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Abstract

We show that the perfect derived categories of Iyama’s d-dimensional Auslander algebras of type A are equivalent

to the partially wrapped Fukaya categories of the d-fold symmetric product of the 2-dimensional unit disk with

finitely many stops on its boundary. Furthermore, we observe that Koszul duality provides an equivalence between

the partially wrapped Fukaya categories associated to the d-fold symmetric product of the disk and those of its

(= − 3)-fold symmetric product; this observation leads to a symplectic proof of a theorem of Beckert concerning

the derived Morita equivalence between the corresponding higher Auslander algebras of typeA. As a by-product of

our results, we deduce that the partially wrapped Fukaya categories associated to the d-fold symmetric product of

the disk organise into a paracyclic object equivalent to the d-dimensional Waldhausen S•-construction, a simplicial

space whose geometric realisation provides the d-fold delooping of the connective algebraic K-theory space of the

ring of coefficients.

1. Introduction

Let = and 3 be natural numbers and consider the poset

{ n
3 } = {� ∈ N3 | 1 ≤ 81 ≤ 82 ≤ · · · ≤ 83 ≤ =}

of 3-element multisubsets of n = {1, . . . , =}, where � ≤ � if for each 1 ≤ 0 ≤ 3 the inequality 80 ≤ 90

is satisfied. Further, introduce the subset { n
3 }♭ ⊆ { n

3 } consisting of those � ∈ { n
3 } such that there exists

an index 1 ≤ 0 < 3 with 80 = 80+1. Thus, the complement ( n
3 ) = { n

3 } \ { n
3 }♭ can be identified with the

set of 3-element subsets of n equipped with the natural product order. Equivalently, { n
3 } is described

as the poset of monotone functions

{1 < 2 < · · · < 3} −→ {1 < 2 < · · · < =}

equipped with the usual partial order; under this identification, ( n
3 ) ⊂ { n

3 } is the subposet spanned by

the injective monotone functions.
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Let k be a field and define the finite-dimensional k-algebra

�=,3 := (
⊕

� ≤� k 5� � )
/
〈 5  |  ∈ { n

3 }♭〉

equipped with the multiplication law

5 � ′ · 5� � =
{
5 � if � = � ′,

0 otherwise.

Equivalently, �=,3 is the quotient of the incidence k-algebra of the poset { n
3 } by its two-sided ideal

generated by the idempotents 5  ,  ∈ { n
3 }♭ (note that the k-algebra �=,3 vanishes if = < 3 and is

isomorphic to the base field k if = = 3). For example, an �=,1-module corresponds to a k-vector-space-

valued representation

+1 +2 · · · +=

of the linearly oriented �=-quiver, while an �=,2-module amounts to a commutative diagram

+11 +12 +13 · · · +1=

+22 +23 · · · +2=

+33 · · · +3=

. . .
...

+==

of k-vector spaces with vanishing diagonal terms +00, 1 ≤ 0 ≤ =.
Remarkably, the algebras �=,3 arise naturally in three a priori unrelated contexts within representation

theory, algebraic  -theory, and symplectic topology:

(A) Higher Auslander–Reiten theory. The classical Auslander correspondence [Aus71], one of the

cornerstones of the representation theory of finite-dimensional algebras, establishes a bijection
{

finite-dimensional k-algebras

of finite representation type

}

l
{

finite-dimensional k-algebras Γ with

gl. dim Γ ≤ 2 ≤ dom. dim Γ

}

where both classes of algebras are considered up to Morita equivalence; we remind the reader that

dom. dim Γ, the dominant dimension in the sense of [Tac64], is the largest number 3 such that, in

a minimal injective coresolution

0 ΓΓ �0 �1 · · · �3−1 �3 · · ·

of the regular representation ΓΓ, the injective Γ-modules �0, �1, . . . , �3−1 are also projective. The

correspondence is realised by associating to a k-algebra � of finite representation type its Auslander
algebra

Γ� = End�(⊕[" ]"),
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where the sum ranges over the isomorphism classes of indecomposable �-modules " . This

correspondence relates representation-theoretic properties of � to homological properties of Γ.

For example, the k-algebra �=+1,2 is the Auslander algebra corresponding to the k-algebra �=,1.

As shown in [Iya11], for = ≥ 3 > 2 the algebra �=,3 instead satisfies the inequalities

gl. dim Γ ≤ 3 ≤ dom. dim Γ.

Thus, �=,3 belongs to the class of 3-dimensional Auslander algebras introduced by Iyama in

[Iya07a] as central objects of study in a higher-dimensional version of Auslander–Reiten theory.

From now on we will refer to the k-algebras �=,3 as the higher Auslander algebras of Dynkin
type A. Due to their rich combinatorial structure, this family of algebras has garnered quite some

attention in representation theory – see, for example, [HI11, IO11, OT12, HIO14, GI19, DJW19],

where they are mostly referred to as ‘3-representation finite algebras of type A’, as well as the

closely related [IO13, JK19].

(B) Waldhausen  -theory. By a construction of Waldhausen [BGT13, Wal85], the sequence

= perf (�=,1)

of perfect derived (DG-)categories of the k-algebras �=,1, = ≥ 0, organises into a simplicial

differential graded k-category which provides a model for the Waldhausen  -theory [Wal85] of

the field k. More precisely, the Waldhausen  -theory space

 (k) = Ω|#dg (perf (�•,1))≃ |

of k is defined to be the 1-fold loop space of the geometric realisation of the simplicial ∞-

groupoid #dg (perf (�•,1))≃ (obtained by passing to the largest Kan complex level-wise), leading

to the formula  8 (k) � c8 ( (k)) for the higher algebraic  -groups of k previously defined by

Quillen [Qui73].

For 3 > 1, as discussed for abelian categories in the work of Poguntke [Pog17] and in [Dyc17b,

DJW19] in the stable context, the sequence

= perf(�=,3)

of perfect derived (DG-)categories also forms a simplicial category. The relation to Waldhausen

 -theory is then given by the formula

 (k) ≃ Ω
3 |#dg (perf (�•,3))≃ |,

so that for a fixed natural number 3, the simplicial relations among the algebras �=,3 encode the

3-fold delooping of the  -theory space  (k).
(C) Wrapped Floer theory. LetD ⊂ C be the closed unit disk. For definiteness, fix the subsetΛ= ⊂ mD

of (= + 1)th roots of unity. It is well known that there is a quasi-equivalence of �∞-categories

perf(�=,1) W(D,Λ=),≃

where W(D,Λ=) denotes the partially wrapped Fukaya category [Aur10a, HKK17] of D with

stops in Λ=. The main result of the present article, stated later, establishes a higher-dimensional

version of this equivalence, providing a symplectic interpretation of all higher Auslander algebras

of Dynkin type A.
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1.1. Our results

Let k be a commutative ring. The following is the main theorem of this article:

Theorem 1 (Theorem 3.2.3). Let D ⊂ C be the closed unit disk and let Λ= ⊂ mD be the subset of
(= + 1)th roots of unity. Then there is a quasi-equivalence of triangulated �∞-categories

perf (�=,3) W(Sym3 (D),Λ(3)
= )≃

between the perfect derived �∞-category of the k-algebra �=,3 and the Z-graded partially wrapped
Fukaya category of the 3th symmetric power Sym3 (D) of D with stops

Λ
(3)
= =

⋃
?∈Λ=

? + Sym3−1 (D).

It is worth noting that when working over a field, the global dimension of the k-algebra �=,3 , which

is 3 provided that = > 3, is reflected in the dimension of the symplectic manifold Sym3 (D), which is a

real 23-dimensional ball.

