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Abstract

This paper investigates the linear minimum mean-square error estimation for discrete-
time Markovian jump linear systems with delayed measurements. The key technique
applied for treating the measurement delay is reorganization innovation analysis, by
which the state estimation with delayed measurements is transformed into a standard
linear mean-square filter of an associated delay-free system. The optimal filter is
derived based on the innovation analysis method together with geometric arguments
in an appropriate Hilbert space. The solution is given in terms of two Riccati difference
equations. Finally, a simulation example is presented to illustrate the efficiency of the
proposed method.
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1. Introduction

Markov jump linear systems (MJLSs), which are defined as linear systems whose
parameters evolve according to a finite-state Markov chain, are used in many
applications of signal processing, digital communications and target tracking (see [14]
and the references therein). In the past decade, the optimal control and stabilization
problems have been extensively studied for MJLSs [5, 10]. Also, the filtering problem
of systems with jumping parameters has recently begun to receive attention. There
are several methods of achieving the state estimation of MJLSs which differ in their
estimation criteria and means. The linear minimum mean-square error (LMMSE)
filter [9, 11] and the interacting multiple-model methods [6] are the most famous of the
filtering algorithms. The LMMSE formulation leads to a time-varying linear filter that
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is easy to implement, in which all calculations can be performed off-line, and therefore
it is an efficient and popular estimation tool. Other existing algorithms include the
classical generalized pseudo-Bayesian filter [1], MAP estimation based approaches
and the stochastic sampling based methods [7]. It should be noted that almost all
existing methods focus on the study of state estimation for MJLSs without delay.

Time delay occurs frequently in many practical systems, such as manufacturing,
telecommunications and economic systems. When the systems have delays in their
dynamics, the filtering and control problems become difficult to solve. For the class
of deterministic linear time-delay systems, there exist many papers in the literature;
see [3, 4, 17, 18] and the references therein. For the case of MJLSs with delay terms,
robust filtering and robust H∞ filtering methods have been designed in [8, 15, 16]
by using the linear matrix inequality tool. However, in these papers, only state
delay systems with Markovian switching were studied. To the best of the authors’
knowledge, the problem of state estimation for MJLSs with observation delays has not
received much attention in the past. The purpose of this paper is to extend some results
on the state estimation of the class of linear time-delay systems [18] to the MJLS with
delayed observations.

In this paper, we study the LMMSE estimation for discrete-time MJLSs with
observation delays by using the reorganized innovation analysis method. With this
method, the state estimation with delayed measurements for MJLSs can be converted
into that of a standard delay-free system. A finite-dimensional recursive filter is then
obtained in terms of Riccati difference equations based on the geometric arguments in
the Hilbert space. It will be shown that, different from the standard delay-free system,
the optimal filtering formulation for time-delay MJLS model consists of two finite
linear filters with dimension N 2n, where n denotes the dimension of the state vector,
and N is the number of the states of the Markov chain.

The rest of this paper is organized as follows. In Section 2 we present the problem
formulation and some assumptions. In Section 3 the optimal filter is derived by using
reorganized innovation analysis and geometric arguments. In Section 4 a simulation
example is constructed to illustrate the main results. Finally, some concluding remarks
are made in Section 5.

The following notation is fairly standard. Rn denotes the n-dimensional Euclidean
space. B(Rn, Rm) denotes the norm bounded linear space of all m × n matrices, with
B(Rn)= B(Rn, Rn). For L ∈ B(Rn), L ′ indicates the transpose of L , and L ≥ 0 (L >
0) means that the symmetric matrix L is positive semi-definite (positive definite).
For a collection of N matrices D1, . . . , DN , with D j ∈ B(Rn, Rm), diag{D j } ∈

B(RNn, RNm) represents the diagonal matrix formed by D j in the diagonal and zero
elsewhere. Similarly, for a set of N 2 matrices D11, D1N , . . . , DN1, . . . , DN N with
Di j ∈ B(Rn, Rm), diag{Di j } ∈ B(RN 2n, RN 2m) denotes the diagonal matrix formed
by Di j in the diagonal and zeros elsewhere. In addition, 1{·} stands for the Dirac
measure, E(·) represents the expected value operator, col(·) denotes the column vector,
and cov(·) means covariance.
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2. Problem formulation

