse (see Lemma 4.4(b)). According to Proposition 5.1(a), such a character is
trivial on the center. This implies Z¥" <ker(¢)). 0
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THEOREM 6.17. Let v € Irr((hg)) be nontrivial, d € Deyen, I € Oq4, and let t;o be as
defined before Lemma 6.135.

(a) Ifd>4, every ¢ € Irrcusp(fj | v) with ¥ =1 satisfies t%Q € ker(1)).
(b) Ifd=2 and 4| (q—1), there is a unique ¢ € Irreys,(Ly | v) with ¥ =1 and t%Q ¢
ker(v)).

The proof goes through the next three lemmas. We keep v the nontrivial irreducible
character of (hp). As a first step toward a proof of the above, we determine the inertia
group in L; of cuspidal cj-stable characters of Lj.

LEMMA 6.18. Let d € Deyen, I € Oq, ¥ € Itteysp (L1 | v) with " =1, and t%2 ¢ ker(v)).
Then (E[)w = L[.

Proof For the proof, it is sufficient to show that a character 1) with the above properties
and (L Dy = L; cannot exist. Recall t7 5 =hy(¢'), where ¢’ € F* is a root of unity of order
2(q—1)s.

Let G’ :=Dgg sc(F) with an F,-structure given by a standard Frobenius endomorphism
Fi : G’ - G'. Let L' be the Levi subgroup of G’ of type Ay_1 X Ag_1 such that
O(L') = O4(L/) = {I,15} be defined by L’ as in 3.8. Then v defines cuspidal characters
Ar, € Irreysp(Ly, ) and Mg, € Irreysp(Ly,) that have extensions to Eh and EI2 and are
VS stable, where V¢ is associated with G’ and L’ as in Definition 6.10. We can Choose
)\1 € Irr(LI | A1;) ( =1,2) such that they are not Vg-conjugate. The group L':=L; Ly,

is a central product of the groups LI (j €2) over (hg). Let X' := )\11 )\12 eTrr(L)), N = N w .

and X € Irr(L' | X') where L' := (L/)F, L' := £/~ ((ho))NL/ and L' := £'~Y(Z(G')) "L/ for
the Lang map £': z — 2 F'(x) of G’.

Defining W, W from the above for G/ and L/, note that W(N) = W(X’) =
(I,—1I),(Iz,—I5)) and W(X) = W(N) = Siow). Note also that W) =
(11— 1) (I, — 1)) < ZOW(N)) = W), (V)]

Now, observe that the nontrivial character of W(\’) is W(\')-stable but does not extend
to W ()') as the kernel of any linear character of W (\') contains Z(W (X)) = [W(X), W (X))

This also implies that for some character n € Irr(W()\' )), the constituent ny of n] W)

has multiplicity 2 in 7] w (- The character R (X )no Testricts to (G/)F and has only
constituents with multiplicity 1 according to [CE 15.11].

Like in other places, these results are considering first the situation of Harish-Chandra
induction for a group (é’ )1 that comes from a regular embedding of G’ into a group with
connected center. These results can then be applied to the groups G/ := £~ *(Z(G')) and
the subgroup L.

On the other hand, according to [B1, 13.9(b)], the character Rf,/ (A)y has multiplicity
2 in R%: (X’ )no- This is a contradiction. This implies that a character ¢ with the above
properties cannot exist and proves the statement. 0

In the next step, we continue to consider the case where I € Oy with 2 | d.

LEMMA 6.19. Let v € Irr((ho)) be nontrivial, and let I € Oq4 for some d € Deyen with
d>2. Then every 1 € Irteyep(Ly | V) with 7 =1 satisfies t7 , € ker(y)).

Proof. Let z:= t%Q = h;(¢") for some ¢’ € F* a root of unity of order 2(¢ —1)a, and
¥ € It eysp(Ly | v) with 197 =) and 2 ¢ ker(1)). According to Lemma 6.18, X7 is irreducible.
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Note z € Z(Ly). Since d > 4, it is sufficient to show the statement in the case where I =1
and hence L; = L.

The group Lo := [L,L]" satisfies Lo =2 SLi(¢) (see Lemma 4.2). Let ¢ € Irr(4], ).
According to Lemma 2.15, g is cuspidal. Following Lemma 4.3, the automorphisms of L
induced by L are diagonal automorphisms of Ly. Since C+ 7(Lo) <Z(L) and L/(C (LU)LO)
is cyclic, we can see that maximal extendibility holds with respect to Lo <1 L. As 1/1L i
irreducible, Lw =L AsL /Ly is abelian, this implies L% < L.

We now use the fact Ly = SL;(q). Let H := GL;(F), and let I’ : H — H be a Frobenius
endomorphisms giving an F-structure such that HF = GL;(q). Via [H,H] 2 [L,L], we
identify [H, H]¥ with Lo. Hence, 1 defines 1§ € Irtcysp ([H, H]¥'). By the above, this implies

2| H":H],|.

The character wi is cr-stable. Hence, 1] 1, 18 ¢r-stable. Following Notation 6.9, ¢; acts on
Ly by a graph automorphism and L acts on Ly as diagonal automorphisms.

As )] L, 18 cr-stable, we can choose Y’ to be stable under the graph automorphism of
SL;(¢) and it is cuspidal according to Lemma 2.15. In this situation, ¢ only exists if [ = 2
(see Proposition 5.2). By the assumption d > 2, so we get a contradiction. This implies our
claim that any cj-stable character v satisfies t%Q € ker(1)). O

LEMMA 6.20. Let I € Oy and v as in Lemma 6.19. There are exactly two characters
Y € Irteysp(Ly | V) with 7 =1 and t§72 ¢ ker(v). Those characters are L-conjugate.

Proof. From the proof of Lemma 6.19 and Proposition 5.2, we see that there are two
GLs(g)-conjugate characters vy € Irr( )] (L1.L1] r), that are the only possible constituents
of . If I = {i,i'}, then 9g(he,—c,(—1)) = (—1)%1/10(1) according to [B 2, Table 5.4].
Then L¥ = SLy(q) x Z}" by Lemma 4.2, in particular hg = h;(w@)h,,_. ,(—1). Because of
¥(ho) = —1(1), this implies ¢ (h(w)) = —(=1)"F (1) = (=1) = (1),

Let x € Irr(Z1") such that ¢ =1 x k. As ¢y acts by inverting on Zy, x has multiplicative
order 1 or 2. The assumption t%Q ¢ ker(v) implies that x has order 2. This proves that given
1o, the character x is uniquely determined by the fact that 1) is ¢y-stable and t%Q & ker(v)).

