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Abstract
In this study, tunability of the electromagnetically induced transparency (EIT)-like transmis-
sion window by low-volume dielectric loadings is presented both numerically and experimen-
tally in S-band. The EIT-like transmission behavior is obtained by a metamaterial, composed
of an electric resonator and a closed-ring resonator patterned on a dielectric substrate. The
frequency tuning is obtained by two applications called horizontal sliding application (HSA)
and vertical sliding application based on sliding of the low-volume loadings from the edges to
geometric center (i.e., inward). For both applications, the frequency tuning has been investi-
gated for dielectric loadings which have relative permittivity of 2.2, 3, 4.5, and 6.15.The results
reveal that the proposed sliding applications are effective on tuning the transmission peak fre-
quency. An achieved 1136 and 971MHz absolute spectral shifts and corresponding 6.34% and
5.41% absolute sensitivities by simulations andmeasurements, respectively, are the best results
which are obtained for HSA at 5 mm shift value. Moreover, 14.67% sensitivity is obtained in
simulations for the complete dielectric loading on the resonator in response to the increase in
refractive index from 1 to 1.5. It is believed that the proposed applications will contribute to
the existent sensing studies.

Introduction

The phenomenon of obtaining a narrower spectral band of transmission in a relatively broad
absorption spectrum (i.e., in opaque medium) is called electromagnetically induced trans-
parency (EIT), and it is commonly explained by quantum interference effect [1–5]. In early
studies, this phenomenon was seen in the three-level atomic systems which required rela-
tively complex setups with cryogenic temperatures and high intensity laser requirements [4, 5];
however, it had drawn exceedingly attention after adapting to classical systems explained by
mechanical oscillators and RLC circuits, and therefore it was called as the EIT-like effect [3–6].
Contingent to this new phenomenon, metamaterial counterparts with EIT-like effect were
presented [4–7].

EIT-like phenomena obtained in metamaterial structure are generally realized with two
methods: one is the trapped mode resonance [4, 8] and the other is a result of the coupling
between dark mode, bright mode, quasi-dark mode, or any binary or ternary combination of
them [9–15]. The trapped mode is possible to be produced by breaking structural symmetry
and there becomes a weak coupling to the free space [8]. One of the second methods, bright
mode-dark mode coupling, exists on the structures (1) having a bright mode resonance with a
lower quality (Q) factor which can be excited directly by the incident wave, and (2) dark mode
resonance with a larger Q-factor which get no interaction with incident wave and free space
[10, 14]. EIT-like metamaterials are frequently used in on slow-light applications [16, 17], light
storage [18], modulators [19, 20], and sensors [20–27] with an increasing interest.

In the literature, there are various sensing approaches for solid sample detection with rela-
tively low permittivity range in microwaves [28–39]. An important number of them realize the
sensing application by using microstrip line–coupled designs [28, 33–39] or a substrate inte-
grated waveguide sensor design [29]. Moreover, differential sensor designs are also popular that
need a second dielectric material or free-space medium as a reference for permittivity detection
[30–33, 36, 38].

In this study, two different dielectric loading applications are studied on an EIT-like meta-
material design composed of the electric resonator (ER) and the closed-ring resonator (CRR)
in both simulations and experiments. During the analyses, the effects of the dielectric loadings
(i.e., the effects of their real part of relative permittivity) on the tunability of the transmission
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window in terms of the transmission peak frequency f 0 and
Q-factor are investigated. The CRR is a commonly used structure
in EIT-like resonator designs [40, 41] as the bright mode resonator
with its lower Q-factor in the operation band. On the other hand,
the ER serves as a quasi-dark mode resonator in the design. ER is
a well-known metamaterial structure [42–45] observed in various
applications such as absorber [46–48], sensor [49], polarizer [50],
and antenna [51] designs. However, its usage in an EIT-like meta-
material design appears in the conference paper presented by the
authors of this study which establishes the early designs and the
feasibility of this study in only simulations by using cubic dielec-
tric loadings on the gap regions [15]. It can be noted here that ER is
sometimes called an electric LC resonator in the literature [44, 45,
48–50]. The prominent novelties of this study are listed as follows:

• This study presents significantly extended analyses of reference
[15] including newer designs adapted for S-bandwaveguide sim-
ulation and experimental setups, two new tuning applications
based on sliding of low-volume dielectric loadings, a tuning
application based on complete dielectric loadings on the top of
the EIT-like metamaterial to reveal the effects of partial loading
on the sensitivity, and further analyses including electric field
distributions, surface current plots, Q-factor, and dependence of
f 0 on the real part of relative permittivity.

