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Curved detonation equations with analysis
and its applications
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In this paper, curved detonation equations with gradients for the pre-wave and post-wave
are constructed followed by analysis, verification and applications. The study focuses on
shock induced chemical reaction such as detonation, with the energy effect for the main
attention. Equations consider both planar and transverse curvature to accommodate both
planar and axisymmetric flow problems. Influence coefficients are derived and used to
analyse the effect of energy and curvature on the post-wave gradient. Good agreement
with the simulation results demonstrates that the equations presented in this paper can
calculate various post-wave gradients accurately. After verification, the equations can be
applied to applications, including not only solution and analysis but also in the inverse
design. First, the method can be applied with polar analysis to provide a new perspective
and higher order parameters for the study of detonation. Second, the equations can be
used for the capture of detonation waves, where both planar and axisymmetric examples
show better performance. Furthermore, the equations can be used in the inverse design of
detonation waves in combination with the method of characteristics, which is one of the
unique benefits of the present equations.
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1. Introduction

Shock waves are important phenomenon in supersonic flow and, therefore, shock-induced
chemical reactions are of great interest, such as detonation and air dissociation. Detonation
waves are supersonic combustion waves induced by shock waves and sustained by
the subsequent chemical reactions (Teng & Jiang 2012). The early observations of
detonation originated from mining disasters caused by the accumulation of coal-mine
gas and explosions caused by gas leakage from chemical plants. The destructive ability
of detonation is much greater than that of ordinary combustion phenomena, and thus

† Email address for correspondence: yancheng.you@xmu.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 999 A79-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:yancheng.you@xmu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.960&domain=pdf
https://doi.org/10.1017/jfm.2024.960


H. Yan, C. Shi, H. Xiong, X. Han and Y. You

it has attracted great attention. Abel (1874) first measured the detonation velocity
of cotton powder. After this, Berthelot & Vieille (1881) systematically measured the
detonation velocities produced by mixing various gaseous fuels with different oxidants.
This systematic and comprehensive study confirmed the existence of the detonation
wave. Since then, detonation has gradually developed into a discipline of experimental,
theoretical and numerical investigations with its research category, governing equations
and basic laws.

Due to the complexity of the detonation phenomenon, experimental testing has long
been the main research method, especially in early studies. Many important physical
phenomena have been elucidated through experimental observation. Chatelier (1885)
recorded the evolution process from deflagration to detonation, and they confirmed for
the first time that there can be two combustion modes in the same combustible gas:
a deflagration wave and a detonation wave. Denisov (1959) experimentally observed
the cell structure of a detonation wave. Theoretical approaches have also accompanied
the development of detonation research. Using the Rankine–Hugoniot (RH) relations,
Chapman (1899) and Jouguet (1904, 1905, 1916) established theories to analyse the
conservation equation of crossing detonation waves, and they obtained the unique
solution of the stable propagation velocity of a detonation wave, which is called the
Chapman–Jouguet (CJ) velocity. CJ theory is a very important achievement, but it
ignores the complex structures of detonation waves. To this end, Zel’dovich (1940), Von
Neuman (1942) and Doring (1943) independently put forward a theoretical model to
describe the detonation wave structure, which is referred to as the ZND model. The
ZND model successfully combines the chemical reaction process and shock dynamics,
establishing a complete theoretical detonation model with a clear concept that considers
both physical and chemical phenomena. It thus makes a great contribution to the study
of detonation. With the development of computer technology, Taki & Fujiwara (1978)
successfully simulated an unsteady detonation wave for the first time and obtained the
three-wave structure of the detonation wave. Eto, Tsuboi & Hayashi (2005) calculated
the propagation of an explosion wave in a three-dimensional pipeline and found the
law of three-wave points propagating along the diagonal. Dou et al. (2008) studied the
propagation patterns of implosion waves in rectangular pipelines by using a fifth-order
weighted essentially non-oscillatory scheme and the third-order total variation diminishing
Runge–Kutta method.

In any real detonation, there will always be some curvature of the detonation wave,
however small (Sharpe 2007b). Even a small amount of curvature can have a significant
effect on the detonation wave structure (Klein & Stewart 1993; Yao & Stewart 1995).
Hornung (1998) solved the inviscid equations of motion for the reacting flow at the
downstream side of a curved shock for the shock-normal derivatives and explained the
formation of the cellular structure by solving the post-wave streamline curvature. In
terms of projectile-induced detonation, Maeda, Kasahara & Matsuo (2012) and Maeda
et al. (2013) discussed detonation stability owing to the curvature effect arising from
the three-dimensional nature of a stabilized oblique detonation wave around a projectile.
Their previous studies showed that the detonation wave near the projectile was attenuated
below the CJ velocity by the curvature effect (Menees et al. 1992; Kaneshige & Shepherd
1997). Regarding detonation behind a conical flow, Yang et al. (2017) performed further
simulations to investigate the interplay between the effect of Taylor–Maccoll flow, front
curvature and energy release from the chemical reaction in conical oblique detonations.
Their simulations showed that the curvature can overcompensate for the high density
and temperature in the shocked gas, which means that the curvature plays a more
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dominant role in the initiation of conical oblique detonation. In the studies of Verreault,
Higgins & Stowe (2012) and Verreault (2011), the presence of the curvature was found
to allow oblique detonation waves to be initiated at an angle less than that of planar
CJ oblique detonation. There have also been some one-dimensional studies, where Watt
& Sharpe (2004) performed a one-dimensional study of the stability of weakly curved,
quasi-steady detonation waves using a numerical shooting method. Their results show that
even weak curvature has a significant destabilizing effect on detonation waves. Sharpe
(2007a) determined the detonation speed–curvature relations for a small but non-zero front
curvature and proposed that slightly curved detonation structures may be helpful for the
understanding of cellular detonation.

It is worth noting that in the research of curved shock waves, Mölder (2016) proposed
a curved shock theory in flows with planar or axial symmetry, which was applied to
the relationships between pressure gradients, streamline curvature, vorticity and shock
curvature. In a subsequent study, curved shock theory was used to calculate flow behind
concave shock waves, and the analysis showed that shock curvature plays an important role
in determining the flow properties behind double-curved shock waves (Mölder 2017a). In
addition, curved shock theory has been applied to calculate flow near single and double
curved shock waves, regular shock reflections, and Mach reflections on curved surfaces
(Mölder 2017b). Curved shock theory has also been used to discover and demonstrate the
effects of longitudinal and lateral wedge surface curvature on the detachment of shock
waves from the leading edge of a double curved wedge tip (Mölder 2017c). These studies
show that curved shock theory has an active role in the analysis of the flow, reflection
and detachment of shock waves. Based on this theory, Shi et al. (2020) developed a
second-order curved shock theory that is a re-derivation of the first-order derivative
to obtain the second-order gradients. Further, a method of curved-shock characteristics
based on curved shock theory was also constructed (Shi et al. 2021). Compared with the
method of characteristics, the gradient information enhances the computational efficiency
and accuracy of the method of curved-shock characteristics. Moreover, the curved shock
theory can be extended to imperfect gases and unsteady flow (Emanuel 2018). Recently,
curved shock theory has been developed to characterize the flow on the downstream
side of a three-dimensional shock surface by Emanuel & Mölder (2022). This study
extended the curved shock theory to three dimensions and enhanced its applicability
even more. To summarize, on the one hand, curved shock theory can be employed for
analyses such as flow after curved shock waves, shock reflections and detachment. On the
other hand, curved shock theory can also be developed for unsteady, imperfect gases and
three-dimensional curved shock waves. These opportunities demonstrate the significant
research value and potential of the curved shock theory. In the meantime, inspired by the
CJ theory and the ZND model, if the variations within the reaction zone are not required, a
detonation wave can be considered as a reacting shock wave in which reactants transform
into products and are accompanied by energy release.

For shocks with chemical reactions, it can be categorized into exothermic or
endothermic depending on the specific chemical reaction. For example, detonation waves
are generally induced by a shock to produce an exothermic chemical reaction. Combustible
gases (e.g. hydrogen) undergoing shock will rise in temperature and pressure to reach
combustion conditions, which will then initiate combustion. For example, hydrogen H2
reacts with oxygen O2 to form water H2O. This process will release a large amount of
energy and the chemical energy will be converted into heat energy, as shown in figure 1(b).
Another classic endothermic reaction type is the air dissociation, where pure air will also
increase in temperature and pressure after the shock, and, after reaching certain conditions
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Figure 1. Schematic diagrams of curved shock waves with experimental or simulation results for reaction and
no-reaction: (a) curved shock wave (Lobb 1964); (b) curved detonation wave (Kasahara et al. 2002); (c) curved
dissociated air (Wen, Massimi & Shen 2017); (d) oblique detonation without curvature (Choi et al. 2007);
(e) two-dimensional detonation with planar curvature (Xiang et al. 2022); ( f ) axisymmetric detonation with
transverse curvature (Han, Wang & Law 2019).

(generally speaking, very high temperature), the air will dissociate. For example, the
nitrogen molecule N2 will dissociate into two nitrogen atoms and the oxygen molecule
O2 will dissociate into two oxygen atoms, and this process will absorb energy, as shown
in figure 1(c). When the combustible gas or pure air does not reach the chemical reaction
conditions, a shock wave will be formed, as shown in figure 1(a). However, according to
the shape of the wave, more specifically the two curvatures in the planar and transverse
directions, the wave can be classified into four types. Taking the detonation wave as an
example, the first type is an oblique detonation wave without any curvature, as shown
in figure 1(d), the second is a two-dimensional curved detonation wave with planar
curvature, as shown in figure 1(e), the third is an axisymmetric detonation wave with
transverse curvature, as shown in figure 1( f ), and the fourth is a curved detonation wave
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with curvatures in both directions, as shown in figure 1(b). To the best of the author’s
knowledge, there is no established theoretical method to systematically examine the effect
of curvature in planar or conical reaction shock waves.

Inspired by the gas-dynamic theory of detonation, if the variations within the reaction
zone are not required, the Rankine–Hugoniot relations are suitable for linking the upstream
and downstream states across the wave (Lee 2008). In addition, Cheng, Luo & Dongen
(2010) investigated the effect of heat addition on steady and unsteady flow in relation to
condensation-induced waves. Apart from that, an instantaneous heat release CJ detonation
model was considered to study the Mach reflection of the detonation wave by Bdzil &
Short (2016). Inspired by these studies, a simplified reaction shock based on conservation
laws is studied. The main difference between a reaction shock wave and no reaction shock
wave in Rankine–Hugoniot relations is the energy release. To clearly elucidate the energy
effect, we simplified the process of chemical reactions, as shown in figure 2. Here, τ1
is located in front of the wave, τ2 is located in the wave and τ3 is just behind τ2. The
energy released from τ1 to τ2 is denoted as Qd, and the energy released from τ2 to τ3 is
recorded as Qc. In other words, Qd is the energy released when crossing the wave, while
Qc represents the energy released after the wave. Here, the wave can be a shock wave, as
well as a dissociation or detonation wave. Therefore, it is worth clarifying again that the
theoretical research in this paper is primarily for, but not limited to, detonation; it also
applies to all shock-induced chemical reactions with an energy effect. As such, Qd and
Qc can either be positive or negative and can also degenerate to zero. For example, when
considering a detonation wave, Qd is positive, while considering the dissociated air, Qd
is negative. In pathological detonations, Qc has a negative value; in CJ detonations, Qc is
equal to zero; as for the other shock-induced combustion where the post-wave is a chemical
non-equilibrium, Qc is positive.

In recent decades, with the progress of detonation research and application, related
numerical simulations and experimental observations have made great achievements.
However, there are few breakthroughs in the theoretical study, so the CJ theory and
ZND model are still the main representative works even though they were proposed
decades ago. This greatly limits the profound understanding of detonation phenomena and
hinders further applications. Therefore, an innovative breakthrough on theoretical research
is urgently needed. Under such a motivation, considering the connection between shock
and detonation waves, this paper supplements the energy effect on the basis of curved
shock theory to make it applicable to detonation. By mathematical derivation in § 2, the
curved detonation equations with energy effect are established and the relation between
the pre- and post-wave gradients is developed. The influence coefficients are derived
and subsequently used in the analysis of post-wave gradients in § 3. The verification is
confirmed by a comparison with numerical simulation between the pressure gradients
and the streamline curvatures in § 4. The results also suggest that the curved detonation
equations can be a quick and effective method to forecast the post-wave gradients.
Subsequently, the theory is applied in three aspects. First, polar curve analysis with
gradients is proposed in § 5 to complement the previous polar analysis. Then the theory is
applied to the capture of detonation waves in § 6, and by comparison with RH relations,
the detonation wave captured through higher-order equations is more accurate. Finally,
the theory can be used for the inverse design of detonation waves. The above analysis
and applications show the unique benefits and potential value of the theoretical method
proposed in this paper. Conclusions and future prospects are given in § 7.
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Figure 2. Simplified chemical reaction process in the shock-coupled chemical reaction, τ1 is the reactants for
the incoming flow, τ2 represents the flow in the reaction zone and τ3 indicates the products after the reaction
wave.

2. Curved shock theory supplemented by energy effect

2.1. Derivation of curved shock theory supplemented by energy effect
A curved shock theory supplemented by the energy effect is determined in this section.
The energy effects are mainly reflected in two aspects, one is the energy released/absorbed
when crossing the shock and another part is the energy change following the shock.

