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Abstract. We prove that the module categories of Noether algebras (i.e., alge-
bras module finite over a noetherian center) and affine noetherian PI algebras over a
field enjoy the following product property: whenever a direct product

Q
n2N Mn of

finitely generated indecomposable modules Mn is a direct sum of finitely generated
objects, there are repeats among the isomorphism types of the Mn. The rings with this
property satisfy the pure semisimplicity conjecture which stipulates that vanishing
one-sided pure global dimension entails finite representation type.

2000 Mathematics Subject Classification. 16D70.

This is a follow-up to a joint article of the first-named author with F. Okoh [9],
improving significantly on the main result of that note. In rough terms, our aim is to
identify the noetherian rings whose module categories display the same product-
decomposition properties as have long been observed for finite dimensional
algebras. So far, such rings are known to include Artin algebras (this is essentially
due to Auslander [2, Corollary 3.2]) and commutative noetherian domains of Krull
dimension 1 (as was proved in [9]). As we show here, not only can all requirements
on the Krull dimension be dropped, but rudimentary commutativity conditions
already guarantee the desired product-behavior.

The principal motivation for our interest in decomposition properties of direct
products lies in the fact that they massively impinge on global decomposition pat-
terns within the pertinent module categories (see for example [6], [16], [10]). So, in
particular, it is the lack of understanding of direct products which is responsible for
the fact that it is still unresolved whether the rings whose left modules split into
finitely generated submodules (the left pure semisimple rings) are necessarily of finite
representation type. For a synopsis of the extensive history of this pursuit, going
back to the work of Koethe in the 1930’s and of Cohen-Kaplansky in the early
1950’s ([12], [4]), the reader is referred to [11], [15], or [8]. The following question
crystallizes the remaining difficulties on the road towards a full resolution of the
‘pure semisimplicity conjecture’ (which, at this point, is believed to fail in general).

Central problem. For which rings R (associative and with identity) does the
following hold? If ðMnÞn2N is any sequence of pairwise non-isomorphic finitely generated,
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indecomposable left R-modules, the direct product
Q

n2N Mn is not a direct sum of
finitely generated submodules.

In this form, the question was raised by Okoh. It connects with the pure semi-
simplicity problem as follows. Whenever a class of rings is known to satisfy the
specified product condition, all left pure semisimple members of that class have finite
representation type. In our opinion, this problem also holds independent interest as
a yardstick measuring the current level of understanding of submodule lattices of
direct products.

In [9] it was shown that commutative noetherian domains of Krull dimension 1
satisfy the above product condition. This led to the conjecture that the same holds
true for arbitrary noetherian PI-rings, which is in keeping with the fact that the left
pure semisimple artinian PI-rings have finite representation type (see [7] and [14]).
Here we come close to confirming it. Namely, we establish the product condition for
arbitrary Noether algebras (rings which are module finite over a noetherian center), as
well as for affine noetherian PI-rings (that is, affine noetherian PI algebras over Z).

For the slightly more general statement of our theorem, we recall that a com-
mutative ring is a Jacobson ring if each prime ideal is an intersection of maximal
ideals. So, in particular, affine noetherian PI-algebras over fields or over noetherian
domains of Krull dimension 1 fall into the second class of rings addressed by the
following theorem.

Theorem. Suppose that R is either a Noether algebra, or else an affine noetherian
PI-algebra over a noetherian Jacobson ring. Then R satisfies the product condition of
our ‘central problem’; that is, given any sequence ðMnÞn2N of pairwise non-isomorphic
finitely generated, indecomposable left R-modules, the direct product

Q
n2N Mn fails to

be a direct sum of finitely generated components.

Proof. Our strategy consists of playing the problem back to Artin algebras,
where it is already resolved. To that end, we verify in an initial step that both classes
of rings in our claim enjoy the following property: for any sequence P1; . . . ;Pn of
(not necessarily distinct) left primitive ideals of R, the factor ring R=ðP1 . . .PnÞ is an
Artin algebra.