The proof of Theorem 1 relies on an explicit computation of the derived endomorphism algebra

A=,3 of a specific set of generators of the �∞-category W(Sym3 (D),Λ(3)
= ). As it turns out, A=,3 is in

fact a formal differential graded k-algebra whose (degree 0) cohomology is isomorphic to �=,3 as an

ungraded k-algebra (in the parlance of representation theory, we construct an explicit tilting object in

W(Sym3 (D),Λ(3)
= ) whose endomorphism algebra is isomorphic to �=,3). The differential graded k-

algebra A=,3 was originally introduced in the context of bordered Heegaard Floer homology [LOT18]

under the name ‘strands algebra with 3 strands and = places’; its cohomology is computed in [LOT15,

Section 4.1]. However, those authors work in characteristic 2. For this reason we follow an approach

(hinted at in [LOT18, LOT15]) which relates the strands algebra to the Bruhat order on the symmetric

group on 3 letters.

The connection between (A), (B) and (C) provided by the family of higher Auslander algebras of

type A offers the opportunity to use insights or techniques from one of these subjects to the benefit of

another. In this work we give a first illustration of the possibilities that arise from the interaction between

higher Auslander–Reiten theory (A) and wrapped Floer theory (C). Namely, we provide a symplectic

proof of the derived Morita equivalence between the k-algebras �=,3 and �=,=−3 obtained by Beckert

in [Bec18] by means of a rather involved calculus of derivators.

Theorem 2 (Theorems 3.3.3 and 3.4.3). Let = ≥ 3 ≥ 1. There is a commutative diagram of quasi-
equivalences of triangulated �∞-categories

perf(�∨
=,3

) perf(�=,3)

W(Sym3 (D),Λ(3)
= ) W(Sym=−3 (D),Λ(=−3)

= )

perf(�=,=−3) perf(�∨
=,=−3)

Koszul duality

Koszul duality

where, by convention, W(Sym0(D),Λ(0)
= ) = perf (k), and �∨

=,3 and �∨
=,=−3 denote the derived Koszul

duals of the (augmented) k-algebras �=,3 and �=,=−3 , respectively.

The proofs of Theorem 1 and Theorem 2 exploit results of Auroux [Aur10a] which allow us

calculate the cochain complexes of morphisms between objects in a distinguished subcategory of

W(Sym3 (D),Λ(3)
= ) and to determine explicit classical generators of this partially wrapped Fukaya

category. While the triangles of quasi-equivalences in Theorem 2 are direct consequences of derived

Koszul duality for homologically smooth and proper algebras, the diamond of quasi-equivalences in the
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middle is due to an additional symmetry: first, note that the binomial symmetry

(=
3

)
=
( =
=−3

)

can be concretely realised by the bijection

( n
3 ) ( n

=−3 ) ,
�

� n \ � ,

obtained by associating to a subset � ⊆ n of cardinality 3 its complement. This bijection further mediates

a correspondence of objects

W(Sym3 (D),Λ(3)
= ) ( n

3 ) ( n
=−3 ) W(Sym=−3 (D),Λ(=−3)

= )
∏
8∈� !0,8 � �

∏
9∈� ! 9−1, 9 ,

�

where the Lagrangians !8 9 ⊂ D are the ones depicted in Figures 1 and 2, respectively. The proof of

Theorem 2 simply amounts to verifying that these collections of Lagrangians generate the corresponding

partially wrapped Fukaya categories and that, for a suitable choice of grading structures on them, the

derived endomorphism algebras of their direct sums are quasi-isomorphic.

Remark. Let H ⊂ C be the closed upper half-plane and ΛZ ⊂ mH the set of integer numbers. The

results in this article can be easily extended to prove that there is a quasi-equivalence of triangulated

�∞-categories

Dfd(�∞,3) W(Sym3 (H),Λ(3)
Z

),≃

where �∞,3 is the (infinite-dimensional, locally unital) k-algebra defined in complete analogy to the

higher Auslander algebras of type A, considering instead the poset

{
Z
3

}
= {� ∈ Z3 | 81 ≤ · · · ≤ 83}

of 3-element multisubsets ofZ. When working over a field, the k-algebra �∞,3 was introduced originally

in [JK19] as a higher-dimensional analogue of the mesh category of typeZ�∞ which appears prominently

in classical Auslander–Reiten theory. Similarly, the partially wrapped Fukaya category W(Sym3 ((1 ×
R≥0),Λ(3)

= ) associated to the 3-fold symmetric product of a marked half-infinite cylinder is related to

the higher-dimensional analogues of the tubes introduced in that same paper.

1.2. Future work

It is known [Boc16, HKK17, LP18] that the partially wrapped Fukaya category of a punctured surface is

equivalent to the perfect derived category of a homologically smooth (but not necessarily proper) graded

gentle algebra associated to a polygonal decomposition of the surface dual to a ribbon graph (Lagrangian

skeleton) onto which the surface retracts. Conversely, the perfect derived category of every homologically

smooth graded gentle algebra arises this way (see also [LP20a, Section 3.3] for a discussion of the special

case of proper gentle algebras concentrated in degree 0). Therefore, the Fukaya categories of punctured

Riemann surfaces provide a geometric way of studying the combinatorial structure of derived categories

of graded gentle algebras. For example, in [LP20a] new derived equivalences between gentle algebras

were discovered using this perspective, which subsequently led to a classification of all proper gentle

algebras concentrated in degree 0 up to derived equivalence [APS19, Opp19].

An important feature of partially wrapped Fukaya categories of Weinstein manifolds is that, as

envisioned by Kontsevich [Kon09] and further explored in [GPS18], they are expected to satisfy cosheaf-

like descent conditions. Namely, there should be a constructible cosheaf of �∞-categories defined on
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every Lagrangian skeleton of the Weinstein manifold whose �∞-category of global sections is equivalent

to the partially wrapped Fukaya category of the Weinstein manifold. In the case of surfaces, this amounts

to the fact that derived categories of gentle algebras can be exhibited as a colimit of a suitable diagram

formed by perfect derived categories of �=-quivers, which are to be interpreted as the stalks of the

corresponding (constructible) cosheaf defined on a ribbon graph of the surface [HKK17, DK18, Dyc17a].

In subsequent work we exploit the interplay between (B) and (C) to further advance this programme:

the simplicial combinatorics intrinsically present in (B) provide a systematic approach to local-to-global

phenomena for the partially wrapped Fukaya categories of symmetric powers of Riemann surfaces. As

a result, we expect to compute these partially wrapped Fukaya categories by gluing together perfect

derived categories of higher-dimensional Auslander algebras of type A. The present article thus focuses

on the local aspects that enter into this picture. For completeness, we mention that the case of punctured
disks is investigated in detail in [LP20b] from the point of view of homological mirror symmetry.

1.3. Conventions

We fix an arbitrary commutative ring k. Concerning �∞-categories, we follow the notational conventions

in Seidel’s book [Sei08]. Given objects G and H in an �∞-category A, we denote the cochain complex of

morphisms from G to H by homA(G, H) and write hom(G, H) = homA(G, H) if the ambient �∞-category

is clear from the context. We also write

Hom∗
A
(G, H) = �∗(homA(G, H))

and HomA (G, H) = Hom0
A
(G, H) to denote the graded k-module and the plain k-module of morphisms

from G to H, respectively, in the graded k-category �∗(A) and the ungraded k-category �0 (A). For

differential graded k-categories we follow the conventions in [Kel06]; in particular, the graded Leibniz

rule takes the form

m (k ◦ i) = m (k) ◦ i + (−1) |k |k ◦ m (i)

whenever k is a homogeneous morphism (we compose morphisms from right to left). Throughout the

article we write ‘(ungraded) k-algebra’ to mean an ordinary k-algebra concentrated in degree 0. We

denote the grading shift in the category of graded k-modules by + ↦→ + (1) to distinguish it from the

shift of complexes.

