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Abstract. We prove an effective estimate with a power saving error term for the number
of square-tiled surfaces in a connected component of a stratum of quadratic differentials
whose vertical and horizontal foliations belong to prescribed mapping class group orbits
and which have at most L squares. This result strengthens asymptotic counting formulas in
the work of Delecroix, Goujard, Zograf, Zorich, and the author.
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1. Introduction
In her thesis [Mir04], Mirzakhani proved asymptotic formulas for the number of simple
closed geodesics of a given topological type and length at most L on an arbitrary complete,
finite area hyperbolic surface. Inspired by this work, Delecroix et al [DGZZ21] proved
asymptotic formulas for the number of square-tiled surfaces whose vertical and horizontal
foliations belong to prescribed mapping class group orbits and which have at most L
squares. Later, work of the author [AH20] established a direct connection between these
two results, obtaining a new proof of the results in [DGZZ21] as a direct consequence of
[Mir04].

Despite the success of these different approaches, the techniques used do not yield
effective error terms; indeed, they rely crucially on ergodicity. The main goal of this
paper is to prove an effective estimate with a power saving error term for the number
of square-tiled surfaces in a connected component of a stratum of quadratic differentials
whose vertical and horizontal foliations belong to prescribed mapping class group orbits
and which have at most L squares. Let us highlight that this new result not only provides
an effective error term, but also applies to connected components of strata that are not the
principal stratum.

The proof of this result is based on a novel combination of the connections established
in [AH20] and work of Eskin, Mirzakhani, and Mohammadi [EMM22]. In [AH20], using
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work of Hubbard and Masur [HM79], the author established a direct connection between
counting problems of square-tiled surfaces and simple closed multi-curves. In [EMM22],
Eskin, Mirzakhani, and Mohammadi proved an effective estimate for the number of
simple closed curves of length at most L on an arbitrary compact surface equipped with
a Riemannian metric of negative curvature. To prove this result, a sophisticated theory
for counting mapping class group orbits of integral simple closed multi-curves in train
track coordinates was developed. New variants of this theory, in conjunction with the
connections developed in [AH20], are the main tools used in the proof.

The proof of the main result of this paper reinforces the advantage of exploiting
the connection between counting problems of square-tiled surfaces and simple closed
multi-curves first introduced in [AH20]. The main result also continues a program for
proving effective counting results for surfaces, their Teichmüller spaces, and their moduli
spaces [Ara23, Ara21, Ara24, EMM22].

1.1. Main result. A square-tiled surface is a connected, oriented surface constructed
from finitely many disjoint unit area squares on the complex plane, with sides parallel
to the real and imaginary axes, by identifying pairs of sides by translation and/or 180°
rotation. A square-tiled surface represents a particular Riemann surface together with a
quadratic differential obtained by lifting dz2 from the complex plane. The horizontal core
multi-curve of a square-tiled surface is the integrally weighted simple closed multi-curve
obtained by concatenating the horizontal segments running through the middle of each
square. The vertical core multi-curve of a square-tiled surface is defined in an analogous
way. See Figure 1 for an example.

Two integral simple closed multi-curves on homeomorphic surfaces are said to have the
same topological type if there exists a homeomorphism between the surfaces mapping one
multi-curve to the other preserving the weights.

Let Q be a connected component of a stratum of quadratic differentials and γ1, γ2 be a
pair of integral simple closed multi-curves on the corresponding topological surface. For
every L > 0, consider the counting function

sq(γ1, γ2, Q, L) := #

⎧⎪⎪⎨
⎪⎪⎩

square-tiled surfaces in Q with vertical core,
multi-curve of the same topological type as γ1,

horizontal core multi-curve of the same,
topological type as γ2, and ≤ L squares,

⎫⎪⎪⎬
⎪⎪⎭

/∼,

where ∼ denotes the equivalence relation induced by cut and paste operations.
The following is the main result of this paper.

