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Z. Knežević and A. Milani, eds.

c© 2005 International Astronomical Union
DOI: 10.1017/S1743921304008488

The secular planetary three body problem
revisited

Jacques Henrard and Anne-Sophie Libert
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Abstract. We analyze the secular interactions of two coplanar planets based on a high order
(order 12) expansion of the perturbative potential in powers of the eccentricities. The model
depends on only two parameters (the ratio of semi-major axis and the mass ratio of the planets)
and can be reduced to a one degree of freedom system, allowing for an exhaustive parametric
analysis. Following Pauwels (1984) we map the phase space on a sphere, avoiding in this way the
artificial singularities introduced by other mappings. We show that the twelve order expansion
is able to describe correctly most of the exosolar planetary systems discovered so far, even if
the eccentricities of these planets are considerably larger than the eccentricities of our own
solar system. The expansion is even able to reproduce, at moderate eccentricities, the secular
resonances discovered numerically by Michtchenko and Malhotra (2004) at moderate to large
eccentricities.
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1. Introduction
The number of discovered exoplanets is growing fast. A few of them, but their number

is also growing, form genuine planetary systems, being planets of the same star. Due
possibly to observational bias, these systems are quite different from our own planetary
system: large planetary masses, very large eccentricies are common. Some of the pairs of
planets are locked in a mean motion resonance and their orbits are significantly perturbed;
but even in the non-resonant case, long term secular effects may produce interesting
dynamical phenomena and large amplitude variation of eccentricities.

Due to the large values of the eccentricities, the applicability of the classical Laplace-
Lagrange linear perturbation theory is very limited. But it is worth investigating if a
non-linear analytical theory, based on a high order expansion of the secular perturbation
may not be applicable, at least for some of the discovered systems.

This is the aim of this contribution. We expand the secular interactions of a couple
of coplanar planets up to order 12 in the eccentricities, and check that this expansion
modelizes correctly several of the observed systems.The analytical modelization, valid
not only for low, but for moderately high eccentricity, facilitates the parametric analysis
of the secular interaction of a couple of planets. Essentially, two parameters are involved,
the ratio α = a1/a2 of the semi-major axis and the mass ratio µ = m1/(m1 + m2). We
restrict ourself to planar systems because no or very little information on inclination is
available, but, of course, a similar analytical modelization of inclined systems is possible
although its analysis would be more involved.

To describe the phase space of the problem we use the representation introduced
by Pauwels (1983) which is free of the artificial singularities which mar the traditional
representations. We believe that, with this representation, the phase-space diagrams are
simpler and much more readable.
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As a further indication of the interest of our analytical approach, we reproduce, at
moderate eccentricities, the numerical results of Michtchenko and Malhotra (2004) con-
cerning the existence of a secular resonance at moderate to large eccentricities.

2. The Planar Secular Three Body Problem
Let us consider a central star of mass m0 and two coplanar planets of mass m1 and

m2. Using the usual Jacobi coordinates the Hamiltonian of the dynamics of this system
is (up to the second powers in the mass ratios m1/m0 and m2/m0)

H = −Gm0m1

2a1
− Gm0m2

2a2
− Gm1m2

[
1

|�r1 − �r2|
− (�r1|�r2)

r3
2

]
(2.1)

where ai, �ri and ri are, respectively, the osculating semi-major axis, the position vec-
tor and the norm of the position vector of the mass mi (see for instance Brouwer and
Clemence 1961 or Laskar, 1990). We assume that the mass m1 is the one closest to the
central star. To the second order in the mass ratios, the classical modified Delaunay’s
elements (see references above) are:

λi = mean longitude of mi Li = mi

√
Gm0ai

pi = − the longitude of the pericenter of mi Pi = Li

[
1 −

√
1 − e2

i

]
.

(2.2)

The perturbation (the last term in equation (2.1), can be expanded in powers of the
eccentricities (see for instance Murray and Dermott 1999) to yield:

H = −Gm0m1

2a1
−Gm0m2

2a2

−Gm1m2
a2

∑
k,i1,i2,j1,j2

Ak
i1,i2,j1,j2 e

|j1|+2i1
1 e

|j2|+2i2
2 cos Φ ,

(2.3)

where Φ = [(k + j1)λ1 − (k + j2)λ2 + j1p1 − j2p2]. The coefficients Ak
i1,i2,j1,j2

depend only
on the ratio a1/a2 of the semi-major axis. As we plan to use extensively the canonical
variables defined in (2.2), we prefer to use the expressions Ei =

√
2Pi/Li rather than ei.

Notice that for small to moderate eccentricities Ei ≈ ei. Hence the Hamiltonian reads:

H = −Gm0m1

2a1
−Gm0m2

2a2

−Gm1m2

a2

∑
k,i1,i2,j1,j2

Bk
i1,i2,j1,j2 E

|j1|+2i1
1 E

|j2|+2i2
2 cos Φ .