On a probability space (�, P, F) we consider the Markov jump linear system with
delayed measurements

x(k + 1) = Aθ(k)x(k)+ Cθ(k)w(k), (2.1)

y(k) = Hθ(k)x(k)+ Gθ(k)v(k), (2.2)

y1(k) = H̃θ(k)x(k − d)+ G̃θ(k)v1(k), (2.3)

where x(k) ∈ Rn denotes the state vector, y(k) ∈ Rm and y1(k) ∈ Rm1 are respectively
the instantaneous and delayed measurements, w(k) ∈ Rr , v(k) ∈ Rp and v1(k) ∈ Rp1

are random disturbances. Further, d is the measurement delay which is an
integer and θ(k) is a discrete-time Markov chain taking values in a finite state
space {1, . . . , N }, and with transition probability matrix 3= [(λi j )]. We set
πi (k)= P(θ(k)= i) (i = 1, . . . , N ) and denote π(k)= [π1(k) · · · πN (k)]′, where
π(k) satisfies the Kolmogorov forward difference equation π(k + 1)=3′π(k). The
matrices Ai , Ci , Hi , Gi , H̃i and G̃i (i = 1, . . . , N ) are of appropriate dimensions.
We shall make the following assumptions.

ASSUMPTION 1. {w(k)}, {v(k)} and {v1(k)} are zero-mean second-order, indepen-
dent wide-sense stationary sequences with covariance matrices equal to the identity.
{w(k)}, {v(k)} and {v1(k)} are mutually independent.

ASSUMPTION 2. The initial state x(0) is also a second-order random vector with zero
mean and covariance matrix V .

ASSUMPTION 3. x(0) and {θ(k)} are independent of {w(k)}, {v(k)} and {v1(k)}.

ASSUMPTION 4. For all i, j = 1, 2, . . . , N , Gi G ′i > 0 and G̃ j G̃ ′j > 0.

In view of Assumptions 1 and 2, it is obvious that x(k), y(k) and y1(k) are
sequences of second-order random vectors, and E(y(k))= 0, E(y1(k))= 0. At time k
let yd(k) denote the observation of system (2.2)–(2.3) and vd(k) denote the related
observation noise. Then

yd(k)=

{
y(k), 0≤ k ≤ d,

col{y(k), y1(k)}, k ≥ d,

and

vd(k)=

{
v(k), 0≤ k ≤ d,

col{v(k), v1(k)}, k ≥ d.

We set Fk to be the σ -field generated by {x(s), yd(s), θ(s); s = 0, . . . , k}, and denote
by L{yd(s)|0≤s≤k} the linear space spanned by the observations yd(s), s = 0, . . . , k.
For any r, η ∈ L{yd(s)|0≤s≤k}, the inner product 〈· ; ·〉 in L{yd(s)|0≤s≤k} is given
by 〈r; η〉 = E(rη′), and therefore r and η are orthogonal if 〈r; η〉 = 0. In addition,
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for any second-order random vector r(k), we shall denote by r̂(k|s) the estimator of
r(k) given L{yd(s)|0≤s≤k}.

The estimation problem of this paper can be stated as follows: given the
observations {yd(s)|0≤s≤k}, find an LMMSE estimator x̂(k|k) of x(k).

In view of the geometric arguments as in [12], the LMMSE estimator x̂(k|s) has
the following properties:

(1) x̂(k|s) ∈ L{yd(s)|0≤s≤k};
(2) x(k)− x̂(k|s) is orthogonal to L{yd(s)|0≤s≤k}.

Furthermore, the filtering equations can be defined as

x̂(k|s) = E
(

x(k)
(
(yd)

s−1
)′)

cov
(
(yd)

s−1
)−1

(yd)
s−1, (2.4)

x̂(k|k) = E
(
x(k)ỹd(k|k − 1)′

)
E
(
ỹd(k|k − 1)ỹd(k|k − 1)′

)−1 (yd(k)− ŷd(k|k − 1)
)

+ x̂(k|k − 1), (2.5)

where

(yd)
s−1
= col{yd(0), . . . , yd(s − 1)} and ỹd(k|k − 1)= yd(k)− ŷd(k|k − 1).

3. Optimal estimation

In this section we shall present the solution to the above optimal estimation problem
by reorganizing the innovation sequences and applying the projection in the Hilbert
space. For simplicity of discussion, we suppose that the time k > d , and denote
k1 = k − d . The case 0≤ k ≤ d can be discussed in the same manner.

3.1. Reorganized observations In order to solve such problem caused by delay,
we shall define another observation sequence which is delay-free and spans the same
linear space as the one generated by the original observation. To this end, let

ȳ2(s), col{y(s), y1(s + d)}, 0≤ s ≤ k1,

ȳ1(s), y(s), k1 < s ≤ k.