THEOREM 1.1. Let Q be a connected component of a stratum of quadratic differentials of
complex dimension h > 0 and γ1, γ2 be a pair of integral simple closed multi-curves on
the corresponding topological surface. Then, there exist positive constants v(γ1, Q) > 0,
v(γ2, Q) > 0, and κ = κ(Q) > 0 such that for every L ≥ 0,

sq(γ1, γ2, Q, L) = v(γ1, Q) · v(γ2, Q) · Lh + Oγ1,γ2,Q(Lh−κ).
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(a) Square-tiled surface.
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(b) Horizontal core multi-curve.

ß1

ßß 32

(c) Vertical core multi-curve.

FIGURE 1. Example of a square-tiled surface of genus 2 with two zeroes of order 2. The horizontal core
multi-curve is α1 + 2α2. The vertical core multi-curve is β1 + β2 + β3.

Remark 1.2. The constant κ = κ(Q) > 0 in Theorem 1.1 is related to the exponential
mixing rate of the Teichmüller geodesic flow on Q. For a precise definition of the constants
v(γ1, Q) > 0 and v(γ2, Q) > 0, see §3.

1.2. Main ideas of the proof. To prove Theorem 1.1, we first recast the counting function
sq(γ1, γ2, Q, L) as a counting function of mapping class group orbits of integral simple
closed multi-curves in train track coordinates. This is done using the connections first
introduced in [AH20]; see Proposition 3.3. We then apply a variant of the sophisticated
theory for counting mapping class group orbits of integral simple closed multi-curves in
train track coordinates developed in [EMM22]; see Theorem 3.2. This application requires
a very careful handling of error terms.

Given a topological surface S and an integral simple closed multi-curve γ on S, an
important step of the proof of Theorem 1.1 corresponds to parameterizing the quotient
space MF(γ )/Stab(γ ) in terms of train track coordinates; this is the space of singular
measured foliations that, together with γ , fill S modulo the stabilizer of γ in the mapping
class group. This parameterization is achieved by introducing the concept of moderately
slanted cylinder diagrams and moderately slanted cylinder train tracks; see Proposition 2.7.

Remark 1.3. The ideas introduced in the proof of Theorem 1.1 can also be used to
give effective estimates of other related counting functions of square-tiled surfaces; see
Theorem 3.9 for an example.

1.3. Outline of the paper. In §2, we introduce the concepts of moderately slanted cylin-
der diagrams and moderately slanted cylinder train tracks, and use them to parameterize
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the quotient space MF(γ )/Stab(γ ). In §3, we go into more detail on the ideas introduced
in [AH20, EMM22] and use them to prove Theorem 1.1 following the sketch described
above.

2. Horospheres in connected components of strata
2.1. Outline. In this section, we discuss horospheres on connected components of strata
of quadratic differentials from several points of view. After defining the horospherically
foliated sets Q(γ ), we parameterize them using a special class of cylinder diagrams.
We then discuss how to parameterize them in terms of singular measured foliations and,
more concretely, how to do so using train track coordinates. This last perspective will be
particularly useful in the proof of Theorem 1.1.

2.2. Horospheres. For the rest of this section, fix an integer vector σ := (σ1, . . . , σn)

with σi ≥ −1 and a boolean value ε ∈ {0, 1}. Denote by Q(σ , ε) the stratum of unmarked
quadratic differentials with marked singularities of order σ and ε = 1 if and only if every
quadratic differential in the stratum is the square of an Abelian differential. A singularity
of order −1 is a pole, a singularity of order 0 is a marked point, and a singularity of order
≥ 1 is a zero of the corresponding order. Let g ≥ 0 be the non-negative integer satisfying
the equation

4g − 4 =
n∑

i=1

σi .

The complex dimension of the stratum Q(σ , ε) is given by

h := 2g − 2 + n + ε.

For the rest of this section, we fix a connected component Q of this stratum.
Let S be a connected, oriented surface of genus g with n punctures. Denote by QT

the lift of the connected component Q of quadratic differentials marked by the surface S.
Denote by Mod := Mod(S) the mapping class group of S. The action of Mod on QT is
properly discontinuous and Q is the corresponding orbifold quotient.

