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FORCING AXIOMS AND THE DEFINABILITY OF THE
NONSTATIONARY IDEAL ON THE FIRST UNCOUNTABLE

STEFAN HOFFELNER , PAUL LARSON, RALF SCHINDLER, AND LIUZHEN WU

Abstract. We show that under BMM and “there exists a Woodin cardinal,” the nonstationary ideal
on �1 cannot be defined by a Π1 formula with parameter A ⊂ �1. We show that the same conclusion
holds under the assumption of Woodin’s (∗)-axiom. We further show that there are universes where BPFA
holds and NS�1 is Π1({�1})-definable. Lastly we show that if the canonical inner model with one Woodin
cardinalM1 exists, there is a generic extension ofM1 in which NS�1 is saturated and Π1({�1})-definable,
and MA�1 holds.

§1. Introduction. This article deals with the possibility of a (boldface) Δ1-
definition (overH (�2)) of the nonstationary ideal on �1 in the presence of various
forcing axioms. As we shall see, stronger assumptions rule out the existence of such
Δ1-definitions, whereas weaker assumptions are consistent with such Δ1-definitions,
even in the presence of NS�1 being saturated.

The main results are as follows.

Theorem 1.1. Assume BMM and that there exists a Woodin cardinal. Then for no
Σ1-formula ϕ(v0, v1) and no parameter A ⊂ �1 does it hold that

∀S ∈ P(�1)(S is stationary ⇔ ϕ(S,A)).

Theorem 1.2. Assume that Woodin’s axiom (∗) holds. Then for no Σ1-formula
ϕ(v0, v1) and no parameter A ⊂ �1 does it hold that

∀S ∈ P(�1) (S is stationary ⇔ ϕ(S,A)).

In contrast to these two impossibility results we also obtain two theorems which
show that under weaker assumptions, Π1 definitions of NS�1 are possible.

Theorem 1.3. There is a universe in which BPFA holds and NS�1 is Π1({�1})-
definable.

Theorem 1.4. Assume that the canonical inner model with one Woodin cardinal
M1 exists. Then there is a generic extension of M1 where NS�1 is saturated and
Π1({�1})-definable and MA�1 holds.

The paper is organized as follows. We will prove the theorems in the order stated
above, thus we start with the two impossibility results, then follow up with the
two possibility results. The methods and techniques which are used in this article
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2 STEFAN HOFFELNER ET AL.

are quite varied and we will provide only very few preliminary definitions, instead
assuming the reader knows the basics of the stationary tower forcing (see [9] for an
extensive account) and Pmax (see [10] or [19]), as well as the coding technique of
Caicedo and Velickovic [2].

§2. Impossibility results. This section collects two results which show that strong
assumptions entail the impossibility of a boldface Σ1-definition of NS�1 . We assume
that the reader is familiar with Woodin’s stationary tower and with Pmax-forcing.

2.1. Impossibility under BMM plus the existence of a Woodin Cardinal. The goal
of this section is to prove that under BMM+“there exists a Woodin cardinal,” no Σ1

formula (boldface) can define stationary subsets of �1 correctly. We use Bagaria’s
theorem [1] saying that BMM is equivalent to the statement that H (ℵ2) is Σ1-
elementary in the H (ℵ2) of any forcing extension in which every stationary subset
of �1 from the ground model remains stationary.

Theorem 2.1. Assume BMM and the existence of a Woodin cardinal �. Then for
no parameter A ⊂ �1 and for no Σ1-formula ϕ(v0, v1) in the language of set theory,
does ϕ define the stationary subsets of �1, i.e., we do not have that

∀T ∈ P(�1)(T is stationary ⇔ ϕ(T,A)).

Proof. Assume for a contradiction that there is a Σ1- formulaϕ and a setA ⊂ �1

such that ∀T ∈ P(�1)(T is stationary iff ϕ(T,A)). Let � be our Woodin cardinal.
Let

S0 = {X ≺ H (�2) : |X | = ℵ1 ∧ X is transitive}

and let g be P<�-generic over V where P<� is the associated full stationary tower.
Assume that g contains S0, which is possible by the stationarity of S0. As usual we
can form the generic elementary embedding in the universe V [g]:

j : V →M ⊂ V [g]

for a transitive inner model M of V [g]. Membership in the generic filter g for the
stationary tower forcing can be characterized using j, namely we have that

∀a
(
a ∈ g ↔ j”

⋃
a ∈ j(a)

)
.

Thus S0 ∈ g yields j”H (�2)V ∈ j(S0). In particular j”H (�2)V is transitive, and
as H (�2)V is the transitive collapse of j”H (�2)V , we obtain that j”H (�2)V =
H (�2)V and that the critical point crit(j) of the elementary embedding j must
be ≥ �V2 . As H (�2)V ∈ j(S0), |H (�2)V | = ℵ1 in M, so crit(j) = �V2 . We have
P(�1) ∩ V ∈M , as H (�2)V ∈ j(S0) ⊂M .

It is a theorem of Taylor (see [16]) that MA�1 implies that NS�1 is not �1-dense.
As P(�1) ∩ V has size |�V2 | = ℵ1 in M, there is a stationary set D ⊂ �1 in M such
that T\D is stationary for every stationary T ∈ P(�1) ∩ V . By Theorem 2.5.8 of
[9], V [g] |=M<� ∩ V [g] ⊂M . Since � remains strongly inaccessible in V [g], this
implies that V [g] is a stationary set preserving extension of V. Further it is still true
in V [g] that D is stationary and T\D is stationary for all T /∈ NSV�1

.
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FORCING AXIOMS AND THE DEFINABILITY OF THE NONSTATIONARY IDEAL 3

In the next step we use the ordinary club shooting forcingP�1\D overV [g] to shoot
a club through the complement of D. The forcing will not destroy any stationary
subsets from V ∩ P(�1):

Fact 2.2. If h denotes a generic filter for P�1\D over V [g], then if T ∈ P(�1) ∩ V
is stationary in V then it will remain stationary in V [g, h].