Hence, the only characters with the given properties are E—conjugate. O
Thanks to the above three statements, we can now show Theorem 6.17.

Proof of Theorem 06.17. Let v € Irr((hg)) be nontrivial, d € Deyen, I € Oy, and ¢ €
Irrcusp(fl | v) with 7 = . If d > 2, then t%2 € ker(¢)) according to Lemma 6.19. This
shows part (a).

Assume d =2 and t7, ¢ ker(¢). The set Irr(¢], ) contains two characters according
to Lemma 6.18. Following Lemma 4.4(b) together with Proposition 2.19(b), the character
¢’ € Trr(y] ) is cuspidal, and satisfies (¢')°" =4’ and t7 , ¢ ker(¢"). Then there are exactly

two L-conjugate characters in Irre,sp (L7 | v) with those properties (see Lemma 6.20). Since
|Ly: L] =2, this implies that there is only one character ¢ with the given properties. This

proves (b). 0
LEMMA 6.21. If v € Irr((hg)) is nontrivial, then every ¢ € Irrcusp(ftj_1 | v) satisfies
Y £,
Proof. Note hjy_, (w) € Z(L_1) and [cs_,,h;_,(w)] = hyp. No extension v €
Irr(Z(L_1)¥ | v) is c¢y_,-stable. This implies that ¢_; is not c;_,-stable. O
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The above leads to the following statement on the sets (’)c(:\\), Oc,,l(X) and Y(/)\\)
introduced earlier in Lemmas 6.12 and 6.13. We use the notation o(u) to denote the
multiplicative order of a linear character p of a finite group.

COROLLARY 6.22. Let A € Irteysp(L), X and XI associated with \ as in Lemma 6.13.
If \ is standardized, then:

(@) Oc(A) € Ugepeyenuqt,—13 Qa-

(b) If ho € ker(X\), then Oq _1(A \) C{J-1}U{l €O | o(A\r) | 2}.

(c) If ho ¢ ker(X), then OC’,l()\) C Oy and all {\;|I € Oc—1(A N} are Vs-conjugate, that
is, Oc_1(A\) €Y (N).

Proof. Lemma 6.15 implies that (’)67_1(;\\) NOy =0 for every d € Doqq \ {£1}. This
gives (a).

For the proof of (b), assume hy € ker(A). Then Corollary 6.16 implies OC,,l(X) C
O_1UQO;. For I € Oy, the character /\1 is c¢r-stable if and only if 0()\1) | 2.

For the proof of (c), assume hg ¢ ker(\). Then O, ,1()\) NO; =0 and (907,1(/):) C O,
according to Theorem 6.17. Lemma 6.20 proves that {)\1 | 1€ 0. _1( )} are Vg-conjugate.
Hence, the partition Y () from Lemma 6.12 contains (907_1()\) 0

Recall K()) := W}ﬁ(&ﬂ . For any W-stable L < J < L, x € Irr(J), and Q C O, let

L

WO (k) =W (k) NSig and WO(k) := W (k) NW.
PROPOSITION 6.23. Let A€ T, \ € Irrcusp(i | A), A € Irx( —‘ ) (I€0), and X €
Irr(L | A). Assume that X is standardized in the sense of 6.10. We set

O'() = {Ie0| o(A1) |2YUO_1, if ho € ker()),
Oc,—1(A), otherwise.

Then:

~

(a) QY(N\) is K(\)-stable, and
(b) W) =WLA) x W2(N), where Q2(\) := O\Q'(N), and Wi(X) := W N (X) for j € 2.

Proof. Let e € (Fp) such that A and \° are N-conjugate. As N is standardized, then Ae
is also standardized. As the orders of A; and (XI)‘: coincide for every I € O, we see that
QI(X) = Ql(Xe) from the definition, whenever hg € ker(\) = ker(xe) and hence hg € ker(Xe).

Assume hg ¢ ker(\). Then hg ¢ ker(A€). Let I € O\{J_1}. Because of ¢§ € ¢t (hy), we see

Ner e _ e
e )\I@Irr<)\ L) m(x h).

In the case of X? Y 1, the character XI has some c¢y-stable extension to L 7 if and only if

the unique character in Irr(/A\e—| _ ) has some c¢;-stable extension to L;. (The set Irr(¢] z,)
Ly

is a singleton for every qS € Irrcusp(L) since L is the central product of the groups L 7 over
(ho).) This shows (’)C,_l()\) O. _1()\6) and Q! ( A) = Q! (/)\\e) by the definition of those sets.
Let w € W and e € (F},) with we € K(\). Then ¥ is standardized and Q' ( ) Ql(xw).
Accordingly, w € K ()) stabilizes Q(X). This implies part (a).
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For part (b), recall the description of W()) from Lemma 6.6:
W) = (((4,=D) | 1€ 0ca())((L,=DI',=I') | LT € O, 1(N)) % Yy 30016

First assume ho € ker(A). By construction, O,(\) C QI(X)UUdeDeve,, Oy and hence

W) = W (X) X WQ()\). According to Corollary 6.22(a), we observe (I,—I) € W for every
1€ 0.M)\Q'(N). This implies W-(X) < W and W(X) = W'(}) x W2(}) by the definition
of W.

It remains to consider the case where hg ¢ ker(A). Then Q'(X) = (’)c,_l(/)\\) C Oy by

Corollary 6.22(c) and hence WNI () < W. By the structure of W () described in Lemma 6.6,
we see W(A) =W\ x W2(\). O

6.3 Clifford theory for W(X) < W (A) in the case of LL,=1L
In this section, we study the characters of W(A), in particular their Clifford theory
with respect to K'(A). Assuming LL) = L, we prove maximal extendibility with respect to

W(A) <K (A). This result is required for a later application of Proposition 2.11. We consider
the following situation.

NOTATION 6.24. Let A € Irteyep(L), A € Irr(L
standardized and LLy = L (or equivalently X—‘ =
L

| A), and A € Irr(L | A) such that A is
2.

