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Endoscopic lifts from PGL3 to G2

Wee Teck Gan and Gordan Savin

Abstract

We determine essentially completely the theta correspondence arising from the dual pair
PGL3 × G2 ⊂ E6 over a p-adic field. Our first result determines the theta lift of any
non-supercuspidal representation of PGL3 and shows that the lifting respects Langlands
functoriality. Our second result shows that the theta lift θ(π) of a (non-self-dual) super-
cuspidal representation π of PGL3 is an irreducible generic supercuspidal representation
of G2; we also determine θ(π) explicitly when π has depth zero.

1. Introduction

Let k be a non-archimedean local field of characteristic zero and residue characteristic p. Let H be
a split adjoint linear algebraic group of type E6 over k, and let H = H(k) be its group of k-points.
There is a dual reductive pair

PGL3 ×G2 ↪→ H,

and one can thus consider the representation correspondence induced by the restriction of the
minimal representation Π of H to this dual pair.

For an irreducible admissible representation π of PGL3, we let Θ(π) denote the set of irreducible
admissible representations π′ of G2, counted with multiplicities, such that

HomPGL3×G2(Π, π ⊗ π′) �= 0.

In [GS97], Gross and Savin have given a precise conjecture regarding the determination of the set
Θ(π) in terms of π. For the convenience of the reader, we review the conjecture briefly.

The irreducible admissible representations of PGL3 are known to be parametrized by
L-parameters, which are admissible homomorphisms

ϕ : Wk × SL2(C) → SL3(C),

where Wk denotes the Weil group of k. Let Aϕ be the component group of the centralizer of the
image of ϕ. Then

Aϕ =

{
1 if ϕ is reducible,
µ3 if ϕ is irreducible.

If π is supercuspidal, then its corresponding L-parameter ϕ is irreducible, so that Aϕ = µ3.
On the other hand, the irreducible admissible representations of G2 are conjecturally para-

metrized by pairs (ϕ′, χ′), where

ϕ′ : Wk × SL2(C) → G2(C)
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is an L-parameter for G2, and χ′ is an irreducible character of the finite component group Aϕ′ .
This conjectured parametrization is known for non-supercuspidal representations but not for super-
cuspidal representations in general.

Now, up to conjugacy, there is a natural inclusion of dual groups

i : SL3(C) ↪→ G2(C).

Composing ϕ with this natural inclusion, we obtain an L-parameter ϕ′ = i ◦ ϕ for the group G2.
The inclusion i also induces an injection i∗ : Aϕ → Aϕ′ [GS97, Proposition 2.7], which identifies Aϕ
as a subgroup of index 1 or 2.

Consider the restriction of the minimal representation Π of H to the dual pair PGL3 ×G2. The
maximal π-isotypic quotient

Π
/ ⋂

φ∈HomPGL3
(Π,π)

Ker(φ)

of Π can be expressed as π⊗θ(π), for some smooth representation θ(π) of G2 [MVW87, Lemme III.4]
and, by definition, there is a PGL3 ×G2-equivariant surjection Π → π⊗ θ(π). Then Θ(π) is simply
the set of irreducible quotients of θ(π), counted with multiplicities. The following is the conjecture
from [GS97].

Conjecture. The correspondence is functorial with respect to the inclusion of dual groups. More
precisely, Θ(π) is the set of π′ whose parameter (ϕ′, χ′) satisfies

ϕ′ = i ◦ ϕπ,
χ′ ◦ i∗ = 1.

This conjecture was verified in [MS97] for π a tempered spherical representation, and in [GS97]
for π a generalized principal series representation. The first main result of this paper is the complete
determination of the set Θ(π) when π is non-supercuspidal, given in Theorems 11, 14 and 15. As a
result, we have the following.

Theorem 1. The conjecture is true for non-supercuspidal π.

We highlight here an important special case, given by our Theorem 14. If π = St is the Steinberg
representation of PGL3, then its L-parameter ϕ is trivial on Wk and ϕ|SL2(C) is the homomorphism
given by the adjoint representation of SL2(C). Thus, Aϕ ∼= µ3 and Aϕ′ ∼= S3. The symmetric group
S3 has three irreducible characters, 1, ρ and ε, where ρ is a two-dimensional character and ε is the
sign character. We show that

Θ(St) = {π(1)′, πsc[1]},
where π(1)′ is a generic discrete series representation of G2 corresponding to the parameter (ϕ′, 1)
and πsc[1] is a non-generic supercuspidal representation corresponding to the parameter (ϕ′, ε).

Since the local Langlands conjecture for supercuspidal representations of G2 is not known, the
conjecture of Gross–Savin cannot be verified literally for supercuspidal representations of PGL3.
However, if π is supercuspidal with L-parameter ϕ, then

Ai◦ϕ =

{
µ3 if π is not self-dual,
S3 if π is self-dual.

In particular, the conjecture predicts that

#Θ(π) =

{
1 if π is not self-dual,
2 if π is self-dual.

Our second main result verifies the above prediction when π is not self-dual.
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Theorem 2. Let π be a supercuspidal representation of PGL3 which is not self-dual. Then θ(π) is
an irreducible generic supercuspidal representation of G2.

We remind the reader that if p �= 2, there are no self-dual supercuspidal representations of PGL3,
so the above result holds for all supercuspidal representations.

The two theorems above essentially give complete information about the theta lifting from PGL3

to G2 (when p �= 2), except for the determination of the irreducible supercuspidal representation θ(π)
when π is supercuspidal. It may be possible to give a characterization of θ(π) in terms of π without
referring to the local Langlands conjecture. In the final section, we do this for π of depth zero, using
the construction of supercuspidal representations by induction from open compact subgroups.

Note that PGL3 is an endoscopic group of G2 and the above results show that the theta cor-
respondence for PGL3 × G2 can be used to construct elements of the corresponding endoscopic
L-packets of G2. To obtain every element of such a packet, we would need to consider the dual pair
correspondence arising from PD× × G2, where D is a degree 3 division algebra. This dual pair is
an inner twist of the one considered in this paper and was studied in [Sav99]. These local results
are necessary preliminaries for the construction of global endoscopic L-packets using global theta
liftings from PGL3 and PD×. We plan to pursue this global question in a future paper.