First suppose that R is a Noether algebra and so, in particular, a PI-ring.
Denote the center of R by C. If P � R is a left primitive ideal, Kaplansky’s Theorem
guarantees P \ C to be a maximal ideal of C. Indeed, R=P is a finite dimensional
algebra over a central subfield K containing C=ðP \ CÞ, and since the embedding
C=ðP \ CÞ ,!K is integral, C=ðP \ CÞ is a field as well. Hence, given any finite
sequence P1; . . . ;Pn of left primitive ideals of R, the factor ring
C=

�
ðP1 \ CÞ � � � ðPn \ CÞ

�
has Krull dimension zero and is therefore artinian. So is, a

fortiori, the central subring C=
�
ðP1 . . .PnÞ \ C

�
of R=ðP1 . . .PnÞ.

Next suppose that C is a central noetherian Jacobson subring of R. We will use
the following upgrade of Kaplansky’s Theorem, which is due to Amitsur and Pro-
cesi ([1], see also [13] or [5] for a slick proof due to Duflo): if R is an affine PI-algebra
over C and P any left primitive ideal of R, then P \ C is a maximal ideal of C, and
R=P is a simple finite dimensional

�
C=ðP \ CÞ

�
-algebra. Now suppose that R is

noetherian in addition, and let P1; . . . ;Pn be left primitive ideals of R. Since the
successive factors of the chain R � Pn � Pn	1Pn � . . . � ðP1 � � �PnÞ are finitely gen-
erated left modules over the rings R=Pi and these rings, in turn, are module-finite
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over C, we see that R=ðP1 . . .PnÞ is module-finite over C=
�
ðP1 . . .PnÞ \ C

�
, the latter

ring being a homomorphic image of C=
�
ðP1 \ CÞ . . . ðPn \ CÞ

�
and hence artinian.

The theorem will follow from the following lemma. &

Lemma. Suppose that R is a two-sided noetherian ring with the property that, for
any finite sequence P1; . . . ;Pn of (not necessarily distinct) left primitive ideals, the
factor ring R=ðP1 . . .PnÞ is an Artin algebra. Then R satisfies the conclusion of the
theorem above.

Proof. Let ðMnÞn2N be a sequence of finitely generated indecomposable left
R-modules with Mi 6ffi Mj whenever i 6¼ j. Observe that, for any nonzero finitely
generated left R-module X, there exists a left primitive ideal P � R with PX


¼--X.
Indeed, if Y is a maximal submodule of X, the conductor ideal P ¼ ½Y : X� satisfies
these requirements.

We now apply this observation to finitely generated left R-modules of the form
AMn, where A is a two-sided ideal. Our goal is to construct a descending chain
ðAnÞn2N of ideals, each term of which is a finite product of left primitive ideals, with
the following property: for n 2 N, either AiMn ¼ 0, or else there exists an integer
j > i such that AjMn



¼--AiMn.

For that purpose, we will follow a diagonal procedure involving ‘zigzags of
increasing amplitude’. If M1 ¼ 0, let P1 be any left primitive ideal; otherwise, pick
P1 left primitive with P1M1



¼--M1, and set A1 ¼ P1. If A1M2 ¼ 0, set A2 ¼ A1;

otherwise, choose a left primitive ideal P2 with P2A1M2


¼--A1M2, and set A2 ¼ P2A1.

If A2M1 ¼ 0, set A3 ¼ A2; otherwise, pick a left primitive ideal P3 with
P3A2M1



¼--A2M1, and set A3 ¼ P3A2. In the next step, we define A4 ¼ P4A3, where

P4 is a left primitive ideal such that P4A3M2


¼--A3M2, unless A3M2 ¼ 0, and in the

latter case we set A4 ¼ A3. Now we move on to M3, cutting down the size of the left
module A4M3 if it is nonzero, then we return to M1, M2, M3, from whence we move
up to M4, following the pattern

Inductively, this process yields a chain of ideals A1 � A2 � . . . conforming to
the above requirements.