• In this study, the proposed applications which are composed of
sliding low-volume dielectric loadings on EIT-like metamate-
rial are new. The applications promise two practical approaches:
(1) a displacement sensing by sliding the identical two low-
volume dielectrics over the EIT-like metamaterial structure and
(2) a low-volume dielectric sensing by fixing the positions of the
loadings on the EIT-like structure and changing their dielectric
constant.

• In literature, the sensing applications that EIT-like structures
take part uses relatively larger sizes of dielectrics (i.e., material
under test [MUT]) to cover the entire structure [5, 21, 52–57].
However, in this study, we use low-volume dielectric loadings
which cover only a small fraction of the resonator structure.

Design and characterization setups

The schematic from top with design parameters, and the pho-
tograph of the proposed EIT-like structure are shown in Fig. 1.
The metallic CRR and ER structures was patterned over Rogers
RT/duroid® 5880 substrate with relative permittivity 𝜀r = 2.2 and
dielectric loss tangent tan 𝛿 = 0.0009. Herein, the thickness of the
dielectric substrate is 0.762 mm and the thickness of the metal-
lic conductor (i.e., copper, modeled by conductivity of 58 MS/m)
is 17.5 μm. The dimensions of the substrate and the structure
are given as Lx = 72.136 mm, Ly = 34.036 mm, lcv = 24 mm,
lch = 24 mm, lev = 10 mm, leh = 10 mm, wc = 1 mm, wl = 1 mm,
ls = 3 mm, g = 1 mm.

The numerical analyses of the design are carried out by using
CST Studio Suite® frequency domain solver by using the simula-
tion setup, as shown in Fig. 2(a). Herein two waveguide ports are
placed in the z-axis direction, and perfect electrical conductors
(Et = 0) are used as the boundary conditions in the remaining
directions to limit the computational domain [58]. In simulations,
the background medium is modeled by 𝜀r = 1 and 𝜇r = 1. For
the experimental process, the structure is placed inside the sample
holder as shown in Fig. 2(b–d). As the description of the appli-
cations a series of photographs, each taken in the sample holder,

Figure 1. The studied EIT-like metamaterial design. (a) The schematic from top
with design parameters. (b) The photograph of the fabricated structure.

Figure 2. (a) Simulation and (b) experimental setups for EIT-like metamaterial
characterization; (c) a series of photographs, each taken in the sample holder,
illustrating the horizontal sliding application; and (d) the layout of EIT-like
metamaterial together with dielectric loadings inside the sample holder with
supporting pink XPS materials.

Figure 3. The schematic illustrations of the dielectric loading pairs composed of
two identical a × b sized rectangular dielectric pieces in (a) horizontal sliding
application and (b) vertical sliding application in six steps.

are presented in Fig. 3(c) illustrating the horizontal sliding appli-
cation (HSA) as the example. During the experiments, to prevent
the unwanted displacements of the dielectric loadings and to min-
imize the unwanted air gaps between the EIT-like metamaterial
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Figure 4. Transmission spectra of (a) individual ER and CRR structures in simulations and (b) EIT-like metamaterial in simulation and measurement.

Figure 5. The surface current densities on EIT-like metamaterial structure. (a) At
3.197 GHz; the first transmission dip frequency, (b) at 3.479 GHz; the transmission
peak frequency, and (c) at 3.772 GHz; the second transmission dip frequency.

and the dielectric loadings, extruded polystyrene (XPS) materi-
als (i.e., pink foams observed in Fig. 2(d)) are used as support
material. Our previous laboratory analyses revealed that effect of
the XPS material might be negligible since it had similar dielectric
properties with air [59]. Moreover, WR-284 coaxial to waveguide
adaptors are used to connect thewaveguide transmission line to the
Agilent FieldFox N9926A vector network analyzer. Considering
the cutoff frequencies of the first two propagating modes of a rect-
angular waveguide [60] together with the frequency band under
investigation, only TE10 mode propagates in the simulation and
experimental setups, where the wave propagation is along z direc-
tion, the electric field is along y direction, and the magnetic field
is along x and z directions. However, the effects of Hz field, which
has cosine variation [60], on the excitation of the structure may be
neglected since the metallic structure is placed around the center
of the waveguide cross section [61].