2. Representations of l-groups
In this section, we establish some notations and discuss some basic facts on the representation
theory of p-adic groups that are required later.

Let G be the k-points of a connected reductive algebraic group G over k. Then recall that G
is an l-group in the terminology of [BZ76]. Let Alg(G) be the category of smooth representations
of G. For π ∈ Alg(G), we let π∗ denote the full linear dual of π; it is a representation of G but is
not usually smooth. Its subspace of smooth vectors is the contragredient representation π∨.

Recall that if P = MN is a parabolic subgroup of G, then we have an exact functor (normalized
parabolic induction)

IP : Alg(M) −→ Alg(G).
We also have the normalized Jacquet functor

RP : Alg(G) −→ Alg(M).

Let P̄ be the opposite parabolic subgroup. Then we have the following adjointness properties:

HomG(π, IP (σ)) = HomM (RP (π), σ),
HomG(IP (σ), π) = HomM (σ,RP̄ (π)).

A complete proof of the second property has been given in [Bus01].
Sometimes, we may wish to talk about unnormalized induction and unnormalized Jacquet func-

tor. We use Ind and ind to denote unnormalized smooth and compact induction, respectively, and
we write π �→ πN (coinvariants) for unnormalized Jacquet functor. More generally, if ψ is a (unitary)
character of N , πN,ψ denotes the maximal quotient of π on which N acts by ψ.

An irreducible representation π is said to belong to the discrete series or is square-integrable if
π has unitary central character and its matrix coefficients are square-integrable modulo center. An
example is the so-called Steinberg representation. A representation π ∈ Alg(G) is called super-
cuspidal if RP (π) = 0 for any proper parabolic subgroup P . If π is an irreducible unitarizable
supercuspidal representation, then it is square-integrable. For any π ∈ Alg(G), we have a decompo-
sition (see [BZ76])

π = πc ⊕ πi

where πc is the supercuspidal part of π and πi has no non-zero supercuspidal subquotient.
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Let us also recall the notion of a ‘generic representation’ of G. For simplicity, assume that G is
split and has connected center. Let B = T · U be a Borel subgroup with unipotent radical U and
maximal split torus T . A character ψ of U is said to be in general position if its stabilizer in T
is equal to the center of G. The group T acts transitively on the set of such characters of U and
an irreducible representation π of G is said to be generic if πU,ψ �= 0 for some (and hence any) ψ
in general position. By Frobenius reciprocity, this is equivalent to saying that π admits a non-zero
G-equivariant map into IndGUψ. In this case, dim(πU,ψ) = 1.

Finally, on several occasions, we use the following simple observation. Let

0 −→ V1 −→ V2 −→ V3 −→ 0

be an exact sequence of G-modules. If an element of the Bernstein center of G acts on V1 and V3

by different eigenvalues, then V1 is a quotient of V2, so that V2
∼= V1 ⊕ V3.

3. Structure of maximal parabolics

Let Q̃1 and Q̃2 be the two non-conjugate maximal parabolic subgroups of GL3(k) = GL(k3) stabi-
lizing a one-dimensional subspace W1 and a two-dimensional subspace W2 of k3, respectively. We
fix W1 ⊂ W2. Their Levi factors are GL(W1) × GL(W⊥

1 ) and GL(W2) × GL(W⊥
2 ), respectively,

where W⊥
1 and W⊥

2 are annihilators of W1 and W2 in (k3)∗. The corresponding maximal parabolic
subgroups in PGL3 are denoted by Q1 = L1U1 and Q2 = L2U2. We have isomorphisms

L1
∼= GL(W⊥

1 )
L2

∼= GL(W2).

Using these identifications, the modular characters of L1 and L2 are

ρ1(g) = |det g|1/2 and ρ2(g) = |det g|1/2.
Further, Q0 = Q1 ∩Q2 is a Borel subgroup of PGL3.

The maximal parabolic subgroups of G2 can be defined as the stabilizers of non-trivial nil
subalgebras of the octonion k-algebra O. A nil subalgebra of O is a subspace consisting of trace
zero elements with trivial multiplication (i.e. the product of any two elements is 0). The possible
dimensions are 1 and 2. Fix a pair of nil-subalgebras V1 ⊂ V2. Then the stabilizers P1 = M1N1 and
P2 = M2N2 of V1 and V2, respectively, are two non-conjugate maximal parabolic subgroups of G2,
with P0 = P1 ∩ P2 a Borel subgroup. Let

V3 = {x ∈ O | x̄ = −x and x · V1 = 0}.
We have isomorphisms

M1
∼= GL(V3/V1)

M2
∼= GL(V2).

The action of the Levi factor of P1 on V1 is given by det, and the modular characters are

ρ′1(g) = |det(g)|5/2 and ρ′2(g) = |det(g)|3/2.

4. Representations of PGL3

In this section, we describe the irreducible smooth representations of PGL3. It will be convenient
to describe the representations in terms of discrete series representations of Levi factors. First of
all, we have the discrete series representations: the supercuspidal representations, the Steinberg
representation St and its twists StχE

and Stχ2
E

∼= St∨χE
by cubic characters χE , each corresponding

to a Galois cubic extension E of the base field k.
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Next, let δ denote a (unitarizable) discrete series representation of GL2. Then δ is either a super-
cuspidal representation or a twist stµ of the Steinberg representation st by a unitary character µ.
Let δs be the twist of δ by |det|s and write IQk

(δ, s) for IQk
(δs) (k = 1 or 2). For s � 0, let

Jk(δ, s) = the unique irreducible quotient of IQk
(δ, s).

Here we have identified the Levi factors with GL2 as in the previous section. The following will be
very useful for our calculations (here i �= j):

Ji(δ, s) ∼= Jj(δ, s)∨

Ji(δ, s) ⊆ IQj(δ
∨,−s).