Proof. Fix a stationary (in V) T ∈ P(�1) ∩ V and let p ∈ P�1\D be a condition

and � be a name in V [g]P�1\D such that p � � is a club in �1. We shall find a q′ < p
such that q′ � � ∩ T �= ∅.

As T\D is stationary in V [g], we fix a sufficiently large regular � and pick
a countable X ≺ H (�)V [g] such that p,P�1\D and � are elements of X and
which satisfies α = X ∩ �1 ∈ T\D. It is straightforward to construct an infinite,
descending sequence of conditions q in X with domain α such that for every
dense D ⊂ P�1\D , D ∈ X there is a � < α such that q � � ∈ D ∩ X . Finally
q′ := q ∪ {(α, α)} is a condition in the forcing as desired. �

SoV [g, h] is a stationary set preserving extension of V. But now by our hypothesis
and by elementarity of j : V →M we get that

M |= ϕ(D,A)

and hence

V [g] |= ϕ(D,A)

as ϕ is Σ1, and consequentially

V [g, h] |= ϕ(D,A).

In V [g, h] the set D is nonstationary; thus

V [g, h] |= ∃D(D is nonstationary ∧ ϕ(D,A)).

This statement is Σ1 with parameter A ⊂ �1 in the language of set theory, and as
BMM is assumed to hold true in V we conclude that

V |= ∃D(D is nonstationary ∧ ϕ(D,A)),

which is a contradiction. �

2.2. Impossibility under (∗). Our next goal is to derive the same conclusion from
Woodin’s (∗)-principle. Recall that the (∗)-principle states that:

– AD holds in L(R) and
– L(P(�1)) is a Pmax-generic extension of L(R).

It has been shown very recently by the third author and D. Aspero that MM++

implies (∗), solving a long-standing open question. Their proof paved the way for
a third impossibility result, namely that under MM, there is no A ⊂ �1 and no Σ1-
formula which defines stationarity. The proof is due to the third author and Xiuyuan
Sun and will appear soon (see [14]).
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4 STEFAN HOFFELNER ET AL.

Theorem 2.3. Assume that (∗) holds. Then there do not exist an A ⊂ �1 and a
Σ1-formula ϕ(v0, v1) in the language of set theory such that

∀T ∈ P(�1) (T is stationary ⇔ ϕ(T,A)).

Proof. Let V = L(R)[g], where g is Pmax-generic over L(R). Suppose toward
a contradiction that A ⊆ �1 and ϕ witness that the conclusion of the theorem
fails. Since P(�1) = P(�1)G , there exist a condition p = 〈(M, I ), b〉 ∈ g and a set
a ∈ P(�1)M such that A = jp,g(a), where jp,g is the unique iteration of (M, I )
sending b to Ag =

⋃
{c : 〈(N, J ), c〉 ∈ g}. By the genericity of g, it suffices to find

a condition r = 〈(P,K), c〉 < p and a set e ∈ K such that H (ℵ2)P |= ϕ(e, jp,r(a)),
where jp,r is the iteration of (M, I ) sending b to c.

First, let q = 〈(N, J ), d 〉 any condition below p, as witnessed by the iteration
jp,q : (M, I ) → (M ∗, I ∗). Then |M ∗| = ℵ1 in N, andN |= MA�1 . Hence by the result
of Taylor cited above, there is no �1-dense, normal ideal in N. In particular, there
must be aT ∈ (J+)N such thatS\T is an element of (J+)N for allS ∈ P(�1)M

∗ \ I ∗.
Again by the genericity of g, there is a condition r0 = 〈(P0, K0), c〉

below q, as witnessed by the jq,r0 : (N, J ) → (N ∗, J ∗), such that the formula
ϕ(jq,r0(T ), jq,r0 (jp,q(a))) holds inH (ℵ2)P0 . Since L(R) |= AD, we may also assume
that there exists a Woodin cardinal in P0, and that K0 is NSP0

�1 (this follows, for
instance, from Theorem 5.36 of [19] with n = 2, and the fact that the partial order
Col(�1, <�) forces NS�1 to be presaturated whenever � is a Woodin cardinal).

Now, jq,r0(jp,q) is an iteration of (M, I ) to (jq,r0(M ∗), jq,r0 (I ∗)) sending b to c. By
the definition of the order on Pmax conditions, J ∗ = N ∗ ∩K0, from which it follows
that S\jq,r0 (T ) is stationary in P0, for all S in

jq,r0(P(�1)M
∗ \ I ∗).

Applying Fact 2.2, force over P0 to make jq,r0(T ) nonstationary, while preserving
the stationarity of each member of jq,r0(P(�1)M

∗ \ I ∗). Call this extension P′
0.

The rest of the argument consists of the standard machinery for building Pmax

conditions. Let P be the result of forcing over P′
0 with Col(�1, <�)P

′
0 followed by

some c.c.c. forcing making MA�1 hold. Let P be this forcing extension, and let K be
NSP�1

. Then r = 〈(P,K), c〉 and e = jq,r0(T ) are as desired. �

§3. Possibility results.

3.1. BPFA and the Π1-definability of NS�1 . The goal of this section is to show
that BPFA is consistent with a Σ1-definition of NS+

�1
. The proof of this section relies

on a new coding technique which exploits mutually stationary sets.

3.1.1. Mutually stationary preserving forcing

Definition 3.1. Let K be a collection of regular cardinals with bounded
supremum below κ, and suppose that we have S
 ⊆ 
 for each 
 ∈ K . Then the
collection of sets {S
 | 
 ∈ K} is mutually stationary if and only if for all algebras A
on κ, there is an N ≺ A such that

for all 
 ∈ K ∩N, sup(N ∩ 
) ∈ S
.
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FORCING AXIOMS AND THE DEFINABILITY OF THE NONSTATIONARY IDEAL 5

Foreman and Magidor [3] show that every sequence �S of stationary sets with
S
 ⊂ 
 ∩ Cof(�) is mutually stationary. Let T �S be the collection of all countable N
such that for all 
i ∈ N , sup(N ∩ 
i) ∈ Si .