For further computations, we use the groups K’ (A) associated with the subsets Q7 (AN)CO
from Proposition 6.23, where K7(X) := (K(A\)S1(0\gi(x)) NS+gi(y) for j € 2.

LEMMA 6.25. If mazimal extendibility holds with respect to W7 (\) <t K7()\) for every

j € 2, then maximal extendibility holds with respect to W (X) QK (), in particular for every

no € Irr(W (X)) there exists some K(\),,,-stable n € Irr(W(X) | no).

In that situation, the above statement will ensure Assumption 2.12(iii) for (A,n) € P(L)
via Lemma 6.5.

Proof. Recall K(\):=W )1 by the definition in 6.4. As K (\) stabilizes Q'(\) and

AL(Fp
Qz(X) by Proposition 6.23, K(\) < S
K2()\). Recall that O, _1(X) C Q'(N). N

Since maximal extendibility holds with respect to W7 (\) <1 K7 () for j € 2 by assumption,
maximal extendibility holds with respect to

xS This rewrites as K(\) < K1(\) x

£Q1(N) T Cx@2(N)

W) =WHA) x W2(A) <K' (A) x K2(N).
This implies the statement as K(\) < K1(\) x K2()). 0

For A € T with Ly = L, we study first the Clifford theory of W2(X) <t K2(\) for the groups
from Lemma 6.25.

LEMMA 6.26. Let WY(\), W2(\), K1()\), and K?%(\) be the groups from Lemma 6.25.
Then:

(a) mazimal extendibility holds with respect to W2(\) < K?()\), and

(b) mazimal extendibility holds with respect to WL(\) < K*(\), if ho ¢ ker()).
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Table 6.1. Isomorphism types of W(X) and K*(\)

W) K'()
J_1¢ 0.\ W(D;,) x W(Dy,) Co x (W(By,)2Ca), if Iy =15
C2 X W(Bll) X W(BZQ), if ll 7& ZQ
J_1 € Oc,l W(Bll) X W(Dl2) Cy x W(Bll) X W(Blz)
J_1 € Oc’fl W(Dll) X W(Bl2) Cy x W(Bll) X W(Blz)

Proof. Let Y(A) F O.(X) and Y'(X) - O\ O(X) be the partitions from Lemma 6.12.
In order to prove part (a), we can assume QQ(X) = O without loss of generality. We have
W) = Wz()\) =Viv®) iyy,(x) (see Lemma 6.13). R

If ho € ker(X), then O.(A\)N(O;UO_1) =0 by the choice of Q*(\) according to Corollary
6.22. If hy ¢ ker(\), Proposition 6.21 implies (’)c(/)\\) NO_; =0 and analogously we see OC(/):) N
0, =0.

This implies OC(X) C Ugen.,,., Oa- Accordingly, W(X) is the direct product of groups
W4(X) for d € D. Tt suffices to consider the case where O = Oy = Q2(X) for some d € D
and O, (X) € {0,0}. Additionally, we can assume that Y(X) and Y’ (X) are partitions whose
elements have all the same cardinality. If O,(X) = O, then W2(\) 2 (C518;,)® for some
positive integers k and a. Then K?()\) = (C218k)1S,, and hence maximal extendibility
holds with respect to W2(X) << K2()).

If (’)0(3\\) = (), then W2(\) = Jy and hence it is isomorphic to a direct product of
symmetric groups. The group K2(\) < Ng o0, (Vy) is isomorphic to (CYy) x Sy, where
C = <ery(k,—k) |y e Y> < S8ip,. By Lemma 4.6, maximal extendibility holds with

respect to Wa(\) < Ko(\). This proves part (a).

For part (b), we assume O, _1(A\) = O, hg ¢ ker()\), and as before Ql(X) = 0. By
Corollary 6.22(c), we have K()\) =W and |W : W(A)| =2 (see Corollary 6.16(c)). As
W(A)/W(X) is cyclic, maximal extendibility holds with respect to W (X) <t K (). 0

It remains to prove the following.

PROPOSITION 6.27. Mazimal extendibility holds with respect to W(A\) < KY(\), if
ho € ker(A).

Proof. Let Oy, ={I € Oy | 0(/)\\1) =1} for i € 4 and [; := |0y 4|. By Lemmas 6.12 and
6.13, we have WQl(X) (\) < C x 810,, X840, ,, where C < Wofl(X) and C is then either
trivial or a cyclic group of order 2. The group structures depend on J_; and those groups
are described in Table 6.1, where W (B;) and W(D;) are Coxeter groups of type B; and
D;, respectively.

Note that in all cases Wol,l (X) is a Coxeter group of type B;,. Considering the structure,
we observe that in all cases the statement holds according to Lemma 4.6. 0

Recall that M(X) = {\ € Trrpysp (L) | Ly=X} and My := It eysp (L) \ (M) UM(E)) for X
with L < X < L. For characters in M(2) UM, the above proves the following:

PROPOSITION 6.28. Let A € ML) UMy, that is, LLy = L. For every A € Irr(L | A) and
no € Irr(W (X)), there exists some K (\),,,-stable n € Irr(W(X) | n).
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Proof. According to Lemma 6.25, Proposition 6.27, and Lemma 6.26 imply the
statement. i

6.4 Clifford theory for W(X) << W () in the case of Ly = L

We now study W(A) and W(X) for characters A € M), where \ € Irr(L | A) is
standardized. We prove statements on the characters of W(X) and their possible extensions
to W(A). The results later imply that there exists some FEp-stable N-transversal in
Trr(N | ME).

In the following, we study the Clifford theory of W(X) <1 K () for A € M), where K(\) =

,\L<FP>“L'

W

LEMMA 6.29. Assume |Z(GT)| =2 or equivalently q = 3(4) and 2 J(l Every X\ €
Irreysp(L) satzsﬁes L < Ly. Then Irreysp (N | ’]I‘ﬁI\\/JI(L)) is an Ep-stable L-transversal of
IrT oysp (V| M),

Proof. The arguments given in Lemma 6.3 show the statement. O

According to Lemma 6.29, we can now assume Z(G!) = Z(G). We do that until the end
of the section.