2.1.1. Rankine–Hugoniot equations with energy effect
From figure 2, it is clear that the energy release Qd will affect the Rankine–Hugoniot
equations. As such, to describe the relationship between the airflow parameters before
and after the curved detonation wave, a simplified curved detonation wave is shown in
figure 3. Here, V1 is the incoming velocity vector and V2 is the leaving velocity vector.
The flow-deflection angle δ is equal to the difference between the two angles of velocity
to the x-axis, that is, δ = δ2 − δ1. The length measured along the detonation wave is σ ,
and this can be decomposed into the sum of two vectors s and n, which are the length
measured tangential and normal to the streamline, respectively. The detonation angle θ is
defined as the angular difference between σ and V1. The planar curvature Sa is denoted by
the radius of curvature Ra, which means that Sa = −1/Ra = ∂θ1/∂σ . By the same token,
the transversal curvature Sb is represented by Sb = −1/Rb = − cos θ1/y, where y is the
distance from the detonation to the x-axis. According to the parameters and assumptions
given above, the basic Rankine–Hugoniot equations of a curved detonation wave can be
derived as

ρ1V1n = ρ2V2n,

p1 + ρ1V1n
2 = p2 + ρ2V2n

2,

γ1

γ1 − 1
p1

ρ1
+ V2

1n
2

+ Qd = γ2

γ2 − 1
p2

ρ2
+ V2

2n
2

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)
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Figure 3. Curved detonation wave with airflow parameters in planar flow, velocity and pressure change
in airflow through the curved detonation wave. Curvature Sa is expressed as the radius of curvature Ra,
Sa = −1/Ra = ∂θ1/∂σ , θ1 = θ + δ1. Here, p1 is the pre-wave pressure and p2 is the post-wave pressure in
detonation.

where ρ is the density, p is the pressure, Vn is the normal velocity and γ is the specific
heat ratio. Subscripts 1 and 2 denote pre-wave and post-wave, respectively. Additionally,
the chemical reaction can be calculated by a single-step Arrhenius reaction:

ω̄ = k(1 − Z) exp(−Ea/RT), (2.2)

where ω̄ is the chemical reaction rate, k is the prefactor, Z is the chemical reaction process,
Ea is the activation energy of the chemical reaction, and R and T are the gas constants and
temperature, respectively. The energy release through the chemical reaction can thus be
calculated as

Qd = Q0(Z1 − Z2), (2.3)

where Q0 is the total energy released when the chemical reaction is completed. In
the single-step chemical reaction model, Z1 and Z2 denote the pre-wave and post-wave
chemical reaction processes, respectively. Here, Z1 = 1 for pre-wave, and Z2 can obtain
different values according to different chemical reaction progresses and it will be 0 when
the reaction is completed. Based on (2.1), a formula for the post-wave parameters can
be derived, which is given in Appendix A. To validate the formulation given in this
paper, a comparative example is presented. In this paper, the post-wave parameters are
first calculated by the ZND theory. After that, the energy released during the detonation
can also be calculated. In this way, the post-wave parameters can be solved according to
the derivation in Appendix A. The calculation results obtained by the two methods are
compared in table 1, and it is easy to find that the post-wave parameters calculated by the
RH relations with energy release are very close to the results obtained by the ZND model,
so the post-wave parameters calculated in this paper are considered to be credible. The
advantage of the present RH relations with energy release over the ZND model is that the
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p2 (atm) T2 (K) u2 (m s−1)

ZND solution 39.861 3426.4 646
RH equations 39.493 3485.6 663
Error 0.92 % 1.7 % 2.6 %

Table 1. Comparison of post-wave parameters calculated through ZND solution (Zhang et al. 2022) and RH
equations with energy release. The hydrogen–air mixture is 0.42H2+0.21O2+0.79N2 (equivalent ratio is 1), and
the pre-wave temperature T1 = 300 K, p1 = 1 atm, u1 = 2500 m s−1. The ZND structure is calculated by the
9-species 19-reaction by the Jachimowski (1988) mechanism.

relatively accurate post-wave parameters can be acquired without considering the complex
chemical reaction, but instead by only solving the aerodynamic equations. Moreover, the
relationship between each parameter is expressed as a relatively simple explicit form,
which greatly simplifies the difficulty of the detonation solution and helps to enhance
the understanding of the aerodynamic relationship of the detonation.

2.1.2. Euler equations with energy effect
Something else that will be affected by energy release is the post-wave governing
equations. Here, the Euler equations with energy release Qc will be introduced. In
contrast to shock waves, the Euler equations with energy release in the natural or intrinsic
streamline coordinates are used as the governing equations for steady planar or axial flow
in the following form:

∂

∂s
ρVy j + ρVy j ∂δ

∂n
= 0,

ρV
∂V
∂s

+ ∂p
∂s

= 0,

ρV2 ∂δ

∂s
+ ∂p

∂n
= 0,

∂h
∂s

+ V
∂V
∂s

+ ∂Qc

∂s
= 0,

∂h
∂n

+ V
∂V
∂n

+ ∂Qc

∂n
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

where j is 0 or 1 for planar or axial flow. To simplify the subsequent calculation and keep
the form neat, curved shock theory defines the following variable gradients:

P = 1
ρV2

∂p
∂s

, D = ∂σ

∂s
, Γ = ω

V
, ω = V

∂σ

∂s
− ∂V

∂n
, (2.5a–d)

where P is the normalized pressure gradient, D is the streamline curvature, ω is the
vorticity and Γ is the normalized vorticity. To simplify the influence brought about by
the energy release, we also define the following three mathematical coefficients:

H = 1 − ρ(γ − 1)Qc/V
1 − ρ2(γ − 1)QcV/γ p

, N = V − (γ − 1)ρQc

V − (γ − 1)ρM2Qc
, J = V + ρQc

V − (γ − 1)ρM2Qc
.

(2.6a–c)
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With the help of these mathematical symbols, we can rewrite (2.4) in the following form:

∂δ

∂n
= −(HM2 − 1)P − j

sin δ

y
,

1
V

∂V
∂s

= − 1
ρV2

∂p
∂s

= −P,

1
ρV2

∂p
∂n

= −∂δ

∂s
= −D,

1
ρ

∂ρ

∂s
= HM2P,

1
ρ

∂ρ

∂n
= −M2[ND + (γ − 1)JΓ ],

1
V

∂V
∂n

= D − Γ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

The detailed derivation process for these equations is shown in Appendix B. It should be
explained here that when the energy release Qc is 0, the three coefficients H, N and J will
become 1, so the above equations are consistent with curved shock theory.

2.1.3. Curved shock theory supplemented by energy effect
As described in the previous section, the Rankine–Hugoniot equations can provide
the relationship between the zero-order parameters. To further acquire the relationship
between first-order gradients for the pre- and post-wave, the partial derivatives of the
following equations need to be derived separately:

ρ1V1 sin θ = ρ2V2 sin(θ − δ),

p1 + ρ1V2
1 sin2 θ = p2 + ρ2V2

2 sin2(θ − δ),

V1 cos θ = V2 cos(θ − δ).

⎫⎪⎬
⎪⎭ (2.8)

For simplicity, only some of the critical derivation steps are shown here, and the complete
derivation can be found in Appendix B. The basic derivation process is as follows: first,
both sides of the conservation equation (2.8) are simultaneously derived with respect to
σ ; after this, the partial derivatives are decomposed into two derivatives tangential and
normal to the streamline, ∂•/∂s and ∂•/∂n:

(
∂•
∂σ

)
1

=
(

∂•
∂s

)
1

cos θ +
(

∂•
∂n

)
1

sin θ,

(
∂•
∂σ

)
2

=
(

∂•
∂s

)
2

cos(θ − δ) +
(

∂•
∂n

)
2

sin(θ − δ),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)

where • is a notation for generalized parameters, and the subscripts 1 and 2 represent
the pre- and post-wave, respectively. Subsequently, after simplifying and organizing, the
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curved shock theory supplemented by the energy effect can be obtained as follows:

A1P1 + B1D1 + E1Γ1 = A2P2 + B2D2 + E2Γ2 + CSa + GSb,

A′
1P1 + B′

1D1 + E′
1Γ1 = A′

2P2 + B′
2D2 + E′

2Γ2 + C′Sa + G′Sb,

A′′
1P1 + B′′

1D1 + E′′
1Γ1 = A′′

2P2 + B′′
2D2 + E′′

2Γ2 + C′′Sa + G′′Sb.

⎫⎪⎬
⎪⎭ (2.10)

For convenience, these equations are named curved detonation equations (CDEs). It is
necessary to point out that the curved detonation equations derived in this paper are
complete three equations rather than the two equations form of the curved shock theory,
this is because the post-wave vorticity may be an important gradient and not eliminated. It
should be noted additionally that the study in this paper only works for equilibrium flows
and does not apply to unsteady flows. The coefficients of the pre-wave A1, B1 and E1;
A′

1, B′
1 and E′

1; and A′′
1, B′′

1 and E′′
1 and the curvatures C and G; C′ and G′; and C′′ and

G′′ are completely consistent with curved-shock theory, so only the post-wave coefficients
affected by energy release are listed in this paper:

A2 = sin θ cos(θ − δ)(2H2M2
2 − 2),

A′
2 = sin θ cos θ/ sin(θ − δ) + sin θ cos θ(3H2M2

2 − 4) sin(θ − δ),

A′′
2 = (H2M2

2 − 1) sin(θ − δ) tan(θ − δ) + cos(θ − δ),

B2 = sin θ(1 − N2M2
2) sin(θ − δ) − sin θcos2(θ − δ)/ sin(θ − δ),

B′
2 = [sin θ cos θ(−1 − N2M2

2sin2(θ − δ)

+ 2sin2(θ − δ) − 2cos2(θ − δ))]/ cos(θ − δ),

B′′
2 = −2 sin(θ − δ),

E2 = − sin θ sin(θ − δ)((γ − 1)J2M2
2 + 1),

E′′
2 = sin(θ − δ),

E′
2 = − sin θ cos θsin2(θ − δ)((γ − 1)J2M2

2 + 2)/ cos(θ − δ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

From (2.10) and (2.11), the relationships between the first-order gradients among
incoming flow conditions, energy release, curvatures and post-wave parameters are
constructed. There are eight variables in the equations: P1, D1, Γ1, P2, D2, Γ2, Sa
and Sb. As long as five of these are known, the remaining three can be solved by the
curved-detonation equations. These equations can be used in the following ways. On the
one hand, the post-wave gradients can be solved according to the pre-wave gradients,
curvature and energy release, as described in § 4. On the other hand, we can also compute
the curvatures according to the pre- and post-wave gradients with the energy release; this
could be used in the capture and reverse design of a detonation wave as shown in § 6.

The above derivation process is mainly based on the assumption of instantaneous
energy release, which is reasonable for a preliminary study. However, the absence of
chemical reaction makes the study incomplete. To cover this weakness, we give the
curved detonation equations with chemical reaction (single-step Arrhenius equation) in
Appendix C. For convenience, curved detonation equations with chemical reaction are
called CDEC to distinguish it from CDE. The relationship between CDEC and CDE can
be illustrated from both qualitative and quantitative perspectives. Qualitatively speaking,
when the chemical reaction related variables can be neglected, it is reasonable to simplify
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Pre-wave state VN state
RH equations

Arrhenius reaction: Qd

Continued energy effect: Qc

Conservation equations

Downstream Post-wave state

Qd < 0 Dissociation

Qd = 0 Shock 

Qd > 0 Detonation

Qc < 0 Heat absorption after the wave

Qc = 0 Chemical equilibrium

Qc > 0 Heat release after the wave

Figure 4. Analysis of the various energy effects on the curved shock including detonation and dissociation.

the effect of the chemical reaction to an energy release treatment, like the CJ theory
did. Quantitatively speaking, the smaller errors of the two equations in the solution of
post-wave parameters are demonstrated in table 1. Thus, the CDE will be the main one to
be applied in the subsequent analysis and applications. Similar analysis and applications
can also be performed for the CDEC, but these will not be repeated for the brevity of the
article. It should be specifically noted that for some cases, CDEC is necessary such as
when the effect of the chemical reaction zone on the curvature of the streamlines cannot
be ignored in the two-dimensional problem.

With the help of CDE, the effect of energy release on the zero- and first-order parameters
can be analysed separately, as shown in figure 4. For the zero-order parameters, according
to classical gas dynamics knowledge, if energy release Qd increases from zero, the p2/p1
will become smaller. It is known that the post-wave Mach number of a detonation wave
is decreased compared with that of a shock wave, which means that the energy release
decreases the post-wave Mach number. The detonation angle is also greater than the shock
angle. For the first-order parameters, according to (2.5a–d), if M2

2 > 1, then the energy
release Qc increases, and all three energy factors H, N and J will increase. Conversely,
if M2

2 < 1, then H and N will decrease. In short, the energy release has different effects
on the zero- and first-order parameters in different situations, and the final effect will
not always monotonically increase or decrease the post-wave gradient. This conclusion is
also consistent with the patterns of variation in the influence coefficients. In general, the
pre-wave pressure gradient has the greatest influence on the post-wave pressure gradient,
and the energy release will significantly increase the effect of the pre-wave gradients on
the post-wave pressure gradient. This provides a reference for the change in the pressure
gradient in the post-wave of detonation.

3. Analysis with curved detonation equations in influence coefficient format

To better understand the curved detonation equations constructed in the previous section,
further analysis will be performed in this section. We first solve the format of the influence
coefficients of the post-wave gradients and discuss their variation. The detailed derivation
can be found in Appendix D. The effects of energy release are highlighted; it not only
affects the zero-order parameters such as M2, but also changes the first-order gradients
through the H, N and J coefficients. After this, post-wave gradients under different
curvatures are fully discussed to emphasize the impact of curvature when compared with
oblique detonation.

999 A79-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.960


H. Yan, C. Shi, H. Xiong, X. Han and Y. You

3.1. Analysis with the influence coefficients of the pre-wave gradients
As can be seen from Appendix D, the five influence coefficients can be divided into two
parts: the former three represent the influence of pre-wave gradients (e.g. Jp, Jd, Jg) and
the latter two (e.g. Ja, Jb) represent the influence of curvature. The influence coefficients
of the pre-wave gradients are analysed first; after this, the influence coefficients of the
two curvatures are discussed separately because the planar and transversal curvatures have
different characteristics. It is worth noting that the specific curves of influence coefficients
have a strong relationship with the incoming flow parameters. The detailed parameters
given by the example are not universal for all detonation conditions, but the fundamental
laws are similar. The incoming flow parameters given in this section are

p1 = 1 × 105 Pa, ρ1 = 0.1 kg m−3, M1 = 10, γ1 = 1.3. (3.1a–d)

To emphasize the influence of energy release in the detonation wave, various different
situations of energy release are considered. When the energy release Qd is negative, it
means that the shock wave is energy absorbing, which can occur in the dissociation of air.
When the energy release Qd is positive, it means that the shock wave is exothermic, which
can occur in a detonation wave. Similarly, when the energy release Qc after the wave is
negative, this means that there is an energy-absorbing chemical reaction after the wave,
which can occur in a pathological detonation. When the energy release Qc after the wave
is positive, it means that there is an exothermic chemical reaction after the wave, which
may mean that the detonation wave continues to combust after the wave.

