ELEMENTARY GENERALIZATIONS OF
HILBERT'S THEOREM 90
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Introduction. Let K, k be fields and K|k a finite galois
extension with galois group G. The multiplicative group K~
of K is a G-module, that is, a module over the integral group
ring ZG, the module action of an element oe¢ G being its
effect as an automorphism. It is shown in [2, p. 158] that the

first cohomology group vanishesT:

(1) H1 (G, K*) = 0.

1 e
When G is cyclic, H (G, K¥) can be calculated in another way
so that comparison with (1) gives Hilbert's

THEOREM 90. If G is cyclic with generator o and x
is an element of K* of norm 1 (i.e., N x=1) then there -

o
exists y € K* such that x =—§’£.

K|k

Here we extend this method to non-cyclic groups giving.
for example, a 'theorem 90' for abelian extensions. To each
finite group G, or more accurately, to each presentation of G,
there is attached a 'theorem 90' which tends to become more
intricate as G does.

I wish to thank the referee for drawing my attention to the
paper of Gruenberg [1]. The proof of our main proposition
would be shortened by quoting results from [1], but we decided
not to do so since the present proof is self-contained and
entirely elementary.

1i
T See the next section for the definition of H .
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Explicit calculation of Hi. Let G be an arbitrary group
and A a G-module! written additively. (When A =K* we will
have to switch to multiplicative notation.) A cocycle is a function
f: G= A satisfying

(2) fler) = of(r) + £f(o) Vo, TG ;

the cocycles under pointwise addition form an abelian group,
denoted Z({G, A). If there exists an a € A such that

(3) flo) = ca ~-a VoeG

then f is a coboundary. The coboundaries form a subgroup
B(G, A) and the quotient group

1
H (G,A) = Z(G,A)/B(G, A)
is called the first cohomology group (of G with coefficients in A).

It follows immediately from (2) that

) - -1
(4) f1) =0, fo 1) = -0 tfe).
Let G be given by generators cri, R ’o'm and relations
R.1 = RZ =... =1, and put f(or )= a.- By repeated application
i
of (2), f is unigquely determined by the a, so that
f A (ai, e am) gives rise to the abelian group monomorphism

8: Z(G,A) - a™ =AXAX... XA (direct product with m
factors), with the obvious interpretation when m is infinite.
We wish to characterize the elements of Im€@ by means of the
relations Ri =1.

Every element in the free group F generated by the

symbols o, is uniquely expressible in the form X, ... X
r

. -1
where each x, isa o, cora o, and no o, occurs next to
J i i i

-1.

All modules are assumed to be unitary.
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-1 . . .
0. , so no cancellation can take place. As a technical convenience
1

we assume that each R. is such a reduced word; this is no real.
1
restriction. By a consequence of the R, we mean an element in
RS hodebldedid i
the normal subgroup of F generated by the R ..
1

If f is a cocycle, the relation R, =x, ...ox = 1 in G
i

gives rise, by (2) and (4), to the following relation in A:

sk
= = C £ ..
(5) R.i 0 x, x4 (xr) + x, X 5 f(xr-i)
+ ...+ f
(x,)
a if x. =cr1
where T f(x,) = * 1 J 4
J -0, a, if x =0,
i i J i
We will show that conversely an element (ai, .. ,am) ea™

satisfying all the relations (5) corresponds to a cocycle.

LEMMA. If a,,-- 38, satisfy all the relations
m

R*=0 then they satisfy R* =0 where R is any consequence
i ,

of the Ri .

T Note that the relation R* =0 obtained does not depend upon
1 .
the bracketing of the x . For example xi(XZXB) =1 and
3 .

x x_)x_ =1 give rise respectively to
17%2/%3 77 8

[w]
iy

xi{ %, f(x3) + f(xz)} + f(xi)

and

(]
]

x, X, f(x3) + {xi f(xz) + f(x1 )7},

which are the same.
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Proof: R is a word in the Ri' their inverses and their
conjugates. Thus if the aj satisfy ;*: 0 and R; =0 it suf-

fices to verify that they satisfy R* =0 in the following four

cases:
_ P
(i) R = R1
(ii) R = RiRZ
-1
(iii) R = ¢, R, 0,
i 1 1
. ' -1
(iv) R = o, R, o,
i 11

The verifications are of a straightforward computational nature
so we only indicate a few details. Let Rl = x1 e X,

r
RZ Yy Yo

(i) Multiplying

0 = R¥ = f
R1 x1 xr_1 (xr) + + f(xi)
by -x; x; we obtain R¥ =0 .
(ii) Let RiRZ TR X Yy Yo (We must

allow for cancellation since this is how multiplication is defined
in F.) Thus

_ X—i _ x-—i
Yy e Yy r-t+1
We have
0 = R¥ = f + ...+ £
1 x1 xr_1 (Xr) + (Xi)
= R* = . f :
> =Y, Voq fy )+ + fy,)
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adding the first to X -.- % times the second, rearranging
r

and cancelling (according to the definition of f(o’;i) in (5))

i *=0.
we obtain (RiRZ)