Theorem 3.2 (Foreman–Magidor). Let 〈
i | i < j〉 be an increasing sequence of
regular cardinals. Let �S = 〈Si | i < j〉 be a sequence of stationary sets such that
Si ⊆ 
i ∩ Cof(�). If � is a regular cardinal greater than all 
i and A is an algebra
on �, then there is an N ≺ A which belongs to the class T �S . Hence �S is mutually
stationary.

From now on, we assume all stationary subsets of ordinals discussed in this section
are concentrated on countable cofinality. The corresponding notion for being club
in this context is that of an unbounded set which is closed under �-sequences.

Definition 3.3. Suppose �S = {S
 | 
 ∈ K} is mutually stationary and that for
every 
 ∈ K , S
 is stationary, co-stationary in 
∩ Cof (�). We say a forcing poset
P is �S-preserving if the following holds: Suppose � > 2|P

+| is regular. Suppose M is
a countable elementary submodel ofH (�) with {P, �S} ⊂M andM ∈ T �S . Suppose
p ∈ P ∩M . Then there exists an (M,P)-generic condition q extending p.

Remark

1. Any proper forcing is �S-preserving.
2. When K = {�1} and �S = S ⊂ �1, the definition of �S-preserving is identical

to the usual definition of S-proper forcing.
3. Let �S be such that each S
 ∈ �S is stationary, co-stationary in 
 ∩ Cof(�).

Then an example of a non-proper, �S preserving forcing is the forcing poset
Club(S
) for a fixed 
, i.e., the forcing which adds an unbounded subset to S

which is closed under �-sequences, via countable approximations.

The preservation theorems for countable support iterations of proper forcings can
be generalized to �S-preserving forcings.

Lemma 3.4. If 〈Pi , Q̇i | i < α〉 is a countable support iteration of forcing notions
and for each i < α, �Pi “Q̇i is �S-preserving” then Pα is �S-preserving.

Proof. (Sketch, following the proof of [8, Theorem 31.15], in particular Lemma
31.17) We will only need to show by induction on j ≤ α that for any N ∈ T �S , if
j, 〈Pi , Q̇i | i < α〉 ∈ N , then:

(∗)N For every q0 ∈ N ∩ Pj that is (N,Pj)-generic and every ṗ ∈ VPj such that

q0 �j ṗ ∈ (Pα ∩N ) ∧ ṗ � j ∈ Ġj
there is an (N,Pα) generic condition q ∈ Pα extending q0, that is q � j = q0

and q �α ṗ ∈ Ġα .

The statement (∗)N is identical to Lemma 31.17 in [8]. It can be checked that the
original proof also works here, which gives the iteration theorem exactly as in the
proof of Theorem 31.15. �

In our proof of the main theorem of this section, we will use forcings which have
a specific form, so they get a name.
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6 STEFAN HOFFELNER ET AL.

Definition 3.5. Let κ be an inaccessible cardinal. Let �S = 〈Si | i < κ〉 be
mutually stationary. We say a forcing poset P is an �S-coding if � ≤ κ and
P = 〈Pα, Q̇α | α < �〉 satisfies the following:

– P is a countable support iteration.
– For any α < �, one of the followings holds:

1. Assume that α is inaccessible and Pα is forcing equivalent to a forcing
of size less than or equal to α.1 Assume that in V Pα , 〈B� | � < 2α〉 is an
enumeration of P(α). Then Q̇α is allowed to be the countably supported
product

∏
�<2α Ṙ� , where each Ṙ� is itself defined to be∏
j∈B�

Club(Sα·(�+1)+2j) ×
∏
j /∈B�

Club(Sα·(�+1)+2j+1)

using countable support.
2. In all other cases, we have that �Pα Q̇α is proper.

Let 
 be an regular cardinal, and we say P is an 
- �S coding if (1) is replaced by

(1′) α ≥ 
 is inaccessible and Pα is forcing equivalent to a forcing of size less than
or equal to α. In V Pα , 〈B� | � < 2α〉 is an enumeration of P(α). Then Q̇α is
allowed to be the countably supported product

∏
�<2α Ṙ� where each Ṙ� is

itself ∏
j∈B�

Club(Sα·(�+1)+2j) ×
∏
j /∈B�

Club(Sα·(�+1)+2j+1).

By Lemma 3.4, once we can show that every factor of an �S-coding is �S-preserving,
and we can deduce that if P is an �S-coding forcing, then P is �S-preserving. This
assertion follows from the proof of the next lemma which says that we will not
accidentally code unwanted information whenever we use an �S-coding forcing.

Lemma 3.6. Suppose that �S is stationary, co-stationary. Suppose P is an �S-coding
forcing. Then for any i ∈ κ, the followings are equivalent:

(a) �P Si contains an �-club.
(b) There are �, α, j, and a set B� ⊂ Vα such that j ∈ B� if � · (α + 1) + 2j = i

and i is even and j /∈ B� if � · (α + 1) + 2j + 1 = i and i is odd.

Proof. ((b) → (a)) Follow from the definition of the forcing.
((a) → (b)) Fix an i and assume without loss of generality that i is even. Write

i = � · (α + 1) + 2j and suppose for a contradiction that j is not an element of
B� . By the definition of �S coding forcing, we must have added a club through
S�(α+1)+2j+1 instead. Let �T be the sequence 〈Tk | k < κ〉, where Tk = Sk if k �= i
and Ti = 
i \ Si . It follows from Theorem 3.2 again that �T is mutually stationary.
We will prove that P is �T -preserving to derive a contradiction. Indeed, we shall see
that �T -preservation implies that 
i \ Si must remain stationary after forcing with P,
yet P � “Si contains an �-club” which is impossible.

1We say two forcing P and Q are equivalent if their Boolean completions B(P) and B(Q) are
isomorphic.
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FORCING AXIOMS AND THE DEFINABILITY OF THE NONSTATIONARY IDEAL 7

To see that �T preserving forcings preserve the stationarity of every S
i ∈ �T , we
only need to note that for any name Ċ of a subset of 
i which is unbounded and
�-closed, and any countable elementary substructure N which contains Ċ and for
which sup(N ∩ 
i) ∈ S
i , any (N,P)-generic condition q forces Ċ ∩ (S
i ) �= ∅.