The first concern is the effects of the pre-wave pressure gradient, streamline curvature
and vorticity on the post-wave pressure gradient, as shown in figure 5. The solid line
indicates a shock wave with no energy release and the area charts represent the effects of
energy, where the lighter areas show energy absorption (Qd < 0 or Qc < 0) and the darker
areas show energy release (Qd > 0 or Qc > 0). Thus, two aspects should be considered:
one is how the influence coefficient varies with different wave angle and the other is how
the influence coefficient is affected by various energy release. In figure 5(a), the solid
blue curve shows that when the wave angle is between 20◦ and approximately 75◦, the
influence coefficient Jp always remains constant at approximately the same level, and it
then decreases to 0. After exceeding approximately 84◦, this effect becomes a negative
correlation and gradually increases to a peak negative value over −1000. This curve will
reach a maximum at 90◦, meaning that a normal detonation wave has the largest influence
coefficient when compared with oblique/curved detonation waves. In addition, at values
of approximately 84◦, the pressure gradient of the incoming flow has no effect on the
pressure gradient behind the wave. The solid green curve, which represents the influence
coefficient Jd, shows that the pre-wave streamline curvature makes a negative contribution
to the post-wave pressure gradient for all wave angles. In the range of acute angles,
this action law first increases gradually, then decreases to a minimum, and it reaches its
maximum value at approximately 85◦. Moreover, this contribution is 0 at the 90◦ point.
This means that for positive detonation, the pre-wave streamline curvature has no effect
on the post-wave pressure gradient at this point. The solid red curve, which represents
the influence coefficient Jg, reveals that the contribution of the pre-wave vorticity to the
post-wave pressure gradient is similar to that of the green curve, peaking at approximately
85◦. In figure 5(b), the pattern of the effect of energy release (Qc) is however different, for
example, for the blue curve Jp, the peak of the effect is no longer located at 90◦, whereas
both Jd and Jg take their maximum at 90◦. This difference occurs because the energy
effects of the two types act in different ways.
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Figure 5. Influence coefficients of pre-wave gradients to the post-wave pressure gradient. (a) Qd with
positive, zero and negative values. (b) Qc with positive, zero and negative values.

Figure 6(a,b) depicts the influence of pre-wave gradients on the post-wave streamline
curvature. It can be seen from the solid blue curve that Kp keeps positive when wave angles
are small, which means that the pre-wave pressure gradient will enhance the post-wave
streamline curvature in this range. The curve subsequently becomes negative after crossing
a point over 50◦. As the wave angle continues to increase, the pre-wave pressure gradient
has less effect and reaches a minimum. When it reaches 90◦, there is no effect on the
post-wave streamline curvature, which means that no matter how much the pressure is
changed, the post-wave streamline curvature will not be affected. It can be seen that the
solid green curve Kd rises from the acute angle range and reaches a maximum value near
90◦. The solid red curve Kg shows that the influence law is similar to that of the green
curve, but the values are smaller.
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Figure 6. Influence coefficients of pre-wave gradients to the post-wave streamline curvature. (a) Qd with
positive, zero and negative values. (b) Qc with positive, zero and negative values.

The effect of energy release in Kp is larger when the wave angle is smaller, which can
be seen in the area chart in figure 6(a,b), and it gradually decreases as it approaches
approximately 60◦. This means that at smaller wave angles, the energy release causes
a significant change in the effect of the pre-wave pressure gradient on the post-wave
streamline curvature; conversely, in a normal detonation wave, the effect of the energy
release in Kp is very small. In figure 6(a), the pattern of the green areas are different,
and the green areas becomes 0 near 86◦. This means that at this point, the pre-wave
streamline curvature has an equal influence on the post-wave streamline curvature for
the shock, dissociation and the detonation; after that, the effect of the detonation and
dissociation wave is significantly stronger than that of the shock wave. The changes in the
green and red line as well as areas are similar, and this implies that the pre-wave vorticity
and streamline curvature make similar contributions to post-wave streamline curvature.
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Figure 7. Influence coefficients of pre-wave gradients to the post-wave vorticity. (a) Qd with positive, zero
and negative values. (b) Qc with positive, zero and negative values.

Generally speaking, the post-wave streamline curvature is most affected by the pre-wave
streamline curvature and the maximum is achieved in a normal detonation wave; this is
easy to understand intuitively and it is consistent with the laws of physics.

Figure 7 shows the variation of post-wave vorticity with incoming flow conditions.
The blue curve Fp first decreases and then increases in the range of negative values,
reaching a maximum just over 80◦. The coefficient is zero at 90◦, which means that the
pre-wave pressure gradient does not affect the post-wave vorticity in normal detonation.
The variation trends in the green curve Fd and the red curve Fg are similar, but their
specific values are different. Both curves reach their maximum absolute value at 90◦,
and they are not zero-valued at any point, which means that these two coefficients are
always present across the whole angular range. The blue areas are in opposite positions in
figure 7(a,b), which means that the effects of Qd and Qc are different, with Qd enhancing
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the effect of Fp and Qc weakening the effect of Fp. A similar analysis applies to the Qd
and Qc for Fd and Fg. Figure 7 also shows that the pre-wave streamline curvature is still
the biggest factor affecting the post-wave vorticity, and this is followed by the pre-wave
pressure gradient and vorticity.

In these three figures, the pre-wave streamline curvature and vorticity action laws are
always similar. This may be caused by the presence of the same parameter: ∂σ/∂s. In
addition, we can see that energy release always has a significant effect, which means that
separate research is required to examine detonation waves, dissociations and simple shock
waves. The fundamental reason for this difference is that the energy release will change the
post-wave zero-order parameters with the influence coefficients of first-order gradients,
and it will thus also change the first-order gradients. The energy release at different
locations has completely different effects on the post-wave first-order gradients and these
effects are also non-monotonic. These curves and their analysis help us to understand more
clearly the variation patterns of detonation, and they also highlight the effect of energy
release.

3.2. Analysis with influence coefficients of detonation curvature
Now that the pre-wave influence coefficients have been analysed, analysis with the
influence coefficients of the detonation curvature should be performed. To exclude the
influence of pre-wave gradients, the incoming flow parameters are set to be uniform, which
means that the equations with influence coefficients can be simplified to

P2 = JaSa + JbSb,

D2 = KaSa + KbSb,

Γ2 = FaSa + FbSb.

⎫⎪⎬
⎪⎭ (3.2)

The post-wave gradients will be different for planar and axial problems; as such, the system
is examined separately from these two perspectives.

3.2.1. Analysis with influence coefficients of planar curvature
For two-dimensional curved detonation waves, there is no transversal curvature, which
means that Sb is zero. Then, (3.2) can be simplified to

P2 = JaSa,

D2 = KaSa,

Γ2 = FaSa.

⎫⎪⎬
⎪⎭ (3.3)

In such a case, the post-wave first-order gradient parameters are drawn as shown in figure 8.
The curvature is set to −1, which means that P2 = −Ja, D2 = −Ka and Γ2 = −Fa.

In figure 8, the blue curve shows that under a given uniform incoming flow and
constant curvature, the post-wave pressure gradient reaches its absolute maximum at 90◦.
This means that the post-wave pressure gradient will be at its maximum when oblique
detonation is converted to normal detonation. In addition, at approximately 85◦, the
post-wave pressure gradient is zero; this is referred to as the Thomas point (Thomas 1947).
The effect of energy release is always apparent, especially when the wave angle is small.
The green curve represents the post-wave streamline curvature. This first increases and
then decreases in the acute angle range, and it reaches a maximum at approximately 83◦.
In addition, the post-wave streamline curvature is zero at approximately 76◦; this is an

999 A79-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.960


Curved detonation equations

4.48

4.68

3.90

9.8
4.45

1.44
28.8

25.2

21.6

18.0

14.4

10.8

7.2

3.6

0

0.72

0

–0.72

–1.44

–2.16

–2.88

–3.60

–4.32

3.56

2.67

1.78

0.89

0

–0.89

–1.78

–2.67

6.5

5.2

13.2 1.6

0

–1.6

–3.2

–4.8

–6.4

–8.0

–9.6

11.0

8.8

6.6

4.4

2.2

0

–2.2

–4.4

3.9

2.6

1.3

0

–3.9

–2.6

–1.3

8.4

7.0

5.6

4.2

2.8

1.4

0

–1.4

13.027.34.2

0

–4.2

–8.4

–12.6

–16.8

–21.0

–25.2

–29.4

23.4

19.5

15.6

11.7

7.8

3.9

0

–3.9

10.4

7.8

5.2

2.6

0

–2.6

–5.2

–7.8

3.12

2.34

1.56

0.78

0

–0.78

–1.56

3.92

3.36

2.80

2.24

1.68

1.12

0.56

0

20 30 40 50 60 70 80 90

20 30 40 50 60 70 80 90

Wave angle

P2 of shock

Qc < 0

Qc > 0

Qc < 0

Qc > 0

Qc < 0

Qc > 0

D2 of shock Γ2 of shock

P2 of shock

Qd < 0

Qd > 0

Qd < 0

Qd > 0

Qd < 0

Qd > 0

D2 of shock Γ2 of shock

P2

E
ff

ec
t 

o
f 

P 2

E
ff

ec
t 

o
f 

D
2

E
ff

ec
t 

o
f 
Γ

2

D2Γ2

P2
E

ff
ec

t 
o
f 

P 2

E
ff

ec
t 

o
f 

D
2

E
ff

ec
t 

o
f 
Γ

2

D2Γ2

(a)

(b)

Figure 8. Post-wave first-order gradients of two-dimensional detonation waves in uniform flow. (a) Qd with
positive, zero and negative values. (b) Qc with positive, zero and negative values.

important parameter to determine the flow situation after the wave, and it is called the
Crocco point (Crocco 1937). The red curve represents the change of post-wave vorticity,
which first increases and then decreases in the acute angle range, reaching a maximum at
approximately 85◦; the vorticity is zero at 90◦. Another principle can be observed from
figure 8: the energy release changes the locations of the Thomas and Crocco points, once
again demonstrating that the effect of energy release is not negligible.

To illustrate the correspondence between these curves and the detonation wave more
clearly, figure 9 displays the distribution of the streamline curvature after a curved
detonation wave. Figure 9(a) shows several streamlines of the air dissociation flow field,
where the chemical reaction takes the results of the study of Park (1985). Expressing the
results of figure 9(a,b), it is not difficult to notice the effect of curvature on the flow.
Herein, point 1 corresponds to the negative curvature of the streamline in figure 8, and
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Figure 9. Post-wave streamline curvatures of a planar detonation wave in uniform flow. The initial conditions
for the numerical simulation are pressure is 1.96 atm, temperature is 206 K, Mach number is 38 Mach and the
incoming flow is pure air.

point 2 corresponds to the Crocco point, where the curvature of the streamline is zero.
Point 3 is the positive curvature of the streamline after the Crocco point, and point 4
corresponds to the angle of the detonation wave being 90◦, that is, a normal detonation
wave. Points 5, 6 and 7 are then the positions in the obtuse-angle section corresponding to
points 3, 2 and 1, respectively.

Curvature plays a crucial role in curved shocks and curved detonations. Therefore, it is
necessary to investigate the effect of curvature on the post-wave gradients at different
magnitudes and directions. The detonation curvatures can be varied in the planar and
axial flow fields to observe the corresponding changes in the first-order gradients. With
the above research purpose, we plotted the post-wave pressure gradient, streamline
curvature and vorticity for five different detonation curvatures of −2, −1, 0, 1 and 2,
as shown in figures 10, 11 and 12, respectively. In figure 10, different colours represent
different magnitudes of detonation curvatures and concavity/convexity is distinguished
by the solid/dashed lines. We can first conclude that changing the detonation curvature
significantly affects the post-wave pressure gradient, and a larger detonation curvature
will lead to an increase in the absolute value of the pressure gradient at all angles. This
is consistent with our previous prediction. In addition, detonation waves with different
curvatures have the same Thomas point, which means that the detonation curvature does
not affect the Thomas point.

A similar regularity is also reflected in the post-wave streamline curvature, which is
plotted in figure 11, in which it can be seen that a larger detonation curvature increases
the curvature of the post-wave streamline across the full range of angles. Similarly, the
position of the Crocco point remains unaffected by the detonation curvature. Figure 9(c)
helps to illustrate the curvatures of the post-wave streamlines for different detonation
curvatures more intuitively: figure 9(c) corresponds to the case with positive curvature,
and its variation law has been explained in detail using figure 11; figure 9(d) corresponds
to the case in which the detonation curvature is negative, and its variation law can also be
seen in the obtuse part of figure 11.
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Figure 11. Post-wave streamline curvatures with different planar curvatures Sa.

Regarding the post-wave vorticity, we can conclude from figure 12 that this is always
monotonous in the acute angle range, and increasing curvature also makes the vorticity
larger. The same trend is followed in the obtuse angle range, but with the opposite sign.
From the above three plots, it is not difficult to observe that the gradients of the concave
and convex detonation waves are symmetric about the oblique detonation.

3.2.2. Analysis with influence coefficients of axial curvature
For an axial detonation wave, the curvature Sa is zero and the distance y is set to 1. The
equations can thus be simplified to

P2 = JbSb,

D2 = KbSb,

Γ2 = FbSb.

⎫⎪⎬
⎪⎭ (3.4)

In such a case, the post-wave first-order gradients are drawn as shown in figure 13. For the
axial flow in figure 13, the blue curve shows that the post-wave pressure gradient is also
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Figure 12. Post-wave vorticity with different planar curvatures Sa.

affected by the transversal curvature, which first decreases and then increases, reaching
a maximum absolute value at approximately 86◦. The green curve shows the effect of
transversal curvature on the post-wave streamline curvature, reaching a negative maximum
at approximately 82◦. There is quite a significant difference when this is compared with
planar flow: the energy release Qd always enhances the post-wave pressure gradient
and streamline curvature. The post-wave vorticity is not shown because the transversal
curvature will not affect the post-wave vorticity, as also demonstrated by Mölder (2016).