Finally, we have the representations J(χ1, χ2, χ3) which are the unique irreducible quotient of
representations obtained by (normalized) parabolic induction from the Borel subgroupQ0 = Q1∩Q2.
Here the χi are three characters such that χ1χ2χ3 = 1. Furthermore, if we write each character χi
as χi = µi · | · |si , where µi is unitary and si ∈ R, then

s1 � s2 � s3,

s1 + s2 + s3 = 0.

In terms of intermediate induction, the representation J(χ1, χ2, χ3) can be realized as a sub-
module

J(χ1, χ2, χ3) ⊂ IQ2(π(χ3, χ2)).
Since J(χ1, χ2, χ3)∨ ∼= J(χ−1

3 , χ−1
2 , χ−1

1 ), we also have

J(χ1, χ2, χ3)∨ ⊂ IQ2(π(χ−1
1 , χ−1

2 )).

The following proposition is very useful for later purposes and can be read off from the above
discussion.

Proposition 3. Let π be an irreducible smooth representation of PGL3 which is not square inte-
grable. Then either π or its contragredient π∨ is the unique irreducible submodule of an induced
representation IQ2(τ

∨), where τ is an irreducible representation of L2 described as follows.

i) If π = Ji(δ, s), then τ = δs.

ii) If π = J(χ1, χ2, χ3), we may assume that χ2 = µ2| · |s2 with s2 � 0 (by possibly replacing π by
π∨). There are now two cases as follows.

a) If χ1/χ2 �= | · |, then τ = π(χ1, χ2).
b) Otherwise, suppose that χ1 = µ| · |s+1 and χ2 = µ| · |s for some unitary character µ. Then

τ = µ(det)s+1/2.

In each case, the central character χτ of τ satisfies |χτ | = | · |t with t � 0. Further, whenever
t = 0, τ is unitarizable and IQ2(τ

∨) is irreducible.

5. Minimal representation

There is a notion of a ‘minimal representation’ of a p-adic reductive group; we refer the reader to
[Sav96] for the definition. For a split simply-laced group H of type A2n−1, D or E, it is known
that a unitarizable minimal representation exists and is unique up to twisting by (one-dimensional)
characters of H. For the purpose of this paper, we need to specify exactly what we mean by the
minimal representation of H.

Since the algebraic group H is split, we may assume that H is defined over Z. If A is the ring of
integers of k, then K = H(A) is a maximal compact subgroup of H. Recall that an irreducible rep-
resentation of H is said to be unramified if it has a non-zero K-fixed vector. The set of isomorphism
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classes of unramified representations is in natural bijection with semisimple conjugacy classes in the
Langlands dual group H∨(C). Given an unramified representation, the corresponding semisimple
class in H∨(C) is called its Satake parameter.

The (unitarizable) minimal representation Π of H is an unramified representation and its Satake
parameter is described as follows. Let ι : SL2(C) −→ H∨(C) be a homomorphism corresponding
to the subregular unipotent orbit of H∨(C) by the Jacobson–Morrozov theorem. Then the Satake
parameter of Π is the conjugacy class of

sΠ = ι

(
q1/2 0
0 q−1/2

)
,

where q is the order of the residue field of k. The fact that this unramified representation is minimal
was shown in [Sav94].

Henceforth, H denotes the split adjoint group of type E6. We need various important properties
of the minimal representation and these are reviewed in the following two sections. We conclude
this section by observing that any automorphism of H fixes the isomorphism class of Π since
it preserves the corresponding Satake parameter. Furthermore, there is an automorphism of H
which stabilizes the subgroup PGL3 × G2, acts trivially on G2 and maps to the non-trivial outer
automorphism of PGL3. As a consequence of this, we see that for any irreducible representation π
of PGL3, Θ(π) = Θ(π∨). Hence, for the purpose of determining Θ(π), we can restrict ourselves to
representations π satisfying the conditions of Proposition 3.

6. Jacquet modules for PGL3

In this section, we describe the L2×G2-module RQ2(Π). The result is given by [MS97, Theorem 4.3].
To state it, we need some additional notations. There exists a maximal parabolic Q2 = L2U2 in H
whose Levi factor L2 is of type D5, and such that

(PGL3 ×G2) ∩ L2 = L2 ×G2

PGL3 ∩ U2 = U2.

Let B be the Borel subgroup of GL(W2) stabilizing the line W1. The result is the following.

Proposition 4. The GL2 ×G2-module RQ2(Π) has a filtration

0 = Π0 ⊂ Π1 ⊂ Π2 ⊂ Π3 = ΠU2

such that

Π1/Π0
∼= |det|3/2 ⊗ IndGL2×G2

GL2×P2
(C∞

c (GL2))

Π2/Π1
∼= |det|3/2 ⊗ IndGL2×G2

B×P1
(C∞

c (GL1))

Π3/Π2 = |det|−1/2 · ΠU2
∼= |det|1/2 ⊗ Π(L2) + |det|3/2 ⊗ 1.

Here det is the determinant map on GL(W2). Moreover, C∞
c (GL2) is the regular representation

of GL(W2) × GL(V2), and C∞
c (GL1) is the regular representation of GL(W1) × GL(V1). Finally,

Π(L2) is the minimal representation of L2. The center of L2, which coincides with the center of
GL(W2), acts trivially on Π(L2).

Analogously, there is a maximal parabolic subgroup Q1 = L1U1 of H whose Levi factor L1 has
type D5 and such that

(PGL3 ×G2) ∩ L1 = L1 ×G2

PGL3 ∩ U1 = U1.
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The two parabolic subgroups Q1 and Q2 are not conjugate inH, but are conjugate under a non-inner
automorphism of H. We have an obvious analog of Proposition 4 for RQ1(Π).

Now Q0 = Q1 ∩ Q2 is a parabolic subgroup of H whose Levi factor L0 is of type D4. Its
intersection with PGL3 is equal to the Borel subgroup Q0 = Q1 ∩ Q2 and the center of L0 is
precisely the Levi factor L0 of Q0. We have the following proposition.