Next we show by induction that each Q̇� is forced to be �T -preserving. Work in
V [G� ]. If Q̇�/G� is proper, then it is also �T -preserving. Otherwise, (1) holds. Now
Q̇�/G� is a countable support product of club adding forcings. Fix anyN ∈ T �T which
is a countable substructure of H (�)V [G� ]. For any p ∈ N ∩ Q̇� , we can construct a
countable decreasing sequence of conditions 〈pn | n < �〉 meeting all dense set in N.
Define q coordinatewise by setting q(j) to be the closure of

⋃
n<� pn(j) if i ∈ N and

trivial otherwise. Note that any non-trivial q(j) is equal to
⋃
n<� pn(j) ∪ {sup(N ∩


j)}, where 
j = sup(Sj) is a regular cardinal. As N ∈ T �T we have sup(N ∩ 
j) ∈
Sj , whenever q(j) is non-trivial. Hence q < p is a condition witnessing that each
factor of the iteration is �T -preserving, so the iteration P is �T -preserving as well.
But now Si must remain stationary after we forced with P, which is a contradiction
to (a). �

The proof also shows that �S-coding preserves stationary subset of �1 if
sup(S0) > �1. As a Corollary of Lemma 3.6 and the definition of �S-coding, in
any generic extension by �S-coding and any even i, at most one of Si and Si+1

contains a club.
The next lemma follows immediately from the definitions, so we skip its proof.

Lemma 3.7. Suppose P = 〈Pα, Q̇α | α < �〉 is a countable support iteration.
Suppose for any α > 0, Q̇α is forced to be 
α- �S coding of length l(α), where

α = max{|Pα |+,Σ�<αl(�)}. Also let 
0 be regular. Then P is forcing equivalent to an

0- �S coding.

We are mainly interested in performing �S-coding forcing over L. Now we can
define the coding machinery to be used in the later section.

Definition 3.8. Suppose α is in inaccessible in L andX ⊆ P(α). We say �S codes
X if:

1. For any even i ∈ [α, (α+)L), one of Si and Si+1 contains a club.
2. For any x ∈ X , there is a � < (α+)L such that for every j < α,

j ∈ x if and only if Sα·(�+1)+2i contains a club

and

j /∈ x if and only if Sα·(�+1)+2i+1 contains a club.

Let �C = 〈Ci | i ∈ [α, (α+)L)〉 be a club sequence which witnesses (2). Then we say
that �C is an �S code for X.

A useful fact is the upward absoluteness of the coding between certain pairs of
models.
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8 STEFAN HOFFELNER ET AL.

Lemma 3.9. Suppose N ⊂M are two ZFC– transitive models, N |= �C is a �S code
for X ⊂ α, α is inaccessible in LM , and ((α+)L)M = ((α+)L)N . Suppose in M for
any even i ∈ [α, (α+)L), at most one of Si and Si+1 contains a club. ThenM |= “ �C is
a �S code for X.”

Proof. This follows from the definition. Note that being a club is an absolute
property between transitive models. �

Lemma 3.10. Suppose P is an �S-coding over L, α is inaccessible, X ⊆ P(α), and
�S � (α+)L codes X. Then X = P(α)L[Gα ].

Proof. By Lemma 3.6, for any i, Si contains a club if there is some stage � such
that Q̇� satisfies (1) in the definition. But Q̇α forces �S � (α+)L to code P(α)L[Gα ].
Hence by Lemma 3.9, �S � (α+)L codesP(α)L[Gα ] inL[G ] and since �S � (α+)L codes
X, X = P(α)L[Gα ]. �

3.1.2. A model of BPFA and Δ1-definability of NS�1

Theorem 3.11. Suppose that V = L and � is a reflecting cardinal. Then there is a
forcing poset P such that in LP , the following statements hold:

1. BPFA.
2. �1 = �L1 and �2 = �.
3. The nonstationary ideal on �1 is Σ1({�1})-definable over 〈H (�2),∈〉.

Proof. We first choose a sequence 〈Sα | α ∈ Lim(�)〉 uniformly in α < �
satisfying:

– Sα ⊂ α.
– If α is a regular cardinal, then Sα is stationary co-stationary in α ∩ Cof(�).

The existence of such a sequence 〈Sα | α ∈ Lim(�)〉 follows from the fact that we do
have a Σ1-definable global well-order of L, <L, and we just pick recursively at each
stage the <L-least such Sα .

Now we define the forcing poset P. The forcing P = 〈Pα, Q̇α | α < �〉 will be a
countable support iteration of length �. We require the size of each iterand to be
smaller than �. As a consequence P satisfies �-cc. We demand that Q̇α is trivial
unless α is an inaccessible cardinal and Pα ⊂ Lα . We split into two cases if α is
inaccessible.

– (α is an inaccessible limit of inaccessibles) We follow an idea from Goldstern
and Shelah [4]. Pick A ⊂ �1 and a Σ1 formula ∃x�(x,A). A and ∃x� are
chosen in a bookkeeping way so that during the whole iteration, each pair
(A,∃x�) will be dealt with unboundedly many times. Since � is reflecting, we
can reflect the statement “there is a strong limit cardinal  > α and a Pα-name
Q̇ ∈ L for an (α- �S)L -coding forcing Q which forces a witness to ∃x�(x,A).”

Hence there is such a  already below � and the forcing Q̇Gα ∈ L[Gα], which
is an α- �S-coding forcing of length  < � and uses �SL above α as the sequence
to code with, which of course is the same as �S �  above α. In this situation
we use the forcing Q̇Gα at stage α.If there is no such Q, we set Q̇α to be trivial
forcing.
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FORCING AXIOMS AND THE DEFINABILITY OF THE NONSTATIONARY IDEAL 9

– (α is inaccessible but not as in the first item) Q̇α is trivial unless |Pα | ≤ α.
Work inL[Gα], whereGα is a Pα generic filter over L. Assume that |Pα | = α is
inaccessible. Then we choose 〈B� | � < 2α〉 to be an enumeration ofP(α)V [Gα ].
Let Q be the forcing

Q =
∏
�<2α

R� ,

using countable support, where each factor R� is defined to be∏
i∈B�
Club(Sα·(�+1)+2i ) ×

∏
i /∈B�

Club(Sα·(�+1)+2i+1)

again with countable support. Then we force with Q at stage α.

