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108.44 Expressing the area of a circle in terms of line
segments of perpendicular chords

Claim: Let two perpendicular chords of a circle be cut into segments of
length a, b, ¢ and d as shown.
D

FIGURE 1

Then the area of the circle is Z (a® + b* + ¢ + d°).

Proof: Construct a chord AX parallel to CD.
D

FIGURE 2

The radius of the circle perpendicular to both AX and CD bisects them.
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FIGURE 3

Therefore, 4 |AX| + ¢ = d — }|AX| and hence |AX| = d - c.
D

FIGURE 4

By the converse of Thales' theorem, BX is a diameter of the circle.
By Pythagoras' theorem,

IBX| = \J(a + b)* + (d — ¢)* = Va® + 2ab + b* + d* — 2cd + c*
By the intersecting chords theorem, ab = cd implying

IBX| = Va* + b* + ¢ + d-
Therefore, the area of the circle is

2
/a2 2 2+d2
\a+b2+c =%(a2+b2+c2+d2).
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108.45 The golden section from three congruent semicircles

Let R be a positive real number and let A;B; be a line segment with
length 2R. Two rays [, [’ with origins at A;, Bj, respectively, are
perpendicular to A;B;. We show how to obtain the following configuration
where A,B, = AsB; = 2R, points As, B; are on /, B, is on [’, and the
semicircles wy, w,, w; with respective diameters A;By, A;B,, A3B; satisfy:

* A,B, is tangent to w; at A,
* ®, is tangent to ws.
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FIGURE 1

As a by-product, the construction will provide the following
proposition:

Proposition 1: The semicircle w with centre B, externally tangent to w; is
also tangent to ws;. In addition, if it intersects the line segment BB, in A,
then 43 = ¢, the golden ratio (¢ = (V5 + 1)).

Constructing Figure 1

The construction of w, is easy: since the tangents to w; from B, are of
equal length, we must have B,B; = B,A;, = 2R. Thus, we first locate B, on
( such that B;B, = 2R, then draw the tangent B,A, to @, and w, follows.
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