Denote by MF := MF(S) the space of singular measured foliations on S. The
markings on QT allow us to define maps

�, � : QT → MF

that record the vertical and horizontal foliations, respectively, of any marked quadratic
differential. Fix an integral simple closed multi-curve γ := a1γ1 + · · · + akγk on S. Any
such multi-curve determines a horospherically foliated set

QT (γ ) := {q ∈ QT | �(q) = γ }.
The maps � and � above factor through the mapping class group action to give

�, � : Q → MF/Mod.
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FIGURE 2. Cylinder diagram of a quadratic differential in Q(4, 0). The horizontal foliation is identified with a
simple closed curve on a genus 0 surface with four punctures that separates the punctures into two sets of two.

This is a moderately slanted cylinder diagram.

Equivalence classes of integral simple closed multi-curves are called topological types.
Fixing a topological type gives rise to a horospherically foliated set

Q(γ ) := {q ∈ Q | �(q) = Mod · γ }.
Denote by Stab(γ ) ⊆ Mod the set of mapping classes that fix γ . It will be convenient

for our purposes to consider the intermediate quotient QT (γ )/Stab(γ ). The following
proposition will be particularly useful in this context.

PROPOSITION 2.1. [AH20, Lemma 3.6] The quotient map QT (γ )/Stab(γ ) → Q(γ ) is a
homeomorphism.

2.3. Cylinder diagrams. Quadratic differentials in Q(γ ) can be represented via cylinder
diagrams. A cylinder diagram is a collection of disjoint parallelograms on the complex
plane with certain edge identifications. Each parallelogram has one pair of sides, called
bases, which are parallel to the real axis. These bases are broken into edges, and pairs of
edges are identified by translation and/or 1800 rotation. The other pair of sides, referred to
as special edges, are always identified by translation. See Figure 2 for an example.

The horizontal foliation of a cylinder diagram is identified with a weighted simple
closed multi-curve on the corresponding surface. The components of the multi-curve are
given by the core curves of the cylinders and each such curve is weighted by the height of
the corresponding cylinder. In the case of cylinder diagrams coming from integral simple
closed multi-curves, the heights of the cylinders are always integers.

Each cylinder diagram represents a quadratic differential in a given connected com-
ponent of a stratum. As we vary the real parts of the edges of a cylinder diagram while
retaining the parallelism conditions, the corresponding quadratic differential remains in
the same connected component. The identifications in the moduli space Q(γ ) correspond
to cut and paste operations.

PROPOSITION 2.2. [AH20, §3] The set Q(γ ) is in one-to-one correspondence with the
set of cylinder diagrams in Q with horizontal foliation of type Mod · γ up to cut-and-paste
operations.

To get a more complete description of the correspondence in Proposition 2.2, we restrict
our attention to a particular class of cylinder diagrams. Consider a cylinder diagram with
pairs of bases of lengths b1, . . . , bk > 0 and special edges of holonomy with real parts
s1, . . . , sk ∈ R. We say this cylinder diagram is moderately slanted if 0 < si ≤ bi for
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every i ∈ {1, . . . , k}. See Figure 2 for an example. The following proposition follows
immediately by applying Dehn twists in an appropriate way.

PROPOSITION 2.3. Up to the action of Stab(γ ), every cylinder diagram describing a
quadratic differential in Q(γ ) can be represented in a unique way as a moderately slanted
cylinder diagram.

Proof. Consider a cylinder diagram with pairs of bases of lengths b1, . . . , bk > 0
and special edges of holonomy with real parts s1, . . . , sk ∈ R representing quadratic
differentials in Q(γ ). The components of γ are in one-to-one correspondence with the
core curves of the cylinders of the diagram and, thus, Dehn twists along these curves
correspond to elements of Stab(γ ). Applying the Dehn twist along the core curve of the ith
cylinder of the diagram is represented by the transformation si 
→ si + bi , leaving the other
parameters constant. It follows that, via multiple applications of Dehn twists along the
core curves of the cylinders of the diagram, one can obtain a moderately slanted cylinder
diagram in a unique way.