It follows from the definition of P that for any α < �, the forcing Q̇α is forced to
be an α- �S coding forcing. Applying Lemma 3.7, we know that P is an �S-coding
forcing. Moreover, for any α inaccessible, the tail P/Pα is an α- �S coding.

Now as P is �S-preserving, P preserves �1. On the other hand, P is �-c.c and P
preserves � and all cardinals above �. By the definition of the forcing in the second
case, all cardinals below � are collapsed to�1. In summary,�L

P

1 = �L1 and�L
P

2 = �.

Lemma 3.12. P � BPFA.

Proof. Work inL[G ]. LetA ⊂ �1 andQ ∈ L[G ] be a proper forcing which adds
a witness to the Σ1-formula ∃x�(x,A). Now let α be a stage such that A ∈ L[Gα],
α is an inaccessible limit of inaccessibles, and (A,∃x�) is to be dealt with at stage
α. In L[G ], the forcing P/(Pα ∗ Q̇) is an α- �S coding forcing adding a witness to
∃x�(x,A). Hence, we must be in the first case of the definition of our iteration at
stage α and Qα is an α- �S coding forcing which adds a witness to ∃x�(x,A). Thus
H (�2)L[Gα+1] |= ∃x�(x,A). By upward absoluteness, H (�2)L[G ] |= ∃x�(x,A). �

Lemma 3.13. Work in L[G ]. Let S be a subset of �1. Then the following are
equivalent:

(a) S is stationary.
(b) There is an α, inaccessible in L, with Pα ⊆ Lα and S is stationary in L[Gα].
(c) There is an α, inaccessible in L, there is �C ∈ L[Gα+1] which is an �S code for
P(α)L[Gα ], and there is a transitive model M of ZF– such that �C ∈M and M
thinks that S ∈ P(α)L[Gα ] is stationary.

Proof. ((a) → (c)) Let α be inaccessible but not a limit of inaccessibles and
consider stage α of the iteration which we can assume to be such that S ∈ L[Gα]
and |Pα | ≤ α. Now Qα forces the existence of a �C -sequence which is an �S code for
P(α)L[Gα ]. Any transitive M which contains �C is as desired in (c); moreover M will
automatically think that S is stationary if S is stationary in L[G ].

((b) → (a)) The tail of forcing P/Pα is α- �S coding. Now the proof of Lemma 3.6
shows P/Pα preserves stationarity of S.

((c) → (b)) If M is as in the assumption, P(α)L[Gα ] is a subset of M. Therefore,
if M thinks S ⊆ α is stationary, then so must L[Gα]. �
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We now present the Σ1 definition of stationary subsets of �1 over the structure
(H (�2),∈, {�1}). Let �(x) describe the following statement: there are objects A
and M such that:

(i) A = 〈Ci | i ∈ [α, �)〉 is a sequence with Ci an �-club in the ordinal sup(Ci ∩
Ord ) = 
i .

(ii) All 
i are regular cardinals in L and 
α = α is inaccessible in L.
(iii) M is a transitive ZFC– model with �1 = �M1 , ((α+)L)M = (α+)L, and x ∈
M .

(iv) M thinks that ∃M0(M0 |= ZF– ∧M0 is transitive and x ∈ P(�1)M0 ∧M0 |=
“x is stationary”) and additionally

(v) M thinks that A is an �S � (α+)L code for PM0(α) and x ∈ PM0(α).
It is routine to check (i), (iv), and (v) are all Σ1 over 〈H (�2),∈, {�1}〉. For (ii)
and the penultimate assertion of (iii), as L[G ] |= BPFA, we can apply a trick of
Todorcevic (cf. [17, Proof of Lemma 4]) to get Σ1 formulas �0(x) and �1(x) such
that H (�2) |= �0(�) if and only if � is a regular cardinal in L and H (�2) |= �1(�)
if and only if � is an inaccessible cardinal in L.

Here �0(x) is the formula describing the existence of a specialization function of
the tree Tx , where Tx is derived from the canonical global square sequence in L. It
is a consequence of BPFA that x is uncountable regular in L if and only if such a
specialization function exists. Now �1(x) is a formula saying that α is regular and
a limit of regular cardinals in L.

It is now clear that �(x) is Σ1 over 〈H (�2),∈, {�1}〉.What is left is to show that
�(x) indeed characterizes stationarity.

Lemma 3.14. InL[G ], for any x ⊆ �1,H (�2) |= �(x) if and only if x is stationary.

Proof. If x ⊂ �1 is stationary, then, by Lemma 3.13(c), we do immediately get
a witness M0 ∈ H (�2) and an A, so finding a transitive model M which contains
M0 immediately witnesses that �(x) holds.

Conversely, let x, A, M, and M0 be as given by the definition of �(x), and we
shall show that x is stationary. But if �(x) holds, then M0 thinks that A is an
�S � (α+)L-code for PM0(α). By item (ii) of �, this also means that A is an �S-code
for P(α)L[Gα ] and by (c) of Lemma 3.13 it is true that x is indeed stationary. �

�

3.2. A model for MA�1 , NS�1 being saturated and Δ1({�1})-definable. In this
section we improve an earlier result of [6]; we show that given a Woodin cardinal,
there is a model such that NS�1 is saturated, Δ1-definable over H (�2) from
parameters while Martin’s Axiom also holds true. If one forces over the canonical
inner model with one Woodin cardinal M1, then the construction yields a model
where additionally NS�1 is definable with �1 as the only parameter.

3.2.1. Short summary of the main features of the model W1 The proof relies
heavily on the coding machinery introduced in [6], where it is shown that, given a
Woodin cardinal �, then there is a universe in which NS�1 is saturated and Δ1( �C, �T 0)-
definable, where �C is an arbitrary ladder system on �1 and �T 0 is an independent
sequence (independence will be defined in a moment below) of Suslin trees of
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FORCING AXIOMS AND THE DEFINABILITY OF THE NONSTATIONARY IDEAL 11

length �. As this coding is rather convoluted, we will not define it here in detail but
instead only highlight the most important notions and features of it. Our notation
will be exactly as in [6].