(2.4)

As we are interested in the long term dynamics and as we assume that we are not close
to a mean motion commensurability, we average the Hamiltonian function over the “fast
variables” λi. To the first order in the mass ratios, the averaging amount to a “averaging
by scissors” (dropping the fast periodic terms from the function). We are left with:

K = −Gm0m1

2a1
− Gm0m2

2a2
− Gm1m2

a2

∑
k,i1,i2

Ck
i1,i2 Ek+2i1

1 Ek+2i2
2 cos k(p1 − p2) , (2.5)

where ai, Ei and pi designate now averaged values. The “fast variables” λi are now
ignorable which means that the Li and thus the ai are constant. The first two terms
of (2.5), being constant, can be dropped from the Hamiltonian. Also the Hamiltonian
depends only on the difference (p1 − p2); hence the sum P1 + P2 is a first integral of the
problem which can be reduced to one degree of freedom.
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Before analyzing further this simplified model, it is useful to check whether it may
be applied to exosolar systems. The eccentricity of many of the observed exoplanets is
rather high and one may wonder if the above expansion in powers of the eccentricities
can represent their orbits with enough accuracy. We have computed the expansion (up to
order 12) for several of the exosystems of planets and report the numerical convergence
in Table I.

Table I: Convergence of the expansion (2.5) for some exosystems.

(c-d) υ And. Gliese 876 HD168443 HD169830 HD37124

α 0.332 0.62 0.10 0.22 0.22
µ 0.335 0.23 0.30 0.42 0.38
e1 0.28 0.10 0.53 0.31 0.10
e2 0.27 0.27 0.23 0.33 0.69
p1 − p2 −10◦ 3◦ 110◦ −104◦ −200◦

ord. 2 5.9 10−3 1.4 10−2 7.8 10−4 7.3 10−3 7.5 10−3

ord. 4 4.7 10−4 −2.5 10−4 −1.2 10−5 2.4 10−3 3.1 10−3

ord. 6 2.8 10−5 −3.6 10−6 −6.1 10−7 7.1 10−4 1.1 10−3

ord. 8 1.4 10−6 5.9 10−8 −1.2 10−8 2.0 10−4 3.8 10−4

ord. 10 7.2 10−8 1.8 10−9 −1.4 10−10 5.9 10−5 1.4 10−4

ord. 12 3.8 10−9 −1.4 10−11 −4.4 10−13 1.8 10−5 5.0 10−5

Listed in Table I are the physical parameters of the systems: α = a1/a2 the ratio
of semi-major axis, µ = m1/(m1 + m2), the mass ratio, the eccentricities of the two
components of the systems and the contributions to the value of the Hamiltonian, from
order 2 to order 12 in E1 and E2, of the terms in the expansion (2.5). The numerical
convergence is excellent for the first three systems, marginal for the last two.

3. Reduction to One Degree of Freedom and Display of the Phase
Space

In order to bring forward the fact that the problem may be reduced to a one degree
of freedom problem, it is enough to introduce the new canonical variables:

u = p2 ; U = (P1 + P2)/[(m1 + m2)
√

Gm0a2]

v = p1 − p2 ; V = P1/[(m1 + m2)
√

Gm0a2].
(3.1)

We have introduced the factor (m1 + m2)
√

Gm0a2 in order to make non dimensional
the new actions U and V . Notice that the constant U is a weighted mean of the square
of the two eccentricities when they are small:

U = µ
√

α

[
1 −

√
1 − e2

1

]
+ (1 − µ)

[
1 −

√
1 − e2

2

]
. (3.2)

Up to a constant (the first two terms of (2.5)) and to a factor (the factor −Gm1m2/a2]),
which can be absorbed by redefining the time scale, the Hamiltonian reads

K∗ =
∑
n�1

Un
n∑

k=0

n−k∑
i1=0

Ck
i1,i2

[
2V

Uµ
√

α

](k+2i1)/2 [
2(U − V )
U(1 − µ)

](k+2i2)/2

cos kv, (3.3)

where i2 = n − k − i1. The quantity U being a constant, the trajectories of the one
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Figure 1. The usual representation of the level curves of the Hamiltonian (3.3) on a plane
parametrized by polar coordinates with one of the eccentricities as distance and the difference
in longitude of the pericenter as angular variables. The drawback of this representation is that
the outer circle represents a single point; a fact that introduce artificial singularities.

Figure 2. The projection on the [x, z] and the [y, z] plane of the Pauwel’s sphere. The thick
curves are the ones passing through the geographical poles (where one of the eccentricities
vanishes). In the traditional representation they are singular, but nothing set them apart in this
representation of the phase space.

degree of freedom system, (v, V ), are the level curves of the Hamiltonian function on
a two dimensional manifold. Usually the level curves are drawn on a plane the polar
coordinates of which are v and e1 or v and e2 (see Figure 1). The fact that the outer
circles correspond to a single point (e1 = 0 to the left, e2 = 0 to the right) introduces
uncalled for artificial singularities in the problem and makes difficult the interpretation
of the figures.