LEMMA 6.30. If |Z(GT)| =4 and A € Irreysp(L) with Ly = L, then —1 € D and X2 #
A_1. Moreover, \™ el(w) =A_1, if ho € ker(\) or type(®_1) is not of type Dy;_,|.

Proof. Recall that maximal extendibility holds with respect to L < L (see Theorem
2.17). Accordingly, L,\ =7 implies that X\ is not t; o>-stable for the element ¢; 5 € T from
Lemma 3.13. If ¢ € F* with ((@~V2 = and t75 := h;(¢) as in Lemma 6.13, then ¢, =
H160t1,2- Recall that L = E<tl,2>. The character \ is t;0-stable, if XI is tr o-stable for
every I € O. For I € C’)\{le}, we see tro € Cy, (EI) and hence X[ is ty o-stable. As \ is

not t; o-stable, —1 € D and A_; is not ¢; »-stable.

81( =) 3 1. Since A\ 7 # A_1, Proposition 5.3 implies that

In the next step, we prove A
Ay is v-stable, if type(®_1) = D‘Ll‘. We consider the other possible values of type(®_1).
We first assume type(®_1) = A; x Ay. Then L_; = SLa(q) x SLa(q). Let A_11,A_12 €
Irr(SLa(q)) such that /\L-J_1 = A_1,1 X A_1 2. By the proof of Proposition 4.8, EA < L implies
that both characters A_; ; and A_; 2 are not GLa(q)-stable. Additionally, they are cuspidal.
Following [B 2, Table 5.4], the characters A_;; and A_; 2 are uniquely determined up to
GL4(g)-conjugation. After applying some L-conjugation, we obtain that A_1,1 and A_j2
are n,, (w)-conjugate. As L induces on the SLy(g)-factors of L_; simultaneous (non-inner)
diagonal automorphisms, the set Irr( _1|A_1) contains only one character; hence, A1 is
again n., (w)-stable.

It remains to consider the case where type(®_;) = As. Again, the character A_; is
not L-stable. Via the isomorphism L_; 2 SLy(q), we see that t;» induces on SLy(q) a
diagonal automorphism corresponding to a generator of Z(SL4(q)) in the sense of 2.16(b)
(see also the proof of Proposition 4.8). We take any x € Irr(GL4(q) | A—1). Then x is cuspidal
(see Lemma 2.15(c)). Using the description of cuspidal characters of general linear groups
recalled in the proof of Proposition 5.1, we let s € GL4(¢) and ¢ € F* such that x belongs to
the rational Lusztig series of s and ( € F 4\ F,2 is an eigenvalue of s. Let det : GL4(IF) — F*
denote the determinant and det® the associated linear character of GL4(F) with kernel
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SL4(F). By the assumptions on x, we see that y = X(det"‘)q%1 and hence s and —s are
conjugate. Then —( € {(, (9, Cq2 Cqs} Hence, using again o to denote multiplicative order,
0(C)a = 2(q?> —1)a, as —¢ € {(, (Y, (q } would imply that ¢ € Fp2 or {e IFqs contradicting

¢ €Fga\Fg2. In order to compute ker( x|y, (4))): We see that dets = <= T isnot a square in
FX since o(¢)2 = 2(¢* — 1)2. This contradicts hg € ker(X), as hg corresponds to the central

involution of SLy(gq). Hence, there exists no cuspidal character A_; of L_; that satisfies
ho € ker(X\) and )\tff # A_1. This shows that type(®_;) = A3 is not possible. This finishes
our proof. 0

LEMMA 6.31. Let A € Irreysp(L) and Xe Irr(L | A) such that ho ¢ ker(A) and W(X) #
W(A). Then mazimal extendibility holds with respect to W () < K (X).

Proof. We first determine W(X) Denote c_1 :=c;_,. As the character Irr(A[,, ) is
not c_q- stable A_1 is not c_j-stable. This implies J_1 ¢ O.(\ )

If I € Oy, A; is a linear character. Since ho ¢ ker(A) and hence ho ¢ ker()\ 1), the order of
A7 is divisible by 2(q—1)2 > 4. Hence, O.(A)NO; = 0.

Together with Lemma 6.14 and Corollary 6.22(a), this leads to O.(A ) C Ugen.,.., Oda- The

structure of W () is given by Lemma 6.13, and we observe W (X) = W (X). As in the proof
of Lemma 6.26, we can apply Lemma 4.6, and we see that maximal extendibility holds
with respect to W(X) QNW(W(X)) Because of K(\) < NW(W(/)\\)), this proves maximal
extendibility with respect to W (X) <t K(A). 0

As in Lemma 6.25, we associate with A subsets Ql(X) and Qz(X) of O. Recall K(\) =
W,\L@ﬂ , whenever G is not of type Dy.

LEMMA 6.32. Let A€ ME) ATrr(L | 14,)) and A € Irr(L | A) with W(A) # W (X). Let
Q' (N) :=={I €0y |0o(A;) €{1,2,4}}UO_1 and Q*(\) :== O\ Q'(N).
Let W (A) =W NS Wi\ =W NNW, LW .= <EI ITe Qi(X)>, and L) :=
Lﬂz(i), fori,5€2.

+£Qi(A)

(a) Then K()) stabilizes Q*(X\) and
W) =WHAM) x W2 (A,

where XV € Irr(X—‘ Z<'>)'

(b) If z € WA \W(A), then = = z120 for some x; € WiAD) (i € 2), where A €
IYT(ML@))A'

(c) |(’)dﬂQ2(x\)] is even for every d € Doqq \ {—1}.

(d) Let W' := Wﬂ‘giQi(X) and K'(\) := (W") ()‘(i>)L<i)<Fp>L(¢) foric2. If O NQ'(\) £ 0,
then K (\) < K(\) x Ngpz (W2(X)).

Proof. First note that N normalizes the groups Ly (I € O) and hence there is a well-
defined action of W on O. Now, Q! ( ) is defined using h) (and is independent of the choice of
XeTrr(L | A)). Note that by this definition any element in Ny stabilizes Q*(X). Without loss
of generality, we can assume that ) is standardized and hence W () is given in Lemma 6.13.
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Accordingly, W(X) = W () x W (A). As A e Irr(L | L(py), Corollary 6.22 implies 0.\) C
Uden,... Oa- By the definition of Q* (), we observe W (A) = W2(N).