Proposition 5. Let Π(D4) be the minimal representation of L1 ∩ L2 with the center L0 acting
trivially. Then the L0 ×G2-module RQ0(Π) has ρ0 ⊗ Π(D4) as a quotient. Here, ρ0 is the modulus
character of Q0.

Proof. The exponents of Π are known (see [Sav94]). In particular, it can be shown that ρ2
0 ⊗Π(D4)

is a summand of ΠU0 , regarded as a L0 ×G2-module. Since ρ−1
0 ⊗ ΠU0 is a quotient of RQ0(Π), the

proposition easily follows.

7. Jacquet modules for G2

In this section, we describe the structure of the PGL3 ×M2-module RP2(Π). The result is given in
[MS97, Theorem 7.6]. As in the previous section, there is a maximal parabolic subgroup P2 = M2N2

of H whose Levi factor M2 is of type A5 and such that

(PGL3 ×G2) ∩ M2 = PGL3 ×M2

G2 ∩ N2 = N2.

Let B′ be the Borel subgroup of M2 = GL(V2) stabilizing the line V1.

Proposition 6. The PGL3 × GL2-module RP2(Π) has a filtration

0 = Π0 ⊂ Π1 ⊂ Π2 ⊂ Π3 = RP2(Π)

such that

Π1/Π0
∼= |det|1/2 ⊗ IndPGL3×GL2

Q1×GL2
C∞
c (GL2)

⊕
|det|1/2 ⊗ IndPGL3×GL2

Q2×GL2
C∞
c (GL2);

Π2/Π1
∼= |det|1/2 ⊗ IndPGL3×GL2

Q0×B′ C∞
c (GL1),

Π3/Π2
∼= Π(M2)

⊕
1 ⊗ |det|1/2.

Here det is the usual determinant on GL(V2). Moreover, C∞
c (GL2) is the regular representation of

GL(W⊥
1 ) × GL(V2) and GL(W2) × GL(V2),

respectively, and C∞
c (GL1) is the regular representation of

GL(W1 ⊗W⊥
2 ) × GL(V2/V1).

Finally, Π(M2) is the minimal representation of M2. The center of M2, which coincides with the
center of GL(V2), acts trivially on Π(M2) = Π(PGL6).

8. Non-square-integrable representations

In this section, we determine the set Θ(π) for non-square-integrable π and verify the conjecture of
Gross–Savin for such π. As we remarked before, there is no loss of generality in assuming that π
satisfies the conditions of Proposition 3. In particular, we have an irreducible representation τ of L2

according to that proposition and π ↪→ IQ2(τ
∨). We define the non-negative number t by |χτ | = | · |t.

Proposition 7. As representations of G2,

HomPGL3(Π, IQ2(τ
∨)) ∼= IP2(τ)

∗.
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Proof. By Frobenius reciprocity, we have

HomPGL3(Π, IQ2(τ
∨)) = HomL2(RQ2(Π), τ∨).

The structure of RQ2(Π) as a representation of L2×G2 has been determined in Proposition 4. Using
the notation of that proposition, we now note the following lemma.

Lemma 8. HomL2(RQ2(Π), τ∨) = HomL2(Π1, τ
∨).

Proof. The central characters of L2 on Π/Π2 are |·| and |·|3 and these are different from |χτ∨ | = |·|−t.
Thus, we have

HomL2(RQ2(Π), τ∨) = HomL2(Π2, τ
∨).

Next, for any τ∨ as in Proposition 3, we can find an element z in the Bernstein center of GL2

such that z(τ∨) = 1 and z vanishes for all representations of GL2 with inducing parameters of type
(χ, | · |2) (cf. [MS97, pp. 104–105]). Such a z vanishes on Π2/Π1 and thus we have

Hom(RQ2(Π), τ∨) = Hom(Π1, τ
∨).

We now return to the proof of the proposition. By the lemma, we need to identify the G2-module

HomL2(IndL2×G2
L2×P2

(C∞
c (GL2)), τ∨−3/2).

Now if we express the maximal τ∨−3/2-isotypic quotient of IndL2×G2
L2×P2

(C∞
c (GL2)) as V ⊗τ∨−3/2 for some

smooth G2-module V , then

HomL2(IndL2×G2
L2×P2

(C∞
c (GL2)), τ∨−3/2) ∼= V ∗.

It remains to prove that V ∼= IP2(τ).
By [MVW87, Lemme, p. 59], the maximal τ∨−3/2-isotypic quotient of C∞

c (GL2) is isomorphic to

τ3/2 ⊗ τ∨−3/2. Hence, that of IndG2×L2
P2×L2

(C∞
c (GL2)) is IP2(τ) ⊗ τ∨−3/2. In other words, V ∼= IP2(τ) and

the proposition is proved.

Corollary 9. Assume that π ↪→ IQ2(τ
∨) as above. Then:

i) θ(π) is a quotient of IP2(τ), in particular it has finite length and

Θ(π) ⊂ {the irreducible quotients of IP2(τ)};
ii) for any irreducible quotient σ of IP2(τ), there is a non-zero PGL3 ×G2-equivariant map Π −→

IQ2(τ
∨) ⊗ σ.

Proof. i) Observe that

θ(π)∗ = HomPGL3(Π, π) ⊂ HomPGL3(Π, IQ2(τ
∨)) = IP2(τ)

∗

so that θ(π)∨ ⊂ IP2(τ)
∨. Hence θ(π)∨ is admissible, and thus so is θ(π). The result follows.

ii) The isomorphism of the proposition implies that there is a non-zero G2-equivariant map

σ∨ ↪→ HomPGL3(Π, IQ2(τ
∨)).

Since

HomG2(σ
∨,HomPGL3(Π, IQ2(τ

∨))) ∼= HomG2×PGL3(Π, σ ⊗ IQ2(τ
∨)),

the result follows.