In particular, we deduce the following corollary.

COROLLARY 2.4. There exists finitely many moderately slanted cylinder diagrams which,
by varying the real parts of their edges while retaining the parallelism and moderately
slanted conditions, represent all quadratic differentials in Q(γ ) without overlaps.

2.4. Measured foliations. Quadratic differentials in Q(γ ) can also be parameterized in
terms of their vertical foliations. More precisely, denote by i(·, ·) the geometric intersection
number pairing on MF × MF . Consider the set 	 ⊆ MF × MF of pairs of non-filling
singular measured foliations, that is,

	 := {(λ, μ) ∈ MF × MF | there exists η ∈ MF : i(λ, η) + i(μ, η) = 0}.
By the work of Hubbard and Masur [HM79], the map

(�, �) : QT → MF × MF \ 	

is a Mod-equivariant homeomorphism onto its image. Denote

MF(γ ) := {λ ∈ MF | (γ , λ) /∈ 	}.
PROPOSITION 2.5. [HM79] The map � : QT (γ ) → MF(γ ) is a Stab(γ )-equivariant
homeomorphism onto its image.

Of particular importance for us will be the quotient MF(γ )/Stab(γ ). Directly from
Proposition 2.5, we deduce the following corollary.

COROLLARY 2.6. The induced map � : QT (γ )/Stab(γ ) → MF(γ )/Stab(γ ) is a home-
omorphism onto its image.

2.5. Train tracks. The correspondence in Proposition 2.5 and Corollary 2.6 will allow
us to study the quotient MF(γ )/Stab(γ ) using moderately slanted cylinder diagrams. We
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FIGURE 3. Triangulation associated to the moderately slanted cylinder diagram in Figure 2.

a

b

c

(a) The initial 1-complex.

a

b

c

(b) Deleting an inner edge.

FIGURE 4. The 1-complexes in a triangle.

FIGURE 5. Train track associated to the moderately slanted cylinder diagram in Figure 2.

can make this idea more precise using train tracks. Given a moderately slanted cylinder
diagram, consider a triangulation by saddle connections of the underlying surface S as in
Figure 3.

On each of the triangles of this triangulation, consider a 1-complex as in Figure 4(a);
the edges of this complex that do not intersect the sides of the triangle will be referred to
as inner edges. Label the edges of the triangle by a, b, c so that

|�(a)| = |�(b)| + |�(c)|.
The edge labeled a is unique because the cylinder diagram is moderately slanted. Delete
the inner edge of the complex of the triangle opposite to a as in Figure 4(b). Joining these
complexes along the edges of the triangulation, as in Figure 5, yields a train track τ on S
that carries the singular measured foliation �(q); the weights of the train track correspond
to the absolute value of the real parts of the edges of the triangulation. Furthermore, the
area of q is equal to i(�(q), γ ).

We refer to the train tracks constructed above as moderately slanted cylinder train tracks.
Varying the real parts of the edges of the cylinder diagram while retaining the parallelism
and moderately slanted conditions preserves the train track. Moreover, the moderately
slanted condition corresponds to an explicit linear cone in the weight space of the train
track. We refer to this cone as the characteristic cone of the train track. Directly from this
discussion, Proposition 2.1, and Corollaries 2.4 and 2.6, we deduce the following result.
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PROPOSITION 2.7. There exist finitely many moderately slanted cylinder train tracks
which, in their characteristic cone, carry all singular measured foliations in the image
of � : QT (γ ) → MF(γ ) up to the action of Stab(γ ) without overlaps.