According to Lemma 6.8(d), W(X) is the direct product of the groups Wd(X), where
Wd(/):) :=(Va)s/Ha. For W (/)\\) we note that

W)= ) <xW 20 < W),

where Q% j( ) = {I €Oy | o(A;) =j} and wH () := W () NSyt - This proves that
W(A) =W (X) x W*(X). By the above W(X) =" (}) and hence W(X) = W' (X) x W2(}) =
W) x W2(A). Since A = A0 x A® | we note that W (AD) = WI(AM) and W2(X) =
WQ(X(Q)), proving (a).

As z € K()) stabilizes Ql(X) by (a), it can be written as product zixs where x; €
W' (A@). Since A\* = Au for the faithful character p of L/L, it satisfies (A®)* = A(®) (0
where 49 = p]7, with L) = <E1 | 1€ Qi()\)>. Hence, (A®)7 = X@ (),

In the following, we show that any element x5 € W’ with (X(Q))Ii =A@ @ also satisfies
x5 € W. This then implies the statement in part (b). Recall that W4 < W for d € Deyen-
Hence, without loss of generality, we can assume that Q2(\) C Oy for some d € Doqq \ {—1}.

For I € © and k € Irrcusp(zlo), we set

OK(X) ={l€O] A7 is Vg-conjugate to & or Ko},

Let p; be defined as in Lemma 6.14. Then 25(0.(X)) = Okpur, (A) (see 6.14(a)). With
0.\ :=0,(\) U Oy, (A), the element 2 can be written as product of 7o, () € S$.3,.00)

where I € O and k € Irrwsp(LI) runs over the (ur) x (cr)-orbits in Irrcusp(LI) To prove
xo € W, it is sufficient to prove zg_(,) € W. Hence, we assume Q*(\) = 0. (N U Oy, (N)

for some k € Irr(f;o). R

If Ip € Oy, we observe that o(k) ¢ {1,2,4} by the definition of Q%(\). This implies xuy, ¢
{k,k0} and hence O, (A\)N Oxpur, (A) = 0. Note that W (A) < W. The element z; satisfies
22(0.(N)) = Oxpur, (A) as element of Sg2(3)- Recall X is standardized. Let I € O,()) and

I'e Ok, (X) If XI and Xp are Vg-conjugate,
22(e0,,(N)) = €Oy, (A) and 22(eOpnpy, ) = €0,.(\) (6.3)

for every € € {1} as element of S1g2(5)- Otherwise,

22(e0, (V) = —€Oppy, (V) and 2(eOyps, (X)) = —€O0,(N) (6.4)

for every e € {£1} as element of Sig2(x)- In both cases, we see x5 € W.

Assume Iy € Og for d € Dogq \ {£1}. Hence, L;, = GL4(q) by Lemma 4.2 and ¢z, acts
on L, as a graph automorphism by Lemma 4.4(c). According to Lemma 6.15, we have
Kk # Ko and Wz(/)\\) < W. Proposition 5.1(b) leads to kur, ¢ {x,r}. We see again that
O, (X) and Oy, (X) are disjoint. This implies again that there exists some € € {£1} such
that

22(€0x(N)) = € €Oypi;, () and z(€O0ppy, (V) = € €O (V) (6.5)

for every € € {1} as elements of SiQQ(X). Again x9 € W. Altogether this proves part (b).
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The considerations above imply [0, )| = 1O )] for every I € O and k € Irrcusp(f 1)
If O,(A) CQ?*(N), the sets are disjoint so that 2| |O,(A)|. This also applies if I € O and
K € Irreysp(Lr) with o(k) | 2. This gives part (c).

Recall K(\) = W)\L<FP>-‘ . We see that Q'(k) = Q'(\) and Q?(k) = Q%(\) for every

L

constituent k of /\L<FP>] ;- Accordingly, we see that K(\) < Sigin) X Stq2(n)-

By definition, A(*) is uniquely determined by A. Let w € K(\), w; € S+01(n), and ws €
S1ge(n) With w = wiws. As A2 is some L(F),) conjugate of A, the character (A(V)* =
(AM)wris an LM (F,)-conjugate of A(Y). Hence, w; € K'(\). Analogously, we can argue for
wy and get wa € Ny (W2(X)), as required in (d). 0

~

We study first the Clifford theory for W (X) <W(A) by considering subgroups associated
with Q1(\) and Q?(\).

LEMMA 6.33. In the situation of Lemma 6.32, mazimal extendibility holds with respect
to W2(A®) a N2 (W(AD)).

Proof. Without loss of generality, we can assume that \ is standardized. The structure of
W () is then given by Lemma 6.12. As in the proof of Lemma 6.26(a), the groups W?2(A(?))
and Ny (W(A®)) satisfy Lemma 4.6 and accordingly maximal extendibility holds. 0

PROPOSITION 6.34. Let A € It pysp(L | 1ngy), A € Irr(L | ), and no € Tee(W(X)) with
Ly=L.
(a) If Ql(/)\\) = O, then every n € Irr(W(A) [ no) is K (A)y,-stable.

(b) Mazimal extendibility holds with respect to W(A1)) < K1(AM),

~

Proof.  The statement in (a) is trivial if W(A) = W(A). Hence, we assume in the following
W(X) #W(X) and Q'(N\) = O. According to Lemma 6.30, —1 € D and A_; is c;_,-stable,
that is,

W_1 (V)] =2.

In order to study those groups, we introduce more notation: For j € {1,2,4}, let Q7 =
{I €0;]o(A\r)=73} and [; :=|Q"|. Then

7 o [Ssanar 1302
SQ1,4, lf ] = 4.

—1 =~ N ~

Accordingly, W™ (A) = W_1(A) x Spg11 X Sg1.2 X Sgi.a. Additionally, W ¢

5L ELW stabilizes

L
the sets J_1 and QY (j € {1,2,4}). If W(\) # W()), every z € W(X)\ W()) satisfies
z(QY) = Q12 as element of So1 ) (see the proof of Lemma 6.32). Hence, in that case
I =ls.
Following the arguments given in the proof of Lemma 6.32, the element z; € W)\
W(A) can be written as x_qx(1 9124, where x_1 € ((J_1,—J_1)), (12} € Spgrrugre)
with z(1 23 (Q%!) = Q"? as element of Sgr.1ugr2y and x4 € (23) with

vg:= ] (,—i) € Sigra.