2. Preliminaries

In this preliminary section we recall general aspects of the theory of Fukaya categories which are relevant

to our investigation of the partially wrapped Fukaya categories associated to the symmetric products of

the 2-dimensional unit disk.

2.1. Fukaya categories of symmetric products of Riemann surfaces

We begin with a brief overview of the different variants of the Fukaya category associated to the

symmetric products of an arbitrary Riemann surface.

2.1.1. Fukaya categories and wrapped Fukaya categories

Let Σ be a compact Riemann surface and 3 ≥ 1 an integer. The complex structure 9 on Σ induces a

complex structure Sym3 ( 9) on the 3-fold symmetric product

Sym3 (Σ) ≔ Σ × · · · × Σ︸        ︷︷        ︸
3 times

/S3
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of Σ. Take I ∈ Σ and let � be the image of the embedding

Sym3−1 (Σ) Sym3 (Σ), x I + x .

Recall that there is an isomorphism �2(Sym3 (Σ)) � ∧2 �1(Σ) ⊕ Z, where the direct summand Z is

represented by the Poincaré dual of �. We are chiefly interested in open symplectic manifolds of the

form

Sym3 (Σ) \ � = Sym3 (Σ \ {I}).

The divisor � is ample, thus the complex manifold Sym3 (Σ) admits a symplectic form l = 1
2c 8��,

where � is a connection on the line bundle O(:�) for some sufficiently large : . The symplectic form

l tames the complex structure on Sym3 (Σ) and lies in the cohomology class Poincaré dual to :�.

Moreover, the restriction of l to Sym3 (Σ) gives an exact symplectic form which is convex at infinity.

Let ? : Σ×3 → Sym3 (Σ) be the branched covering map, which is ramified along the big diagonal

in Sym3 (Σ). Let lΣ be a choice of a symplectic structure on Σ. In [Per08] Perutz constructs an exact

Kähler form on Sym3 (()Σ) of the preceding type but with the additional property that l = ?∗ (l×3
Σ
)

outside a small neighbourhood of the big diagonal. This additional property allows us to consider exact

Lagrangians in Sym3 (Σ) of the form !1 × !2 × · · · × !3 , where {!8} is a collection of pairwise disjoint

exact Lagrangians on Σ (with respect to the Liouville form \Σ).

Remark 2.1.1. The identification Sym3 (C) � C3 implies that Sym3 (D) is a ball of (real) dimension

23. Moreover, the symplectic structure on Sym3 (D) is equivalent to the standard symplectic structure

on the ball, since both tame the standard complex structure. We prefer to use the symplectic structure

constructed via the symmetric product construction, in order to provide a diagrammatic description of

the Lagrangians.

For an exact symplectic manifold " with convexity at infinity, such as Sym3 (Σ), a rigorous con-

struction of a Fukaya category of compact exact Lagrangians F(") appears in Seidel’s book [Sei08].

By construction, F(") is an idempotent complete triangulated �∞-category which is linear over k.

There is also a rigorous construction of a larger �∞-category—due to Abouzaid and Seidel [AS10]—

that allows for noncompact exact Lagrangians with controlled behaviour at infinity, namely the wrapped
Fukaya category W(") in which F(") embeds as a full subcategory.

2.1.2. Partially wrapped Fukaya categories

A fruitful extension of the foregoing considerations consists in equipping the symplectic manifold "

with stops and considering the resulting partially wrapped Fukaya categories. We review the technical

setup of this construction. Let Σ be a surface with nonempty boundary equipped with an exact area form

lΣ and Λ ⊂ mΣ a nonempty finite subset. Consider the complex manifold Sym3 (Σ) equipped with a

symplectic form as already outline. Note that Sym3 (Σ) is a symplectic manifold with corners which

can be considered as a Liouville sector as in [GPS19]. We let

Λ(3) =
⋃
?∈Λ ? + Sym3−1 (Σ)

be a union of symplectic hypersurfaces in the contact boundary of Sym3 (Σ) which we call stops. To

these data Auroux [Aur10b] associates a partially wrapped Fukaya category W(Sym3 (Σ),Λ(3) ); the

general theory of partially wrapped Fukaya categories has been further developed by Ganatra, Pardon

and Shende [GPS18] and Sylvan [Syl19a]. Auroux’s construction of partially wrapped Fukaya categories

was inspired by the bordered Heegaard Floer theory of Lipshitz, Ozsváth and Thurston [LOT18], as well

as by the more familiar special case of the Fukaya–Seidel category [Sei08] associated to a Lefschetz

fibration on an exact symplectic manifold.

https://doi.org/10.1017/fms.2021.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.2


8 Tobias Dyckerhoff et al.

2.1.3. Stop-removal sequences

The three flavours of Fukaya categories already discussed are related by a commutative diagram of

functors

W(Sym3 (Σ),Λ(3) )

F(Sym3 (Σ)) W(Sym3 (Σ)),

where the functor F(Sym3 (Σ)) ↩→ W(Sym3 (Σ),Λ(3) ) is fully faithful and so is its composite with the

functor W(Sym3 (Σ),Λ(3) ) → W(Sym3 (Σ)). Moreover, the functor

W(Sym3 (Σ),Λ(3) ) W(Sym3 (Σ))

is the localisation at the full subcategory of W(Sym3 (Σ),Λ(3) ) given by the union of the essential

images of the so-called Orlov functors

]? : W(Sym3−1 (Σ),Λ(3−1)
? ) W(Sym3 (Σ),Λ(3) ), ? ∈ Λ,

where Λ? = Λ \ {?}; at the level of objects, the Orlov functor ]? is obtained by taking the symmetric

product with a sufficiently small arc around the point ?. In this setting of symmetric products of Riemann

surfaces, Auroux [Aur10b] proved that the image of the Orlov functors is generated by the objects

supported near the stops (see also [Syl19a] for results in a much more general setting and [Syl19b]

for further applications of these functors). For a fixed stop ? ∈ Λ, the Orlov functor ]? is part of a

Drinfeld–Verdier localisation sequence

W(Sym3−1 (Σ),Λ(3−1)
? ) W(Sym3 (Σ),Λ(3) ) W(Sym3 (Σ),Λ(3)

? ), (2.1.1)

which we refer to as the stop-removal sequence at ?.

2.1.4. Grading structures

In general, the (cochain complexes of morphisms in the) partially wrapped Fukaya category

W(Sym3 (Σ),Λ(3) ) can only be Z/2-graded. If the first Chern class of Sym3 (Σ) satisfies 221 = 0

(that is, if Σ has genus 0 or if 3 = 1), results in [Sei00] imply that W(Sym3 (Σ),Λ(3) ) admits a Z-

grading; the possible Z-gradings on W(Sym3 (Σ),Λ(3) ) form a torsor over the first cohomology group

�1 (Sym3 (Σ)) � �1 (Σ). Since in this article we only study the case when Σ is a disk (which has vanish-

ing first cohomology), the partially wrapped Fukaya categories we consider admit a unique Z-grading.