Since all of the An are finitely generated right ideals of R, the following assign-
ments yield p-functors in the sense of [16]; that is subfunctors of the forgetful functor
R-Mod! Z-Mod which commute with direct products:
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Fn : R-Mod ! Z-Mod; X 7!AnX:

In the present situation, we are actually dealing with subfunctors Fn of the
identity functor R-Mod ! R-Mod taking finitely generated left R-modules to
finitely generated left R-modules. Set M ¼

Q
n2N Mn, and assume that, to the con-

trary of our claim, this product splits into finitely generated direct summands, say

M ¼
M
l2L

Bl; ð1Þ

where each Bl is a finitely generated left R-module. An upgraded version of Chase’s
Lemma [8, Lemma 11] (cf_ [3, Theorem 1.2] for the original result) then yields a
natural number n0 and a finite subset L0 � L such that

Y
n�n0

Fn0Mn �
M
l2L0

Fn0Bl þ
\
k2N

FkM: ð2Þ

Case 1: Fn0Mn ¼ 0 for all but finitely many n 2 N. Set N0 ¼ fn 2 N j Fn0Mn ¼ 0g
and N1 ¼ N n N0. Factoring Fn0M out of both sides of equality ð1Þ yields

Y
n2N0

Mn �
Y
n2N1

�
Mn=Fn0Mn

�
¼

M
l2L

�
Bl=Fn0Bl

�
:

Observe that the summand D :¼
Q

n2N1

�
Mn=Fn0Mn

�
on the left-hand side of this

last equality is a finitely generated R-module, since N1 is finite. It is therefore con-
tained in some finite subsum B :¼

L
l2L1

�
Bl=Fn0Bl

�
of the right-hand direct sum,

which is in turn finitely generated over R. In summary, we thus obtain

Y
n2N0

Mn ffi
M

l2LnL1

�
Bl=Fn0Bl

�
� B=D;

where all summands on the right are finitely generated R-modules. Observe that
all of the modules involved in this isomorphism are annihilated by An0 , and so
are modules over R=An0 , the latter being an Artin algebra by hypothesis. But
this is incompatible with the fact that our claim is known to hold for such
algebras. Indeed, the infinite family ðMnÞn2N0

consists of pairwise non-isomorphic
indecomposable R=An0 -modules, since their R=An0 -structure coincides with their
R-structure. This rules out the first case.

Case 2: Fn0Mn 6¼ 0 for infinitely many n 2 N. We denote by N1 the infi-
nite set fn 2 N j n � n0 and Fn0Mn 6¼ 0g. Next we factor the term

T
k2N FkM equal toQ

n2N

�T
k2N FkMn

�
out of both sides of the inclusion labeled ð2Þ to obtain

Y
n�n0

	
Fn0Mn


 \
k2N

FkMn

�
�

M
l2L0

	
Fn0Bl


 \
k2N

FkBl

�
:

In justifying this inclusion, keep in mind that p-functors automatically commute
with direct sums. We note that the direct product on the left-hand side equals

Y
n2N1

	
Fn0Mn


 \
k2N

FkMn

�
:
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Now
T

k2N FkMn


¼--Fn0Mn for all n 2 N1 by construction of the functors Fk, and

consequently, the left-hand side of the inclusion we just derived is not finitely
generated; this is due to the fact that it contains the infinite direct sumL

n2N1

�
Fn0Mn


 T
k2N FkMn

�
. But the right-hand side of our inclusion is finitely

generated, and we have again reached a contradiction.
This completes the proof of the lemma. &
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(1973), 358–365.
6. L. Gruson and C. U. Jensen, Deux applications de la notion de L-dimension, C.R.

Acad. Sci. Paris, Sér. A 282 (1976), 23–24.
7. I. Herzog, A test for finite representation type, J. Pure Appl. Algebra 95 (1994), 151–182.
8. B. Huisgen-Zimmermann, Purity, algebraic compactness, direct sum decompositions,

and representation type, in Infinite Length Modules (Bielefeld 1998) (H. Krause, H. Lenzing
and C. M. Ringel, eds.) (Birkhaüser, 2000), 331–367.
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