Recall γ := a1γ1 + · · · + akγk . Consider a moderately slanted cylinder diagram with
k cylinders C1, . . . , Ck representing a quadratic differential q ∈ Q(γ ). Denote by τ the
corresponding moderately slanted cylinder train track. Let u1, . . . , uk > 0 be the weights
on τ corresponding to the special edges of each cylinder. For each cylinder Ci , let
v

(i)
1 , . . . , v

(i)
m(i) > 0 be the weights on τ corresponding to the edges on the top base of

the cylinder ordered from left to right. For each cylinder Ci , let w
(i)
1 , . . . , w

(i)
l(i) > 0 be the

weights on τ corresponding to the edges on the bottom base of the cylinder ordered from
left to right. The weights considered completely determine the rest of the weights of the τ .
Notice that

Area(q) := 1
2

( k∑
i=1

ai

( m(i)∑
j=1

v
(i)
j +

l(i)∑
j=1

w
(i)
j

))
.

Directly from the discussion above, we deduce the following.

PROPOSITION 2.8. In the weight space of a moderately slanted cylinder train track, the
area of a quadratic differential, or, equivalently, the geometric intersection number with
the horizontal foliation, is given by a linear functional whose sub-level-sets are bounded
when intersected with the characteristic cone.

3. Counting square-tiled surfaces
3.1. Outline of this section. In this section, we prove Theorem 1.1, the main result of
this paper. The proof relies on the sophisticated theory developed in the work of Eskin,
Mirzakhani, and Mohammadi [EMM22] for counting mapping class group orbits of
simple closed multi-curves in train track coordinates. We begin by reviewing this theory
and discussing some variants. We then apply this theory together with the result discussed
in §2 to prove Theorem 1.1.

3.2. Mapping class group orbits. In [EMM22], Eskin, Mirzakhani, and Mohammadi
proved an effective estimate for the number of simple closed curves of length ≤ L on a
compact surface equipped with a Riemannian metric of negative curvature. To prove this
result, a sophisticated theory for counting mapping class group orbits of integral simple
closed multi-curves in train track coordinates was developed. We now summarize the main
aspects of this theory as well as discuss some variants.

Let S be a connected, oriented surface of genus g with n punctures and τ be a train
track on S. Denote by U(τ) the cone of non-negative weights on τ satisfying the switch
conditions and by ‖ · ‖ the L1 norm on U(τ). Consider the set

P(τ) := {λ ∈ U(τ) | ‖λ‖ = 1}.
By a polyhedron U ⊆ P(τ), we mean a polyhedron of dimension dim U(τ) − 1, where
the number of facets and the angles are bounded below by uniform constants depending
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only on S; facets are allowed to be open and/or closed. For the rest of this discussion, let
γ := a1γ1 + · · · + akγk be an integral simple closed multi-curve on S. For every L ≥ 0,
consider the counting function

s(γ , U , L) := #
{
α ∈ Mod(S) · γ α ∈ R

+ · U
‖α‖ ≤ L

}
.

Let Q be the principal stratum of quadratic differentials on S. Denote v(γ ) > 0 the
Lebesgue measure of the set of quadratic differentials q ∈ Q(γ ) with Area(q) ≤ 1; this
quantity is finite because of Propositions 2.7 and 2.8. Denote by μThu the Thurston measure
on MF(S). Recall that MF(S) can be endowed with a natural R+ action that scales
transverse measures.

THEOREM 3.1. [EMM22, Theorem 7.1] There exists κ = κ(S) > 0 such that for every
maximal train track τ on S, every polyhedron U ⊆ U(τ), and every L ≥ 0,

s(γ , U , L) = v(γ ) · μThu((0, 1] · U) · L6g−6 + Oγ ,τ (L
6g−6−κ).

In the ensuing discussion, we use the notation introduced in §2. Let Q be a connected
component of a stratum of quadratic differentials. Recall that we denote by h > 0 its
complex dimension. Denote by v(γ , Q) > 0 the Lebesgue measure of the set of quadratic
differentials q ∈ Q(γ ) with Area(q) ≤ 1; this quantity is finite because of Propositions
2.7 and 2.8. Given a moderately slanted cylinder train track τ , denote by μ the Lebesgue
measure on its weight space.

THEOREM 3.2. There exists κ = κ(Q) > 0 such that for every moderately slanted
cylinder train track τ on S carrying vertical foliations of quadratic differentials in Q(γ ),
every polyhedron U ⊆ U(τ), and every L ≥ 0,

s(γ , U , L) = v(γ , Q) · μ((0, 1] · U) · Lh + Oγ ,τ (L
h−κ).