1eQL4
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Note that —1 € D according to Lemma 6.30 and hence v € Ey,. In this notation, we have
K()\) < Kl = <(J71,_J71)> X ((S:th,l X S:th,z) X <l’{1’2}>) X (SQ1,4 X <JIZ>) .

We see W(X) 28111 X Sygi2 X Sgra. Since K () :W)\L<FP>“ , we have

K()\) < <(J,1,—J,1)> X ((S:th,l X S:I:Ql’Q) X <.CU{1’2}>> X <I4>SQ1,4 < W(X)(JI,C,M.T?D

for the element z from above and with c¢_; := pr(cs_,). Note W(X)(w,c,l,m) <K'=
W (A)(c—1,23). We observe c_1,x5 € Z(W (N)(c_1,x3)). This implies that every character
n € Irr(W(X)) is K '-stable. This proves part (a), and even that every character of Irr(W (X))
extends to K.

Now, by the definition of W!(AM) and K1(A), we see that in the general case the
groups obtained as K'(\) coincide with K()\) for a group of smaller rank where for the
character A() part (a) can be applied. This then proves part (b). a

We consider the general case.

PROPOSITION 6.35. Let A € Irreysp(L) with Ly=L and 1o € Irr(W(/)\\)). Then every
character in Irr(W () | no) is K (X)y,-stable.

Proof. Note that because of \E,\ : L] = 2 it is sufficient to prove that some character
in Irr(W(X) | no) is K(A),,-stable. According to Lemmas 6.33 and 6.34, we can assume
QI(X) #0 # Q2(/)\\) for the sets Ql(X) and Q2 (X) from Lemma 6.32.

By Lemma 6.31, we can assume hg € ker(A). The groups W’(/):) (i € 2) satisty W(/)\\) =
WL(A) x W2() (see Lemma 6.32).

If O;NQYN) #0, then K(\) < K'()) x NWz(WQ(X(Q))) (see Lemma 6.32(d)). Let
ni € Irr(Wi(/)\\)) such that 7o = n; X 2. According to Lemma 6.34, 1, has a K'()\),,-
stable extension to W?'(\),, and maximal extendibility holds with respect to WQ(/):) <
NWz(WQ(X@))) according to Lemma 6.33. This proves the statement in that case.

If O1NQ*(A\) =0, then Q*(A) = {J_1}. Then [W'(X)| =1 and therefore W () = W2(}\).
Then the stability statement follows by applying again Lemma 6.33. O

Together with Proposition 6.28, this leads to the following statement.

COROLLARY 6.36. Let A€ T with Ly # L, A€ Irr(Ly | ), and ny € Irr(W(X)). Then
there exists some K (X)y,-stable n € Irr(W(X) | no).

Proof. For A € (L) UM, this is Proposition 6.28. For A € Irreysp (L) with Ly = E, the
statement follows from Proposition 6.35. O

87. Proof of Theorem A

In the following, we explain how Corollary 6.36 about the action of K(\) on Irr(W (X))
proves Theorem 6.1. As already sketched in the beginning of §6 based on Proposition 2.11,
knowing the action of K (M) on Irr(W (X)) is crucial to verify Theorem 6.1. Unless G is of
type D4, the action I/f()\) on Irr(W (X)) is given by the action of K (\) (see Lemma 6.5).

Via Harish-Chandra induction, we transfer the result of Theorem 6.1 on characters of
N to a weak version of Theorem A. Special considerations are needed to determine the
stabilizers in GE of characters x € Irr(GF | (L,Irreysp(L))), whenever L is not E(GF)-
stable.
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LEMMA 7.1. Let A € Irreysp(L), Xelr(Ly | A), and no € Irr(W(X)). Then some
character in Irr(W(X) | no) is K (X)y,-stable.

Proof. According to Corollary 6.36, there exists some K (), -stable 7 in Irr(W(X) | no).
According to Lemma 6.5, the character 7 is I?()\)no N (W x E} )-stable, where E° := (F},, 7o)
and Ef := E°NEy. If G is not of type Dy or Ef, < (F),,70), this is the above statement.

Accordingly, we can assume in the following that G is of type D4 and L is y3-stable for the
graph automorphism 3 of D4(F) from Notation 3.3. If L = T}, the statement follows from
[MS, Th. 3.7]. Otherwise, L is one of the other two possible y3-stable Levi subgroups. In both
cases, easy calculations show that W (L) is a 2-group. According to our considerations above,
we know that there is some K (\),,-stable n € Irr(W (X) | o). As [K(X) : W(N)] € {1,2}, the
character 7y extends to its inertia group K(\),,. This shows that maximal extendibility
holds with respect to W(X) <t K(A). Let K'(A) = (K(A)(F,)) N (W x (y,7s)). When we
identify W with W x (7), we can see K ()) as a subgroup of K’(\) with index 1 or 3. Hence,
K (X\)y, has index 1 or 3 in K'()),,. The character 7y extends to K(X),, by the above.

Assume that K()\)UO/W(X) is a Sylow 2-subgroup of K’(/\)/W(X) Let K3 be a subgroup
of K'(\)y, with W(X),, < K3 such that K3/W (), is a Sylow 3-subgroup of K’(A)WU/W(X).
The character 7y extends to K3 as [W(X)| is coprime to 3 according to [I, (11.32)]. This
implies that 7y extends to K (\),,. Maximal extendibility holds with respect to W(\) <
K'(\) as well. (This can be seen via an application of [I, (11.31)].)

If K(A)y,/W(X) is not a Sylow 2-subgroup of K’(X),,/W(}), the group K (A1), =
(K(A)no)?® contains a Sylow 2-subgroup of K’(A??),.s and hence by the above (1)

extends to K'(A7%),+s. Via conjugation, this implies that 7o extends to K'(A),, 0

o-
We can now show Theorem 6.1.