We shall use Suslin trees on �1 for creating a Σ1-definition of stationarity. To
facilitate things, the trees should satisfy a certain property:

Definition 3.15. Let �T = (Tα : α < κ) be a sequence of Suslin trees. We say
that the sequence is an independent family of Suslin trees if for every finite set
e = {e0, e1, ... , en} ⊂ κ the product Te0 × Te1 × · · · × Ten is again a Suslin tree.

Independent sequences of Suslin trees can be used to code arbitrary information
using the two well-known and mutually exclusive ways to destroy a Suslin tree,
namely either shooting a branch through the tree or specializing it. More precisely,
given a set X ⊂ �1 and an independent sequence of Suslin trees �T = (Ti : i < �1),
we can code the characteristic function of X into �T via forcing with the finitely
supported product of

Pi =

{
Ti , if i ∈ X,
Sp(Ti), if i /∈ X,

where Ti just denotes the forcing one obtains when forcing with the Suslin
tree Ti (which adds a cofinal branch to Ti) and Sp(Ti) denotes the forcing
which specializes the tree Ti . Note that the independence of �T buys us that
the finitely supported product has the ccc as well. We will eventually use this
mechanism to create a generic extension of V with a Σ1( �C, �T 0)-definition of being
stationary on �1.

The construction of such a universe shall be sketched now. We start with a universe
V with one Woodin cardinal � with ♦. We fix a ladder system �C and an �-sequence
of independent Suslin trees �T 0 and start a first, nicely supported iteration (using
Miyamoto’s nice iterations; see [12]) of length � over V which combines Shelah’s
proof of the saturation of NS�1 from a Woodin cardinal with the forcings invented
by Caicedo and Velickovic (see [2]) and other forcings whose purpose is to create
a modelW0 which will have several features listed below which will turn out to be
useful.

In a next step we force overW0 with a variant of almost disjoint coding which is
due to Harrington (see [5]), which is used to ensure that over the resulting generic
extension ofW0, denoted byW1, there is a Σ1( �C, �T 0)-definable �2-sequence of ℵ1-
sized, transitive models which are sufficiently smart to determine whether a member
is a stationary subset of �1 of W0 or a Suslin tree in W0. These sufficiently smart
models are called suitable. The point of suitable models is that they can correctly
compute a fixed, independent sequence �T = (Tα : α < �2) of Suslin trees. Due to
this correctness, we can identify, in a Σ1( �C, �T 0)-way, whether a given �1-block of
trees is in �T . The sequence �T will be used later to code up being stationary in a
Σ1( �T 0, �C )-way.

To summarize the above, starting from an arbitrary V which contains a Woodin
cardinal � with ♦, and fixing a ladder system on �1 �C and an �-sequence of
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12 STEFAN HOFFELNER ET AL.

independent Suslin trees �T 0, we create first a generic extension W0 and then a
further generic extensionW1 such that inW1 the following holds:

1. � = ℵ2.
2. In W1, the nonstationary ideal is saturated and its saturation is ccc-

indestructible.
3. Every real inW0 is coded by a triple of limit ordinals (α, �, �) below�2 relative

to the ladder system �C (in the sense of Caicedo–Velickovic; see [6, Theorem
18(‡)]).

4. Every subset X ⊆ �1, X ∈W0 is coded by a real rX ∈W0 relative to the
fixed almost disjoint family of reals F we recursively obtain from our ladder
system �C .

5. There is an �2-sequence of independent Suslin trees �T = (Ti : � < i < �2) ∈
W1 whose initial segments are uniformly and correctly definable in suitable
models. The set of suitable models is itself Σ1( �C, �T 0)-definable inW1 using as
parameters the ladder system �C , and one �-block of independent Suslin tree
�T 0 = (Tn : n ∈ �). As a consequence, �T is Σ1( �C, �T 0)-definable overW1.

6. The definition of �T remains the same in all generic extensions ofW1 by forcings
with the countable chain condition. So W1 is a reasonable candidate for a
ground model using coding forcings which have the ccc.

In a second iteration, usingW1 as the ground model, we force with coding forcings
using Suslin trees that are applied to make NS�1Σ1( �C, �T 0)-definable. We force with a
finitely supported iteration of ccc forcings overW1. As a consequence we preserve the
saturation of the nonstationary ideal and the sequence �T is still Σ1( �C, �T 0)-definable
in the extension. The only forcings which are used in this second iteration are the
Suslin trees from our independent sequence �T>0 = (Ti : i > �), which we either
specialize or destroy via the addition of an �1-branch. We will use a bookkeeping
function and start to write characteristic functions of every stationary subset of �1

into �1-blocks of �T>0 using either the specialization forcing or shooting a branch
through elements of �T>0.

This will eventually yield a universeW�2 where the nonstationary ideal remains
saturated and where stationary subsets of �1 can be characterized as follows:

Fact 3.16. There are Σ1( �C, �T 0)-formulas Φ(r) and Ψ(S) where the formula Φ(r)
defines a set of reals such that every member is an almost disjoint code for some ℵ1-
sized, transitive model which can be used to compute the sequence �T>0 of Suslin trees
correctly (these models are the suitable models mentioned earlier). The formula Ψ(S)
then defines stationary subsets of �1 inW�2 in the following way:

Ψ(S) if and only if there is an ℵ1-sized, transitive model N which contains �C and
�T 0 such that N models that:

– There exists a real x such that Φ(x) holds, i.e., x is a code for a suitable
model M.

– There exists an ordinal α in the suitable model M such that �T ′ is the α-th
�1 block of the definable sequence of independent Suslin trees as computed
in M and N sees a full pattern on �T ′.

– ∀� < �1(� ∈ S if and only if �T ′(�) has a branch).
– ∀� < �1(� /∈ S if and only if �T ′(�) is special).

Note that Ψ(S) is of the form ∃N (N |= ··· ); thus Ψ is a Σ1-formula.
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3.2.2. Forcing over W1 We shall show how to modify the construction just
sketched to obtain a model where additionally MA�1 holds. As before we will
construct the modelW1. We will proceed, however, not coding up stationary subsets
of �1 as we do in [6] but instead coding up a second �2-block of generically added
Suslin trees first.