2.1.5. Generators of the partially wrapped Fukaya category

The following result [Aur10a] describes sets of generators of the partially wrapped Fukaya category

W(Sym3 (Σ),Λ(3) ) in terms of arcs in Σ \ Λ:

Theorem 2.1.2 (Auroux). Let Σ be a compact Riemann surface with nonempty boundary and Λ be
a finite set of points on its boundary. Let !1, . . . , != be a collection of disjoint properly embedded
arcs in Σ \ Λ with end points in the boundary of Σ. Assume that Σ \ {!1, . . . , !=} is a disjoint union
of disks, each of which contains at most one point of Λ. Then the partially wrapped Fukaya category
W(Sym3 (Σ),Λ(3) ) is generated, as an idempotent complete triangulated �∞-category, by the

(=
3

)

Lagrangian submanifolds !� =
∏
8∈� !8 , where � ranges over the 3-element subsets of {1, . . . , =}.

Let us review Auroux’s proof of Theorem 2.1.2. Fix 26 + 1 points ?0, . . . , ?26 ∈ C and consider the

compact surface Σ given by a branched double cover of C%1 branched over the ?8s and ∞. Let Σ be
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the surface obtained from Σ by puncturing it at the preimage of ∞. The surface Σ comes with a 2-fold

branched covering c : Σ → C. Consider the map

5 : Sym3 (Σ) C, [I1, . . . , I3] c(I1) + · · · + c(I3).

The map 5 is a Lefschetz fibration whose critical points are tuples [@B1 , . . . , @B3 ], where B = {B1, . . . , B3}
is a 3-element subset of {?0, . . . , ?26} and c(@B8 ) = ?B8 . That is, the critical points consist of 3-

tuples of distinct critical points of c. By adding more stops if necessary, the generators specified in

Theorem 2.1.2 can be identified with thimbles of the Lefschetz fibration 5 and, moreover, the resulting

partially wrapped Fukaya category is quasi-equivalent to the Fukaya–Seidel category of 5 . A celebrated

result of Seidel [Sei08] shows that these thimbles generate the Fukaya–Seidel category of 5 . Removing

the additional stops, if there are any, corresponds to a localisation of the Fukaya–Seidel category of 5 .

Auroux leverages these considerations to prove that the product Lagrangians listed in Theorem 2.1.2 are

indeed sufficient to generate the partially wrapped Fukaya categoryW(Sym3 (Σ),Λ(3) ) as an idempotent

complete triangulated �∞-category.

In the particular case of the pair (Sym3 (D),Λ=), Auroux’s Lefschetz fibration can be described

concretely as follows: first, consider the (= + 1)-fold branched covering map

C C, I I=+1.

This is chosen so that the preimage of 1 ∈ C is the setΛ= = {?0, ?1, . . . , ?=} of stops, which is contained

in the boundary of the unit disk. Therefore, the Fukaya–Seidel category [Sei08] of a morsification of

this map is quasi-equivalent to the partially wrapped Fukaya category W
(1)
= = W(D,Λ=). A concrete

morsification is given by

5=,1 : C C, I I=+1 − Y(= + 1)I,

for some Y > 0, so that the = distinct critical points of 5=,1 lie on the circle of radius =
√
Y. Consider now

the Lefschetz fibration

5=,3 : Sym3 (C) C, [I1, . . . , I3]
∑3
8=1 5=,1 (I8) =

∑3
8=1 I

=+1
8 − Y(= + 1)I8 .

Essentially by construction (see [Aur10a, Sections 3.3.1 and 3.3.2]), the Fukaya–Seidel category of 5=,3

is quasi-equivalent to the partially wrapped Fukaya category W
(3)
= = W(Sym3 (D),Λ(3)

= ). Under the

identification

Sym3 (C) C3 ,
� [I1, . . . , I3] (41 (I1, . . . , I3), . . . , 43 (I1, . . . , I3)),

where 48 is the 8th elementary symmetric polynomial (the sum of all distinct products of 8 variables), we

can express the function 5=,3 (and its morsification) in terms of the coordinates of C3 using Newton’s

identities. For example, for = = 3 = 2 we obtain the map

C2 C, (D, E) D3 − 3DE − 3YD.

2.1.6. Derived endomorphism algebras of generators

Let !1, . . . , != be arcs in Σ \ Λ= which satisfy the assumptions in Theorem 2.1.2, with the addi-

tional condition that each disk in the decomposition Σ \ (∪!8) contains exactly one stop. Suppose for

a moment that the ground ring k has characteristic 2, so that the results in [Aur10b] apply verbatim.

In this context, Auroux provides a differential Z/2-graded model for the derived endomorphism al-

gebra A =
⊕

� ,� hom(!� , !� ) of the associated generator of the partially wrapped Fukaya category
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W(Sym3 (Σ),Λ(3) ). By picking a particularly nice perturbation scheme adapted to this setup, he shows

that there are no holomorphic =-gons for = ≥ 3 with boundary on these generators, and therefore the

higher products in the derived endomorphism algebra A vanish. Moreover, he determines all the holo-

morphic bigons and triangles that contribute to the product and the differential. In the end, Auroux

establishes a quasi-isomorphism

A =
⊕

� ,� hom(!� , !� ) ≃
⊕

� ,�

⊕
c∈S3

hom(!� , !� ) c ,

where

hom(!� , !� ) c = hom(!81 , ! 9c (1) ) ⊗ hom(!82 , ! 9c (2) ) ⊗ · · · ⊗ hom(!83 , ! 9c (3) ) (2.1.2)

and hom(!8 , ! 9 ) is the free k-module generated by all Reeb chords !8 → ! 9 induced by the Reeb flow

along the various boundary components of Σ \ Λ=. The differential Z/2-graded k-algebra on the right-

hand side can be identified with the strands algebra arising in the context of the bordered Heegaard Floer

homology of Lipshitz, Ozsváth and Thurston [LOT18]. We emphasise that in general the above direct

sum decomposition of the strands algebra is preserved neither by the differential nor the multiplication

operation, which is a source of difficulties.

In arbitrary characteristic, Auroux’s description is still relevant. Indeed, this counting of holomorphic

polygons does not depend on the ground ring nor on a possible choice of grading structure on Sym3 (Σ).
However, there are signs involved in the differential and the composition of morphisms, which arise

from the orientations of the various moduli spaces of holomorphic disks. In the case where Σ = D,

which is the only concern of this article, we approach this problem of determining signs by providing an

explicit characteristic-free lift of the strands algebra from [LOT18] by means of a simple modification of

a construction of Khovanov [Kho14] and showing that any other lift gives rise to an isomorphic algebra.

2.2. The partially wrapped Fukaya categories W
(3)
=

LetD be the 2-dimensional unit disk and Λ= = {?0, ?1, . . . , ?=} be a set of stops on its boundary, where

= ≥ 0. While from the point of view of symplectic topology the precise position of the stops does not

matter, for definiteness we often let Λ= be the set of (= + 1)th roots of unity. In this section we begin our

analysis of the partially wrapped Fukaya categories

W
(3)
= ≔ W(Sym3 (D),Λ(3)

= ), 3 ≥ 1.

Note that Sym3 (D) has Liouville completion Sym3 (C) � C=, which is an exact symplectic manifold

with vanishing first Chern class. As explained in Section 2.1.4, the partially wrapped Fukaya category

W
(3)
= admits a Z-grading, and the vanishing of the first cohomology group �1(Sym3 (D)) � �1(D)

implies that this Z-grading is unique. We equip W
(3)
= with this canonical Z-grading throughout the

article. In Sym3 (D), we will consider Lagrangians ! of the form ! =
∏3
8=1 !8 , where !8 are pairwise

disjoint arcs in D \ Λ=. These are all contractible, and thus the choice of a grading structure on such

a Lagrangian is unique up to the natural action of Z which corresponds to the shift functor in W
(3)
= .