Proof of Theorem 6.1. Recall M(X) := {\ € Trreysp (L) | L =X} for the subgroups L <
X < Land Mg :=Irreysy (L) \ (ME) uM® UM(Z)) (see before Lemma 6.3). As the sets M(5),
M(E), I\\/JI(Z), and My are E-stable, it is sufficient to construct an N-stable L-transversal
in Trr(N | M) for M’ € {M®) M) M)}, Note that since every character of N is N-
stable, one can equivalently also construct E-stable N'-transversals. Lemma 6.3 provides
an N-stable L-transversal in Irr(N | M(2).

Lemma 7.1 shows that for every A € My oM@ uM®) and every character 1o € Irr(W (X)),
there is some K(X)T,O—stable n € Irr(W(A) | no), where X € Irr(Ly | A).

Assumptions (i) and (ii) of Proposition 2.11 are satisfied with T’ := TN (M uM® UM(E))
from Proposition 4.10 and the extension map A from Theorem 3.1. For every A € T’ and
no € Irr(W (X)), there exists some K (\)y,-stable n € Irr(W(A)). This allows us to apply
Proposition 2.12 and hence some N-stable N-transversal in Irreysp (N | M uM@) UM(E))
exists. 0

Theorem 6.1 implies according to Theorem 2.8 that the equation (éEL)X = éX(EL)X
holds for every character x of a G-transversal in (G | (L, Irreusp(L))). Accordingly, we
have constructed an Ep-stable G-transversal of Irr(G*" | (L, Irreysp(L))) (see Lemma 2.4).

COROLLARY 7.2. Let G =D (F), let F: G — G be a standard Frobenius endomor-
phism, and let E be defined as in Notation 3.5 and G := L™Y(Z(G)) for the Lang map L
defined by F on G. Let L be a standard Levi subgroup of G, and let Ey, be its stabilizer in
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E(GT). If Hypothesis 2.1/ holds for everyl' <1, then there exists an Er -stable G-transversal
in Trr(GE | (L, Irteusp(L))).

Proof. For a given fixed Levi subgroup L, we apply Theorem 2.8 whose assumptions
follow from Theorems 3.1 and 6.1. O

Condition A’(o0) from 2.3 and equivalently Theorem A require to replace in the above
statement Er by F and study (GE),. Hence, we study the stabilizers of characters in
Irr(GE | (L,Irteusp(L))) in the case where L is a standard Levi subgroup that is not
FE-stable.

PROPOSITION 7.3. We keep G = D; «(F) and assume Hypothesis 2.1/ holds for every
I'<l. Let T and L as in Notation 2.5. Let E° := (F),,v) < E in the notation of 3.5. Assume
that no Ngr (T)-conjugate of L is E-stable. Let x € Irr(GT | (L,Irreysp(L))). Then éx =G
or (éEO)X < C:’X(EO NEL).

Proof. Let Ny :=Ngr(T). We consider first the possible structure of L, in particular
the values of D(L). Then we give the possible values of Ex via describing W (\).

We see that L is F)-stable. If L is y-stable, then E(G'') = E,. By our assumption Ej, # F,
we have v ¢ Er,. We observe that then —1 ¢ D(L), as otherwise the system of simple roots
A’ associated with L as in Notation 3.5 is v-stable, which then implies v € Er.

If 1 € D(L), then some Ny-conjugate of L is y-stable: the conjugation is given by some
element v € Ny := Ngr(Ty) that corresponds to some o € Sy; with the following properties:
o(l)=1,1€0(J;) and o(A’) C A. The Levi subgroup L satisfies accordingly 1 ¢ D(L).

Let Wy = No/T¥ . For the proof of the statement, we consider x € Irr(G* | (L, Irtcusp(L)))
with <éE)XVS CNJEJL Then x7 and x are éEL—coniugate. For the statement, we have to
show that G, = G. We assume that x” and x are GEp-conjugate. Let A € Irreyq,(L) with
x € Irr(GF | (L,))). Then (L,\) and (y(L),\") are GEp-conjugate, in particular ~(L)
and L are Ng-conjugate. This shows W (L) # W (L), or equivalently Dyqq # 0. Let Opqq =
UdeDodd Od, Ocven = UdeDeven Og4, and Iy € Oyqq. Without loss of generality, we assume
1 € Ip. Otherwise, we replace L by some Ny-conjugate. Let wg := Hielo (i,—i) € Wy and ng €
N= Ngr (T) the corresponding element. Hence, wg € yNy. We note that N induces on L the
outer automorphisms W, while any w’ € W\ W is induced by elements of Ngr(,)(L)\ N.
This proves that in this case L and (L) are actually Ny-conjugate. Hence, the Harish-
Chandra series satisfy Irr(GE | (L, Irteysp (L)) = Irr (G | (v(L), Irreusp (7(L))).

Let A € Irteysp(L). Assume that (L,\) and (L, \)¢7 are G¥-conjugate for some e € (F},).
This implies that (L,\) = (L,\)" for some i € N\ N. Note that W ()™ = W ()). Because
of =1 ¢ D(L) and Dyqq # 0, we observe ZA = E, as <Elmt;,2> <Cg(L)L.

Assume hg € ker(\) and that some x € Irr(GF | (L, )\)) satisfies éx £ @G. According to
Corollary 6.22, the equation W () = W () holds, as {£1}ND(L)=0. EW((\) = W (), then
éx = (. Hence, we assume W (A) # W () in the following. Let W°dd()) := (W (A\)S10,...)N
S+0,4,- Without loss of generality, we can assume A to be standardized, as in every
N-orbit in Irreysp(L) there is at least one standardized character (see after Definition 6.10).
As W(A) # W(A) and A is standardized, W°4d()\) < Sp,,, and € W(\)\ W(A) can be
chosen as an involution with no fixed point in Opqq. We note that Ns,, (Wedd(\)) <w.
This implies Ny(W (X)) < W and hence (L,\) and (L,\)®” are not Gﬁ—conjugate for any
e € (F,). This proves that (L,)\)” is not G'-conjugate to any element of the Ep-orbit of
(L,\), when hg € ker()).
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Assume hg ¢ ker(A) and v € Irr(A] 5 g r))- In the following, we assume |Z(GT)| = 4. Then
we observe that ES = (F,) = Cg(Z(G!)) and hence (éE)X < GES for every y € Irr(GF |
(L,\)). If Cp(Z(GF)) = Ey, this implies (GE), < GEL as required. Note that if 2| [, then
Cg(Z(GT)) = EL. In the following, we prove 2 | |Ooqq| as this implies 2 | I.