It is clear that

ȳ2(s) = H̄θ(s)x(s)+ Ḡθ(s)v̄(s), 0≤ s ≤ k1,

ȳ1(s) = Hθ(s)x(s)+ Gθ(s)v(s), k1 < s ≤ k,
(3.1)

where

H̄θ(s) =

[
Hθ(s)

H̃θ(s+d)

]
, Ḡθ(s) =

[
Gθ(s) 0

0 G̃θ(s+d)

]
, v̄(s)=

[
v(s)

v1(s + d)

]
.

It can be seen from (3.1) that ȳi (s) (i = 1, 2) is composed of different observations
associated with the same state x(s). Obviously, there no longer exist delays in the
reorganized observation equations. Moreover, it is apparent that the following lemma
is true.
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LEMMA 3.1. For the given time instant k, the linear space generated by {yd(s)|0≤s≤k}

is equivalent to the linear space of

L
{

ȳ2(s)|0≤s≤k1; ȳ1(s)|k1<s≤k
}
. (3.2)

Note that the jump parameters considered in this paper are not known in advance,
so we shall estimate x(s), θ(s) and θ(s + d) synchronously by introducing the new
stochastic variables

zi j (s, 2)= x(s)1{θ(s)=i}1{θ(s+d)= j}, 0≤ s ≤ k1, (3.3)

zi (s, 1)= x(s)1{θ(s)=i}, k1 < s ≤ k. (3.4)

Let

z(s, 2) = col{z11(s, 2), . . . , z1N (s, 2), z21(s, 2), . . . , z2N (s, 2), . . . ,

zN1(s, 2), . . . , zN N (s, 2)},

z(s, 1) = col{z1(s, 1), z2(s, 1), . . . , zN (s, 1)}.

Then from the definition of zi j (s, 2) and zi j (s, 1), it is clear that

x(s)=


N∑

i=1

N∑
j=1

zi j (s, 2), 0≤ s ≤ k1,

N∑
i=1

zi (s, 1), k1 < s ≤ k.

(3.5)

In view of (3.5), it is obvious that x̂(s|s) can be obtained via the estimator of z(s, 1) and
z(s, 2). So the idea here is, instead of directly estimating the state x(s), we estimate
the random vector z(s, 2) and z(s, 1) by taking advantage of the Markov jumping
property. Write

H = [H1 H2 · · · HN ] ∈ B
(
Rm, RnN

)
,

H̄ = [H11 · · · H1N · · · HN1 · · · HN N ] ∈ B
(
R(m+m1), RnN 2

)
,

with Hi j = [H ′i H̃ ′j ]
′, i, j = 1, . . . , N , and define

Ḡ(s) = diag{G(s), G̃(s + d)}, 0≤ s ≤ k1,

G(s) =
[
G1π1(s)1/2 · · · G NπN (s)1/2

]
, 0≤ s ≤ k,

G̃(s + d) =
[
G̃1π1(s + d)1/2 · · · G̃ NπN (s + d)1/2

]
, 0≤ s ≤ k1.

Then the observation equation (3.1) can be rewritten as

ȳ2(s) = H̄ z(s, 2)+ Ḡθ(s)v̄(s), 0≤ s ≤ k1,

ȳ1(s) = H z(s, 1)+ Gθ(s)v(s), k1 < s ≤ k,
(3.6)
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and the covariance matrices of Ḡθ(s)v̄(s) and Gθ(s)v(s) can be given as

E[Ḡθ(s)v̄(s)v̄(s)
′Ḡ ′θ(s)] = Ḡ(s)Ḡ(s)′, E[Gθ(s)v(s)v(s)

′G ′θ(s)] = G(s)G(s)′.

3.2. Reorganized innovation sequences To derive the Riccati difference equations
of the covariance matrices of the estimation errors, we introduce the stochastic
sequences

ε2(s) = ȳ2(s)− ˆ̄y2(s|s − 1), 0≤ s ≤ k1, (3.7)

ε1(s) = ȳ1(s)− ˆ̄y1(s|s − 1), k1 < s ≤ k, (3.8)

where ˆ̄y2(s|s − 1) is the projection of ȳ2(s) onto the linear space of

L{ȳ2(τ )|0≤τ≤s−1}, (3.9)

and ˆ̄y1(s|s − 1) is the projection of ȳ1(s) onto the linear space of

L{ȳ2(τ )|0≤τ≤k1; ȳ1(τ )|k1<τ≤s−1}. (3.10)

We then can rewrite (3.7) and (3.8) as

ε2(s) = H̄ z̃(s, 2|s − 1)+ Ḡθ(s)v̄(s),
ε1(s) = H z̃(s, 1|s − 1)+ Gθ(s)v(s),

(3.11)

where
z̃(s, `|s − 1)= z(s, `)− ẑ(s, `|s − 1), `= 1, 2, (3.12)

with ẑ(s, 2|s − 1) the projection of z(s, 2) onto the linear space of (3.9), and
ẑ(s, 1|s − 1) the projection of z(s, 1) onto the linear space of (3.10). Lemma 3.2 shows
that εm(s) (m = 2, 1) is in fact the innovation sequence for the model of (2.1), (3.6).