Similar to the case of the planar detonation wave, we also plotted the curvature of the
post-wave streamline in an axial flow with different detonation-wave angles, as shown in
figure 14. Here, point 1 corresponds to the curvature of the streamline in the acute part of
figure 13, and the direction of streamline curvature does not change in the process from
point 1 to point 3; as with the planar case, the curvature in the normal detonation is zero.
The changes in the obtuse angle range are similar and are not described in detail here.
As with the planar curvature, to study the effect of different transversal curvatures on the
post-wave gradients, we plotted five cases with curvatures of −2, −1, 0, 1 and 2, as shown
in figures 15 and 16. In figure 15, in the acute angle range, the post-wave pressure gradients
in the axial flow increase monotonically with increasing curvature. The biggest difference
with the planar flow is the absence of Thomas points. Since the curvature value is given
directly here instead of the distance y in the axial direction, this plot is not similar to the
curve in figure 13.

When discussing the post-wave streamline curvature in the axial flow, we note that
in figure 16, if the curvature is negative, the post-wave curvature of the streamline first
increases and then decreases in the acute range, but it always remains positive; i.e. there is
no Crocco point, which is completely different from the planar flow. This effect is similar
when the curvature is positive. However, the curvature of the streamline increases across
the range as the curvature of the detonation wave increases, which is similar to the planar
flow. As discussed above, the transversal curvature does not affect the post-wave vorticity;
as such, the post-wave vorticity is always zero for different curvatures, and this is not
shown here specifically. From figure 16, we can see that the streamline curvature after an
axial wave is monotonically related to the curvature of the detonation wave. When the
transversal curvature is positive, the post-wave streamline curvature is negative, as shown
in figure 14(b); accordingly, when the transversal curvature is negative, the post-wave
streamline curvature is positive, as shown in figure 14(a).
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Figure 14. Post-wave streamline curvatures of an axial detonation wave in uniform flow.
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This section has considered the influence coefficients of curvature in curved detonation
and the effects of different values of curvature on the post-wave gradients. These curves
can be further applied in the analysis of curved detonation waves; for example, the presence
of curvature leads to the divergence/convergence of the post-wave flow, which can change
the post-wave temperature, density and pressure. This theory also provides a basis for
subsequent analysis and application of detonation waves.

4. Verification of curved detonation equations

After the analysis of the curved-detonation equations, the next step is to verify the validity
of the theory. It should be noted here that the theory makes several simplifications
to the behaviour of a real detonation, and the value of the energy release is difficult
to calculate completely correctly. Therefore, there will be differences between the
theoretical and simulation results; the focus here is to study the common law reflected
by the two results and explore the influence of energy release and curvature on curved
detonation.
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Figure 17. Comparison of the simulated and experimental results of a projectile-induced curved detonation:
(a) shadowgraph of simulation result; (b) experiment by Lehr (1972).

4.1. Comparison of post-wave pressure gradients between simulation and theory
As noted before, the post-wave first-order gradient parameters can be derived from the
curved-detonation equations for uniform incoming flow conditions. At the same time, we
can also obtain the first-order gradient parameters by post-processing the results of the
simulation. In this way, theory can be verified by comparing the results of two calculations.
For this purpose, we have selected a projectile-induced curved-detonation result. The
simulation approach provides a classical example, and this was verified in comparison
with experiments, as shown in figure 17. Since the methods of numerical simulation are
not the focus of this paper, they will not be described too much, and detailed explanations
can be found in our previous study (Yan et al. 2024). Since aerodynamic parameters such
as the post-wave pressure need to be used for comparison, the grid-independence of the
numerical method needs to be examined and the detailed validation results can be found in
Appendix E. Final results indicate that the grid level adopted in this paper can accurately
capture data such as pressure and airflow deflection angle of the detonation. According
to figure 17, it can be seen that the simulation results are in good agreement with the
experimental results. Not only are the shapes of the detonation waves similar, but even the
locations of the points where the shock and combustion waves separate are very close to
each other. The reason for this separation is that as the intensity of the detonation wave
decays, the induced shock wave is not strong enough to induce detonation combustion,
so the induced shock wave and the combustion plane gradually separate, which is an
inevitable phenomenon. Also this reminds us that only data prior to the separation point
will be selected for subsequent verification. The incoming flow conditions were set to

p1 = 42 663 Pa, ρ1 = 0.366 kg m−3, M1 = 6.39, T1 = 298 K. (4.1a–d)
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Figure 18. Simulation results: (a) temperature contour; (b) pressure and hydrogen mass fraction along the
streamline.

The simulation results can be calculated consistent with the experimental incoming flow
conditions as shown in figure 18(a). To quantify the gradient of the detonation wave, ten
streamlines are selected in this paper and the variation of pressure and hydrogen content
on any one of them is plotted, as shown in figure 18(b). It should be noted that these ten
streamlines are all on the left side of the red dashed line in figure 17. In other words, the
streamlines are located before the decoupling of the shock wave and reaction wave, so it
can be considered as a detonation wave. Considering that the thickness of the detonation
wave is not negligible, to extract the post-wave parameters, a uniform post-wave definition
is adopted in this paper. Taking figure 18(b) as an example, the green curve indicates the
mass fraction of hydrogen, which is 0.02851 in the incoming flow and becomes 0.00397 at
infinity, which means that the total consumption of the gas is 0.0245. The point A after the
wave is chosen, on which the mass fraction of hydrogen is 0.00592, and after calculation,
it is known that the hydrogen consumed at this point accounts for more than 92 % of the
total consumption; therefore, define this point as the post-wave.

Further, to more concretely show the change in pressure at the post-wave, four
streamlines were selected, and the pressure and pressure gradient changes on them are
plotted as shown in figures 19 and 20, respectively. From the four curves in figure 19,
especially streamline 1, we can see that the first point at which the pressure value increases
suddenly is the point referred to as the induced shock in the ZND model. After this,
there will be a significant drop, which should correspond to the reaction zone in the
ZND model. After this region, whether the pressure value rises or falls depends on the
post-wave pressure gradient. In streamline 1, after the reaction zone of the detonation
wave, the pressure value rises significantly, which means that the pressure gradient after
the wave is positive; at the same time, we can notice that the pressure gradient behind
the wave in streamline 1 in figure 20 is also greater than 0. In streamline 2, the pressure
value rises less, meaning that the pressure gradient after the wave is less positive at this
time; however, in streamline 3, the post-wave pressure value decreases slightly, implying
that the pressure gradient is transformed to a negative value. Meanwhile, the pressure
gradient behind the wave in streamline 3 becomes less than 0. Finally, in streamline
4, the pressure monotonically decreases. It can be seen that streamlines 2 and 3 are
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the two critical points at which the post-wave pressure gradient turns from positive to
negative.

As noted earlier in the paper, if we want to calculate the post-wave pressure gradient
using the curved-detonation equations, the incoming flow conditions and the curvature of
the detonation wave should be known. The energy release is chosen to be 4.38 as Lehr
(1972) described. The other incoming flow conditions remain the same as the simulation

999 A79-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.960


H. Yan, C. Shi, H. Xiong, X. Han and Y. You

−0.0014 −0.0012 −0.0010 −0.0008 −0.0006

−80

−60

−40

−20

0

20

40

60

80

dp

x

Theory

CFD

(×106)

Figure 21. Comparison of the post-wave pressure gradient: the red curve is calculated from the curved
detonation equations, the black squares are from the simulation results.

conditions, and the shape of the detonation wave can be obtained by the equation

y = 1 × 1012x5 + 3 × 109x4 + 2 × 106x3 − 739.64x2 + 1.5684x + 0.006. (4.2)

From the curved detonation equations, the pressure gradient along the x direction can be
expressed as

∂p
∂x

= ∂p
∂s

∂s
∂x

+ ∂p
∂n

∂n
∂x

= ρV2P cos δ − ρM2[ND + (γ − 1)J] sin δ. (4.3)

With the above calculation parameters, the curved detonation equations can be used to
calculate the post-wave pressure gradient along the x direction, as shown in figure 21.

In figure 21, the red curve is the theoretical post-wave pressure gradient calculated
from the curved detonation equations and the black squares are the post-wave pressure
gradient data extracted from the simulation results for ten streamlines. It is obvious that the
theoretical post-wave pressure gradient is in good agreement with the simulation results
and the overall pattern of variation is similar, which indicates that the theory proposed in
this paper is valid and applicable. The errors may be due to the following aspects: errors
in the fitting of the detonation wave, errors in the energy release, errors in the extraction
of data, etc. Furthermore, the theory does not require the complex calculations needed by
simulations when obtaining the post-wave gradient, so it can be used as a rapid means of
prediction.

4.2. Comparison of post-wave streamline curvature between simulation and theory
The previous section introduced a comparison of the pressure gradient. Further to this, in
this section, a comparison of the streamline curvature is performed. In a similar way, we
also selected four streamlines in the detonation flow field, named streamlines 5–8. Then,
the airflow-deflection angles and streamline curvatures of the four streamlines were plotted
in turn against their x-axis coordinate, as shown in figure 22 and 23.

In figure 22, common trends can be discovered about the airflow-deflection angles:
the pre-wave airflow-deflection angles are zero and they rise rapidly after the induced
shock; then, in the ZND structure of the detonation wave, after the induced shock, the
airflow-deflection angles all experience a significant drop. However, the four streamlines
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Figure 23. Streamline curvature along the four streamlines extracted from simulation results.

differ in the trend of the post-wave airflow-deflection angle. In streamline 5, the post-wave
airflow-deflection angle obviously rises; this means that the post-wave streamline
curvature is positive at this time. With the right shift of the x coordinate, in streamline
6, the level of this rise has decreased, which means that the curvature is still positive, but
its value has been reduced. Then, in streamline 7, the post-wave airflow-deflection angle
changes from increasing to decreasing; this implies that the streamline curvature at this
point changes from positive to negative. Finally, in streamline 8, the magnitude of the
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Figure 24. Comparison of the post-wave streamline curvature: the blue curve is calculated from the curved
detonation equations, the black squares are from the simulation results.

decrease further increases. These changes also correspond to the streamline curvatures in
figure 23. The gradients of streamlines 5 and 6 are greater than 0, and the gradients of
streamlines 7 and 8 are less than 0.

From the curved detonation equations, the curvature of the streamlines along the x
direction can be expressed as

∂δ

∂x
= ∂δ

∂s
∂s
∂x

+ ∂δ

∂n
∂n
∂x

= D cos δ + (HM2 − 1)P sin δ. (4.4)

To compare the equation results with the simulation results, we calculated the
corresponding post-wave streamline curvature under the same conditions as shown in
figure 24. Similarly, in figure 24, the blue curve is the streamline curvature after the wave
calculated according to the curved detonation equations, and the black squares are the
streamline curvature in the simulation results. It can be seen from the figure 24 that the
curve is in good agreement with the point, and the overall law is similar. It is further proved
that the curvature of the streamline after the wave calculated by the curved detonation
equations is correct and reasonable.

The above comparative analysis of the pressure gradient and streamline curvature
shows that the theoretical calculation method proposed in this paper is effective and has
good prospects for practical application to detonation. If a researcher seeks to determine
the post-wave pressure gradient and streamline curvature based on the incoming flow
conditions and the shape of the detonation wave to analyse the flow field of the detonation,
the theoretical method presented here can be used without the need for simulations, which
was the purpose of this study.

5. Application of curved detonation equations to polar analysis

Polar analysis of detonation is a common and effective method that is used in theoretical
research examining oblique detonation waves and other detonation phenomena (Pratt,
Humphrey & Glenn 1991). Through Appendix A, we can obtain the relationship between
the wedge angle and the detonation wave angle, and by plotting this relationship, we
can get the polar curve. Previous polar analysis has often been based on the zero-order
parameters. However, the curved detonation equations proposed in this paper can obtain
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Figure 25. Polar analysis of detonation waves with post-wave gradients/streamline curvatures in planar flow.
The x-coordinate represents the wedge angle δ and the y-coordinate is the detonation wave angle θ .

the relationships for the first-order gradients of a detonation wave. Therefore, analysis of
the first-order gradients can be added to the previous polar curve, and thus, the variation
law and relationship between the first-order gradients can be studied. This gives us a new
method for analysis of the polar curves of detonation waves.

5.1. Pressure gradient/streamline curvature polar for two-dimensional curved detonation
waves

Figure 25 shows polar analysis plots of two-dimensional curved detonation waves for
different energy releases. For this analysis, the Mach number was set to 10, the value of
planar curvature Sa was −1, and the transverse curvature Sb was zero. Similarly, to simplify
the problem, the incoming flow was set to be uniform, and P1 = D1 = Γ1 = 0. In oblique
detonation, the relationship between the wedge angle and the detonation wave-angle is
given by Pratt et al. (1991). Here, we define a slope l to represent the changing relationship
between the post-wave pressure gradient and the streamline curvature:

l = P2

D2
=

1
ρV2

∂p
∂s

∂σ

∂s

= 1
ρV2

∂p
∂σ

. (5.1)

This slope has a wide range of applications in shock waves and it can be used to study
shock-wave phenomena such as Mach reflections. Interestingly, the same problem of
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reflection also exists in detonation waves, so the study has very clear physical significance
and application prospects.

The black lines in figure 25 show the relationship between the wedge angle
(x-coordinate) and the detonation wave angle (y-coordinate), and the red and blue lines
represent the slope l at their respective points: red represents over driven (OD) detonation
and blue represents the solution of under driven (UD) detonation. The point at which
OD meets UD is called the CJ solution, the maximum wedge angle at a defined
detonation-wave angle is δm, and the range between the two is called the standing range of
the detonation wave. Since the energy release will significantly affect the range of the polar
curve, and to better compare with the shock wave, we calculated multiple detonation-wave
polar curves under energy release values from 0 to 1. It is not difficult to see that when the
energy release is 0, this polar curve represents a shock wave. It is worth noting that near the
Thomas point, the slope l changes sign, and with increasing energy release, the detonation
angle of the Thomas point increases, and the corresponding wedge angle decreases. In
addition, in the shock wave, the Thomas point has the largest wedge angle, but the two do
not coincide in a detonation wave.