For I € O, let Z; be defined as in Lemma 4.2, Z; := Z¥' and §; € Irr(A] 4, ). Fix d € Doaa
and Iq € Oq4. For k € Irr(Z,), we define

ax(X):=|{I € O4 | k and §; are V s-conjugate}|.

Recall I € Ogqq and hg ¢ ker(X). Hence, Z7, = C,_1 and 0(é1,)2 = (¢—1)2. On the other
hand, we see that

S an(N) =104,

K

where k runs over the (cy,)-orbits in Irr(Z;,). By the above, a,,(A) =0 for every x € Irr(Z},)
with o(k)2 # (¢—1)2. If X € Irreusp(L) is N-conjugate to A, then a,(A\) = a,(N) for every
k € Irr(Z;,) according to the action of V4 on the groups Z; (I € O4). Note that a,(\) =0
as 0(dr)2 = (q—1)2 for every I € O,.

Recall that we assume (L,)\) and (vy(L),\7¢) are G-conjugate. As the order of ve is
even, we can choose some Fy € (F),) such that (F) is a Sylow 2-subgroup of (e). Then the
N-orbit of \ is Fy-stable. Then Fy acts on the characters of Irr(Z;,), inducing an action on
the set of (cy,)-orbits in Irr(Z7,). We denote this set by Irr(Z;,)/{cr,). If k € Irr(Z;,) with
o(k)2 = (¢ —1)a, the (cy,)-orbit of k is not Fy-stable. Hence, the Fy-orbit in Irr(Z;,)/(cr,)
containing x has an even length. Since the N-orbit of \ is Fy-stable, we see that a, (\f0) =
a,.ry (). Accordingly,

213 an(V),

whenever k runs over a (cj,)-transversal in {k’ € Irr(Z;,) | o(k")2 = (¢ — 1)2}. By the
above, a,(A) =0 for every k € Irr(Z;,) with o(k)2 # (¢ — 1)2. Altogether, this implies
2] >, ax(X) =|0q|, where k € Irr(Z;,) runs over a (cr,)-transversal.

As 1 =3 ,cpd|Oqg| and hence | = [Ogqqlmod 2, the rank [ is even and Cg(Z(GF)) =
(Fp) = Er. As explained above, this leads to (éE)X < GE — GE; and hence a
contradiction to the assumption on Y.

It remains to study the case of |Z(G!")| =2. Then 24/ and 41 (¢—1). Note that 4 (¢—1)
implies 21 |EL| and hence |Er| and o(y) = 2 are coprime. If (L,\) and (y(L),\Y) are
GF Ep-conjugate, then the pairs are already G'-conjugate. In the following, we see that
the GT-orbit of (L, )\) cannot be v-stable. By the above, we have Dyqq # 0 and —1 ¢ D(L).
According to Lemma 4.3, X is E—stable, as each A is EI—stable for I € Oyqq. Hence, A
is L-stable (see also Lemma 4.3). According to Lemma 6.14, the assumption 2 { [ implies
W(A) = W()), even more W (X) = W(X) < W. But this implies that (L,\) and (L, )Y are
not G¥'-conjugate. Hence, v ¢ (éE)X and hence (éE)X < é(EL)X. 0

xlz@r)

A last obstacle is formed by the groups Dy s.(q). We keep the same notation.

_ProrosiTION 7.4. If G =Dysc(q), every G-orbit in Irr(GF) contains some x with
(GE)x = Gy Ey.
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Proof. Let xo € Irr(GY) and E° := (,F,). Then some Sylow 2- subgroup of E is
contained in E°. We can assume that GE°/G¥ contains a Sylow 2-subgroup of (GEO) /GFE.
(Otherwise we can replace xo by one of its E-conjugates.) Some G—conjugate X of xo satisfies
(GEO)X = Gy £, according to Proposition 7.3. This proves the statement if (GE) < GE°.
Additionally, (GE)X = GXEX holds if Gx =G.

Accordingly, there is some f € (F,) and t € G such that X is 73 ft-stable and ~3ft has
3-power order in GE/GF Ifte GF the equation (GE)X = G E, holds. Clearly, G <
(GE) Hence, Gx is normalized by ~3ft. But via the (ys, f> equivariant 1somorph1sm
G/GF =~ Z(GF), we see that G = G!'| as there is no 73 f-stable subgroups of Z(GT)
apart from {1} and Z(GT).

The element v3f acts on Z(G!") such that only the trivial element is fixed by ~3f and
s, Z(GF)] = Z(GP)\ {1},

Hence, some G-conjugate x’ of y satisfies v3f € (GE) We observe that ~v3f is a
3-element and hence o( f) is a power of 3. Note that f acts trivially on Z(G). Since x satisfies
(GE®), = GYEy and [Z(GF),F,] =1, this leads to (GE®)y € {GEy, GF<Fp,7®X,} for
some € G with E(?) =ho. Let G:= L~ L((ho)). In the latter case,

T lys() 2 =3 f(1sf)" € (GE)y

Recalling that the orders of G/(Z(G)GE) and f are coprime, we get 7 15(%) € <t‘173(tA)f2>,

but t1y3(t) € G and - 173( ) ¢ GI'. This leads to a contradiction, and we see that
(GEO)X = GFE° and hence (GE)X = GF<E 3 0

We can now deduce Theorem A from Theorem 2.8.

Proof of Theorem A. For a given fixed Levi subgroup L of G¥, we apply Theorem 2.8
whose assumptions follow from Theorems 3.1 and 6.1. In this way, we obtain an Fp-stable
G-transversal in Irr(GF | (L,Irteysp(L))) (see Lemma 7.2). If L is E-stable, Ef = E and
this gives the required statement. If L has an E-stable G -conjugate L', then we observe
that Irr(G | (L, Irteysp(L))) = Irr(GF | (L', Irreusp(L'))) and there exists an E-stable G-
transversal in Irr(GE | (L', Irreysp(L)))-

It remains to consider the case where E;, # E and no G¥'-conjugate of L is E-stable.
Then according to Propositions 7.3 and 7.4, every X' € Irr(GY | (L,Irreusp(L))) has some
G-conjugate x with (éE)X = éXEX. O
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