LEMMA 3.2. The elements of the sequence

{ε2(s)|0≤s≤k1; ε1(s)|k1<s≤k} (3.13)

are mutually uncorrelated, and span the same linear space as (3.2).

PROOF. By virtue of the unbiased property of the projection,

E[εm(s)] = E[ȳm(s)] − E[ ˆ̄ym(s|s − 1)] = 0, m = 2, 1.

Next, we show that εm(s) and εl(τ ) are uncorrelated for s 6= τ . In fact, it follows
from (3.11) and (3.12) that

E[ε2(s)εl(τ )
′
] = H̄E[z̃(s, 2|s − 1)εl(τ )

′
] + E[Ḡθ(s)v̄(s)εl(τ )

′
],

E[ε1(s)εl(τ )
′
] = HE[z̃(s, 1|s − 1)εl(τ )

′
] + E[Gθ(s)v(s)εl(τ )

′
].

We have E[z̃(s, 2|s − 1)εl(τ )
′
] = 0, since z̃(s, 2|s − 1) is the prediction error

of z(s, 2). Meanwhile, E[Ḡθ(s)v̄(s)εl(τ )
′
] = 0, which means that the sequence
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{ε2(s)|0≤s≤k1} is uncorrelated. Similar reasoning shows that E[ε1(s)εl(τ )
′
] = 0. That

is to say, {ε2(s)|0≤s≤k1; ε1(s)|k1<s≤k} is an uncorrelated sequence.
Finally, we show that the sequence spans the same linear space as (3.2).

It is apparent that ε2(s) for s ≤ k1 (or ε1(s) for s > k1) is a linear combination
of the observations ȳ2(0), . . . , ȳ2(s) (or ȳ2(0), . . . , ȳ2(k1), ȳ1(k1 + 1), . . . , ȳ1(s)).
Conversely, ȳ2(s) for s ≤ k1 (or ȳ1(s), s > k1) can be given in terms of a linear
combination of ε2(0), . . . , ε2(s) (or ε2(0), . . . , ε2(k1), ε1(k1 + 1), . . . , ε1(s)). This
yields the desired results. 2

Based on Lemma 3.2, the problem of estimating the state x(s) given (3.2) can be
converted into the problem of estimating z(s, 2) and z(s, 1) given (3.13), which, due
to its orthogonality, can significantly simplify the calculation of the projection.

3.3. Optimal estimator x̂(k|k) In this subsection we first define matrices associated
with the second moment of the above variables. We define

Z(s, θ)= E[z(s, θ)z(s, θ)′], Zi j (s, θ)= E[zi j (s, θ)zi j (s, θ)
′
],

Ẑ(s, θ |s − 1)= E[ẑ(s, θ |s − 1)ẑ(s, θ |s − 1)′],

for θ = 2 with 0≤ s ≤ k1 and for θ = 1 with k1 < s ≤ k. Then from the definition of
Zi j (s, 2) (0≤ s ≤ k1) and Zi (s) (k1 < s ≤ k), the following lemma is obtained.

LEMMA 3.3. For 0≤ s ≤ k1, the covariance matrix of zi j (s, 2) satisfies the difference
equation

Zi j (s + 1, 2) =
N∑

l=1

N∑
m=1

λliλmj Al Zlm(s, 2)A′l

+

N∑
l=1

N∑
m=1

πl(s)πm(s + d)λliλmj ClC
′

l , (3.14)

with the initial value

Zi j (0, 2)= πi (0)π j (d)V, i, j = 1, . . . , N .

For k1 < s ≤ k, the covariance matrix of zi (s, 1) can be calculated by the recursive
equation

Zi (s + 1, 1)=
N∑

l=1

λli Al Zl(s, 1)A′l +
N∑

l=1

πl(s)λli ClC
′

l , (3.15)

with initial value

Zi (k1 + 1, 1)=
N∑

j=1

Zi j (k1 + 1, 2), i = 1, . . . , N . (3.16)

PROOF. For 0≤ s ≤ k1, in view of

zi j (s + 1, 2)= x(s + 1)1{θ(s+1)=i}1{θ(s+d+1)= j}
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and (2.1), we obtain

Zi j (s + 1, 2) = E[zi j (s + 1, 2)zi j (s + 1, 2)′]

= E
[
(Aθ(s)x(s)+ Cθ(s)w(s))(Aθ(s)x(s)+ Cθ(s)w(s))

′

× 1{θ(s+1)=i}1{θ(s+d+1)= j}
]

=

N∑
l=1

N∑
m=1

λliλmj Al Zlm(s, 2)A′l

+

N∑
l=1

N∑
m=1

πl(s)πm(s + d)λliλmj ClC
′

l .