For σ an irreducible smooth representation of G2, we may define θ′(σ) and Θ′(σ) as in the case
of PGL3. We have the following.
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Proposition 10. Let τ as in Proposition 3 and assume that t > 0. Then IP2(τ) has a unique
irreducible quotient σ. Moreover, ignoring multiplicities, we have Θ′(σ) ⊂ {π, π∨}.
Proof. It is not difficult to check that IP2(τ) is a quotient of an induced representation of Langlands
type (i.e. a representation induced from a quasi-tempered representation of a Levi subgroup, whose
central character is in the relevant positive chamber). In particular, IP2(τ) has a unique irreducible
quotient σ. Further, this unique irreducible quotient σ is the image of a standard intertwining map
IP2(τ) → IP2(τ

∨). From this, we deduce that σ is self-contragredient and is the unique irreducible
submodule of IP2(τ

∨).
Now, for any representation δ of PGL3, we have

HomPGL3×G2(Π, δ ⊗ σ) ⊂ HomPGL3×G2(Π, δ ⊗ IP2(τ
∨)).

Using Proposition 6, it is not difficult to estimate the latter space. In particular, we see that the
latter space is zero unless δ = π or π∨, which gives the desired upper bound on Θ′(σ). We remark
that we do not have an analog of Proposition 7 because the analog of Lemma 8 is not true in
general.

The following is the main result of this section.

Theorem 11. i) Let π be an irreducible representation of PGL3 which is not square-integrable.
Suppose that π ↪→ IQ2(τ

∨) with τ as in Proposition 3. Then

Θ(π) = Θ(π∨) = {the irreducible quotients of IP2(τ)}.
Further, the correspondence is functorial for π.

ii) Suppose that t > 0. If σ is the unique irreducible quotient of IP2(τ), then

Θ′(σ) = {π, π∨} if π �= π∨,

and

Θ′(σ) = {π} if π = π∨.

Proof. i) After Corollary 9, part i, we need to show that if σ is any irreducible quotient of IP2(τ),
then π⊗σ is a quotient of Π. By Corollary 9, part ii, there is a non-zero map f : Π −→ IQ2(τ

∨)⊗σ.
If IQ2(τ

∨) is irreducible and, hence, equal to π, then we are done. If IQ2(τ
∨) is reducible, then t > 0.

However, by Proposition 10, any irreducible quotient of the image of f must be π ⊗ σ or π∨ ⊗ σ,
i.e. σ ∈ Θ(π) = Θ(π∨). Thus the first statement of part i is proved.

To show that the correspondence is functorial for π, we need to show that the L-parameters
match up. This is straightforward except in case ii of Proposition 3 when s2 = 0, so that the
representation σ ∈ Θ(π) is a Langlands quotient of a representation induced from P1. We leave
the verification to the reader.

ii) This follows from part i and Proposition 10.

For the purpose of global applications, it is useful to note the following corollary.

Corollary 12. Let π(s) be the unramified representation of PGL3 attached to the semisimple
conjugacy class of s ∈ SL3(C). Similarly, let π(i(s)) be the unramified representation of G2 attached
to the conjugacy class of i(s) ∈ G2(C). Then Θ(π(s)) = {π(i(s))}.

Finally, observe that Θ(π) is a singleton set if and only if IP2(τ) has a unique irreducible quotient.
If t > 0, we have observed that this is always the case. If t = 0, then we need to know whether IP2(τ)
is irreducible. This reducibility question has been studied in [Key82, Mui97, Sha91]. Together with
their results, Theorem 11 implies the following.
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Corollary 13. Suppose that π ↪→ IQ2(τ
∨) with τ as in Proposition 3. Then Θ(π) is a singleton

set except in the following cases where it has two elements:

i) τ is a self-dual unitarizable supercuspidal representation whose central character is non-trivial;

ii) τ = π(χ1, χ2) with χ1 �= χ2 characters of order 2.

9. Discrete series

In this section, we determine the set Θ(π) for π a non-cuspidal discrete series representation. Recall
that π is either the Steinberg representation St or its twist Stχ by a cubic character χ. The pair
{χ, χ−1} of cubic characters determine a Galois cubic extension E of F by local class field theory. The
field E then determines a square-integrable representation π(E) of G2 (cf. [Mui97, Proposition 4.2(i)]
where this representation was denoted by π(χ) = π(χ−1)).

Theorem 14. Let χ be a cubic character with corresponding cyclic cubic extension E. Then

Θ(Stχ) = Θ(Stχ2) = {π(E)}.
Proof. Let st denote the Steinberg representation of L2 and let stχ be the twisted representation
st ⊗ χ(det). Then Stχ is a submodule of IQ2(stχ,

1
2). Thus,

θ(Stχ)∗ ↪→ HomPGL3(Π, IQ2(stχ,
1
2)).

As in the proof of Proposition 7, we see by Proposition 4 that

HomPGL3(Π, IQ2(stχ,
1
2)) ∼= HomL2(Π1, stχ ⊗ |det|1/2) ∼= IP2(stχ2,−1

2 )∗.

In particular, θ(Stχ) is a quotient of IP2(stχ2,−1
2 ). Since π(E) is the unique irreducible quotient of

IP2(stχ2,−1
2) [Mui97, Proposition 4.2(ii)], we have Θ(Stχ) ⊂ {π(E)}.

Further, as in Corollary 9(ii), there is a non-zero G2 × PGL3-equivariant map

f : Π −→ π(E) ⊗ IQ2(stχ,
1
2 ),

and we claim that its image is the submodule π(E) ⊗ Stχ. If not, then π(E) will be an element of
Θ(J2(stχ, 1

2 )). However, Theorem 11 shows that Θ(J2(stχ, 1
2)) = {JP2(stχ,

1
2)}. With this contradic-

tion, we see that Θ(Stχ) = {π(E)} and the theorem is proved.

Theorem 15. We have

Θ(St) = {π(1)′, πsc[1]}.
Here, π(1)′ is a generic discrete series representation of G2 defined in [Mui97, Proposition 4.3(i)]
and πsc[1] is a non-generic supercuspidal representation defined in [HMS98].

This is certainly the most difficult part of this paper. The rest of the section is concerned with
its proof. We need the following lemma, which will be used repeatedly.