Without the curved detonation equations, detonation polar curve analyses can only
describe the variation law of the zero-order parameters. With the curved detonation
equations, we can obtain more useful information about the first-order gradient, which
is necessary for understanding the detonation phenomenon and exploring its evolution
patterns. The analysis of the polar curves given in this paper is just an example; more
first-order parameters, such as the gradients of density and velocity in the detonation wave,
can be obtained by similar methods.

5.2. Pressure gradient/streamline curvature polar analysis for axial detonation waves
A polar curve analysis diagram was plotted for axial flow in the same way as that shown
in figure 25; the planar curvature was changed to transversal curvature, but the other
aerodynamic parameters were the same. The result is shown in figure 26. From figure 26,
we can summarize the law as follows. Unlike the planar flow problem, in the axial flow,
l remains constantly positive; this means that there is no Thomas point. In both the
OD and UD detonation cases, l increases monotonically with increasing detonation-wave
angle. This means that in axial detonation, the pressure will increase with increasing
airflow-deflection angle. Together, this plot and its analysis illustrate that, with the help
of the curved detonation equations, we can obtain the first-order gradient information of a
detonation wave using polar curves. This also again clarifies the effect of energy release
on the first-order gradients after the detonation wave. This not only greatly expands our
means of analysing detonation, but it also deepens our understanding of the detonation
phenomenon.

6. Application of curved detonation equations to detonation wave capture and
inverse design

As mentioned before, the curved detonation equations give the relationship between the
incoming flow, curvatures and post-wave gradients, we can solve the post-wave gradients
from the incoming flow and curvatures. However, we can also solve the curvatures of
detonation wave according to the known incoming flow and post-wave gradients. To
capture the detonation wave, a third-order polynomial function is used to fit the shape
of the detonation wave, and the shape of the detonation wave is determined by solving the
coefficient term of the unknown polynomial function.
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Figure 26. Polar analysis of detonation waves with post-wave gradients/streamline curvatures in axial flow.
The x-coordinate represents the wedge angle δ and the y-coordinate is the detonation wave angle θ .

We draw the following flow chart in figure 27 to explain the overall process. First,
a detonation wave with definite shape is given as y0. This function is defined purely
mathematically and has no reference to experiments or numerical simulations. Then, the
curvatures of the detonation wave are solved according to its incoming flow conditions and
post-wave parameters/gradients. After that, the second-order derivative of the detonation
wave shape function is solved according to the curvatures, and then the polynomial
interpolation function y are established. In this way, we get a polynomial fitted detonation
wave shape function y = ax3 + bx2 + cx + d. Relationship between detonation wave
parameters and its shape function:

y′ = tan δ, (6.1)

Sa = y′′

(1 + y′2)3/2 . (6.2)

If the curved detonation equations were used, we can further solve the second derivative
of the curve according to the curvatures, so we can establish a more accurate system of
equations:

ax3
1 + bx2

1 + cx1 + d = y1

ax3
2 + bx2

2 + cx2 + d = y2

6ax1 + 2b = y′′
1

6ax2 + 2b = y′′
2

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.3)
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Figure 27. Flow chart of detonation wave capture based on curved detonation equations.

Moreover, it is clear that a shape function can be fitted based on the slope even without the
curved detonation equations, as shown in the following equation. Therefore, to compare
with the results, we likewise calculated the shape function based on the RH relations:

ax3
1 + bx2

1 + cx1 + d = y1

ax3
2 + bx2

2 + cx2 + d = y2

3ax2
1 + 2bx1 + c = y′

1

3ax2
2 + 2bx2 + c = y′

2

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.4)

6.1. Capture for two-dimensional curved detonation wave
To verify the feasibility of the above-mentioned detonation wave capture method, an
example is given here. The given shock wave shape function is in (6.5), the shape function
fitted with RH relations is (6.6), the shape function fitted with curved detonation equations
is (6.7), as shown in figure 28.

y0 = (ex − 1)/2, (6.5)

yr = −0.3182x3 + 0.7137x2 + 0.4636x, (6.6)

yc = 0.0983x3 + 0.3727x2 + 0.3882x. (6.7)

In figure 28, the blue curve is the originally given detonation wave shape function,
the green curve is the detonation wave curve captured according to the RH relations
and the red curve is the detonation wave captured according to the curved detonation
equations. Obviously, the red curve is closer to the blue curve, which means that the
method proposed in this paper can better fit the shape of detonation wave. This is attributed
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Figure 28. Comparison of the two methods to capture the two-dimensional curved detonation wave: y0 is the
given wave, yr is the wave captured based on the RH relations and yc is the wave captured based on the curved
detonation equations. The incoming Mach number is 6 and the specific heat ratio is 1.3.

Maximum error RSS R2

RH 0.0583 0.1399 0.9776
CDE 0.0251 0.0322 0.9948

Table 2. Comparison between the RH relations and the curved detonation equations in planar wave capture.

to the higher-order accuracy of the curved detonation equations compared with the RH
relations. For more accurate comparison, we also calculate the maximum error, sum of
squares of residuals (RSS) and goodness of fit (R2) of the two methods in table 2. In
terms of maximum error, the maximum error obtained by curved detonation equations is
0.00251, while that obtained by RH relations is 0.00583, so the maximum error is reduced
by 56.95 %. As for the RSS, which is 0.1399 according to the RH relations and 0.0322
according to the curved detonation equations, the RSS is reduced by 76.98 %. Finally,
the R2 value increases from 0.9776 to 0.9948, which means that the accuracy of fitting is
increased also. These above data mean that the capture method based on curved detonation
equations is effective.

6.2. Capture for axisymmetric curved detonation wave
Further, to verify the effectiveness of this method in the case of axisymmetric curved
detonation, the wave with a given function and an axisymmetric curvature are selected
in (6.8). The shape function of the detonation wave is calculated and the result of the
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Figure 29. Comparison of the two methods to capture the axisymmetric curved detonation wave: y0 is the
given wave, yr is the wave captured based on the RH relations and yc is the wave captured based on the curved
detonation equations. The incoming Mach number is 6 and the specific heat ratio is 1.3.

Maximum error RSS R2

RH 0.0862 0.3075 0.9635
CDE 0.0169 0.0144 0.9983

Table 3. Comparison between the RH relations and the curved detonation equations in axisymmetric wave
capture.

calculation is given in (6.9) and (6.10). The capture results are shown in figure 29.

y0 = (3x − 1)/2 + 0.1, (6.8)

yr = −0.4723x3 + 0.9700x2 + 0.5023x + 0.1, (6.9)

yc = 0.2012x3 + 0.3017x2 + 0.4971x + 0.1. (6.10)

It is not difficult to see from figure 29 that the red curve is obviously closer to the blue
curve than the green curve. This means that the detonation wave capture method proposed
in this paper is also applicable in the case of axisymmetric waves, which further proves
the correctness of the method. Similarly, we calculated the error analysis for the two
fitting methods as indicated in table 3. The maximum error obtained by curved detonation
equations is 0.0169, while that obtained by RH relations is 0.0862, so the maximum error
is reduced by 80.39 %. Then, as for the RSS, which is 0.3075 according to the RH relations
and 0.0144 according to the curved detonation equations, the RSS is reduced by 95.32 %.
Finally, the R2 value increases from 0.9635 to 0.9983, which means that the accuracy is
increased by 3.48 %.

The above two examples show that the detonation wave capture method proposed in this
paper is suitable for two-dimensional and axisymmetric detonation. Compared with the

999 A79-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.960


Curved detonation equations

y = ax3 + bx2 + cx + d

Sa

Sa

(P2, D2)

(P2, D2)

y′′

y′′

Figure 30. Schematic diagram of curvature solved from gradient.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

P2,D2 (−0.3, −0.3) (−0.2, −0.2) (−0.1, −0.1) (0, 0) (0.1, 0.1) (0.2, 0.2) (0.3, 0.3)
Sa (−1.386, −0.265) (−0.924, −0.176) (−0.462, −0.088) (0, 0) (0.462, 0.088) (0.924, 0.176) (1.386, 0.265)
y′′ (−1.938, −1.274) (−1.292, −0.849) (−0.646, −0.424) (0, 0) (0.646, 0.424) (1.292, 0.849) (1.938, 1.274)

Table 4. Curvatures and second-order derivatives solved from the post-wave gradients.

fitting method with only zero-order parameters, the wave obtained by curved detonation
equations has made great progress in all aspects.

6.3. Inverse design based on curved detonation equations
As described in previous subsections, the curvature of the detonation wave can be solved
based on the first-order gradient of the pre-wave and post-wave. According to such an idea,
if the post-wave pressure gradients and streamline curvatures are given, the curvature of
the detonation wave can be solved. Thus, the shape of the detonation wave can be obtained
to match the gradient requirements. The schematic diagram is given in figure 30.

In figure 30, the key parameters are the coordinates of the two design points and the
first-order gradients. After which, the shape function of the detonation wave can be solved
according to the curved detonation equations. In this paper, we give the following design
parameters: (x1, y1) = (0, 0); (x2, y2) = (1, 1); (P2, D2) = (−0.3, −0.3) − (0.3, 0.3).
Under the above conditions, we can calculate the detonation wave curvature and the
second-order derivatives of shape functions at different post-wave gradients as shown in
table 4 and the shape of the detonation wave is shown in figure 31.

Table 4 shows the calculation results in seven different cases, and the detonation curve
in figure 31 can be obtained according to results. From figure 31, a greater post-wave
first-order gradient corresponds to a more obvious curvature, where the gradient of 0
results in an oblique detonation wave, while two gradients with opposite numbers are
symmetrical about the oblique detonation wave. After obtaining the above detonation wave
shape, we can further solve the shape of the wall according to the method of characteristics,
thus the whole process of inverse design is completed. This part of the research can be
further developed in future studies. Though this example is simple, the method is suitable
to any given specific requirements. Therefore, the method proposed in this paper can be
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Figure 31. Detonation wave under different post-wave gradients.

considered as an effective means of inverse design of the detonation wave shape based on
the post-wave gradient parameters.

7. Conclusions and prospects

To get the gradients in shock-induced chemical reactions, the curved detonation equations
are established in this paper. Based on the curved shock theory and supplemented with the
energy effect, the curved detonation equation is derived in the planar and axisymmetric
flow. Both the mathematical derivation and the physical assumptions suggest that the
equation is applicable to universal problems of shock-induced chemical reactions such as
detonation and dissociation. The subsequent analysis of the influence coefficients reveals
the variation of the post-wave gradients with an emphasis on the influence of energy
release and curvatures by comparison with the shock and oblique detonation. These
analyses contribute to a better understanding of the detonation, such as the curvature
of the streamline and the variation of pressure. The theoretical values calculated by
the curved detonation equations were proved to be accurate and reliable by comparing
with the post-wave gradient parameters calculated from simulation. This verifies the
correctness of the curved detonation equations. After verification, several applications
were presented to illustrate the benefits and potential value. Polar analysis with gradients
obtained from the curved detonation equations was proposed to provide a higher order
perspective. These gradients will assist in the analysis of detonation reflections and provide
valuable guidance. A wave capture method for detonation can also be created based on
curved detonation equations. The accuracy of capture is significantly improved compared
with the method with only zero-order parameters in both planar and axisymmetric
examples. Furthermore, the combination of curved detonation equations with the method
of curved-shock characteristics makes the inverse design of the detonation wave possible.

In the future, second-order curved detonation equations could be developed based on
curved detonation equations to achieve higher-order parameters. In addition, detailed
chemical reactions can be introduced into the curved detonation equations to provide
a more accurate description of detonation waves. The potential applications of curved
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detonation equations can be explored in the reflection and inverse design of detonation.
Further applications of the curved detonation equations can be developed with respect to
the study of the other shock-induced combustion phenomenon.

Funding. The authors acknowledge the support of the National Natural Science Foundation of China (grant
nos. U20A2069, U21B6003, 12302389 and 12472337) and the Advanced Aero-Power Innovation Workstation
(grant no. HKCX2024-01-017).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Hao Yan https://orcid.org/0000-0003-1591-0050;
Chongguang Shi https://orcid.org/0000-0002-4151-3967;
Haochen Xiong https://orcid.org/0009-0001-1444-5225;
Xin Han https://orcid.org/0009-0009-4549-3164;
Yancheng You https://orcid.org/0000-0002-0463-8816.