Recalling that E[x(0)x(0)′] = V , we get the initial covariance matrix Zi j (0, 2)=
πi (0)π j (d)V .

Similarly, from the definition of zi (s, 1) and System (2.1), we get the recursive
difference equation (3.15) with initial value given by (3.16). The proof is complete. 2

In what follows, we present the Riccati difference equations P(s, 2|s − 1) and
P(s, 1|s − 1).
THEOREM 3.4. For a given time instant k, the covariance matrices P(s, i |s − 1) (i =
2, 1) can be calculated as follows:
• With the initial value P(0, 2|−1)= diag{πi (0)π j (d)V }, the matrix P(s, 2|s−1),

for 0≤ s ≤ k1, can be obtained by solving the Riccati equation

P(s + 1, 2|s)

= Ā P(s, 2|s − 1)Ā′ + diag

{
N∑

l=1

N∑
m=1

πl(s)πm(s + d)λliλmj ClC
′

l

}
− ĀK2(s)H̄P(s, 2|s − 1)Ā′ + B(Z(s, 2)),

where

Ā= (3′ ⊗ In · diag{A1, . . . , AN })⊗3
′,

K2(s)= P(s, 2|s − 1)H̄ ′
(
H̄P(s, 2|s − 1)H̄ ′ + Ḡ(s)Ḡ(s)′

)−1
, (3.17)

B(Z(s, 2))= diag

{
N∑

l=1

N∑
m=1

λliλmj Al Zlm(s, 2)A′l

}
− Ā Z(s, 2)Ā′.

• For k1 < s ≤ k, the matrix P(s, 1|s − 1) can be calculated recursively by

P(s + 1, 1|s) = A P(s, 1|s − 1)A′ + diag

{
N∑

l=1

πl(s)λli ClC
′

l

}
−AK1(s)HP(s, 1|s − 1)A′ + B(Z(s, 1)),

P(k1 + 1, 1|k1) = diag

{
N∑

j=1

Pi j (k1 + 1, 2|k1)

}
,
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where

A=3′ ⊗ In · diag{A1, . . . , AN },

K1(s)= P(s, 1|s − 1)H ′
(
HP(s, 1|s − 1)H ′ + G(s)G(s)′

)−1
, (3.18)

B(Z(s, 1))= diag

{
N∑

l=1

λli Al Zl(s, 1)A′l

}
−A Z(s, 1)A′.

PROOF. The proof is divided into two stages. Assume initially that E[z(0, 2)] = 0;
then all random variables have zero expectation.

Firstly, for 0≤ s ≤ k1, based on (2.4) and (2.5) the LMMSE estimator ẑ(s, 2|s − 1)
satisfies

ẑ(s, 2|s − 1)= E[z(s, 2)((ȳ2)
s−1)′] cov((ȳ2)

s−1)−1(ȳ2)
s−1, (3.19)

ẑ(s, 2|s)= ẑ(s, 2|s − 1)+ E[z(s, 2)ε2(s)
′
]E[ε2(s)ε2(s)

′
]
−1(ȳ2(s)− ˆ̄y2(s|s − 1)),

(3.20)

where (ȳ2)
s−1
= col{ȳ2(0), . . . , ȳ2(s − 1)}.

It has been shown that

ȳ2(s)= H̄ z(s, 2)+ Ḡθ(s)v̄(s), (3.21)

and the corresponding innovation sequence can be given as

ε2(s)= H̄ z̃(s, 2|s − 1)+ Ḡθ(s)v̄(s). (3.22)

From the independence of v(s), v1(s) and θ(s), (ȳ2)
s−1, we obtain that〈

β ′Ḡθ(s)v̄(s); α
′(ȳ2)

s−1
〉

= E
{[
v(s)′G ′θ(s) v1(s + d)′G̃ ′θ(s+d)

]′
βα′(ȳ2)

s−1
}

= βα′
[
E
(
v(s)′G ′θ(s)(ȳ2)

s−1
)

E
(
v1(s + d)′G̃ ′θ(s+d)(ȳ2)

s−1
)]
= 0, (3.23)

which shows that Ḡθ(s)v̄(s) is orthogonal to L{ȳ2(τ )|0≤τ≤s−1}. Similar reasoning
indicates the orthogonality between z̃(s, 2|s − 1) and Ḡθ(s)v̄(s). Recalling that