Finally, if = < 3 it can be shown – by applying the stop-removal sequence (2.1.1) recursively and

keeping in mind that the (fully) wrapped Fukaya category W
(3)

= W(C=) is trivial – that the partially

wrapped Fukaya category W
(3)
= is trivial. Thus, our interest mostly lies in the case = ≥ 3 ≥ 1.

2.3. The partially wrapped Fukaya category W
(1)
=

2.3.1. Combinatorial coordinates

We assume that the orientation of D is such that, if embedded in the plane, its boundary is oriented

counterclockwise. For combinatorial reasons, we assume that the cyclic order on the labels of the stops
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?0

?1?2

?3

?4 ?5

0

1

2

3

4

5

!01

!02

!03

!04 !05

Figure 1. The generators !01, . . . , !0= of W(1)
= = W(D,Λ=) in the case where = = 5.

?8 ∈ Λ= induced by the orientation of the disk’s boundary agrees with the opposite of the natural cyclic

order on the set {0, 1, . . . , =}. We denote by 8 the boundary component of D \ Λ= which lies between

the points ?8 and ?8+1. In particular, if = = 0 then there is a single boundary component labelled 0.

For 0 ≤ 8 < 9 ≤ =, we let !8 9 be a properly embedded arc in D \ Λ= whose end points lie on the

components of mD \ Λ= labelled 8 and 9 . With some abuse of notation, we identify these Lagrangians

with objects of the partially wrapped Fukaya category W
(1)
= , keeping in mind that one also has to choose

grading structures on them. Objects with the same underlying Lagrangians with different grading

structures are related by the shift functor. The morphisms between disjoint Lagrangians are given by

(composites of) Reeb chords corresponding to the Reeb flow along the boundary of the disk, which is

the rotational flow in the counterclockwise direction. More generally, there are additional morphisms

induced by intersection points.

The Lagrangians !01, . . . , !0= play a particularly important role in this article. We choose isotopy

classes of these Lagrangians so that they are mutually disjoint and partition D into a disjoint union of

(topological) disks, each of which contains exactly one stop inΛ=. By Theorem 2.1.2, these Lagrangians

generate the partially wrapped Fukaya category W
(1)
= as an idempotent complete triangulated �∞-

category (with respect to arbitrarily chosen grading structures on them). See Figure 1 for an example in

the case where = = 5.

2.3.2. The quasi-equivalence W
(1)
= ≃ perf(�=,1)

Let = ≥ 1. Recall that �=,1 denotes the path k-algebra of the quiver

1 2 · · · =.

We view �=,1 as an �∞-algebra concentrated in degree 0 and vanishing higher products. We claim that

there is an isomorphism of �∞-algebras

⊕=
8, 9=1 hom(!08 , !0 9 ) �=,1

≃

and, consequently, a quasi-equivalence of triangulated �∞-categories

perf (�=,1) W
(1)
= .

≃

Indeed, as explained at the beginning of Section 2.3.1, since the Lagrangians !01, . . . , !0= do not

intersect in the interior of the disk, the only morphisms between them in W
(1)
= are given by Reeb chords
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corresponding to the Reeb flow along the boundary of the disk:

!01 !02 · · · !0=.

Note that there are no relations between these morphisms. Moreover, since this quiver is a tree, we can

choose grading structures on the Lagrangians to ensure that all of the morphisms have degree 0 (for

example, by choosing arbitrary grading structures and then shifting them as necessary). Therefore, with

respect to the aforementioned choice of grading structures, the natural map

⊕=
8, 9=1 hom(!08 , !0 9 )

⊕=
8, 9 �

0(hom(!08 , !0 9 ))�

is an isomorphism of �∞-algebras, and moreover, there is an isomorphism of (ungraded) k-algebras

⊕=
8, 9 �

0(hom(!08 , !0 9 )) � �=,1;

in particular, the �∞-algebra
⊕=

8, 9=1 hom(!08 , !0 9 ) is in fact an (ungraded) k-algebra. This proves the

claim.

For later use we note that with respect to appropriately chosen grading structures on the Lagrangians

!08 , 1 ≤ 8 ≤ =, this argument establishes the existence of isomorphisms of graded k-modules

hom(!08 , !0 9 ) �
{

k(0) 8 ≤ 9 ;

0 otherwise.
(2.3.1)

In particular, the differential graded k-algebra
⊕=

8, 9=1 hom(!0,8 , !0, 9 ) is in fact an (ungraded) k-algebra.

2.3.3. The quasi-equivalence W
(1)
= ≃ perf(�=,=−1)

Following [HKK17, Section 3.3] and [LP20b, Section 2.1], consider the Lagrangians !8−1,8 , 1 ≤ 8 ≤ =,
inD\Λ=, embedded in such a way that they are mutually disjoint and partitionD into a disjoint union of

disks, each of which contains exactly one stop in Λ=; for reference, the situation is depicted in Figure 2

in the case where = = 5. By Theorem 2.1.2, these Lagrangians generate the partially wrapped Fukaya

category W
(1)
= = W(D,Λ=) as an idempotent complete triangulated �∞-category. Moreover, since the

Lagrangians !8−1,8 , 1 ≤ 8 ≤ =, do not intersect in the interior of the disk, the only morphisms in W
(1)
=

?0

?1?2

?3

?4 ?5

0

1

2

3

4

5

!01!12

!23

!34 !45

Figure 2. The generators !01, !12, . . . , !=−1,= of W(D,Λ=) in the case where = = 5.
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between them are given by Reeb chords corresponding to the Reeb flow along the boundary of the disk:

!=−1,= · · · !12 !01.

Note that the composite of any two consecutive of these morphisms vanishes, because the corresponding

Reeb chords cannot be composed. Also, since the quiver is a tree, we can choose grading structures on

the Lagrangians !8−1,8 , 1 ≤ 8 ≤ =, to ensure that all the morphisms between them have degree 0. The

resulting k-algebra is isomorphic to the higher Auslander algebra �=−1,=. This establishes the existence

of the required quasi-equivalences. For later use, we note that this argument shows that there is an

isomorphism of graded k-modules

hom(! 9−1, 9 , !8−1,8) �
{

k(0) 0 ≤ 9 − 8 ≤ 1;

0 otherwise,
(2.3.2)

with respect to appropriate grading structures on the corresponding Lagrangians. In particular, the

differential graded k-algebra
⊕=

8, 9=1 hom(! 9−1, 9 , !8−1,8) is in fact and (ungraded) k-algebra.

3. Fukaya categories of symmetric products of disks

We fix natural numbers = ≥ 3 ≥ 1. We recall from [OT12] an equivalent definition of Iyama’s higher

Auslander algebras of typeAwhich is the most convenient for our present purposes. It is straightforward

to verify that this definition agrees with that given in the introduction to this article.

Definition. The 3-dimensional Auslander algebra of type A=−3+1 is the (ungraded) k-algebra with

underlying k-module

�=,3 ≔
⊕

� ≤� k · 5� � /〈 5� � | ∃ 0 : 90 ≥ 80+1〉,

where � and � range over the poset ( n
3 ), equipped with the apparent multiplication law

5 � ′ · 5� � =
{
5 � if � = � ′,

0 otherwise.

In particular, �=,3 is a monomial quotient of the incidence k-algebra of the poset ( n
3 ).

Remark. If = = 3, then the corresponding higher Auslander algebra �=,= is isomorphic to the ground

commutative ring k, since the poset ( n
= ) consists of a single element.