Figure 3 illustrates the two proposed dielectric loading mecha-
nisms schematically, namely HSA and vertical sliding application
(VSA) for tuning of the transmission window or tuning the of
transmission peak frequency. HSA and VSA represent the applica-
tions where the loadings are positioned vertically and horizontally,
respectively. As seen in the figure, the dielectric loadings are shifted
gradually toward the geometric center of structure (i.e., inward)
with the shift parameter sh for HSA and sv for VSA. For the proof of
concept, the dielectric materials used as the dielectric loadings are
uncladded Rogers RT/duroid® 5880 (𝜀r = 2.2 and tan 𝛿 = 0.0009),
Rogers CLTE-AT™ (𝜀r = 3 and tan 𝛿 = 0.0013), Arlon AD450
(𝜀r = 4.5 and tan 𝛿 = 0.0035), and Rogers RO4360G2™ (𝜀r = 6.15
and tan 𝛿 = 0.0038) having thicknesses of 1.58, 1.524, 1.524, and
1.524mm, respectively. During the analyses, the side lengths of the
loadings are kept constant at a= 22mm and b= 6mm (see Fig. 3).
In the simulations, the loadings are lifted as much as the metallic
line thickness (i.e., 17.5 μm) to avoid any intersections between the
dielectric loadings and themetallic resonator line. Considering the

two proposed sliding applications; it can be said that it is impor-
tant for the EIT-like metamaterial unit-cell to be symmetrical in
the design along horizontal and vertical directions.

Results and discussion

The transmission (i.e., |S21|) spectra of the individual unloaded
(i.e., bare) CRR and ER structures in simulations and the unloaded
EIT-like metamaterial structure in simulations and measurements
are presented in Fig. 4(a) and (b), respectively. In Fig. 4(a), the
individual CRR and ER are shown to possess a transmission dip at
3.372 and 3.607 GHz, respectively. On the other hand, the compo-
sition of them, i.e., the EIT-likemetamaterial, has two transmission
dips and one transmission peak in the frequency band of investiga-
tion. In more detail, the dips are observed at 3.197 and 3.772 GHz
in simulations and observed at 3.193 and 3.779 GHz in measure-
ments. In addition, the transmission peak frequency f 0 is observed
at 3.479 GHz in simulation and at 3.484 GHz in measurement.
Figure 4(b) reveals that the simulated and the measured transmis-
sion spectra agree verywell. In the design, CRR and the ERhave the
role of the bright and the quasi-darkmode resonators, respectively.

To figure out the resonance behavior of the EIT-like metama-
terial, the surface current densities are plotted at 3.197, 3.479, and
3.772 GHz, as shown in Fig. 5.The plots at each frequency support
that the ER has circulating current densities, which is the iden-
tifier of an LC resonance [19, 22, 44] and the CRR has stronger
surface currents at the vertical edges which are parallel to direc-
tion of the incident electric field vector; hence, this resonance can
be described as an electric dipole resonance [40]. In all, the surface
current densities are strongest at 3.479GHzwhere the transmission
peak is observed.

The |S21| plots regarding the tuning application for HSA at the
shift values sh = 0 mm and sh = 5 mm, and for VSA at the shift
values sv = 0mm and sv = 5mm are shown in Figs. 6 and 7, respec-
tively. Since the transmission plots for sh and sv values from 2 to 4
present similar behaviors with the those observed for the extremes
(i.e., 0 and 5 mm), the transmission spectra are only presented for
0 and 5 mm shift values for four dielectric loading cases together
with the bare ones. However, all aggregate results will be discussed
through Fig. 9.