Appendix A. RH relations for variable specific heat ratio with energy release

According to the law of conservation of mass, momentum and energy, the following
equations can be obtained:

ρ1V1n = ρ2V2n, (A1)

p1 + ρ1V1n
2 = p2 + ρ2V2n

2, (A2)

γ1

γ1 − 1
p1

ρ1
+ V2

1n
2

+ Qd = γ2

γ2 − 1
p2

ρ2
+ V2

2n
2

; (A3)

if it is assumed that
ρ1

ρ2
= X, (A4)

then

V2n

V1n
= X,

V2
2n

V2
1n

= X2. (A5a,b)

According to (A3), it can be derived that

cp2T2

cp1T1
= 1 + V2

1n
2cp1T1

(1 − X2) + Qd

cp1T
, (A6)

where cp is the heat capacity at constant pressure. Further,

V2
1n

2cp1T1
= V2

1 sin2θ

2T1

γ1 − 1
γ1R

= V2
1

γ1RT1

γ1 − 1
2

sin2θ = γ1 − 1
2

M2
1sin2θ, (A7)

then (A7) will be

cp2T2

cp1T1
= 1 + γ1 − 1

2
M2

1sin2θ(1 − X2) + Qd

cp1T
, (A8)

where
cp2

cp1
= γ2(γ1 − 1)

γ1(γ2 − 1)
, (A9)

999 A79-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-1591-0050
https://orcid.org/0000-0003-1591-0050
https://orcid.org/0000-0002-4151-3967
https://orcid.org/0000-0002-4151-3967
https://orcid.org/0009-0001-1444-5225
https://orcid.org/0009-0001-1444-5225
https://orcid.org/0009-0009-4549-3164
https://orcid.org/0009-0009-4549-3164
https://orcid.org/0000-0002-0463-8816
https://orcid.org/0000-0002-0463-8816
https://doi.org/10.1017/jfm.2024.960


H. Yan, C. Shi, H. Xiong, X. Han and Y. You

and the dimensionless energy release is

Q̃ = Qd

cp1T1
. (A10)

Thus,
cp2T2

cp1T1
= γ2(γ1 − 1)

γ1(γ2 − 1)
[1 + γ1M1

2sin2θ(1 − X)]X. (A11)

An equation appears as

1 + Q̃d + γ1 − 1
2

M2
1sin2θ − γ1 − 1

2
M2

1sin2θX2

= γ2(γ1 − 1)

γ1(γ2 − 1)
[X + γ1M1

2sin2θX − γ1M1
2sin2θX2]. (A12)

By simplification,[
γ1 − 1

2
+ γ1 − 1

γ2 − 1

]
M2

1sin2θX2 − [1 + γ1M1
2sin2θ ]

γ2(γ1 − 1)

γ1(γ2 − 1)
X + 1 + Q̃d

+ γ1 − 1
2

M2
1sin2θ = 0. (A13)

This is a quadratic equation in terms of X (2aX2 + bX + c = 0). The following solution
can be obtained:

X = −b ± √
b2 − 4ac

2a
, (A14)

where

a =
[
γ1 − 1

2
+ γ1 − 1

γ2 − 1

]
M2

1sin2θ, b = −[1 + γ1M1
2sin2θ ]

γ2(γ1 − 1)

γ1(γ2 − 1)
,

c = 1 + Q̃d + γ1 − 1
2

M2
1sin2θ.

⎫⎪⎪⎬
⎪⎪⎭ (A15a–c)

Thus,

X = −b ± √
b2 − 4ac

2a

=
(1 + γ1M1n

2)
γ2(γ1 − 1)

γ1(γ2 − 1)
±

√[
(1 + γ1M1n

2)
γ2(γ1 − 1)

γ1(γ2 − 1)

]2

− 4
[(

γ1 − 1
2

+ γ1 − 1
γ2 − 1

)
M2

1n

(
1 + Q̃d + γ1 − 1

2
M2

1n

)]

2
(

γ1 − 1
2

+ γ1 − 1
γ2 − 1

)
M2

1n

.

(A16)

If the specific heat ratio remains constant,

γ2 = γ1, (A17)

then X is equal to the expression of Pratt et al. (1991):

X = (1 + γ1M1n
2) ±

√
(M1n

2 − 1)
2 − 2(γ1 + 1)M2

1nQ̃d

(γ1 + 1)M2
1n

. (A18)
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Curved detonation equations

After getting the solution of X, according to (A1) and (A2), it is possible to obtain

p2

p1
= 1 + γ1M1

2sin2θ(1 − X). (A19)

Similarly, the total post-wave parameters can be obtained.

Appendix B. The detailed derivation of the curved detonation equations

Step 1: the Euler equations are transformed from an x–y plane coordinate system to an s–n
flow-coordinate system:

∂

∂s
ρVy j + ρVy j ∂δ

∂n
= 0,

ρV
∂V
∂s

+ ∂p
∂s

= 0,

ρV2 ∂δ

∂s
+ ∂p

∂n
= 0,

∂h
∂s

+ V
∂V
∂s

+ ∂Qc

∂s
= 0,

∂h
∂n

+ V
∂V
∂n

+ ∂Qc

∂n
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)

Step 2: define several symbols. In curved-shock theory, the following mathematical
symbols are defined to simplify the Euler equations:

P = 1
ρV2

∂p
∂s

, D = ∂σ

∂s
, Γ = ω

V
, ω = V

∂σ

∂s
− ∂V

∂n
. (B2a–d)

Since energy release is included in the Euler equations, three mathematical symbols
need to be defined to emphasize the influence of energy release:

H = 1 − ρ(γ − 1)Qc/V
1 − ρ2(γ − 1)QcV/γ p

, N = V − (γ − 1)ρQc

V − (γ − 1)ρM2Qc
, J = V + ρQc

V − (γ − 1)ρM2Qc
.

(B3a–c)

It is not difficult to see that when the energy release is zero, the three coefficients H, N, J
will become unity.

Step 3: simplify the Euler equations. Through the mathematical symbols defined in
Step 2, the post-wave Euler equations can be simplified as follows. First, the conservation
of momentum equations can be simplified to

1
V

∂V
∂s

= − 1
ρV2

∂p
∂s

= −P,
1

ρV2
∂p
∂n

= −∂δ

∂s
= −D. (B4a,b)

Next, the conservation-of-energy equations will be simplified by using this assumption
and symbols:

1
ρ

∂ρ

∂s
= HM2P,

1
ρ

∂ρ

∂n
= −M2[ND + (γ − 1)JΓ ].

⎫⎪⎪⎬
⎪⎪⎭ (B5)

999 A79-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.960


H. Yan, C. Shi, H. Xiong, X. Han and Y. You

Finally, the conservation-of-mass equation can be simplified as

∂δ

∂n
= −(HM2 − 1)P − j

sin δ

y
. (B6)

Step 4: summary of pre- and post-wave gradients,

∂p1

∂s
= P1ρ1V2

1 ,
∂p2

∂s
= P2ρ2V2

2 ,

∂p1

∂n
= −D1ρ1V2

1 ,
∂p2

∂n
= −D2ρ2V2

2 ,

∂V1

∂s
= −P1V1,

∂V2

∂s
= −P2V2,

∂V1

∂n
= V1(D1 − Γ1),

∂V2

∂n
= V2(D2 − Γ2),

∂ρ1

∂s
= ρ1M2

1P1,
∂ρ2

∂s
= ρ2M2

2H2P2,

∂ρ1

∂n
= −ρ1M2

1[D1 + (γ − 1)Γ1],
∂ρ2

∂n
= −ρ2M2

2[N2D2 + (γ − 1)J2Γ2].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B7)

Step 5: derivation of curved detonation equations. Based on the above first-order
gradients, it is necessary to establish the connection between the first-order gradients based
on the Rankine–Hugoniot relations between the pre- and post-wave.

Step 5.1: derivation of the mass-conservation equation,

ρ1V1 sin θ = ρ2V2 sin(θ − δ). (B8)

We find the partial derivatives for both sides of the equation at the same time:

∂ρ1

∂σ
V1 sin θ + ∂V1

∂σ
ρ1 sin θ + ρ1V1 cos θ

∂θ

∂σ

= ∂ρ2

∂σ
V2 sin(θ − δ) + ∂V2

∂σ
ρ2 sin(θ − δ) + ρ2V2 cos(θ − δ)

∂(θ − δ)

∂σ
. (B9)

Decomposing (B9) in both the tangential and normal directions gives

(
∂ρ1

∂s
cos θ + ∂ρ1

∂n
sin θ

)
V1 sin θ +

(
∂V1

∂s
cos θ + ∂V1

∂n
sin θ

)
ρ1 sin θ

+ ρ1V1 cos θ
∂θ

∂σ
=

(
∂ρ2

∂s
cos(θ − δ) + ∂ρ2

∂n
sin(θ − δ)

)
V2 sin(θ − δ)

+
(

∂V2

∂s
cos(θ − δ) + ∂V2

∂n
sin(θ − δ)

)
ρ2 sin(θ − δ) + ρ2V2 cos(θ − δ)

∂(θ − δ)

∂σ
.

(B10)
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Curved detonation equations

We simplify (B10) using (B7), and after simplifying and rearranging, we have

A1P1 + B1D1 + E1Γ1 = A2P2 + B2D2 + E2Γ2 + CSa + GSb,

A1 = sin θ cos θ [2H1M2
1 − 2],

B1 = ((1 − N1M2
1)sin2θ − cos2θ),

E1 = −((γ − 1)J1M2
1 + 1)sin2θ,

A2 = sin θ cos(θ − δ)[2H2M2
2 − 2],

B2 = sin θ(1 − N2M2
2) sin(θ − δ) − sin θcos2(θ − δ)

sin(θ − δ)
,

E2 = − sin θ sin(θ − δ)((γ − 1)J2M2
2 + 1),

C = sin θ cos(θ − δ)

sin(θ − δ)
− cos θ,

G = sin θ cos θ sin δ1 − sin θ cos(θ − δ) sin δ2

cos θ1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B11)

Step 5.2: the equation of momentum conservation is derived in the same way,

p1 + ρ1V2
1 sin2 θ = p2 + ρ2V2

2 sin2(θ − δ), (B12)

(
∂p1

∂s
cos θ + ∂p1

∂n
sin θ

)
+ V2

1 sin2θ

(
∂ρ1

∂s
cos θ + ∂ρ1

∂n
sin θ

)

+ 2ρ1V1sin2θ

(
∂V1

∂s
cos θ + ∂V1

∂n
sin θ

)
+ 2ρ1V2

1 sin θ cos θ
∂θ

∂σ

=
(

∂p2

∂s
cos(θ − δ) + ∂p2

∂n
sin(θ − δ)

)
+ V2

2 sin2(θ − δ)

×
(

∂ρ2

∂s
cos(θ − δ) + ∂ρ2

∂n
sin(θ − δ)

)

+ 2ρ2V2sin2(θ − δ)

(
∂V2

∂s
cos(θ − δ) + ∂V2

∂n
sin(θ − δ)

)

+ 2ρ2V2
2 sin(θ − δ) cos(θ − δ)

∂(θ − δ)

∂σ
, (B13)

(P1ρ1V2
1 cos θ − D1ρ1V2

1 sin θ) + V2
1 sin2θ(ρ1M2

1H1P1 cos θ

− ρ1M2
1[N1D1 + (γ − 1)J1Γ1] sin θ)

+ 2ρ1V1sin2θ(−P1V1 cos θ + V1(D1 − Γ1) sin θ)

+ 2ρ1V2
1 sin θ cos θ

[
Sa + (H1M2

1 − 1) sin θP1 − cos θD1 + sin θ sin δ1

y

]
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= (P2ρ2V2
2 cos(θ − δ) − D2ρ2V2

2 sin(θ − δ))

+ V2
2 sin2(θ − δ)(ρ2H2M2

2P2 cos(θ − δ)

− ρ2M2
2[N2D2 + (γ − 1)J2Γ2] sin(θ − δ))

+ 2ρ2V2sin2(θ − δ)(−P2V2 cos(θ − δ) + V2(D2 − Γ2) sin(θ − δ))

+ 2ρ2V2
2 sin(θ − δ) cos(θ − δ)

[
Sa + (H2M2

2 − 1) sin(θ − δ)P2

− cos(θ − δ)D2 + sin(θ − δ) sin δ2

y

]
. (B14)

The same terms are combined, so the equation of the second curved detonation is

A′
1P1 + B′

1D1 + E′
1Γ1 = A′

2P2 + B′
2D2 + E′

2Γ2 + C′Sa + G′Sb,

A′
1 = cos θ(1 + 3H1M2

1sin2θ − 4sin2θ),

B′
1 = sin θ(−1 − N1M2

1sin2θ + 2sin2θ − 2cos2θ),

E′
1 = sin3θ(−(γ − 1)J1M2

1 − 2),

A′
2 = sin θ cos θ

sin(θ − δ)
+ sin θ cos θ(3H2M2

2 − 4) sin(θ − δ),

B′
2 = sin θ cos θ(−1 − N2M2

2sin2(θ − δ) + 2sin2(θ − δ) − 2cos2(θ − δ))

cos(θ − δ)
,

E′
2 = −sin θ cos θsin2(θ − δ)((γ − 1)J2M2

2 + 2)

cos(θ − δ)
,

C′ = 0,

G′ = 2sin2θ cos θ sin δ1 − 2 sin θ cos θ sin(θ − δ) sin δ2

cos θ1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B15)

Step 5.3: the equation of tangential velocity is

V1 cos θ = V2 cos(θ − δ), (B16)

V1
∂ cos θ

∂σ
+ cos θ

∂V1

∂σ
= V2

∂ cos(θ − δ)

∂σ
+ cos(θ − δ)

∂V2

∂σ
, (B17)

sin θ
∂θ

∂σ
− cos θ

[
1

V1
cos θ

∂V1

∂s
+ 1

V1
sin θ

∂V1

∂n

]

= V2

V1

[
sin(θ − δ)

∂(θ − δ)

∂σ

]

− cos(θ − δ)
V2

V1

[
cos(θ − δ)

1
V2

∂V2

∂s
+ sin(θ − δ)

1
V2

∂V2

∂n

]
,

(B18)
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Curved detonation equations

where

V2

V1
= cos θ

cos(θ − δ)
, (B19)

sin θ

[
Sa + (H1M2

1 − 1) sin θP1 − cos θD1 + sin θ sin δ1

y

]

+ cos2θP1 − cos θ sin θ(D1 − Γ1)

= cos θ tan(θ − δ)

[
Sa + (H2M2

2 − 1) sin(θ − δ)P2

− cos(θ − δ)D2 + sin(θ − δ) sin δ2

y

]
− cos θ [− cos(θ − δ)P2 + sin(θ − δ)(D2 − Γ2)].

(B20)

After combination and collation, a third curved detonation equation can be obtained

A′′
1P1 + B′′

1D1 + E′′
1Γ1 = A′′

2P2 + B′′
2D2 + E′′

2Γ2 + C′′Sa + G′′Sb,

A′′
1 = (H1M2

1 − 1) sin θ tan θ + cos θ,

E′′
1 = −2 sin θ,

B′′
1 = sin θ,

A′′
2 = (H2M2

2 − 1) sin(θ − δ) tan(θ − δ) + cos(θ − δ),

B′′
2 = −2 sin(θ − δ),

E′′
2 = sin(θ − δ),

C′′ = tan(θ − δ) − tan θ,

G′′ = tan(θ − δ) sin(θ − δ) sin δ2 − sin θ tan θ sin δ1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B21)

Step 6: complete curved-detonation equations

A1P1 + B1D1 + E1Γ1 = A2P2 + B2D2 + E2Γ2 + CSa + GSb,

A′
1P1 + B′

1D1 + E′
1Γ1 = A′

2P2 + B′
2D2 + E′

2Γ2 + C′Sa + G′Sb,

A′′
1P1 + B′′

1D1 + E′′
1Γ1 = A′′

2P2 + B′′
2D2 + E′′

2Γ2 + C′′Sa + G′′Sb.