This section is devoted to the proofs of our main results, which explicitly determine the derived

endomorphism algebras

A=,3 ≔
⊕

� ,� hom(!� , !� ), A
∨
=,3 ≔

⊕
� ,� hom(!∨� , !∨� )

and

A
♯
=,3
≔

⊕
� ,� hom(!♯� , !

♯
� )

associated to three different sets of generators {!� }, {!∨� } and {!♯� } of the partially wrapped Fukaya

category W
(3)
= . The collections {!∨� } and {!♯� } agree up to shift:

!
♯
� = !

∨
� [− rk(�)],

where rk(�) is the (normalised) rank of � ∈ ( n
3 ); in particular, their underlying Lagrangians in Sym3 (D\

Λ
(3)
= ) are equal. More precisely, we prove the following statements:
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1. In Theorem 3.2.3 we prove that there is a quasi-isomorphism of differential graded k-algebras

A=,3 �=,3
≃

which results in a quasi-equivalence of triangulated �∞-categories

perf (�=,3) W
(3)
= ,

≃
�=,3

⊕
!� .

2. In Theorems 3.3.3 and 3.4.3, respectively, we prove that there are isomorphisms of differential

graded k-algebras

A
∨
=,3 � �

∨
=,3 0=3 A

♯
=,3
� �=,=−3 ,

where we remind the reader that the Koszul dual algebra �∨
=,3 is generated in cohomological

degrees 0 and 1. These result in quasi-equivalences of triangulated �∞-categories

perf (�∨
=,3) W

(3)
= ,

≃
�∨
=,3

⊕
!∨� ,

and

perf (�=,=−3) W
(3)
= ,

≃
�=,=−3

⊕
!
♯
� ,

respectively. Moreover, the collections {!� } and {!∨� } are Koszul dual to one another, and hence

the associated quasi-equivalences perf (�=,3)
≃−→ W

(3)
= and perf (�∨

=,3
) ≃−→ W

(3)
= are intertwined

by Koszul duality.

3.1. The strands algebra B=,3

For the sake of completeness, we provide a lift of the ‘strands algebra with 3 strands = places’ introduced

in [LOT18] which takes into account the fact that we work in arbitrary characteristic. Our construction

can be interpreted as a decorated version of a construction of Khovanov [Kho14]. As we will explain, the

strands algebra is a combinatorially defined differential graded k-algebra which we eventually prove to

be quasi-isomorphic to the derived endomorphism algebraA=,3 of an appropriate set {!� } of generators

of the partially wrapped Fukaya category W
(3)
= .

3.1.1. The Bruhat order on S3

As originally observed in [LOT18], the strands algebra is closely related to the Bruhat order on the

symmetric group S3 . We recall from [BB05] the relevant terminology. By a word we mean a (finite)

word in the alphabet {B1, . . . , B3−1} ⊂ S3 given by the simple transpositions B0 = (0 + 1, 0) (note that

we read words from right to left, since we want to relate these to the composition of morphisms in the

Fukaya category). A word F′ is a subword of a word F if F′ is obtained from F by deleting some of its

letters; in particular, the empty word is a subword of every word. A reduced expression for a permutation

c ∈ S3 is factorisation of c as a word of minimal length; a word is reduced if it is a reduced expression

for some permutation. The length of a permutation is the length of any of its reduced expressions.

Equivalently, the length of c ∈ S3 is the number

inv(c) = #{1 ≤ 0 < 1 ≤ 3 | c(1) < c(0)}

of inversions in c (see [BB05]). The relation c′ ≤ c holds in the Bruhat order onS3 if and only if there

exists a reduced expression of c which contains a reduced expression of c′ as a subword (see [BB05]).

Equivalently, c′ ≤ c if and only if every reduced expression of c contains a reduced expression of c′ as
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1

2

3

1

2

3
resolve↦−−−−−→

1

2

3

1

2

3

Figure 3. Example of a resolution which results in a strand diagram in which two strands cross more
than once. On the left, the reduced word (21) (32) (21); on the right, the nonreduced word (21)4(21).

a subword (see [BB05, Corollary 2.2.3]. The function c ↦→ inv(c) endows the Bruhat order onS3 with

the structure of a graded poset (see [BB05, Theorem 2.2.6]); the elements of degree 1 are precisely the

simple transpositions. As is customary, we write c′ ⊳ c to denote a covering relation in the Bruhat order

on S3; equivalently, we write c′ ⊳ c if c′ < c and inv(c) = inv(c′) + 1.

The Bruhat order on S3 can be visualised diagrammatically as follows: a simple transposition can

be depicted as a planar strand diagram; for example, the simple transpositions (21) and (32) in S3

correspond respectively to the diagrams

1

2

3

1

2

3

and

1

2

3

1.

2

3

Each reduced word can be visualised as a strand diagram (obtained by concatenating the strands

associated to simple transpositions) in which the crossings that appear are linearly ordered; the fact

that the word is reduced corresponds to the fact that no two strands cross more than once. Deleting a

letter from a word corresponds to resolving a crossing; note, however, that resolving a crossing may

result in a strand diagram in which two strands cross more than once – see Figure 3 for an example. In

these terms, the covering relation c′ ⊳ c holds in the Bruhat order on S3 if and only if in any strand-

diagram representation of c in which no two strands cross more than once, we may resolve a single

crossing (which is in fact uniquely determined; see [BB05, Corollary 1.4.4]) to obtain a strand-diagram

representation of c with the same property.

The Bruhat order on S3 is an interval: the minimum element is the trivial permutation 4 ∈ S3 and

the maximum element is the permutation 0 ↦→ 3 + 1− 0. We see from [BB05, Proposition 2.3.4] shows

that multiplication by the longest element induces an antiautomorphism of the Bruhat order on S3; in

particular, the duality principle applies in this context. More generally, a Bruhat interval is an interval

[c′, c] = {c′′ ∈ S3 | c′ ≤ c′′ ≤ c}

in the Bruhat order on S3 . It is a remarkable fact that provided that inv(c) − inv(c′) ≥ 2, there exists

a regular cell complex, uniquely determined up to cellular homeomorphism, whose poset of cells is

isomorphic to [c′, c] (by convention, c′ corresponds to an empty cell); moreover, this regular cell

complex is homeomorphic to a ball of dimension inv(c) − 1 (see [BB05, Theorem 2.7.12] for details).

Let c ∈ S3 be a nontrivial permutation; following [BB05, Section 2.7], we associate a cochain

complex to the Bruhat interval [4, c] as follows. A balanced signature on the Hasse diagram of the

Bruhat interval [4, c] is an assignment c′ ⊳ c ↦→ Y(c′ ⊳ c) of signs ±1 to the edges of the Hasse diagram

of [4, c] such that for every square
c0

c1 c2

c3 ,

the equality

Y(c1 ⊳ c0)Y(c3 ⊳ c1) + Y(c2 ⊳ c0)Y(c3 ⊳ c2) = 0

is satisfied (every Bruhat interval of length 2 is of this form; see in [BB05, Lemma 2.7.3]).
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Given a balanced signature Y on the Hasse quiver of a Bruhat interval [4, c], we define the free

graded k-module � [4, c] = k · [4, c], where c ∈ [4, c] lies in degree − inv(c), and endow it with the

differential

mY (c′) =
∑
c′′⊳c′ Y(c′′ ⊳ c′) · c′′

for c′ ∈ [4, c]. It is straightforward to verify that m2
Y = 0. In terms of strand diagrams, this differential

is given by the signed sum of all the permutations obtained from c′ by resolving a single crossing in

any of its strand-diagram representations, excluding resolutions which result in a diagram in which two

strands cross more than once. Note that we can obtain a new balanced signature Y′ from Y by choosing

an arbitrary permutation c′ ∈ [4, c] and multiplying by −1 the signs of all the edges incident to c′

in the Hasse quiver of [4, c]. In terms of the associated cochain complexes, this corresponds to the

isomorphism

(� [4, c], mY) (� [4, c], mY′),�

c′ −c′,

which fixes all the other generators of � [4, c]. In particular, this operation does not change the isomor-

phism type of the associated chain complex.