In Figs. 6 and 7, the bare MUT designates the air which is cho-
sen as the starting point of the permittivity level (i.e., 𝜀r = 1). For
HSA at sh = 0 mm, as the real part of relative permittivity of the
MUT is increased from 1 to 6.15 (i.e., from bare to RO4360G2™), f 0
reduces from 3.479 to 3.175 GHz in simulations and from 3.484 to
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Figure 6. Transmission spectra of the bare and the
dielectric-loaded EIT-like metamaterials in horizontal
sliding application. (a) sh = 0 mm simulations,
(b) sh = 0 mm measurements, (c) sh = 5 mm
simulations, and (d) sh = 5 mm measurements.

Figure 7. Transmission spectra of the bare and the
dielectric-loaded EIT-like metamaterials in vertical
sliding application. (a) sv = 0 mm simulations, (b)
sv = 0 mm measurements, (c) sv = 5 mm simulations,
and (d) sv = 5 mm measurements.

3.195 GHz inmeasurements, systematically. Alternatively, for VSA
at sv = 0 mm, as the real part of relative permittivity of the MUT is
changed from bare to RO4360G2™, the frequency of the transmis-
sion peak reduces from3.479 to 3.118GHz in simulations and from
3.484 to 3.182 GHz in measurements. The behavior of f 0 is very

similar for the two applications; however, the transmission band-
widths get effected differently. In more detail, although the trans-
mission bandwidths are nearly the same as the MUT is changed
from the bare to RO4360G2™ for HSA at sh = 0mm, they obviously
broaden for VSA at sv = 0 mm. This behavior can be explained by
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Figure 8. Electric field distribution on the bare EIT-like metamaterial. (a) At
3.197 GHz; the first transmission dip frequency, (b) at 3.479 GHz; the transmission
peak frequency, and (c) at 3.772 GHz; the second transmission dip frequency.

the use electric field distributions over the bare EIT-like metama-
terial as shown in Fig. 8. First, the electric field distributions at the
first null of the EIT-like transmission (i.e., at 3.197 GHz) are espe-
cially higher at the top andbottomedges of theCRRand around the
gap positions of the ER. Second, the field distributions at the EIT-
like transmission peak frequency f 0 (i.e., at 3.479 GHz) are higher
mainly on ER but also on the top and bottom edges of the CRR.
Moreover, the field distributions are the highest here in strength
among the three cases. Lastly, the electric field distributions at the
second null of the EIT-like transmission (i.e., at 3.772 GHz) are
higher at the gap positions of the ER, on the other hand there
are still high electric field distributions around the top and bot-
tom edges of the CRR. However, the field distributions around the
top and bottom edges are observed to be significantly reduced as
compared with that of the first null. Since in HSA at sh = 0 mm
case, the dielectric loadings are along the vertical arms of the CRR
(see Fig. 3(a)) and tangent to the gaps of the ER, all the two dips
and the transmission peak get effected similarly and simultane-
ously, and the transmission bandwidth is not affected significantly.
However, in VSA at sv = 0 mm case, the dielectric loadings lie in-
between the horizontal edges (i.e., top and bottom) of the CRR and
the ER. Therefore, the frequencies of the first transmission mini-
mum and the transmission peak slides downmore than the second
transmissionminimum.This application yields a band broadening.
As a measure of change in the transmission bandwidth, the qual-
ity factor is calculated by Q-factor = f 0/FWHM, where FWHM
is the full width at half maximum, and it is calculated as the fre-
quency band between the value corresponding to the average of the
maximum andminimum values of the transmitted power [62, 63].
Figure 9 shows the calculated Q-factor values by using the sim-
ulation and the measurement results for both HSA and VSA at
several shift values. Supporting the above observations, for HSA at
sh = 0 mm case, Q-factor does not significantly change; however,
it gradually decreases for VSA at sv = 0 mm case.