Proof. The result follows by the same arguments used to prove [EMM22, Theorem 7.1].
More concretely, the main technical tool used in the proof of this result is the bisector
counting estimate [EMM22, Proposition 4.1]. This estimate holds for any connected
components of a stratum. Indeed, the backbone of the proof of this estimate is the
horosphere equidistribution result [EMM22, Proposition 3.2], which holds for every
connected component of a stratum. The main driving force behind the proof of this
equidistribution result is the exponential mixing rate of the Teichmüller geodesic flow.
This flow is known to be mixing on any connected component of a stratum due to work
of Avila, Gouëzel, Resende, and Yoccoz [AG13, AGY06, AR12]. The rest of the technical
results used in the proof of [EMM22, Theorem 7.1] also hold in the proposed setting.

3.3. Square-tiled surfaces. For the rest of this section, fix Q a connected component of
a stratum of quadratic differentials on a surface S, and integral simple closed multi-curves
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γ1 and γ2 on S. For every L ≥ 0, consider the counting function

sq(γ1, γ2, Q, L) := #

⎛
⎜⎜⎝

⎧⎪⎪⎨
⎪⎪⎩

square-tiled surfaces q q ∈ Q,
�(q) = Mod · γ1,
�(q) = Mod · γ2,
Area(q) ≤ L.

⎫⎪⎪⎬
⎪⎪⎭

/
∼

⎞
⎟⎟⎠,

where ∼ denotes the equivalence relation induced by cut-and-paste operations.
Our goal for the rest of this section is to prove an effective estimate for this counting

function. To do so, we first recast it as a counting function of mapping class group orbits
of integral simple closed multi-curves in train track coordinates. We then apply Theorem
3.2 to get the desired effective estimate.

3.4. Recasting. By the work of Hubbard and Masur [HM79], square-tiled surfaces are
in one-to-one correspondence with filling pairs of integral simple closed multi-curves.
Given a filling pair of integral simple closed multi-curves α and β on S, denote by q(α, β)

the corresponding square-tiled surface. Notice that

Area(q(α, β)) = i(α, β).

Using this correspondence, we can recast the counting function sq(γ1, γ2, Q, L) in a more
convenient way; compare with [AH20, §3].

PROPOSITION 3.3. In the context above, for every L ≥ 0,

sq(γ1, γ2, Q, L) = #

⎛
⎝

⎧⎨
⎩

α ∈ Mod · γ1 α ∈ MF(γ2),
q(α, γ2) ∈ Q,
i(α, γ2) ≤ L,

⎫⎬
⎭

/
Stab(γ2)

⎞
⎠.

Proof. Using the correspondence between square-tiled surfaces and filling pairs of integral
simple closed multi-curves, we write

sq(γ1, γ2, Q, L) = #

⎛
⎝

⎧⎨
⎩

(α, β) ∈ Mod · γ1 × Mod · γ2 (α, β) /∈ 	,
q(α, β) ∈ Q,
i(α, β) ≤ L,

⎫⎬
⎭

/
Mod

⎞
⎠,

where the quotient by Mod corresponds to the diagonal action on MF × MF . In turn,
this expression can be rewritten as

sq(γ1, γ2, Q, L) = #

⎛
⎝

⎧⎨
⎩

α ∈ Mod · γ1 α ∈ MF(γ2),
q(α, γ2) ∈ Q,
i(α, γ2) ≤ L,

⎫⎬
⎭

/
Stab(γ2)

⎞
⎠.

3.5. Geometric intersection numbers. Fix τ a moderately slanted cylinder train track
carrying singular measured foliations in MF(γ2) corresponding to quadratic differentials
in Q(γ2). Proposition 2.8 guarantees the function i(·, γ2) is a linear function over the
characteristic cone of τ . In particular, this function is Lipschitz. Given a non-empty
polyhedron U ⊆ P(τ) in the characteristic cone of τ , denote
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M(γ2, U) := max
λ∈U

i(λ, γ2),

m(γ2, U) := min
λ∈U

i(λ, γ2).