ẑ(s, 2|s − 1) ∈ L{ȳ2(τ )|0≤τ≤s−1}

and z̃(s, 2|s − 1) is orthogonal to L{ȳ2(τ )|0≤τ≤s−1}, we obtain that ẑ(s, 2|s − 1) is
orthogonal to z̃(s, 2|s − 1). Then from (3.21) and (3.22), we get that

E[ε2(s)ε2(s)
′
] = H̄P(s, 2|s − 1)H̄ ′ + Ḡ(s)Ḡ(s)′, (3.24)

E
[
z(s, 2)ε2(s)

′
]
= E

[(
z̃(s, 2|s − 1)+ ẑ(s, 2|s − 1)

)
ε2(s)

′
]
= P(s, 2|s − 1)H̄ ′.

(3.25)
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Recalling that E[ȳ2(s)] = 0 and defining Y s−1
2 = cov((ȳ2)

s−1)−1(ȳ2)
s−1, we obtain

from (3.19) that

ẑi j (s, 2|s − 1)

= E
[
zi j (s, 2)((ȳ2)

s−1)′
]

Y s−1
2 ,

= E
[
x(s)1{θ(s)=i}1{θ(s+d)= j}((ȳ2)

s−1)′
]

Y s−1
2 ,

= E
{

E
[

Aθ(s−1)x(s − 1)1{θ(s)=i}1{θ(s+d)= j}((ȳ2)
s−1)′

∣∣∣∣Fs+d−1

]}
Y s−1

2 ,

= E

{
N∑

m=1

λmj E
[

Aθ(s−1)x(s − 1)1{θ(s)=i}1{θ(s+d−1)=m}((ȳ2)
s−1)′

∣∣∣∣Fs−1

]}
Y s−1

2 ,

=

N∑
l=1

N∑
m=1

λliλmj Al ẑlm(s − 1, 2|s − 1), (3.26)

where we have used the fact that cov((ȳ2)
s−1)−1 > 0 (0≤ s ≤ k1) (see [9]), and in

the third equality above we have used the fact that Cθ(s)w(s − 1) and ((ȳ2)
s−1) are

orthogonal (by the same reasoning as in (3.23) above).
In view of (3.20), (3.24) and (3.25), we obtain the recursive equation of the linear

mean-square filter

ẑ(s, 2|s) = ẑ(s, 2|s − 1)+ E
[
z(s, 2)ε2(s)

′
]

E
[
ε2(s)ε2(s)

′
]−1

(
ȳ2(s)− ˆ̄y2(s|s − 1)

)
= ẑ(s, 2|s − 1)+ K2(s)

(
ȳ2(s)− H̄ ẑ(s, 2|s − 1)

)
,

where

K2(s)= P(s, 2|s − 1)H̄ ′
(
H̄P(s, 2|s − 1)H̄ ′ + Ḡ(s)Ḡ(s)′

)−1
.

In light of (3.26), we can obtain

ẑ(s, 2|s − 1)= Āẑ(s − 1, 2|s − 1). (3.27)

Noting that

ȳ2(s)− H̄ ẑ(s, 2|s − 1)= H̄ z̃(s, 2|s − 1)+ Ḡθ(s)v̄(s),

and ẑ(s, 2|s − 1), z̃(s, 2|s − 1) and Ḡθ(s)v̄(s) are mutually orthogonal, then we obtain

E[ẑ(s, 2|s)ẑ(s, 2|s)′]

= E
{[

ẑ(s, 2|s − 1)+ K2(s)
(
H̄ z̃(s, 2|s − 1)+ Ḡθ(s)v̄(s)

)]
×
[
ẑ(s, 2|s − 1)+ K2(s)

(
H̄ z̃(s, 2|s − 1)+ Ḡθ(s)v̄(s)

)]′}
= Ẑ(s, 2|s − 1)+ K2(s)

[
H̄P2(s|s − 1)H̄ ′ + Ḡ(s)Ḡ(s)′

]
K2(s)

′

= Ẑ(s, 2|s − 1)+ K2(s)H̄P(s, 2|s − 1). (3.28)
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In view of (3.27),

Ẑ(s, 2|s − 1) = Ā Ẑ(s − 1, 2|s − 1)Ā′, (3.29)

Ẑ(0, 2|s − 1) = E(ẑ(0, 2|s − 1))E(ẑ(0, 2|s − 1)′)= 0.