⎫⎪⎬
⎪⎭ (B22)

Appendix C. The derivation of curved detonation equations with chemical reaction

The derivation process of the CEDC is similar to CDE in Appendix B, with the main
difference lying in the governing equations of chemical reaction added to the Euler
equations, and the pre-wave and post-wave relationships. The single-step Arrhenius
equation is used to simulate chemical reaction processes and the ZND structure is shown
in figure 32. Here is the specific derivation.

Step 1: Euler equations with chemical reaction.
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Pressure

Reaction zone

Reactants Products

Detonation wave

Z1 = 1

Z2
p1

p2

Pre-wave Post-wave

Chemical reaction process

Figure 32. Schematic of the ZND structure of the detonation wave.

Due to the presence of a chemical reaction, the two-dimensional Euler equations in the
Cartesian coordinate can be written in the following form:

∂

∂x

⎡
⎢⎢⎢⎢⎢⎢⎣

ρVx

ρV2
x + p

ρVxVy

(ρe + p)Vx

ρZVx

⎤
⎥⎥⎥⎥⎥⎥⎦

+ ∂

∂y

⎡
⎢⎢⎢⎢⎢⎢⎣

ρVy

ρV2
y + p

ρVxVy

(ρe + p)Vy

ρZVy

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0
0
0
0
σ̄

⎤
⎥⎥⎥⎦ , (C1)

where Vx and Vy are the velocity components in the x and y direction, respectively; e is the
specific energy. The chemical reaction is modelled with a single-step Arrhenius equation,
where the source function σ̄ can be defined as

σ̄ = −ρkZ exp(−Eaρ/p). (C2)

Among them, the conservation of mass, momentum and energy equations remain
unchanged. Here, focus on handling the chemical reaction item. In the streamline-
coordinates,

∂

∂s
ρZV + ρZV

∂δ

∂n
= σ̄. (C3)

Further simplification yields

∂Z
∂s

=
σ̄ − ZV

∂ρ

∂s
− ρZ

∂V
∂s

− ρZV
∂δ

∂n
ρV

. (C4)

Step 2: define the standard process gradient variable.
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Curved detonation equations

If the process gradient variable κ is defined as

κ = ∂Z
∂n

− Z
∂σ̄

∂s
, (C5)

then, the standard process gradient variable Ω can be defined as

Ω = κ

Z
. (C6)

With this definition, it is possible to derive

∂Z
∂n

= (Ω − D)Z. (C7)

Up to here, the gradient variables of chemical reaction process in both s and n directions
(C4) and (C7) are expressed properly. The next step is to solve the relationship between
different gradient variables based on the above definitions in combination with Euler
equations.

Step 3: Euler equations in the s and n streamline coordinates.
Similar to the previous derivation, the Euler equations in the streamline coordinates can

be derived from (C1):
∂

∂s
ρVy j + ρVy j ∂δ

∂n
= 0,

ρV
∂V
∂s

+ ∂p
∂s

= 0

ρV2 ∂δ

∂s
+ ∂p

∂n
= 0

,

⎫⎪⎪⎬
⎪⎪⎭

∂h
∂s

+ V
∂V
∂s

+ ∂Q
∂s

= 0

∂h
∂n

+ V
∂V
∂n

+ ∂Q
∂n

= 0
,

⎫⎪⎪⎬
⎪⎪⎭

∂

∂s
ρZV + ρZV

∂δ

∂n
= σ̄,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C8)

where Q is the energy release in the Euler equation. The derivation of the momentum
and vorticity equations is consistent with the previous ones, but due to the involvement of
chemical reactions, the new form of mass equation need to be re-derived:

∂

∂s
ρV + ρV

∂δ

∂n
= 0,

∂δ

∂n
= − 1

V
∂V
∂s

− 1
ρ

∂ρ

∂s
.

⎫⎪⎪⎬
⎪⎪⎭ (C9)

Taking the definition of the pressure gradient and simplifying leads to

∂δ

∂n
= P − 1

ρ

∂ρ

∂s
. (C10)

Thus, the partial derivative of Z in the s-direction can be simplified from (C4):

∂Z
∂s

= σ̄

ρV
. (C11)
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Combined with the derivation of the CDE, the following relational equations for the
gradient variable can be obtained:

∂δ

∂s
= D,

∂δ

∂n
= P − 1

ρ

∂ρ

∂s
,

∂p
∂s

= ρV2P,
∂p
∂n

= −ρV2D,

∂V
∂s

= −PV,
∂V
∂n

= V(D − Γ ),

∂Z
∂s

= σ̄

ρV
,

∂Z
∂n

= (Ω − D)Z.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C12)

By observing (C12), it can be realized that the gradient variables of the density are now
missing. An additional definition is given based on the research results (Turns 2013) in
this paper since it is taken into account that the energy release can be related to parameters
such as the flow rate, chemical reaction process and fuel itself:

Q = ρVqZ, (C13)

where q is the energy released by a complete chemical reaction per unit mass flow rate.
With the above relationship of variables, the density gradients can further be solved by
solving the energy conservation equations:

γ

γ − 1
∂

∂s
p
ρ

+V
∂V
∂s

+ ∂

∂s
ρVqZ = 0

γ

γ − 1
∂

∂n
p
ρ

+V
∂V
∂n

+ ∂

∂n
ρVqZ = 0

,

⎫⎪⎪⎬
⎪⎪⎭ (C14)

after simplification:

∂ρ

∂s
= ρM2P[ρq(1 − Z)(γ − 1)/V − 1] + (γ − 1)ρqσ̄M2/V2

(γ − 1)ρ2Vq(1 − Z)/γ p − 1
, (C15)

∂ρ

∂n
=

[V − (1 − Z)(γ − 1)ρq − (γ − 1)ρqZ]M2ρD

+ [V + ρq(1 − Z)]M2ρ(γ − 1)Γ + (γ − 1)ρ2M2qZΩ

(γ − 1)M2q(1 − Z)ρ − V
. (C16)

If the coefficient variables are defined as

Hz = ρq(1 − Z)(γ − 1)/V − 1
(γ − 1)ρ2Vq(1 − Z)/γ p − 1

, (C17)

Hc = qσ̄ (γ − 1)/V2

(γ − 1)ρ2Vq(1 − Z)/γ p − 1
, (C18)

Nz = −V − (1 − Z)(γ − 1)ρq − (γ − 1)ρqZ
(γ − 1)M2q(1 − Z)ρ − V

, (C19)
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Curved detonation equations

Jz = − V + ρq(1 − Z)

(γ − 1)M2q(1 − Z)ρ − V
, (C20)

Rz = − ρqZ
(γ − 1)M2q(1 − Z)ρ − V

, (C21)

then the density gradients can be expressed as

∂ρ

∂s
= ρM2(HzP + Hc),

∂ρ

∂n
= −ρM2[NzD + Jz(γ − 1)Γ + (γ − 1)RzΩ].

⎫⎪⎪⎬
⎪⎪⎭ (C22)

In addition, the partial derivation of curvature (Sa) is

Sa = ∂θ

∂σ
+ ∂δ1

∂σ
,

∂δ

∂σ
= D1 cos θ −

{
[(Hz1M2

1 − 1)P1 − M2
1Hc1] − j

sin δ1

y

}
sin θ,

∂θ

∂σ
= Sa + (Hz1M2

1 − 1) sin θP1 − D1 cos θ − M2
1Hc1 sin θ − sin δ1

y
sin θ.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(C23)

The partial derivation of curvature (Sb) is

1
y

= − Sb

cos θ1
,

∂θ

∂σ
= Sa + (Hz1M2

1 − 1) sin θP1 − D1 cos θ − M2
1Hc1 sin θ

−sin θ sin δ1

cos θ1
Sb,

∂(θ − δ)

∂σ
= Sa + (Hz2M2

2 − 1) sin(θ − δ)P2 − D2 cos(θ − δ)

− M2
2Hc2 sin(θ − δ) − sin(θ − δ) sin δ2

cos θ1
Sb.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C24)

In summary, all the variables can be displayed:

∂V
∂s

= −PV,
∂V
∂n

= V(D − Γ ), (C25a,b)

∂ρ

∂s
= ρM2(HzP + Hc),

∂ρ

∂n
= −ρM2[NzD + Jz(γ − 1)Γ + (γ − 1)RzΩ], (C26a,b)

∂p
∂s

= ρV2P,
∂p
∂n

= −ρV2D, (C27a,b)

∂Z
∂s

= σ̄

ρV
,

∂Z
∂n

= (Ω − D)Z, (C28a,b)
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∂δ

∂s
= D,

∂δ

∂n
= −(HzM2 − 1)P − M2Hc. (C29a,b)

Since the above variables are derived based on the Euler equations, the pre-wave and
post-wave will be of the same form if both are in chemical equilibrium. Otherwise, the
two forms do not agree, and a distinction should be made between pre-wave and post-wave.
However, for convenience, a uniform form is used here, except that Z = 1 is taken for the
pre-wave and Z for the post-wave is taken, with the specified value based on the chemical
reactions.

Step 4: derivation of pre-wave and post-wave relations.
With the above gradient variables, the following derivation can be made for the pre- and

post-wave relationships in detonation.
Step 4.1: mass conservation relationship.

ρ1V1 sin θ = ρ2V2 sin(θ − δ). (C30)

According to the above relationship (consistent with (B8)) and the law of vector
decomposition, it can be obtained by simplification similar to (B9)–(B11):

A1P1 + B1D1 + E1Γ1 + I1Ω1 = A2P2 + B2D2 + E2Γ2 + I2Ω2 + CSa + GSb,

A1 = 2 sin θ cos θ(Hz1M2
1 − 1),

B1 = (1 − M2
1Nz1)sin2θ − cos2θ,

E1 = −sin2θ(M2
1Jz1(γ − 1) + 1),

I1 = −M2
1sin2θ(γ − 1)Rz1,

A2 = 2 sin θ cos(θ − δ)(Hz2M2
2 − 1),

B2 = (1 − M2
2Nz2) sin(θ − δ) sin θ − cos2(θ − δ)

sin(θ − δ)
sin θ,

E2 = − sin(θ − δ) sin θ(M2
2Jz2(γ − 1) + 1),

I2 = −M2
2 sin(θ − δ) sin θ(γ − 1)Rz2,

C = sin θ cos(θ − δ)

sin(θ − δ)
− cos θ,

G = sin θ cos θ sin δ1 − sin θ cos(θ − δ) sin δ2

cos θ1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C31)

Step 4.2: momentum conservation relationship.

p1 + ρ1V1
2 sin2 θ = p2 + ρ2V2

2 sin2(θ − δ). (C32)
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Curved detonation equations

By similarity, the second equation can be obtained:

A′
1P1 + B′

1D1 + E′
1Γ1 + I′

1Ω1 = A′
2P2 + B′

2D2 + E′
2Γ2 + I′

2Ω2 + C′Sa + G′Sb + Δ,

A′
1 = cos θ(1 + 3sin2θM2

1Hz1 − 4sin2θ),

B′
1 = sin θ(−1 − sin2θM2

1Nz1 + 2sin2θ − 2cos2θ),

E′
1 = −sin3θ(M2

1Jz1(γ − 1) + 2),

I′
1 = −M2

1sin3θ(γ − 1)Rz1,

A′
2 = sinθ cos θ

sin(θ − δ)
+ sin θ cos θsin(θ − δ)(3M2

2Hz2 − 4),

B′
2 = sinθ cos θ(−1 − sin2(θ − δ)M2

2Nz2) + 2sin2(θ − δ) − 2cos(θ − δ)

cos(θ − δ)
,

E′
2 = −sinθ cos θsin2(θ − δ)

cos(θ − δ)
(M2

2Jz2(γ − 1) + 2),

I′
2 = −sinθ cos θsin2(θ − δ)

cos(θ − δ)
M2

2(γ − 1)Rz2,

C′ = 0

G′ = sin θ cos θ sin δ1 − sin θ cos(θ − δ) sin δ2

cos θ1
,

Δ = −sinθ cos θM2
2 sin(θ − δ)Hc2 + Hc1M2

1sin2θ cos θ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C33)
Step 4.3: relationship of vorticity.

V1 cos θ = V2 cos(θ − δ). (C34)

Thus,

A′′
1P1 + B′′

1D1 + E′′
1Γ1 = A′′

2P2 + B′′
2D2 + E′′

2Γ2 + C′′Sa + G′′Sb,

A′′
1 = sin θ(Hz1M2

1 − 1) sin θ + cos θ cos θ,

B′′
1 = −2 sin θ cos θ,

E′′
1 = sin θ cos θ,

A′′
2 = (Hz2M2

2 − 1) sin(θ − δ)
cos θ sin(θ − δ)

cos(θ − δ)
+ cos θ cos(θ − δ),

B′′
2 = −2 cos θ sin(θ − δ),

E′′
2 = − sin(θ − δ) cos θ,

C′′ = cos θ sin(θ − δ)

cos(θ − δ)
− sin θ,

G′′ = sin θ
sin θ sin δ1

cos θ1
− sin(θ − δ) sin δ2

cos θ1

cos θ sin(θ − δ)

cos(θ − δ)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C35)
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Step 4.4: chemical reaction term.