In (iii) and (iv) one deals with the various cases when

-1
o, or O, does or does not cancel X1 or X .
1 1 r

Now let AREE satisfy the relations R;"= 0 (and there-

fore any consequence R* =0). Any element o € G can be
written as a word, usually in several ways, in the

c: O =X ...X , X =0_ or o',-1 for some 1. We define
i 1 r J 1 i
f(e) = f + ...+ f
(0) = %, ... x__ fx) (%)
-1 -1
where f(c ) =a., and f{(o, =-0_ a,. To complete the
1 1 1 1 1

discussion we must show that

(a) f(0) does not depend on how ¢ is written in terms
of the generators, and

(b) (ot} = oi(r) + {(o) Vo, TeG.
(a) If also o =yi ... y_ we have the relation (allowing for
s
cancellation)
R = X -1 -t 1
S X B Ve Yy T

which, by the lemma, we may suppose to be already in the list

R, =1 since this imposes no new conditions on the a,. Now
i i

-1 -1
= p¥ _
0 =R =X ., f(yi)+...+f(x1)

and this, properly juggled, gives the required equation

f(x1 ces xr) =f(y1 R ys).
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(b) follows by calculation (made simple by (a): one need no
longer worry about cancellation since f(¢) does not depend on
how 0 is written in terms of the generators).

If f is a coboundary then Jce€ A such that
flo) =(r-1)c Vo and therefore ai = (o i-i)c. Conversely if
- -1 -1
qc such that a, =(0 ~1)c ¥i then f(o, 1) =-0_ a =(o, -1)c
i i i i i i
and by induction on the length of the word one easily verifies that

floc)=(oc-1)c Vo € G. We have the

PROPOSITION. Let the group G be given by generators

c-i, R 2 and relations Ri =... =1 and let A be a G-module.
m

. . + m
Then Z(G, A) is the subgroup of the direct product’ A
consisting of those (a1 y.-.,a ) satisfying the relations
m

Rr =... =0, as described in (5). B(G,A) consists of those

(ai,. .. ,am) for which there exists a c € A such that

a,. =(o.-1)c for all i.
i i

As a simple illustration of the use of this proposition, let
G act trivially® on A; then (0,...,0) is the only element in

1
B(G,A), and H (G,A) consists of those (ai,...)éAm

satisfying the relations R¥ = 0.
1

First, if G is free with generators Ty there

are no relations imposed on the a, so Hi(G,A) = AT,
i

Secondly let G be finitely generated abelian, say

G= Gi X... X Gm where G, is cyclic with generator ¢, and
i i

has order n, for 1 <i< r and infinite order for r + 1 < i < m.
1 - bt - -
1 -1

n; -
The relations are o, Yz (1<i<r) and o, 0. ¢, o =1
i - - i) 1 b

Tm may be infinite.

1
F so by (2), H (G, A) =Hom group (G, A).
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(1 <i<j<m). Only the first set of relations impose restrictions
and we have

1 o -
H (G,A) = Aix... xArxAm i

where A = {a€ A :n_a =0}
i i

Theorem 90 for non-cyclic extensions. We assume without
1
(

proof the result already quoted that H (G,K*) =0, i.e.,
every cocycle is a coboundary. If o € G let Ko‘ denote the fixed

field of the subgroup generated by ¢. A typical relation in the

n
definition of the finite group G is o =1 where
¢ =0, 0 ... 0  is a product of generators; the corresponding
1 1 1
1 2 r

relation (5) is, in multiplicative notation,

n-1 n-2
o a-o a ca-a =1,
where a =f(c)=(0c, ... o, a.)... (0. a, )a., , whichcan
" r-1 'y o2
be put in the convenient form
N =1
K|k _°
o
Of course if n =1 this means that a =1. For example, the
lati crn-i (crcr)n-i d o 0 c'gicr- =1 give rise to
relations o, =1, ,7p) =1 an 1727 7, =1 g t
N a =1, N c.a_-a = 1
KIK 1 K|K (742, "2y
o T o
1 12
o a, crza1
and ! = , respectively.
2 %1

We conclude with some explicit examples (omitting the
simple details of the proofs).
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Theorem 90 for abelian extensions. Let G = G1 X...XG

m

where G. is cyclic of order n_ . with generator ¢, so G is
i - - 1 1

described By generators Tyre ,G'm and relations
4 -1 -1
c =200 ¢ o =4. If a,,...,a €K* are such that
i i 0§ 1 J 1 m
N a, =1,
(6) KIK i
o’-
i
and
g, a, g, a,
iy _ 3 i
(7) a. - a. H
h] i

then there exists a ¢ € K¥ such that

Note that a single c works for all the a, - When m =1

the compatibility conditions (7) evaporate and we have the
original theorem 90.

It will be observed that different presentations of G give
rise to different variants of theorem 90. Thus for the cyclic
group of order 6 we have the original theorem and also the
theorem which arises from writing this group as the direct
product of cyclic groups of orders 2 and 3.

Theorem 90 for the dihedral groups. (G is given by

2 2
generators o, T and relations o'p =7 =(oT) =1.) If a,be K*
are such that

(a - ob)=1
o

then there exists a c € K¥ such that
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Theorem 90 for the symmetric group S3. (S3 is given

by generators ¢, T and relations ¢ =T =(oT )3 =1.)
If a,be K¥ are such that
N a=N b=N Z =4
K|K K|K K|K b
(.4 T oT
then ™ ce K* such that
agc c
a = —, b = —
c c
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