Meanwhile, in view of Lemma 3.3, (3.14) can be reformulated as

Z(s + 1, 2) = diag

{
N∑

l=1

N∑
m=1

πl(s)πm(s + d)λliλmj ClC
′

l

}
+ Ā Z(s, 2)Ā′

+ B(Z(s, 2)) (3.30)

where

B(Z(s, 2))= diag

{
N∑

l=1

N∑
m=1

λliλmj Al Zlm(s, 2)A′l

}
− Ā Z(s, 2)Ā′,

and the initial value Z(0, 2)= diag{πi (0)π j (d)V }.
Considering (3.28)–(3.30), and noticing that

P(s, 2|s − 1)= Z(s, 2)− Ẑ(s, 2|s − 1),

we obtain that

P(s + 1, 2|s)

= Ā P(s, 2|s − 1)Ā′ + diag

{
N∑

l=1

N∑
m=1

πl(s)πm(s + d)λliλmj ClC
′

l

}
− ĀK2(s)H̄P(s, 2|s − 1)Ā′ + B(Z(s, 2)),

with P(0, 2| − 1)= diag{πi (0)π j (d)V }.
In the second part of the proof, for k1 < s ≤ k we derive the Riccati equation for

P(s, 1|s − 1). Following the same steps as above, we obtain that

ẑ(s, 1|s)= ẑ(s, 1|s − 1)+ K1(s)(ȳ1(s)− H ẑ(s, 1|s − 1)), (3.31)

ẑ(s, 1|s − 1)=Aẑ(s − 1, 1|s − 1), (3.32)

where

A=3′ ⊗ In · diag{A1, . . . , AN },

K1(s)= P(s, 1|s − 1)H ′
(
HP(s, 1|s − 1)H ′ + G(s)G(s)′

)−1
.

According to (3.31) and (3.32), the corresponding covariance matrices are

Ẑ(s, 1|s)= Ẑ(s, 1|s − 1)+ K1(s)HP(s, 1|s − 1), (3.33)

Ẑ(s, 1|s − 1)=A Ẑ(s − 1, 2|s − 1)A′. (3.34)
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Recalling the definition of Z(s, 1), (3.15) can be written as

Z(s + 1, 1)=A Z(s, 1)A′ + B(Z(s, 1))+ diag

{
N∑

l=1

πl(s)λli ClC
′

l

}
, (3.35)

where

B(Z(s, 1))= diag

{
N∑

l=1

λli Al Zl(s, 1)A′l

}
−A Z(s, 1)A′,

Z(k1 + 1, 1)= diag

{
N∑

j=1

Zi j (k1 + 1, 2)

}
.

In light of (3.33)–(3.35), we get that

P(s + 1, 1|s) = A P(s, 1|s − 1)A′ + diag

{
N∑

l=1

πl(s)λli ClC
′

l

}
−AK1(s)HP(s, 1|s − 1)A′ + B(Z(s, 1)),

with the initial value

P(k1 + 1, 1|k1)= diag
{ N∑

j=1

Pi j (k1 + 1, 2|k1)

}
.

The desired result is obtained. 2

In Theorem 3.4 we write P(s, 2|s − 1) and P(s, 1|s − 1) directly as two Riccati
equations with additional terms that depend on the second moment matrix of the state
variable. In the following, we shall give the solution to the optimal filtering problem by
applying the geometric argument analysis and the Riccati equations obtained above.

THEOREM 3.5. Consider (2.1)–(2.3); the optimal linear mean-square error estimator
x̂(k|k) is given by

x̂(k|k)=
N∑

i=1

ẑi (k, 1|k), (3.36)

where the estimator ẑi (k, 1|k) (the i th element of the vector ẑ(k, 1|k)) is computed
following the steps below.
• For 0≤ s ≤ k1, ẑ(s, 2|s) can be calculated by the following difference equation

with the initial value ẑ(0, 2| − 1)= E(z(0))= 0:

ẑ(s, 2|s) = ẑ(s, 2|s − 1)+ K2(s)(ȳ2(s)− H̄ ẑ(s, 2|s − 1)), (3.37)

ẑ(s, 2|s − 1) = Āẑ(s − 1, 2|s − 1), (3.38)

where K2(s) can be obtained by (3.17).
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• For k1 < s ≤ k, ẑ(s, 1|s) can be computed by the recursive equation

ẑ(s, 1|s) = ẑ(s, 1|s − 1)+ K1(s)(ȳ1(s)− H ẑ(s, 1|s − 1)), (3.39)

ẑ(s, 1|s − 1) = Aẑ(s − 1, 1|s − 1), (3.40)

where K1(s) can be calculated by (3.18), and the initial state is

ẑ(k1 + 1|k1)= col

{
N∑

j=1

z1 j (k1 + 1, 2|k1), . . . ,

N∑
j=1

ẑN j (k1 + 1, 2|k1)

}
.