ρ1V1 sin θZ1 − σ̄1 = ρ2V2 sin(θ − δ)Z2 − σ̄2. (C36)

In a similar way, it can be obtained after simplification:

A′′′
1 P1 + B′′′

1 D1 + E′′′
1 Γ1 + I′′′

1 Ω1 = A′′′
2 P2 + B′′′

2 D2 + E′′′
2 Γ2 + I′′′

2 Ω2

+ C′′′Sa + G′′′Sb + Δ′,

A′′′
1 = ρ1M2

1Hz1 cos θCn1 − V1 cos θρ1 sin θZ1 + (Hz1M2
1 − 1) sin θρ1V1 cos θZ1

− Cn3ρ1V2
1 cos θ,

B′′′
1 = {−ρ1M2

1Nz1 sin θCn1 + V1 sin θρ1 sin θZ1 − cos θρ1V1 cos θZ1

− Z1 sin θ [ρ1V1 sin θ − ρ1k exp(−Eaρ1/p1)] + Cn3ρ1V2
1 sin θ},

E′′′
1 = −ρ1M2

1Jz1(γ − 1) sin θCn1 − V1 sin θρ1 sin θZ1,

I′′′
1 = {−ρ1M2

1(γ − 1)Rz1 sin θCn1 + Z1 sin θ [ρ1V1 sin θ − ρ1k exp(−Eaρ1/p1)]},
A′′′

2 = ρ2M2
2Hz2 cos(θ − δ)Cn2 − V2 cos(θ − δ)ρ2 sin(θ − δ)Z2

+ (Hz2M2
2 − 1) sin(θ − δ)ρ2V2 cos(θ − δ)Z2 − ρ2V2

2 cos(θ − δ)Cn4,

B′′′
2 = {−ρ2M2

2Nz2 sin(θ − δ)Cn2 + V2 sin(θ − δ)ρ2 sin(θ − δ)Z2

− cos(θ − δ)ρ2V2 cos(θ − δ)Z2 − Z2 sin(θ − δ)[ρ2V2 sin(θ − δ)

−ρ2k exp(−Eaρ2/p2)] + ρ2V2
2 sin(θ − δ)Cn4},

E′′′
2 = −ρ2M2

2Nz2Jz2(γ − 1) sin(θ − δ)Cn2 − V2 sin(θ − δ)ρ2 sin(θ − δ)Z2,

I′′′
2 = {−ρ2M2

2(γ − 1)Rz2 sin(θ − δ)Cn2 + Z2 sin(θ − δ)[ρ2V2 sin(θ − δ)

− ρ2k exp(−Eaρ2/p2)]},
C′′′ = ρ2V2 cos(θ − δ)Z2 − ρ1V1 cos θZ1,

G′′′ = sin θ sin δ1

cos θ1
ρ1V1 cos θZ1 − sin(θ − δ) sin δ2

cos θ1
ρ2V2 cos(θ − δ)Z2,

Δ′ = Hc2[ρ2M2
2 cos(θ − δ)Cn2 − M2

2 sin(θ − δ)ρ2V2 cos(θ − δ)Z2]

+ σ2

ρ2V2
cos(θ − δ)[ρ2V2 sin(θ − δ) − ρ2k exp(−Eaρ2/p2)]

− Hc1[ρ1M2
1 cos θCn1 − M2

1 sin θρ1V1 cos θZ1]

− σ1

ρ1V1
cos θ [ρ1V1 sin θ − ρ1k exp(−Eaρ1/p1)],

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C37)
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Figure 33. Comparison of the post-wave gradient parameters: (a) pressure gradient; (b) streamline curvature.
The dashed lines of red and blue colour are the results calculated from the CDEC, the black squares are the
simulation results.

where

Cn1 =
[

V1 sin θZ1 − kZ1 exp(−Eaρ1/p1) + Eaρ1kZ1 exp(−Eaρ1/p1)
1
p1

]
,

Cn2 =
[

V2 sin(θ − δ)Z2 − kZ2 exp(−Eaρ2/p2) + Eaρ2kZ2 exp(−Eaρ2/p2)
1
p2

]
,

Cn3 = Eaρ1kZ1 exp(−Eaρ1/p1)
ρ1

p2
1
,

Cn4 = Eaρ2kZ2 exp(−Eaρ2/p2)
ρ2

p2
2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C38)

Step 5: the complete equations of curved detonation equations with chemical reaction.
Compared with the CDE, there is not only one new equation added, but two

additional variables (chemical process gradients: Ω1, Ω2) are added to each equation. The
CDEC is expected to describe the gradient variables of detonation more accurately and
comprehensively.

A1P1 + B1D1 + E1Γ1 + I1Ω1 = A2P2 + B2D2 + E2Γ2

+ I2Ω2 + CSa + GSb,

A′
1P1 + B′

1D1 + E′
1Γ1 + I′

1Ω1 = A′
2P2 + B′

2D2 + E′
2Γ2 + I′

2Ω2

+ C′Sa + G′Sb + Δ,

A′′
1P1 + B′′

1D1 + E′′
1Γ1 = A′′

2P2 + B′′
2D2 + E′′

2Γ2 + C′′Sa + G′′Sb,

A′′′
1 P1 + B′′′

1 D1 + E′′′
1 Γ1 + I′′′

1 Ω1 = A′′′
2 P2 + B′′′

2 D2 + E′′′
2 Γ2 + I′′′

2 Ω2

+ C′′′Sa + G′′′Sb + Δ′.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C39)

To verify the effectiveness of CDEC, the evidence is shown in figure 33. For the same
numerical simulation results in figures 21 and 24, the curves from CDEC are represented
by dashed lines. It is reasonable that the calculated results are closer due to the addition of
chemical reactions.
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Appendix D. Influence coefficient format of curved detonation equations

For the purpose of obtaining the equations in a form including influence coefficients, we
first need to eliminate the post-wave vorticity. To achieve this, the following mathematical
definitions are required:

L = A1P1 + B1D1 + E1Γ1, L′ = A′
1P1 + B′

1D1 + E′
1Γ1,

L′′ = A′′
1P1 + B′′

1D1 + E′′
1Γ1,

Sab = CSa + GSb, S′
ab = C′Sa + G′Sb, S′′

ab = C′′Sa + G′′Sb,

AE1 = E2A′
2 − E′

2A2, AE2 = E2A′′
2 − E′′

2A2, BE1 = E2B′
2 − E′

2B2,

BE2 = E2B′′
2 − E′′

2B2.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(D1)

With these definitions, we can obtain the equations with no vorticity:

L′E2 − LE′
2 = AE1P2 + BE1D2 + E2S′

ab − E′
2Sab,

L′′E2 − LE′′
2 = AE2P2 + BE2D2 + E2S′′

ab − E′′
2Sab.

}
(D2)

Next, we eliminate the streamline curvature so we can get an explicit expression of the
post-wave pressure gradient:

P2 = BE2(L′E2 − LE′
2 − E2S′

ab + E′
2Sab) − BE1(L′′E2 − LE′′

2 + E2S′′
ab − E′′

2Sab)

AE2BE1 − AE1BE2
. (D3)

Similarly, we can eliminate the pressure gradient. We can then get the explicit expression
of the streamline curvature:

D2 = AE2(L′E2 − LE′
2 − E2S′

ab + E′
2Sab) − AE1(L′′E2 − LE′′

2 + E2S′′
ab − E′′

2Sab)

AE2BE1 − AE1BE2
.

(D4)
After determining these two gradients, we can express the vorticity with the pressure
gradient and streamline curvature:

Γ2 = L − A2P2 − B2D2 − Sab

E2
. (D5)

Finally, the pressure gradient, streamline curvature and vorticity of the post-wave can be
written in the influence-coefficient form:

P2 = JpP1 + JdD1 + JgΓ1 + JaSa + JbSb,

D2 = KpP1 + KdD1 + KgΓ1 + KaSa + KbSb,

Γ2 = FpP1 + FdD1 + FgΓ1 + FaSa + FbSb,

⎫⎪⎬
⎪⎭ (D6)
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in which the influence coefficients are

Jp = (BE2E2A′
1 − BE2E′

2A − BE1E2A′′
1 + BE1E′′

2A1)/ABE,

Jd = (BE2E2B′
1 − BE2E′

2B1 − BE1E2B′′
1 + BE1E′′

2B1)/ABE,

Jg = (BE2E2E′
1 − BE2E′

2E1 − BE1E2E′′
1 + BE1E′′

2E1)/ABE,

Ja = (−BE2C′E2 + BE2CE′
2 − BE1E2C′′ + BE1E′′

2C)/ABE,

Jb = (−BE2G′E2 + BE2GE′
2 − BE1E2G′′ + BE1E′′

2G)/ABE.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(D7)

Kp = (AE2E2A′
1 − AE2E′

2A − AE1E2A′′
1 + AE1E′′

2A1)/ABE,

Kd = (AE2E2B′
1 − AE2E′

2B1 − AE1E2B′′
1 + AE1E′′

2B1)/ABE,

Kg = (AE2E2E′
1 − AE2E′

2E1 − AE1E2E′′
1 + AE1E′′

2E1)/ABE,

Ka = (−AE2C′E2 + AE2CE′
2 − AE1E2C′′ + AE1E′′

2C)/ABE,

Kb = (−AE2G′E2 + AE2GE′
2 − AE1E2G′′ + AE1E′′

2G)/ABE.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(D8)

Fp = (A1 − A2Jp − B2Kp)/E2,

Fd = (B1 − A2Jd − B2Kd)/E2,

Fg = (E1 − A2Jg − B2Kg)/E2,

Fa = −(A2Ja + B2Ka + C)/E2,

Fb = −(A2Jb + B2Kb + G)/E2.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(D9)

In the above, ABE = AE2BE1 − AE1BE2. These influence coefficients directly show
that the post-wave first-order gradients are affected by the pre-wave flow conditions
and the curvatures, which is helpful to better understand and analyse the detonation.
The coefficients give the effects of pre-wave flow and curvatures on the post-wave in
a mathematical form, turning the previous qualitative understanding into a quantified
expression. For example, prior to this research, it was only possible to guess that an
increase in curvature would lead to a larger post-wave first-order gradient, and there was
no way to know exactly what would be the effect.

Appendix E. Grid resolution verification

Boundary conditions and geometric parameters for numerical simulations are given in
figure 34. To verify the credibility of the numerical simulation results for pressure and
deflection angle capture, three different grid schemes are shown in table 5. Take the coarse
grid scheme as an example, where 250 grids were laid out over a horizontal distance of
4 mm and 225 grids over a vertical distance of 7.5 mm. Each grid has dimensions of 0.016
and 0.03 mm horizontally and vertically, and has 7.5 grids per reaction zone which is
increased to 15 and 30 for the medium and fine grid schemes, respectively. According
to the research by Choi, Ma & Yang (2008), to accurately capture the pressure of the
detonation flow field, in the general case, 5 grid points per reaction zone are selected,
which can be increased to 12–15 grid points in highly unstable detonations. In this
sense, the medium grid strategy (15 grids) is sufficient to capture the accurate pressure
in this paper. To further compare the computational performance of the three grids, the
corresponding flow field calculation results are shown in figure 35.
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x

y

Inlet

Symmetric boundary

Wall 

Outlet L1 = 4 mm

R = 7.5 mm

L 3
 =

 1
5
 m

m

L2 = 15 mm

Figure 34. Boundary conditions and geometric parameters for numerical simulations.

Grid size Size in x-direction (mm) Size in y-direction (mm) Grids per reaction zone

Coarse 4/250 = 0.016 7.5/225 = 0.03 7.5
Medium 4/500 = 0.008 7.5/450 = 0.016 15
Fine 4/1000 = 0.004 7.5/900 = 0.008 30

Table 5. Grid schemes at different levels.
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0.006

0.004

0.002

0

Figure 35. Pressure contours of the detonation flow field for different grid sizes: (a) coarse grid; (b) medium
grid; (c) fine grid.

Macroscopically speaking, the flow fields of the three grid schemes have great similarity.
Further, the aerodynamic parameters on the three streamlines at the same location are
plotted in figure 36.

In figure 36(a), the variation of pressure and mass fraction of hydrogen on the three
streamlines shows the successful initiation of detonation, and the general pattern is similar
for all three. To quantitatively compare the specific differences, the pressure at the peak
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Figure 36. Aerodynamic parameters on streamlines under different grid sizes: (a) pressure and mass fraction
of hydrogen; (b) deflection angle and mass fraction of hydrogen.

Grid size Pressure ratio Deflection angle (radian)

Coarse 38.28 0.72
Medium 39.10 0.74
Fine 39.05 0.76
Error (0.13 %, 1.9 %) (2.6 %, 5.2 %)

Table 6. Comparison of calculation results and errors for different grid sizes.

1

H2 = 0.0055H2 = 0.0065

2

95 % cost

–0.0020

0.030

0.00020

0.004H2: 0.008 0.012 0.016 0.020 0.024

0.00015

0.00010

y(m)

0.00005

0

0.025
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0.015

H2

0.010

0.005

–0.0015 –0.0010
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–0.0005 0–0.00150 –0.00145

15 grids

–0.00140

x(m)

–0.00135 –0.00130

1 2

x = –0.00137

H2 = 0.0285
x = –0.00149

(a) (b)

Figure 37. Grid situation per reaction zone length: (a) hydrogen mass fraction contour at the lower boundary
and its grid situation; (b) hydrogen mass fraction on the streamline.

was picked up and displayed in table 6. Similarly, the same operation was performed for
the deflection angle. According to table 6, it is known that if the fine grid is used as a
standard, the maximum error of the medium grid for both pressure and airflow deflection
angle does not exceed 3 %, which is acceptable for the study of this paper. Furthermore,
to get a clearer view of the number of grids within a reaction zone under medium grid
scheme, figure 37 is plotted. This is a locally enlarged view around the low wall where
the detonation wave angle is nearly 90◦. According to figure 37(b), it is known that the
hydrogen mass fraction at point 1 is 0.285 and at the far end is 0.0055. Therefore, when
the hydrogen mass decreases by 95 % to 0.0065, it can be considered as the post-wave state
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of the detonation, which is the position of point 2. In figure 37(a), marking the position of
both points 1, 2 and counting the grid number between them, it can be known that there
are 15 grid points per reaction zone, which is in agreement with the pre-given results in
table 5. In summary, given that the medium grid scheme captures accurate pressure and
meets the requirement of grid number per reaction zone, it was chosen in this paper.
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