Proposition 2.8 ensures these quantities are positive and finite. Denote the L1 diameter of
the polyhedron U by diam(U). As a direct consequence of the discussion above, we deduce
the following.

PROPOSITION 3.4. For every polyhedron U ⊆ P(τ) in the characteristic cone of τ ,

|M(γ2, U) − m(γ2, U)| �γ2,τ diam(U).

3.6. Comparison. For every non-empty polyhedron U ⊆ P(τ) in the characteristic cone
of τ and every L ≥ 0, consider the counting function

sq(γ1, γ2, U , L) := #
{
α ∈ Mod · γ1 α ∈ R+ · U

i(α, γ2) ≤ L

}
.

When U ⊆ P(τ) is the intersection of the characteristic cone of τ with P(τ), we
denote this counting function simply by s(γ1, γ2, τ , L). By Proposition 3.3, a first step
toward the proof of Theorem 1.1, the main result of this paper, would be to study the
counting functions sq(γ1, γ2, U , L). Theorem 3.2 allows us to study the counting functions
s(γ1, U , L). The following bounds, which follow directly from the definitions, will thus
play an important role.

PROPOSITION 3.5. For every non-empty polyhedrom U ⊆ P(τ) in the characteristic cone
of τ and every L ≥ 0, the following bounds hold:

sq(γ1, γ2, U , L) ≤ s(γ1, U , L/m(γ2, U)),

s(γ1, U , L/M(γ2, U)) ≤ sq(γ1, γ2, U , L).

Applying Theorem 3.2, we deduce the following corollary.

COROLLARY 3.6. There exists a constant κ = κ(Q) > 0 such that for every non-empty
polyhedrom U ⊆ P(τ) in the characteristic cone of τ and every L ≥ 0,

sq(γ1, γ2, U , L) ≤ v(γ1, Q) · μ((0, 1] · U) · (L/m(γ2, U))h + Oγ1,τ (L
h−κ),

v(γ1, Q) · μ((0, 1] · U) · (L/M(γ2, U))h + Oγ1,τ (L
h−κ) ≤ sq(γ1, γ2, U , L).

3.7. Leading terms. Let V ⊆ P(τ) be the intersection of the characteristic cone of τ

with P(τ). Given a finite partition U := {Ui}Ni=1 of V , denote

diam(U) := max
i∈{1,...,N}

diam(Ui ).

Denote by v(γ2, τ) > 0 the positive constant

v(γ2, τ) := μ({λ ∈ R
+ · V | i(λ, γ2) ≤ 1}).

The following proposition will allow us to identify the leading term of the counting
function s(γ1, γ2, τ , L) in the estimates that will be carried out later.
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PROPOSITION 3.7. For every partition U := {Ui}Ni=1 of V ,

N∑
i=1

μ((0, 1] · Ui )

M(γ2, Ui )h
≤ v(γ2, τ) ≤

N∑
i=1

μ((0, 1] · Ui )

m(γ2, Ui )h
,

N∑
i=1

μ((0, 1] · Ui )

m(γ2, Ui )h
−

N∑
i=1

μ((0, 1] · Ui )

M(γ2, Ui )h
�γ2,τ diam(U).

Proof. The first set of bounds follows directly from the definitions and the fact that the
measure μ is h-homogeneous under positive scalings. For the second bound, notice that by
applying Proposition 3.4,

N∑
i=1

μ((0, 1] · U)

m(γ2, U)h
−

N∑
i=1

μ((0, 1] · U)

M(γ2, U)h

�γ2,τ μ((0, 1] · V) · max
i∈{1,...,N}

|M(γ2, Ui ) − m(γ2, Ui )|
�γ2,τ diam(U).

3.8. Characteristic cones. We are now ready to prove an effective estimate for the
counting function sq(γ1, γ2, τ , L). This will be the main tool used in the proof of
Theorem 1.1, the main result of this paper.