We much prefer to use the representation of the manifold U = constant introduced by
Pauwels (1983). Let us define an angle φ by the equation:

P1

P1 + P2
=

V

U
=

1
2
[1 − sin φ] . (3.4)

As V/U belongs to the interval [0, 1] (V/U = 0 when e1 = 0 and V/U = 1 when
e2 = 0), the angle φ belongs to the interval [−π/2, π/2]. At the extreme values the
angular variable v = p1 − p2 is undefined. Hence the phase space has the topology of a
sphere with φ as latitude and v as longitude. The particular values e1 = 0 and e2 = 0
represent the poles of this sphere. Of course it is not as easy to draw level curves on a
sphere than on a plane, but we believe that the projections of the sphere on some plane
(we have chosen, in Figure 2, the [x, z] plane and the [y, z]) is informative enough. The
really interesting points are the equilibria which we call dynamical poles.
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Figure 3. The projection on the [x, z] plane of the Pauwel’s spheres for α = 0.166 and
m1/m2 = 1. From (a) to (f) the constant U , and thus the weighted mean eccentricity, in-
creases. The secular resonance appears from (c) to (e) – from U = 0.12 and U = 0.151. See the
text for further comments.

Figure 4. The singular points on the Pauwel’s sphere for α = 0.166 and m1/m2 = 1. The right
half of this plane (the part with cos w = 1) should be compared with the lower left panel of
Figure 8 of Michtchenko and Malhotra paper (2004). See the text for further comments.

4. The Non-Linear Resonance of the Planar Secular Planetary
Three-Body Problem

Michtchenko and Malhotra (2004) have shown recently that there exists, at moderate-
to-high eccentricity, a secular resonance between the motion of the pericenter of the two
planets. Their results are based on a semi-numerical approach which employs a numerical
averaging of the short period interactions of the planets and a subsequent numerical
integration of the averaged differential equations. It is a challenge for our analytical
approach to reproduce at least part of their results. Of course we are unable to reproduce
them when they appear at very high eccentricities; but, as shown in Figures 3 and 4,
the analytical modelization is able to detect and describe correctly the secular resonance
when it appears at moderate eccentricity. In that case, the analytical approach leads to
a much easier analysis. The Hamiltonian function and its derivatives are rather simple
functions of the spherical coordinates (φ, v). Trajectories are level curves of K∗; equilibria
are roots of a simple polynomial; maximum and minimum values of the eccentricities
along a trajectory are easily computed, etc.

Figure 3 shows, for α = a1/a2 = 0.166 and µ = m1/(m1 + m2) = 0.5, the evolution
of the phase space when the parameter U increases. For U = 0.005 (Figure 3a) the

https://doi.org/10.1017/S1743921304008488 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921304008488


54 Henrard and Libert

dynamical problem is almost linear and the level curves are almost circles centered on
a line (y, z) = (sin β, cos β). Actually, for the linear problem obtained by keeping only
the quadratic terms in the expansion of the Hamiltonian, a rotation of the sphere by the
angle β (which is a simple function of the parameters α and µ) maps the level curves on
the lines of constant latitude. The poles of this transformed sphere are the equilibria. This
is the reason why we have called them dynamical poles, in contrast to the geometrical
poles which correspond to the phases e1 = 0 and e2 = 0.

For U = 0.05, the southern dynamical pole goes toward the geometrical equator much
faster than the northern dynamical pole and the level curves are distorted. For a value of
U slightly smaller than 0.12 a cusp appears on one of the level curves and for U = 0.12 (see
Figure 3c) a small loop is created containing a third equilibrium. An unstable equilibrium
generates two homoclinic orbits which divide the sphere in three domains associated each
with one of the equilibria. For larger values of U (see Figure 3d for U = 0.135) the small
loop grows and the domain associated with the northern pole shrinks. At U = 0.151 (see
Figure 3e) this domain is reduced to a small loop surrounded by one of the homoclinic
orbits. For a slightly larger value of U this dynamical pole and the unstable equilibrium
merge and disappear. For larger values (see Figure 3f for U = 0.17), the topology of
the phase space is the same as before the apparition of the equilibrium. The sphere is
undivided by homoclinic orbits. What was the northern dynamical pole has disappeared,;
what was the southern dynamical pole has moved in the northern hemisphere and the
third equilibrium, promoted to the role of a dynamical pole, has taken a position close
to the southern geometric pole (i.e. for e2 ≈ 0).

Figure 4 summarize the location of the dynamical poles on the circles y = 0 of the
Pauwel’s spheres. For the value of U of each of the sphere of Figure 3, the curve U =
constant is drawn in the plane e1, e2. Notice that in order to distinguish between the
left and right sides of the maps in Figure 3, we attribute a negative value to e1 when
x is negative or equivalently when v = π. Dots indicate the position of dynamical poles
(stable equilibria). Between U = 0.12 and U = 0.151 they are three of them. A cross
indicates the position of the unstable equilibria responsible for the homoclinic trajectories
which divide the spheres in three domains. Small dots indicates the extend of the secular
resonance (dark areas in Figure 3). The right half of Figure 4 reproduce almost exactly
the lower left panel of Figure 8 of Michtchenko and Malhotra (2004) paper.
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