Now, we investigate the behaviors of the EIT-like transmission
window in response to the change in real part of relative per-
mittivity of the MUT at the second extremes, i.e., at sh = 5 mm
and sv = 5 mm for the HSA and VSA, respectively. For HSA at
sh = 5 mm, as the real part of relative permittivity of the MUT
is increased from 1 to 6.15 (i.e., from bare to RO4360G2™), f 0
reduces from 3.479 to 2.343 GHz in simulations and reduces from
3.484 to 2.513 GHz in measurements, systematically. Alternatively,

for VSA at sv = 5 mm, as the real part of relative permittivity of
the MUT is changed from bare to RO4360G2™, the frequency of
the transmission peak reduces from 3.479 to 2.393 GHz in sim-
ulations and reduces from 3.484 to 2.622 GHz in measurements.
Here we have three important observations: First, f 0 of the EIT-
likemetamaterial becomesmore sensitive to the real part of relative
permittivity of the dielectric loadings at 5 mm shift cases than that
at 0 mm shift cases for both applications. This is not a surprising
behavior if we consider Fig. 8 again, since the electric field dis-
tribution is highly concentrated on the ER at f 0. At 5 mm shift
cases, the dielectric loadings completely cover up the ER, andhence
they have greatest effect on the f 0 change, i.e., sensitivity. In lit-
erature, the sensitivity (S) is used as a measure which is defined
by the ratio difference between the resonance frequencies to the
difference between the real part of relative permittivities of the
loadings [27, 31–33]. Second, for both HSA and VSA at 5 mm
shift cases, as the real part of relative permittivity of the dielec-
tric loadings increases, the overall structure tends to behave like
a CRR-only resonator since the resonance frequency of the indi-
vidual ER reduces much rapidly than that of CRR and the effect
of the CRR become more dominant on the transmission charac-
teristics. Ultimately, EIT-like transmission peak almost disappears
in the simulations of RO4360G2™-loaded EIT-like metamaterial
at sv = 5 mm. There still exists a reduced transmission peak in
the related measurement result (see Fig. 7(b)); however, its trend
reveals that further increment in the real part of relative permit-
tivity will destroy the EIT-like transmission. Lastly, for 5 mm shift
cases, there are obvious changes in the Q-factor observed even by
naked eye in Fig. 6(c) and (d) for HSA and in Fig. 7(c) and (d) for
VSA. This observation is supported by Fig. 9. In addition to that,
Fig. 9 clearly reveals that the Q-factor is dependent on the shift
values; however, this dependence is highest in 5 mm shift cases.

The simulation results given in Fig. 10 show that for both
HSA and VSA, f 0 chances faster in response to the change in
the real part of relative permittivity as the shift amount increases.
According to sensitivity, defined above, this means that the sen-
sitivity increases as the shift amount increases and ultimately the
sensitivities become maximum for 5 mm shift cases. Moreover,
change in f 0 with respect to the real part of relative permittiv-
ity change gradually increases with increasing sh value in HSA.
However, it increases significantly in VSA starting with sv = 4mm.
In other words, it can be said that f 0 in HSA is more sensitive than
that of VSA to the shift value and the real part of relative per-
mittivity of the dielectric loadings. This observation makes HSA
more advantageous in terms of sensitivity and makes it a prefer-
able candidate for a sensing application. On the other hand, Fig. 10
is another indicator showing that the proposed approach is clearly
sensitive to the changes in sh and sv at fixed relative permittiv-
ity values. Although some experimental measurement errors are
noticeable, the measurement results in Fig. 10 are consistent with
the simulation results.

Table 1 shows the f 0 values obtained by simulations and mea-
surements for sh = 5 mm case of HSA, where f 0 is most dependent
on the permittivity of the dielectric loadings 𝜀r. The data show that
the f 0 of HSA for sh = 5 mm is reduced from 3.479 to 2.343 GHz
in simulations and it is reduced from 3.484 to 2.513 GHz in mea-
surements as 𝜀r is increased from 1 to 6.15 which correspond
to 1.136 GHz (32.65%) and 0.971 GHz (27.87%) shifts in f 0 in
simulations and experiments, respectively.

In this study, we performed analyses in both simulations and
experimental measurements. In general, the results show good
agreements. However, it is important to discuss here that there are
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Figure 9. Calculated Q-factors. (a) Horizontal sliding
application simulations, (b) horizontal sliding
application measurements, (c) vertical sliding
application simulations, and (d) vertical sliding
application measurements.