Suppose that inv(c) ≥ 2 and let - = - [4, c] be the regular cell complex whose poset of cells is

isomorphic to the Bruhat interval [4, c]. An arbitrary choice of orientation of the cells of - allows us

to identify � [4, c] with the cellular chain complex � (-; k). In particular, the cochain complex � [4, c]
(which computes the reduced cellular homology of the topological ball -) is acyclic. The signs involved

in the differential on � [4, c] which arise via this procedure yield a balanced signature on the Hasse

diagram of the Bruhat interval [4, c]. This is essentially the given proof of [BB05], where general

Bruhat intervals are considered. We need the following slight refinement of this result:

Proposition 3.1.1. Let c ∈ S3 be a nontrivial permutation. The following statements hold:

1. There exists a balanced signature Y on the Hasse quiver of the Bruhat interval [4, c] such that the
corresponding cochain complex (� [4, c], mY) is acyclic.

2. Let Y and Y′ be balanced signatures on the Hasse quiver of the Bruhat interval [4, c]. Then the
corresponding chain complexes (� [4, c], mY) and (� [4, c], mY′) are isomorphic.

In particular, for any choice of balanced signature Y on the Hasse quiver of the Bruhat interval [4, c],
the cochain complex (� [4, c], mY) is acyclic.

Proof. Statement 1 is an immediate consequence of [BB05, Corollary 2.7.14], which establishes the

result in the case of integer coefficients (the general case follows by extending the coefficients to k).

To prove Statement 2, we argue inductively. Let Y and Y′ be two different balanced signatures on the

Hasse diagram of the Bruhat interval [4, c]. Recall that multiplying by −1 the signs associated to all the

edges in the Hasse diagram which are incident to a given permutation does not change the isomorphism

type of the corresponding cochain complex. We consider first the following special case: suppose that Y

and Y′ agree on the half-open interval [4, c). We claim that Y′ is obtained from Y by multiplying by −1

all the signs associated to all the edges incident to c in [4, c]. If the Bruhat interval [4, c] has length

1 – that is, if c is a simple transposition – the claim is obvious. Suppose then that c has length at least

2. The dual of [BB05, Corollary 2.2.8] implies that every pair of distinct edges c0 ⊳ c and c1 ⊳ c is part

of some square
c

c0 c1

c01

in the poset [4, c]. Clearly, once the signs at the edges c01 ⊳ c0 and c01 ⊳ c1 are fixed, there are exactly

two balanced signatures on the Hasse diagram, and they are related to each other by multiplying by −1

the signs at the edges c0 ⊳ c and c1 ⊳ c. Thus, it is enough to show that the value of a balanced signature

on any such square determines the value on all other squares. If two squares share an edge incident to c,

https://doi.org/10.1017/fms.2021.2 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.2


Forum of Mathematics, Sigma 17

then it is clear that the restriction of the signature to either square determines the value on both squares,

keeping in mind that the value at the bottom edges is already fixed. If this is not the case, then the two

squares are arranged as follows (depicted by solid edges):

c

c0 c1 c2 c3

c01 c12 c23 .

By the observation regarding pairs of edges incident to c, there are (at least) further covering relations in

[4, c], as indicated by the dashed edges. It is now clear that a balanced signature on the Hasse diagram

in question is completely determined by its values on the edges which are not incident to c, together

with its values at any square with maximum element c.

We now return to the general case. Inductively, set 1 < : ≤ inv(c) and suppose that Y and Y′ are

balanced signatures which agree on all edges in the Hasse diagram in [4, c] between permutations of

length at most : − 1. Let c′ ∈ [4, c] be a permutation of length : and consider the Bruhat interval

[4, c′]. The foregoing argument shows that we can replace Y′ by a new balanced signature which agrees

with Y on [4, c′] without changing the isomorphism type of the associated cochain complex. We can

then repeat the argument for all remaining permutations c′ ≤ c of length : . By induction, the claim

follows. �

Remark 3.1.2. Let c ∈ S3 be a nontrivial permutation. Combined with the proof of [BB05, Corollary

2.7.4], the proof of Proposition 3.1.1 shows that all possible balanced signatures on the Hasse diagram

of the Bruhat order S3 are obtained by choosing arbitrary orientations for the cells of the regular cell

complex with incidence poset [4, c].

Example 3.1.3. The Bruhat order on S3 is isomorphic to the poset of cells associated to the following

cell decomposition of the disk:

(21) (32)

(321)

(231).

(31)

With respect to the choice of balanced signature in Figure 4, the cochain complex� [4, (31)] is given by

k · (31) k · (321) ⊕ k · (231) k · (21) ⊕ k · (32) k · 4.
(

1
−1

) (
1 1
−1 −1

)
( 1 1 )

The reader can easily verify that this cochain complex is acyclic.

3.1.2. The definition of the strands algebra B=,3

In [Kho14], Khovanov introduced a characteristic-free simplified variant of the strands algebra of

[LOT18] which turns out to be contractible (in his definition, the unit is a coboundary). We introduce

a decorated version of Khovanov’s construction which provides a cohomologically nontrivial lift of the

strands algebra of [LOT18] to arbitrary characteristic. We begin with a technical lemma:

Lemma 3.1.4. Let �, � ∈ ( n
3 ). If nonempty, the subset

{c ∈ S3 | ∀1 ≤ 0 ≤ 3 : 80 ≤ 9c (0) }
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4

(21) (32)

(321) (231)

(31)

+

+

+ −

−

+

+−

Figure 4. The Hasse diagram of Bruhat order on S3, together with a choice of balanced signature.

is a Bruhat interval of the form [4, c� �
0
], where 4 ∈ S3 is the trivial permutation. In particular, this

subset is nonempty if and only if � ≤ �.

Proof. Let - = -� � = {c ∈ S3 | ∀0 : 80 ≤ 9c (0) }. Suppose that - is nonempty. We show first that -

is downwards-closed. Since the symmetric group is finite, it suffices to show that if c′ ⊳ c is a covering

relation in the Bruhat order on S3 and c ∈ - , then c′ ∈ - . By [BB05, Lemma 2.1.4], we can write

c(1, 0) = c′ for some 0 < 1 such that c(1) < c(0) and there does not exist 0 < 2 < 1 such that

c(1) < c(2) < c(0). In particular,

80 < 81 ≤ 9c (1) = 9c′ (0) < 9c (0) = 9c′ (1) .

Therefore c′ ∈ - , as required. Finally, - contains a maximum c� �
0

, constructed inductively as follows:

if 3 = 1, then � = {8} and � = { 9} for some 8 ≤ 9 , and c� �
0

= 4 is the trivial permutation. For 3 > 1,

we let c� �
0

(3) = min{0 | 83 ≤ 90} and define � ′ = � \ {83} and � ′ = � \ { 9c��
0

(3) }. Note that � ′ ≤ � ′.

Inductively, we define c� �
0

on {1, . . . , 3 − 1} to be the unique maximal element of the poset

{c ∈ S3−1 | ∀1 ≤ 0 < 3 : 80 ≤ 9c (0) },

which is nonempty since it contains the trivial permutation. �

Notation 3.1.5. Let �, � ∈ ( n
3 ). With some abuse of notation, we let [4, c� �

0
] ≔ ∅ whenever � � �.