Lemma 16.

i) Under Θ and Θ′, we have the correspondences

{1} ↔ {JP1(π(1, 1), 1)} and {J1(st , 1
2 ), J2(st , 1

2)} ↔ {JP2(st ,
1
2 )}.

ii) JP1(st ,
1
2) /∈ Θ(St).

Proof. Part i is a special case of Theorem 11. The proof of part ii is quite involved. By the proof of
[Mui97, Proposition 4.3], JP1(st ,

1
2) is a submodule of IP2(π(| · |−1, | · |)). Thus

HomPGL3×G2(Π,St ⊗ JP1(st ,
1
2 )) ⊂ HomPGL3×M2(RP2(Π),St ⊗ π(| · |−1, | · |))
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and it suffices to show that the latter space is zero. By Proposition 6, it suffices to show that the
following spaces are zero:

Hom(IndPGL3×GL2
Qi×GL2

C∞
c (GL2),St ⊗ π(| · |−3/2, | · |1/2)), i = 1, 2;

Hom(IndPGL3×GL2
Q0×B′ C∞

c (GL1),St ⊗ π(| · |−3/2, | · |1/2));
Hom(Π(PGL6),St ⊗ π(| · |−1, | · |)).

The vanishing of the first two terms above can be easily checked using Frobenius reciprocity.
Indeed, the first term is equal to

HomGL2×GL2(C
∞
c (GL2), st ⊗ π(| · |−3/2, | · |1/2)) = 0,

and the second term is equal to

HomQ0×B′(C∞
c (GL1), 1 ⊗ (| · | × | · |−2)) ⊕ HomQ0×B′(C∞

c (GL1), 1 ⊗ (| · |−1 × 1)) = 0.

The last term can be treated with our methods. However, in order to avoid repetitive arguments,
we shall relate it to a special case of the Howe correspondence as follows.

Remark. The minimal representation Π(PGL6) is the Howe lift of the trivial representation of GL1.
In particular, the correspondence for the dual pair PGL3 × PGL2 ⊂ PGL6 is a special case of the
Howe correspondence for the dual pair GL3 × GL2. Since a discrete series representation of GLn
does not appear in the Howe correspondence with GLm unless m � n, the Steinberg representation
(or any supercuspidal representation) of PGL3 cannot be a quotient of Π(PGL6).

The lemma is proved.

We begin the proof of Theorem 15 by showing that Θ(St) contains πsc[1]. By Frobenius reci-
procity and Proposition 5, we see that

HomPGL3×G2(Π, IQ0(ρ0) ⊗ πsc[1]) ⊃ HomG2(Π(D4), πsc[1]).

Now the restriction of Π(D4) to G2 has been determined completely in [HMS98]. Their result states
that

Π(D4) = JP1(π(1, 1), 1) ⊕ 2 · JP2(st ,
1
2 ) ⊕ πsc[1].

Hence, we deduce that there is a non-zero map Π −→ IQ0(ρ0)⊗πsc[1] so that Θ′(πsc[1]) contains some
irreducible subquotient of IQ0(ρ0). Since the irreducible subquotients of IQ0(ρ0) are precisely St and
the representations of PGL3 mentioned in Lemma 16, part i, the lemma implies that St ∈ Θ′(πsc[1])
and thus πsc[1] ∈ Θ(St).

Next we find an upper bound for Θ(St). Since St is a submodule of IQ2(st ,
1
2), we have

θ(St)∗ ⊂ HomPGL3(Π, IQ2(st ,
1
2)) = HomL2(RQ2(Π), st ⊗ |det|1/2) = W.

Since RQ2(Π) has a natural filtration by Proposition 4, this induces a filtration on W :

0 = W3 ⊂W2 ⊂W1 ⊂W0 = W,

such that

W2/W3
∼= HomL2(Π3/Π2, st ⊗ |det|1/2),

W1/W2 ⊂ HomL2(Π2/Π1, st ⊗ |det|1/2),
W0/W1 ⊂ HomL2(Π1, st ⊗ |det|1/2).

Being a subspace of W , θ(St)∗ inherits a filtration as well.
Now we investigate each of the terms above. The study of the last two terms is similar to the

proof of Proposition 7. We simply state the result as follows.
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Lemma 17.

i) HomL2(Π1, st ⊗ |det|1/2) = IP2(st ,−1
2)∗.

ii) W1/W2 = HomL2(Π2/Π1, st ⊗ |det|1/2) = 0.

We now consider the space

HomL2(Π3/Π2, st ⊗ |det|1/2)) = HomL2(Π(L2), st).

Recall that L2 has derived group D5 and Π(L2) is the minimal representation of D5 with the center
of L2 acting trivially. Hence, we need to study the dual pair PGL2 ×G2 ⊂ D5. Using the results of
[MS97, § 2] and particularly [MS97, Proposition 2.3], we obtain the following.

Lemma 18. There is a short exact sequence of representations of G2:

0 −→W ′
1 −→ HomL2(Π(L2), st) −→ W ′

2 −→ 0,

with

W ′
1 ⊂ Π(D4)∗ and W ′

2 ⊂ IP1(|det|−1/2)∗.

Here Π(D4) is the minimal representation of D4.

Since θ(St)∗ is a subspace of W , the above considerations imply that there is a filtration

0 ⊂ V3 ⊂ V2 ⊂ V1 = θ(St)∨

such that

V3 ⊂ Π(D4)∨,

V2/V3 ⊂ IP1(|det|−1/2)∨,
V1/V2 ⊂ IP2(st ,−1

2 )∨.

In particular, we see that θ(St) is of finite length. We need to identify each of these subquotients
as much as possible.

Together with the fact that πsc[1] ∈ Θ(St), Lemma 16 implies that V3 = πsc[1]. We now consider
V2/V3. Since V3 is supercuspidal, V2/V3 is actually a submodule of θ(St)∨. If V2/V3 is non-zero,
then some irreducible quotient of IP1(|det|−1/2) will be an element of Θ(St). Now the irreducible
constituents of IP1(|det|−1/2) are precisely the three representations of G2 in Lemma 16 [Mui97,
Proposition 4.3]; in fact, JP1(st , 1/2) is the unique irreducible quotient. Hence, Lemma 16 implies
that V2/V3 = 0.