In an �2-length iteration we first use Tennenbaum’s forcing over W1 to add an
independent sequence of Suslin trees of length�2 and use our definable independent
sequence �T to code up the added Suslin trees. First let us briefly recall the definition
of Tennenbaum’s forcing.

Definition 3.17. Tennenbaum’s forcingPT consists of conditions which are finite
trees (T,<T ), T ⊂ �1, such that α < � if α <T � , and (T1, <T1) < (T2, <T2) holds
if T2 ⊂ T1 and <T2=<T1 ∩(T2 × T2).

It is well-known that PT is Knaster and adds generically a Suslin tree to the
ground model.

So we start with the modelW1 as our ground model. Let �C be our fixed ladder
system on �1 and let �T 0 be a fixed independent sequence of Suslin trees of length
�. In W1 there is a Σ1( �C, �T 0)-definable �2-sequence of �1-blocks of independent
Suslin trees �T = ( �Tα : α < �2), where for every 0 �= α < �2, �Tα = (Tα
 : 
 < �1),
and �T forms an independent sequence of Suslin trees.

OverW1 we start a finitely supported iteration Q = ((Qα, Ṙα) : α < �2) and let
Hα denote the generic filter for Qα . For every α < �2, usingW1[Gα] as the ground
model, ṘGαα is defined to be Q1

α ∗Q2
α , where Q1

α is Tennenbaum’s PT and Q2
α codes

up the tree generically added by Q1
α , called hα ⊂ �1 in the following way. The partial

order Q2
α is defined to be a finitely supported product of the factors:

Q2
α =

{
Tα
 , if 
 ∈ hα,
Sp(Tα
 ), if 
 /∈ hα.

It is immediate to see that the resulting universe W2 =W1[H�2 ] is a ccc
extension of W1, and thus NS�1 remains saturated and as in [6] one can show
that the generically added sequence of Suslin trees (hα : α < �2) is an independent,
Σ1( �C, �T 0)-definable sequence of Suslin trees via the formula in the following fact:

Fact 3.18. There is a Σ1( �C, �T 0)-formula Ψ(h) which defines the generically added
Suslin trees (hα : α < �2) ofW2 :

Ψ(h) if and only if there is an ℵ1-sized, transitive model N which contains �C and
�T 0 such that N models that:

– There exists a real x such that Φ(x) holds, i.e., x is a code for a suitable
model M.

– There exists an ordinal α in the suitable model M such that �T ′ is the α-th
�1 block of the definable sequence of independent Suslin trees as computed
in M and N sees a full pattern on �T ′.

– ∀� < �1(� ∈ h if and only if �T ′(�) has a branch).
– ∀� < �1(� /∈ h if and only if �T ′(�) is special).

In a second step, we use W2 as our ground model and force in an �2-length,
finitely supported iteration MA�1 while simultaneously coding up stationary subsets
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of �1 using the boldface Σ1-definable sequence of trees (hα : α < �2). We write �hα
for the α-th �1-block of elements of the sequence (h� : � < �2) and let hα� denote
the �-th element of the α-th �1-block.

We do the usual forcing to code characteristic functions of stationary subsets of
�1 into �hα , but additionally we feed in forcings of size ℵ1 with the countable chain
condition to produce a model of MA�1 . Note that all the forcings we use have the
ccc and thus we will preserve the saturation of NS�1 .

In order to prevent the forcings we use to get MA�1 from adding branches or
specializing functions to the Suslin trees we want to use for coding, we will force
MA�1 in a “diagonal way.” We define a finitely supported iteration ((Rα, Ṡα) : α <
�2) of ccc forcing overW2 inductively using a bookkeeping function F. We let F ∈
W2, F : �2 → �2 × �2 × 2 such that for every (α, �, i) ∈ �2 × �2 × 2, F –1(α, �, i)
is an unbounded subset in �2. Assume we are at stage α < �2 and we have already
defined the iteration Rα up to α < �2. We let Iα denote the generic filter for Rα .
We also assume by induction that each one of the first α-many �1-blocks of trees
�h� , � < α has already been used for coding, but the elements of the sequences
(�h
 : 
 ≥ α) still form an independent sequence of Suslin trees in W2[Iα]. The
forcing we have to use next is determined by the value of F (α).

1. If F (α) = (�, �, 0), then we look at the �-th stationary subset S of�1 inW2[I� ]
and use the α-th �1-block of �h, �hα = (hα
 : 
 < �1) to code up S, i.e., we will
force with ṠIαα :=

∏
i<�1

Pi with finite support, where

Pi =

{
hα
 , if 
 ∈ S,
Sp(hα
 ), if 
 /∈ S,

where hα
 here is considered as a forcing notion when forcing with the tree and
Sp(hα
 ) denotes the specialization forcing for the tree hα
 .

2. If F (α) = (�, �, 1), then we look at the �-th forcing B of size ℵ1 in W2[I� ]
which has the countable chain condition as seen in the universe W2[Iα]. We
can consider the iteration ((R� : � < α) ∗ B) which has a dense subforcing of
size ℵ1 (the dense set is just the set of conditions in Rα ∗ B which are fully
decided), ccc forcing in W2 and can thus be seen as a subset of �1 in W2.
AsW2 =W1[H�2 ], there is a stage � < �2 such that (a forcing equivalent to)
((R� : � < α) ∗ B) is inW1[H� ]. Now if � ≤ α we let ṠIαα be B. Otherwise we
force with the trivial forcing.

In the first case of the definition we will write codes in the sequence (�hα : α < �2)
of blocks of Suslin trees. The definition of the second case ensures that we will not
accidentally write an unwanted pattern when forcing for MA�1 .

Lemma 3.19. Assume we are at stage α of our iteration and we are in the nontrivial
part of case 2 of the definition, and thus we force with an ℵ1-sized ṠIαα = B. Then, if
Iα+1 is Rα+1 = Rα ∗ Ṡα-generic overW [H�2 ], all the Suslin trees in �h� , � ≥ α remain
Suslin trees inW [H�2 ][Iα+1].

