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Recent advances in scanning transmission electron microscopy (STEM) and scanning tunneling 
microscopy (STM) allow unprecedented opportunities in probing the materials structural parameters and 
electronic properties in real space with an angstrom-level precision. These experimental capabilities 
require development of tools for the rapid, physics-guided analysis of the very large amount of data 
generated by modern day microscopes, ideally in a real-time. Here we argue that one of the most 
promising methods for creating such an AI-powered microscope is based on deep neural networks [1, 2]. 
 
We first define topology of a deep learning (DL) model for atomic imaging. Because it is crucial to 
locate accurately all the atomic species and point defects in the image, the model must ideally provide a 
pixel-wise classification map of the same size as the input image. One possible candidate is the class-
activation-maps-based DL analysis, in which a model trained on image-level labels is capable in 
principle of discriminating the image regions used to identify the specific class [3]. The disadvantage of 
such approach is that while it may correctly identify the location and type of certain defects, it doesn’t 
allow finding all the atoms and/or atomic columns in the data. The alternative approach that we chose 
here is to use a fully convolutional neural network model, which can be trained to output a pixel-wise 
classification map, with the same size/resolution as the original input image, that shows a probability of 
each pixel belonging to certain type of atom, atomic column and/or defect. 
 
Another critical aspect is the creation of an appropriate training set. We show that it is possible to use 
the deep convolutional neural network trained on the theoretical STEM data created using Multislice 
algorithm to obtain accurate pixel-wise classification maps for the experimental STEM data. We were 
able to train DL models specific for each lattice type (by enforcing a periodicity specific to the lattice) as 
well as a single DL model capable of finding the atoms / atomic columns in lattices with different 
symmetry (by removing hard periodic constraints). 
 
It is quite common that apriori information about details of various atomic and defect configurations in 
the materials of interest is very limited. To solve this issue, we developed a “weakly-supervised” DL 
approach for the analysis of experimental data on 2-dimensional materials [1]. Specifically, we start with 
“knowing” only a limited number of defect classes and then use information on the coordinates of all 
atomic species in the image extracted via a DL model, combined with basic chemistry rules introduced 
via a graph representation, to identify a rich variety of defects that are not part of an initial training set.  
 
One interesting aspect of working with deep convolutional neural networks for atomic imaging is that it 
is possible to perform segmentation of individual atoms and atomic columns for the noisy, un-processed 
experimental data [2]. In this case, the geometrical descriptors of the segmented ‘atomic contours’ can 
be linked to certain physical and chemical processes in the materials. We used this approach to find 
anomalies in the lattice structure of 2-d materials as well as to analyze transformations in 3-d samples of 
Si under e-beam irradiation. 
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Unlike the STEM image, which primarily reveals atomic positions, the STM image is associated with 
the electronic density of states around the Fermi level. The automatic analysis of STM images is 
notoriously difficult compared to STEM, reflecting the more delocalized nature of STM signal. As a 
result, image analytical methods developed for STEM have rarely been applied to STM. However, our 
DL model trained to extract segmented ‘atomic contours’ in STEM images could easily overcome these 
obstacles allowing us to analyze in the automated fashion peculiarities of the charge density distribution 
on the surface of manganites and positional and orientational orders in the self-assembly of buckyballs 
on gold [4].  
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Figure 1. (a) Using a single deep learning model to identify positions of atoms and atomic columns in 
the images of different materials obtained via STM (1st column) and STEM (columns 2-5) experiments. 
(b-c) STEM images of graphene and identified positions and type of atomic species for the extracted 
single defect structures. 

https://doi.org/10.1017/S143192761800079X Published online by Cambridge University Press

https://doi.org/10.1017/S143192761800079X