(3.41)

PROOF. The proof of this theorem is obvious, and is omitted here. 2

In Theorem 3.5 we first give the solution to the optimal filter ẑ(s, 2|s) (0≤ s ≤ k1)
and ẑ(s, 1|s) (k1 < s ≤ k), then on the basis of the Markovian jump property, the state
estimator x̂(k|k) is obtained.

REMARK 1. In the above discussion, we assume that E(x(0))= 0. It can be shown
that (3.36)–(3.41) are also satisfied if E(x(0))= µ 6= 0.

REMARK 2. When 0≤ k ≤ d , the optimal estimator x̂(k|k) is indeed the projection
of x(k) onto the linear space of {y(s)|0≤s≤k}. Note that the observation sequence
y(s) is delay-free, and thus the estimation problem is reduced to a linear mean-square
estimator for Systems (2.1) and (2.2), which has been considered in [18].

4. Numerical simulations

In this section we apply our algorithm to a very simple illustrative example
and show that the algorithm offers a powerful tool in several problems, such as
maneuvering target tracking using a wireless sensor network where communication
and link delays are often encountered. Assume a target moving in two-dimensional
space according to the standard constant acceleration model [2, 13]. This model
assumes that the vehicle has constant acceleration equal to zero except for a small
perturbation. Denote the position of the vehicle in the two dimensions by px and py ,
the velocities by vx and vy . Here we use two groups of sensors, labelled 1 and 2, for
the target tracking and each of them has two sensors that can collect the information of
the maneuvering target correctly. At each time k, only one group is used to collect the
target information, and the transition between the two groups is determined by a two-
state Markov chain θ(k). It is assumed that θ(k) ∈ {1, 2} is a first-order, homogeneous
Markov process with the probability transition matrix 3= [(λi j )] given by

3=

[
0.85 0.15
0.70 0.30

]
.

The initial mode probabilities of θ(k) are

π1(0)= P(θ(0)= 1)= 0.5 and π2(0)= P(θ(0)= 2)= 0.5.
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The dynamic model of the target is as shown in [2] with parameters

A1 = A2 =


1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1

, C1 = C2 =


h2/2 0

0 h2/2
h 0
0 h

, x =


px
py
vx
vy

,
where h is the discretization step size in this simulation and set to 0.1 s. The termw(k)
is considered as the perturbation term in acceleration. In the numerical example these
sensors are only used to gather the location information of the maneuvering target.
Moreover, in each group one sensor can gather the target information instantaneously,
while the other is delayed with lag d . For this model, the measurements taken by the
two sensors in each group are given respectively as

y(k) =

[
1 0 0 0
0 1 0 0

]
x(k)+ Gθ(k)v(k),

y1(k) =

[
1 0 0 0
0 1 0 0

]
x(k − d)+ G̃θ(k)v1(k),

where

G1 =

[
2.4 0
0 2.4

]
, G2 =

[
0.4 0
0 0.4

]
, G̃1 =

[
0.7 0
0 0.7

]
, G̃2 =

[
1.4 0
0 1.4

]
.

The time delay d is set to 10 and the time horizon N is set to 200. The initial state
x(0) is a random variable with E(x(0))= 0 and

E{x(0)x(0)′} =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.
In the actual system we use px (0)= 3, py(0)= 3, vx (0)= 0.8 and vy(0)= 0.4

for all simulation runs to generate x(k). In the simulation we run 50 Monte Carlo
simulations from k = 0 to N . To make the effect of mode changes evident, all
simulations were based on the same Markov chain sample path.

Following the design procedures as in Section 3, we obtain the simulation results
as follows. In Figure 1 we show the true and estimated position values of px and py .
The solid line represents the true position and the dashed line shows the estimate of
the target trajectory. Figure 1 shows that the estimated values are very close to the true
positions throughout the entire period of tracking. Figure 2 shows root mean-square
(RMS) errors of the positions. We note that the RMS position errors of the filters are
within 0.5. Therefore, the response of the proposed filter to the maneuvering target is
fairly good.
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FIGURE 1. The position of the target in the x direction (left) and the y direction (right). The true position
is shown by a solid line and estimated position by a dashed line.
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FIGURE 2. Estimation RMS error of the target in the x direction (left) and the y direction (right).

5. Conclusions

This paper has addressed the LMMSE estimation for discrete-time MJLSs with
delayed measurements. The solution was given in terms of Riccati difference
equations. The key to our development in the estimation is to apply the reorganized
innovation analysis method to treat the measurement delay. It is worth highlighting
that the results of this paper are applicable to the estimation problem of systems with
multiple observation delays.
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