By the above, we see that

θ(St) = πsc[1] ⊕ (a quotient of IP2(st ,−1
2)).

We claim that the second term is non-zero. This follows from Corollary 20 (to be proved in the next
section), which implies that θ(St) has non-zero Whittaker functionals, and the fact that πsc[1] is non-
generic. Since IP2(st ,−1

2 ) has π[1]′ as its unique irreducible quotient (cf. [Mui97, Proposition 4.3]
and its proof), we conclude that Θ(St) = {πsc[1], π[1]′}. The theorem is proved.

10. Whittaker vectors

Before we come to the study of Θ(π) for supercuspidal π, we need to establish some results on
Whittaker vectors. The results of this section are independent of those in §§ 8 and 9 and thus could
have been treated after § 7. Suppose that G×G′ ⊂ H is one of the following dual pairs, with G of
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smaller dimension:

PGL3 ×G2 ⊂ E6

G2 × PGSp6 ⊂ E7.

The second dual pair is not the subject matter of this paper, but will be crucial in the next section.
Let U and U ′ be a maximal unipotent subgroup of G andG′, respectively, and let ψ and ψ′ be unitary
characters of U and U ′ which are in general position. Also, let Π be the minimal representation
of H. We have the following proposition.

Proposition 19. As representations of G, ΠU ′,ψ′ ∼= indGUψ, the Gelfand–Graev representation of G.

Proof. This is similar to the proof for the finite field analogue [Gan99, Theorem 7.1]. We shall give
a sketch for the case G × G′ = PGL3 × G2. Let ψ′

2 = ψ′|N2 . Then ψ′
2 is a non-trivial character of

N2/(N2 ∩N1) ∼= Ga. Let Nα
∼= Ga be the unipotent radical of the Borel subgroup M2 ∩ P1 of M2.

Then Nα normalizes N2 and fixes the character ψ′
2. Thus ΠN2,ψ′

2
is naturally a representation of

Nα × PGL3. Let ψα = ψ′|Nα ; it is a non-trivial character of Nα and ΠU ′,ψ′ = (ΠN2,ψ′
2
)Nα,ψα .

Using [MS97, Theorem 6.1], we see that there is an isomorphism of Nα×PGL3-modules ΠN2,ψ′
2

∼=
C∞
c (N ) where N is the set of 3×3 nilpotent matrices. The action of PGL3 on C∞

c (N ) is the action
induced by conjugation whereas the action of b ∈ Nα is induced by the action X �→ X + b ·X2.

Now N possesses a natural stratification by the rank of matrices. Thus C∞
c (N ) has a natural

filtration whose successive quotients are C∞
c (Ni), where Ni is the set of nilpotent matrices of rank i

(i = 0, 1 or 2). Since Nα acts trivially on Ni for i � 1, we conclude that ΠU ′,ψ′ ∼= C∞
c (N2)Nα,ψα . To

prove the proposition, we need to identify the latter module as the Gelfand–Graev representation
of PGL3.

The action of Nα × PGL3 on N2 is clearly transitive. Let

X0 =


0 1 0

0 0 1
0 0 0


 ∈ N2.

Without loss of generality, take U to be the group of upper triangular unipotent matrices in PGL3.
The stabilizer of X0 in Nα × PGL3 is contained in the subgroup Nα × U and the Nα × U -orbit N ′

2

of X0 consists of the elements

Xb =


0 1 b

0 0 1
0 0 0


 .

Indeed, the action of

b×

1 x z

0 1 y
0 0 1


 ∈ Nα × U

is via X0 �→ Xx−y−b.

The above discussion implies that

C∞
c (N2) ∼= indNα×PGL3

Nα×U C∞
c (N ′

2)

where the action of Nα × U on C∞
c (N ′

2) is induced by the geometric action above. From this, we
conclude that

C∞
c (N2)Nα,ψα

∼= indPGL3
U (C∞

c (N ′
2)Nα,ψα) ∼= indPGL3

U ψ
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where ψ is the character of U given by
1 x z

0 1 y
0 0 1


 �→ ψα(y − x).

This proves the proposition.

Corollary 20.

i) If π∨ is non-generic, then θ(π) does not have any generic subquotients.

ii) If π∨ is generic, then θ(π) has a unique irreducible generic subquotient. In particular, θ(π) is
non-zero.

11. Supercuspidal representations

In this section, we give the proof of Theorem 2. For convenience, let us repeat the statement of the
theorem.

Theorem 21. Let π be a supercuspidal representation of PGL3. Then:

i) θ(π) is supercuspidal and has a unique generic summand;

ii) if π is non-self-dual, then θ(π) is irreducible.

Recall that we have a surjection Π −→ π ⊗ θ(π). By the exactness of the Jacquet functors, we
have a surjection RP2(Π) −→ π ⊗ RP2(θ(π)). By Proposition 6, π ⊗ RP2(θ(π)) must be a quotient
of Π(PGL6). However, following the remark in the proof of Lemma 16, we know that a square-
integrable representation of PGL3 does not occur as a quotient of Π(PGL6). Thus RP2(θ(π)) = 0.

We now show that RP1(θ(π)) = 0. There is a surjection RP1(Π) −→ π ⊗RP1(θ(π)) and, by the
above, we know that RP1(θ(π)) is a supercuspidal representation of M1. If it is not zero, then it is
generic and so we have a surjection

RP1(Π)Nβ ,ψβ
−→ π ⊗RP1(θ(π))Nβ ,ψβ

.