Proof. Assume that we are at stage α, and thus the model we have produced so
far isW1[H�2 ][Iα] and we force with Ṡα which is a ccc forcing of sizeℵ1 inW1[H� ][Iα]
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for � ≤ α. Consider some block �h� , � ≥ α in the universe W1[H�2 ][Rα ∗ Ṡα]. The
latter universe is obtained via the iteration

(Q� : � < �2) ∗ Rα ∗ Ṡα = (Q� : � ≤ �) ∗ (Q�/Q� : � > �) ∗ Rα ∗ Ṡα

and the right-hand side can be rewritten as

(Q� : � ≤ �) ∗ ((Q�/Q� : � > �) × (Rα ∗ Ṡα)).

As we can switch the order in products, the latter can be written as

(Q� : � ≤ �) ∗ ((Rα ∗ Ṡα) × (Q�/Q� : � > �)),

and consequentially theW1[H� ]-generic filterH�,�2 for the tail (Q�/Q� : � > �, � <
�2) remains generic over the model W1[(Q� : � ≤ �) ∗ (Rα ∗ Ṡα)]. This means in
particular that the generically added Suslin trees �h� , � > � for Tennenbaum’s forcing
for adding a Suslin tree which are elements in H�,�2 remain generic even over
the ground model W1[H� ∗ Iα+1]. Now Tennenbaum’s forcing is computed in an
absolute way in every universe with the same �1, and trivially, every generic filter
for it is a Suslin tree. Hence we obtain that every h�
 , � > �, 
 < �1 is a Suslin tree
inW1[H� ∗ Iα+1], and thus every h�
 , � ≥ α ≥ � is a Suslin tree inW1[H�2 ∗ Iα+1] as
claimed. �

After �2-many steps we arrive at W2[I�2 ] which has the desired properties. The
first thing to note is that we are in full control of the codes which are written into
the sequences of blocks of Suslin trees (�hα : α < �2).

Lemma 3.20. InW2[I�2 ], a set S ⊂ �1 is stationary if and only if there is anα < �2

such that

∀� < �1((� ∈ S ↔ hα� has a branch ) and (� /∈ S ↔ hα� is special )).

Proof. If S is stationary then the rules of the iteration guarantee that there is
such an α < �2 with the desired properties. On the other hand if there is an α < �2

such that the α-th block �hα sees a certain 0,1-pattern then by the last lemma, this
pattern must come from the first case in the definition of our iteration. Hence S has
to be stationary. �

Theorem 3.21. In W2[I�2 ], MA�1 holds and NS�1 is saturated and Δ1( �C, �T 0)-
definable overH (�2).

Proof. That NS�1 is saturated is clear as W2[I�2 ] is a ccc extension ofW0 and
NS�1 is saturated inW0 and ccc indestructible. The proof thatMA�1 holds inW2[I�2 ]
is also clear as a standard computation yields that the continuum is ℵ2 inW2[I�2 ].
It is sufficient to show that MA�1 holds for ccc posets of size ℵ1. Let P ∈W2[I�2 ]
be such a poset. Then there is a stage � < �2 such that P ∈W2[I� ]. The rules of the
iteration yield that we will consider P unboundedly often after stage �. Thus there
will be a stage α < �2 such that P is considered by the bookkeeping F and Rα ∗ P is
an element ofW1[H� ] for � ≤ α, and hence we used P in the iteration (R
 : 
 < �2),
so MA�1 holds.
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In order to see that, inW2[I�2 ], being a stationary subset of �1 has a Σ1( �C, �T 0)-
definition we exploit the fact that the trees (hα : α < �2) are Σ1( �C, �T 0)-definable
in W1[I�2 ]. We claim that the following Σ1( �C, �T 0)-formula ϕ(S) defines being
stationary inW2[I�2 ]:

ϕ(S) if and only if there exists a triple of (M1,M2,M3) of transitive models
of size ℵ1 such thatM1 ⊂M2 ⊂M3,M1 is a suitable model andM2 sees a full
pattern on the trees in some�1-block �Tα . This pattern itself yields an�1-block
of trees �h� andM3 sees a full pattern on �h� and this pattern is the characteristic
function for S.

Note that the formula ϕ(S) is of the form ∃M1,M2,M3 �(M1,M2,M3, S) and � is
Δ1 as all the statements in � are of the formMi |= ··· which is a Δ1-formula.

By absoluteness and the way we defined our iteration, it is clear that if S ⊂ �1 is
stationary inW2[I�2 ], then ϕ(S) holds.

On the other hand, if ϕ(S) is true andM1,M2, andM3 are witnesses to the truth
of ϕ(S), then, as they see full patterns, their local patterns must coincide with the
patterns in the real worldW2[I�2 ]. But the last lemma ensures that the patterns of
W2[I�2 ] characterize stationarity, so the proof is finished. �

As in [6], instead of working in an arbitrary V with a Woodin cardinal, we can
work over the canonical inner model with one Woodin cardinal M1. This has the
advantage that we can replace the two parameters �C and �T 0 by just {�1}. We will
not go into any details and just claim that the above proof can be applied overM1,
with all the modifications exactly as in [6]. We therefore obtain the last theorem of
this article.

Theorem 3.22. Let M1 be the canonical inner model with one Woodin cardinal.
Then there is a generic extension of M1, in which NS�1 is saturated and Π1({�1})-
definable overH (�2) and in which MA�1 holds.

3.2.3. Open questions We end with a couple of natural problems which remain
open.

Question 1. Assume the existence of a Woodin cardinal. Is there a universe in
which BPFA holds, NS�1 is Δ1-definable over H (�2) and NS�1 is saturated?

Question 2. Assume the existence of a reflecting cardinal. Is BPFA consistent with
the non-existence of a Π1({�1})-definition of NS�1?

On a final note, the natural follow-up question to Theorem 3.11, namely

Problem 1. Is it consistent with PFA that there is a Σ1-formula and a set A ⊂ �1

such that

∀S ∈ P(�1)(S is stationary ⇔ ϕ(S,A))?

has been solved positively very recently by the authors of this article (see the
upcoming [7]).
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