Figure 10. Frequency of transmission peak (i.e., f 0)
versus real part of relative permittivity of the dielectric
loadings. (a) Horizontal sliding application simulations,
(b) horizontal sliding application measurements, (c)
vertical sliding application simulations, and (d) vertical
sliding application measurements.

some discrepancies in terms of resonance frequencies, transmis-
sion amplitudes, or bandwidths. These discrepancies are supposed
to bemainly due to the unavoidable additional air gaps between the
dielectric loading and the EIT-like metamaterial since the struc-
tures do not have ideally flat surfaces. Although using an XPS

material in the measurements as a support structure to avoid these
additional air gaps is an effective approach depending on our lab-
oratory experiences, it cannot fully provide the ideal simulation
setup. Another reason of the discrepancies may be deviations in
the dielectric properties of the dielectric loadings with respect to
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Table 1. Dependence of f 0 on 𝜀r in the case of sh = 5 mm of horizontal sliding
application

Sample
Simulated
f 0 (GHz)

Measured
f 0 (GHz) 𝜀r

Bare 3.479 3.484 1

5880 3.039 3.160 2.2

CLTE-AT™ 2.842 2.942 3

AD450 2.566 2.781 4.5

RO4360G2™ 2.343 2.513 6.15

the catalog values. We cannot see fabrication errors as a factor
here because, there is nearly a perfect agreement between the sim-
ulation and experimental results of the bare (unloaded) EIT-like
metamaterial.

To complete the study, additional numerical analyses were per-
formed for a fairer comparison with the related literature. This
time, the resonator side of the studied EIT-like metamaterial unit
cell surface was completely loaded (i.e., covered) with a 10-mm-
thick lossless dielectric (i.e., 72.136mm×34.036mm×10mm) just
on theRogers RT/duroid® 5880 substrate in the simulation environ-
ment.The usage of EIT-like designs for refractive index (n) sensing
applications is common [21–26, 53–56]. Therefore, the refractive
index of the dielectric is increased from1 to 1.5, which corresponds
to an increase in 𝜀r from 1 to 2.25, since n = √𝜀r considering
𝜇r = 1 [23], as the parametric study and transmission spectra
are obtained. The simulation results and schematics of the appli-
cation are shown in Fig. 11.The results reveal that the frequency of
transmission peak lowers from 3.479 to 2.841 GHz as the refrac-
tive index increases from 1 to 1.5 which corresponds to 0.638 GHz
(18.34%) shift in f 0.

To clarify the structural and performance differences of this
study as compared to the related EIT-like sensor studies given in
the literature, whose mechanism are based on sensing the dielec-
tric constant or refractive index changes of the dielectric loadings
(i.e., MUT), Table 2 is presented. The comparison parameters in
the table are refractive index n or dielectric constant 𝜀r range, fre-
quency region, test setup, MUT settling, position adjustability of
MUT, and absolute percentage sensitivity (% |S|). For Table 2, the
% S values are calculated using equation (1) [27].

%S =
Δf

Δ𝜀r ⋅ f0
× 100 (1)

where Δf = f2 − f1 is the spectral change in the EIT-like peaks in
the transmission,Δ𝜀r = 𝜀r2−𝜀r1 is change in the permittivity, and
f0 is EIT-like peak frequency of the bare (i.e., unloaded) case. In the
table, given n values are converted to permittivity by using n = √𝜀r
considering 𝜇r = 1 [23]. In the formulation, f1 corresponds to the
resonance frequencywhereMUT’s permittivity is 𝜀r1, and similarly
f2 corresponds to the resonance frequencywhereMUT’s permittiv-
ity is 𝜀r2. For the case of 𝜀r1 = 1, f0 will be equal to f1; however, this
is not a requirement as can be seen in reference [25]. If the per-
centage sensitivity values were given in the articles compared in
Table 2, we used it directly, if not, we calculated it by using the data
or graphs in the related article. For this reason, there may be small
deviations due to reading errors from the graph.