PROPOSITION 3.8. There exists a constant κ = κ(Q) > 0 such that for every L ≥ 0,

sq(γ1, γ2, τ , L) = v(γ1, Q) · v(γ2, τ) · Lh + Oγ1,γ2,τ (L
h−κ).

Proof. Let δ ∈ (0, 1) to be fixed later. Consider a partition U := {Ui}Ni=1 of diameter
diam(U) ≤ δ of the characteristic cone of τ into N �τ δ−h polyhedrons. By Corollary 3.6,
for each of these polyhedrons, we have the estimates

sq(γ1, γ2, Ui , L) ≤ v(γ1, Q) · μ((0, 1] · Ui ) · (L/m(γ2, Ui ))
h + Oγ1,τ (L

h−κ),

v(γ1, Q) · μ((0, 1] · Ui ) · (L/M(γ2, Ui ))
h + Oγ1,τ (L

h−κ) ≤ sq(γ1, γ2, Ui , L).

Adding up these estimates over i ∈ {1, . . . , N}, we get

sq(γ1, γ2, τ , L) ≤ v(γ1, Q) ·
N∑

i=1

μ((0, 1] · Ui )

m(γ2, Ui )h
· Lh + Oγ1,τ (N · Lh−κ),

v(γ1, Q) ·
N∑

i=1

μ((0, 1] · Ui )

M(γ2, Ui )h
· Lh + Oγ1,τ (N · Lh−κ) ≤ sq(γ1, γ2, Ui , L).

By Proposition 3.7, it follows that

sq(γ1, γ2, τ , L) = v(γ1, Q) · v(γ2, τ) · Lh + Oγ1,γ2,τ (diam(U) · Lh + N · Lh−κ).

Notice that

diam(U) · Lh + N · Lh−κ �τ δ · Lh + δ−h · Lh−κ .

https://doi.org/10.1017/etds.2024.54 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.54


Effective count of square-tiled surfaces 13

Let δ := L−η with η > 0. Choose η > 0 so that

κ ′ = κ ′(Q) := min{η, κ − hη} > 0.

It follows that

sq(γ1, γ2, τ , L) = v(γ1, Q) · v(γ2, τ) · Lh + Oγ1,γ2,τ (L
h−κ ′

).

3.9. Proof of the main result. We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.7, there exists a finite collection {τi}Ni=1 of
moderately slanted cylinder train tracks which, in their characteristic cone, carry all
singular measured foliation in the image of � : QT (γ2) → MF(γ2) up to the action of
Stab(γ2) without overlaps. By Proposition 3.3, we have

sq(γ1, γ2, Q, L) =
N∑

i=1

sq(γ1, γ2, τi , L).

By Proposition 3.8, for every i ∈ {1, . . . , N},
sq(γ1, γ2, τi , L) = v(γ1, Q) · v(γ2, τi) · Lh + Oγ1,γ2,τi

(Lh−κ).

Adding up these estimates, we conclude

sq(γ1, γ2, Q, L) = v(γ1, Q) · v(γ2, Q) · Lh + Oγ1,γ2,Q(Lh−κ).

3.10. Further remarks. As explained in §1, the ideas introduced in the proof of
Theorem 1.1 can also be used to give effective estimates of other related counting functions
of square-tiled surfaces. More explicitly, for every L ≥ 0, consider the counting function

sq(γ1, ∗, Q, L) := #

⎛
⎝

⎧⎨
⎩

square-tiled surfaces q q ∈ Q,
�(q) = Mod · γ1,
Area(q) ≤ L,

⎫⎬
⎭

/
∼

⎞
⎠,

where ∼ denotes the equivalence relation induced by cut and paste operations.
Using standard lattice point counting arguments in place of Theorem 3.2 in the proof of

Theorem 1.1 yields the following result.

THEOREM 3.9. There exists a constant κ = κ(Q) > 0 such that for every L ≥ 0,

sq(γ1, ∗, Q, L) = v(γ1, Q) · Lh + Oγ1,Q(Lh−κ).
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