Here, Nβ
∼= N2/(N1∩N2) ∼= Ga is the unipotent radical of the Borel subgroupM1∩P2 of M1, and ψβ

is a non-trivial character of Nβ . It remains to see that RP1(Π)Nβ ,ψβ
does not contain supercuspidal

representations of PGL3 as subquotients.
Next, note that (ΠN1)Nβ ,ψβ

is isomorphic to (ΠN2,ψ′
2
)Nα , where ψ′

2 is the character of N2 as in
the proof of Proposition 19. Since ΠN2,ψ′

2
was calculated there, we see that as representations of

PGL3, RP1(θ(π))Nβ ,ψβ
∼= C∞

c (N )Nα where N is the space of nilpotent 3× 3 matrices and Nα is the
unipotent radical of the Borel subgroup M2∩P1 of M2. Since C∞

c (N ) has a natural filtration whose
successive quotients are C∞

c (Ni), where Ni is the set of nilpotent matrices of rank i (i = 0, 1, 2), it
is easy to see that

C∞
c (N0)Nα

∼= 1,

C∞
c (N1)Nα

∼= IndPGL3
Q0

C∞
c (GL1),

C∞
c (N2)Nα

∼= indPGL3
U 1,

where U is the unipotent radical of Q0. In particular, these spaces do not contain supercuspidal
representations of PGL3 as subquotients and thus RP1(θ(π)) = 0.

We have shown that θ(π) is supercuspidal and thus θ(π) is semi-simple. Since π is supercuspidal,
so is π∨ and thus π∨ is generic. Corollary 20 now immediately implies part i.
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Finally, we assume that π is not self-dual. To show that θ(π) is irreducible, it suffices to show
that every summand of θ(π) is generic. The key input here is a wonderful idea of Muic–Savin
which was used in [MS00] for the study of symplectic-orthogonal theta lifts. Consider the dual
pair G2 × PGSp6 ⊂ E7, and recall that PGSp6 has a Siegel parabolic subgroup P whose Levi
subgroup is GL3. If Π(E7) denotes the minimal representation of E7, then [MS97, Theorem 1.1]
shows that Π is a PGL3 ×G2-quotient of RP (Π(E7)). Now suppose that π ⊗ σ is a quotient of Π,
with σ irreducible supercuspidal. Then, by Frobenius reciprocity, there is a non-zero map Π(E7) −→
IP (π)⊗σ. The key observation is that, when π is not self-dual, IP (π) is irreducible and thus generic.
However, by Proposition 19 applied to the dual pair G2 ×PGSp6, we deduce that σ∨ is generic and
thus so is σ (since σ is unitarizable). The proof of the theorem is now complete.

12. Depth zero lifts and a conjecture

The conjecture of Gross and Savin describes the theta correspondence in terms of Langlands para-
meters. However, it is natural to ask for an alternative characterization of θ(π) in terms of π,
since the Langlands parametrization for supercuspidal representations is not known for G2. In this
section, we determine θ(π) for π a depth zero supercuspidal representation and state a conjecture
in the case when π has positive depth, in terms of the construction of supercuspidal representations
via compact induction.

Let us now assume that p � 5 and suppose that π has depth zero. By results of Moy and Prasad
[MP96], π ∼= indPGL3

K σ, where K is a hyperspecial maximal compact subgroup of PGL3 with first
principal congruence subgroup K1 and σ is a cuspidal representation of K/K1 = PGL3(Fq). Fix an
isomorphism Z(p)/Z ∼= F̄

×
p , where Z(p) is the localization of Z at the prime p. Then, relative to this

isomorphism, the irreducible generic representations of a connected reductive group G of adjoint
type over Fq can be parametrized by semisimple conjugacy classes of the dual group G∨ [Car85].
In any case, let us write σ = σ(s) and π = π(s) if σ corresponds to the class of s in the above
parametrization. Since σ is cuspidal, s is regular and elliptic.

Via the natural inclusion i : SL3 ↪→ G2, the element i(s) is still regular and elliptic in G2(Fq), and
hence determines a cuspidal generic representation σ′(i(s)) of G2(Fq). Let π′(i(s)) = indG2

K ′σ′(i(s)),
where K ′ is a hyperspecial maximal compact subgroup of G2. Then π′(i(s)) is an irreducible generic
supercuspidal representation of G2 and we have the following.

Proposition 22. We have θ(π(s)) = π′(i(s)).

Proof. The dual pair PGL3 × G2 ⊂ H can be defined over Z and we may take K, K ′ and KH to
be the hyperspecial maximal compact subgroups corresponding to the respective groups of integer
points. Then KH ∩ (PGL3 × G2) = K × K ′. Let K1 be the first principal congruence subgroup
of KH . Then as a representation of KH/K1

∼= E6(Fq), ΠK1 ∼= 1⊕R, where R denotes the reflection
representation of E6(Fq) (cf. [Sav96] and [Gan99]). Hence, R is a KH -equivariant quotient of Π.

It was shown in [Gan99, Theorem 10.2] that σ(s) ⊗ σ′(i(s)) is a K × K ′-equivariant quotient
of R. Note that since indPGL3×G2

K×K ′ σ(s) ⊗ σ′(i(s)) is irreducible, we have

indPGL3×G2
K×K ′ σ(s) ⊗ σ′(i(s)) = IndPGL3×G2

K×K ′ σ(s) ⊗ σ′(i(s)).

Hence, the result follows by Frobenius reciprocity.

We now describe a conjecture for π of positive depth. Given a pair (T, χ), where T is an
anisotropic maximal torus of PGL3 and χ an admissible character of T , we can construct a super-
cuspidal representation πT,χ of PGL3. Moreover, every supercuspidal representation of PGL3 arises
in this way. Note that T is of the form K×/k× for some cubic field extension K/k. For simplicity,
let us assume that K is Galois over k.
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Now there is a natural conjugacy class of embedding of T into G2. More precisely, via the
isomorphismK×/k× ∼= KN=1, one can embed T naturally into SL3, and then into G2 via the natural
conjugacy class of embedding SL3 ↪→ G2. Hence, T can be regarded as an anisotropic maximal torus
of G2. By the recent results of [Yu01], one can construct a supercuspidal representation π′T,χ of G2

out of the data (T, χ). It is natural to make the following conjecture.

Conjecture. θ(πT,χ) = π′T,χ.

Using the result of [Sav96], it may be possible to verify the conjecture in the case when K is the
unramified cubic extension of k.
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