Table 2 reveals that there are three prominent directions of
our study. First, the partial coverage of the unit-cell by MUT (i.e.,
referred to as POR in the table) instead of complete coverage.
Second, sensing mechanism based on position adjustability of the
MUT, and third, relatively high sensitivity values for the com-
plete coverage scenario (i.e., referred to as COR in the table). The
first is believed to be an advantage in sensing applications terms
of using small amount of analyte material (i.e., MUT), the sec-
ond provides an important flexibility for adopting the design in
mechanical sensing approaches, and the last is obviously preferred
in many sensing applications. For the COR scenario, our EIT-like
metamaterial shows 14.67% sensitivity, and it is the second high-
est percentage sensitivity in the table. For the POR scenario, the
sensitivity is reduced in both simulations (6.34%) and experiments
(5.41%) as expectedwith respect to theCOR case, since the amount
of MUT is reduced. However, these sensitivities are still compara-
ble to references [23, 24, 26] and [27]. In addition to those benefits,
we use a rectangular hollow waveguide setup for the characteri-
zation of EIT-like sensor performance. The main advantage of the
waveguide setup is presenting an array behavior with a single unit
cell [61] which again provides an important advantage to reduce
the applied total MUT amount.

Conclusion

An EIT-like metamaterial structure operating in the S-band is
designed, fabricated, and analyzed numerically and experimen-
tally. Tuning of the EIT-like transmission window is studied by
low-volume solid dielectric loadings in two different sliding appli-
cations (i.e., HSA and VSA) and for several real part of relative
permittivity values of the dielectric loadings from 1 (bare) to 6.15

Figure 11. Sensing performance of the 10-mm-thick dielectric-loaded
EIT-like metamaterial. (a) Transmission spectra for several refractive
indexes. (b) Perspective and (c) side views of 10-mm-thick
dielectric-loaded EIT-like metamaterial.
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Table 2. Comparison of EIT-like sensors in terms of various parameters

Ref. nRange 𝜀rRange Sim./Meas. Frequency region Test setup MUT settling
Position
adjustability

Absolute
sensitivity
|S| (%)

[21] 1−1.5 – Sim. Microwave Free space COR No 11.06

[22] 1−1.3 – Sim. Microwave Free space SM No 16.13

[22] 1−2 – Sim. Microwave Free space SM No 10.25

[23] – 1−3 Sim. Microwave Free space COR No 7.46

[24] 1−1.3 – Sim. Microwave Free space SM No 7.17

[25] 1.332−1.372 – Meas. THz Free space COR No 10.64

[26] 1−2.5 – Sim. THz Free space COR No 4.1

[27] – ∼20−80 Meas. Microwave MSTL COR No 0.05

– 1−6 Sim. Microwave MSTL COR No 5

[55] 1−1.4 – Sim. THz Free space SM No 9.97

This study 1−1.5 – Sim. Microwave Waveguide COR No 14.67

This study – 1−6.15 Sim. Microwave Waveguide POR Yes 6.34

This study – 1−6.15 Meas. Microwave Waveguide POR Yes 5.41

COR = completely on the resonator, POR = partially on the resonator, SM = surrounding medium, MSTL = microstrip transmission line

(RO4360G2TM). In HSA, the dielectric loadings are placed along
the vertical edges of the CRR, and in VSA, they are placed along
the horizontal edges. The results show that not only the trans-
mission peak frequency f 0 but also the transmission bandwidth
(i.e., Q-factor) are sensitive to the real part of relative permittivity
and the position of the dielectric loadings for both mechanisms.
However, HSA is more sensitive than VSA in terms of both shift-
ing value and the real part of relative permittivity. In HSA for
sh = 5 mm case, f 0 is reduced from 3.479 to 2.343 GHz in simula-
tions and it is reduced from 3.484 to 2.513 GHz in measurements
as 𝜀r is increased from 1 to 6.15. These values correspond to
1.136 GHz (32.65%) and 0.971 GHz (27.87%) shifts in f 0 in sim-
ulations and experiments, respectively. The results show that HSA
is an effective approach to tune the EIT-like transmission window
although low-volume dielectric loadings are used. According to the
results, 6.34% and 5.41% absolute sensitivities by simulations and
measurements, respectively, are the best sensitivity results which
are obtained for HSA at 5 mm shift case. In addition, 14.67% sen-
sitivity value is obtained for the complete dielectric loading case
in response to the increase in refractive index from 1 to 1.5. The
results show that the proposed approach can be easily adapted
for position and dielectric constant sensing applications. As the
future work, we plan to study on an electrical circuit model for
the design to explain the operating principle and the effects of
dielectric loadings with another approach.
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