Before giving the definition of the strands algebra we introduce a convenient diagrammatic language

for visualising its generators.

Definition 3.1.6. Let �, � ∈ ( n
3 ) be such that � ≤ �. We view � and � as subsets of the real interval

[0, = + 1]. A strand diagram from � to � consists of a collection i : � → � of 3 properly embedded arcs

in the rectangle [0, 1] × [0, = + 1], called strands, subject to the following restrictions:

1. Each strand is the graph of a monotonically increasing function

[0, 1] −→ [0, = + 1]

whose value at time 0 lies in � and whose value at time 1 lies in �.

2. No two strands intersect at their endpoints.

3. No two strands intersect more than once. Moreover, all intersections are transversals.

4. At most two strands cross at any given time C ∈ [0, 1].

We write i(8) = 9 to indicate that i contains a strand connecting 8 ∈ {0} × � with 9 ∈ {1} × �.

Remark 3.1.7. Let �, � ∈ ( n
3 ) be such that � ≤ �. More informally, a strand diagram from � to � consists

of 3 distinct curves in the rectangle [0, 1] × [0, =+1] connecting exactly one point of {0}× � with exactly
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one point of {1} × �. Moreover, strands are required to move strictly to the right and weakly upwards

as time flows from 0 to 1. Finally, we require that the number of crossings between any two strands be

minimal, and that the crossings be positioned in such a way that the projection onto the time coordinate

induces a linear order on the set of crossings in the strand diagram. When working in characteristic

2, the last condition on the linear order of the crossings does not play any role in the definition of the

strands algebra; we can then drop it and recover the strand diagrams from [LOT18].

Notation 3.1.8. Let �, � ∈ ( n
3 ) be such that � ≤ �. A strand diagram i : � → � defines a permutation

ci ∈ [4, c� �
0
] given by 0 ↦→ 1 if i(80) = 91; the linear order on the crossings of i (which correspond

to inversions in ci) encodes the datum of a reduced expression of ci . In particular, inv(ci) is precisely

the number of crossings between strands in i. Conversely, for every reduced expression of a permutation

c ∈ [4, c� �
0
] there exists a (nonunique) strand diagram i = ic from � to � such that ci = c and which

encodes the given reduced expression of c.

Notation 3.1.9. Let �, � ∈ ( n
3 ) and i : � → � be a strand diagram. We write inv(i) = inv(ci) for the

number of crossings in i.

Example 3.1.10. Let = = 5 and 3 = 3. Let � = {1, 2, 3} and � = {3, 4, 5}. Consider the strand diagrams

1

2

3

4

5

1

2

3

4

5

and

1

2

3

4

5

1,

2

3

4

5

whose associated permutation is (31). From left to right, these strand diagrams encode the reduced

expressions (21) (32) (21) and (32) (21) (32), respectively.

Definition 3.1.11. Let �, � ∈ ( n
3 ) such that � ≤ �. Two strand diagrams i, k : � → � are equivalent if

ci = ck and the reduced expressions of this permutation induced by i and k are equal.

Remark 3.1.12. The equivalence relation between strand diagrams can be phrased in terms of a natural

notion of isotopy. Namely, two strand diagrams are equivalent if they are isotopic via an isotopy through

strand diagrams in which the linear order induced on the crossings by their time coordinates remains

unchanged.

Remark 3.1.13. Let �, � ∈ ( n
3 ). By construction, equivalence classes of strand diagrams � → � are in

bijection with reduced words in [4, c� �
0
].

Notation 3.1.14. Let �, � ∈ ( n
3 ) be such that � ≤ �. We denote the equivalence class of strand diagrams

i : � → � such that ci = 4 by 4� � .

We define a differential graded k-category with set of objects ( n
3 ) as follows:

◦ For �, � ∈ ( n
3 ), we let hom(�, �) be the k-module generated by equivalence classes of strand

diagrams from � to �, subject to the following relation: if i, k : � → � are strand diagrams such

that the linear orders induced on the respective crossings differ by a single transposition, then

k = −i.

◦ Let i : � → � and k : � →  be strand diagrams. We define

k ◦ i =

{
ki if inv(ckci) = inv(ck) + inv(ci),
0 otherwise,

where the strand diagram ki is obtained by horizontal concatenation with the implicit reparametri-

sation of the time coordinate (recall that strands flow from left to right). More informally, the natural
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composition law has the following important caveat: if after concatenation of two strand diagrams

the resulting strand diagram contains two strands which cross more than once, their composite

vanishes.

◦ We endow hom(�, �) with a grading by declaring the degree |i| of a strand diagram i to be

− inv(i) = − inv(ci) – that is, minus its number of crossings. Since the composition operation is

by design compatible with the grading, this yields a graded k-category.

◦ Finally, we endow the graded k-module hom(�, �) with the differential

m (i) = ∑
k⊳i Y(k ⊳ i)k,

where the sum ranges over all strand diagrams k obtained from i by resolving a single crossing,

excluding resolutions which result in a strand diagram in which two strands cross more than once,

and Y(k ⊳ i) is given by −1 to the number of crossings in i which happen after the crossing being

resolved.

Definition-Proposition 3.1.15. The strands algebra with 3 strands and = places is the differential

graded k-algebra

B=,3 ≔
⊕

� ,� hom(�, �).

Proof. It is straightforward to verify that the differential on hom(�, �) squares to 0. To prove that the

differential satisfies the graded Leibniz rule, we can proceed exactly as in the proof of [LOT18, Lemma

3.1], with a small modification. We include the argument for the sake of completeness. We define a

larger graded k-algebra B̃=,3 where we allow all generalised strand diagrams obtained by concate-

nating strand diagrams in which no two strands cross more than once. The degree of a generalised

strand diagram is defined to be minus the number of crossings in the diagram (which may be larger

than the number of inversions in the corresponding permutation). The product is given by horizontal

concatenation of generalised strand diagrams (with no caveats) and the differential is defined exactly as

for the strands algebra B=,3 . Clearly, as a graded k-algebra, B=,3 is a quotient of B̃=,3 . We verify that

the differential on B̃=,3 satisfies the graded Leibniz rule. Let i : � → � and k : � →  be generalised

strand diagrams. We analyse the expression

m (k)i + (−1) |k |km (i).

The term m (k)i corresponds precisely to the summand of m (ki) obtained by resolving crossings in

ki which are crossings in k. Similarly, the remaining term (−1) |k |km (i) corresponds precisely to the

summand of m (ki) obtained by resolving crossings in ki which are crossings in k; the sign (−1) |k |

appears because m (i) does not take into account the number −|k | of crossings in k, and all of these

crossings happen after every crossing in i. This shows that B̃=,3 is a differential graded k-algebra. To

finish the proof, it remains to show that the graded submodule of B̃=,3 generated by the generalised

strand diagrams with at least one double crossing is in fact a differential graded ideal. It is clear that this

graded k-submodule is a graded ideal. Also, if a strand diagram i has at least two double crossings,

then m (i) has at least one double crossing and therefore lies in the ideal. Finally, if i has a single double

crossing, then there are exactly two strand diagrams k and k ′ which appear as summands of m (i) that

do not lie in the ideal; we claim that these terms cancel each other. Indeed, since the permutations ck

and ck′ clearly agree, k and k ′ differ from each other by a sign as generators of B̃=,3; this sign is given

by −1 to the number of crossings that appear strictly between the two crossings which are part of the

unique double crossing in i. The claim follows. �

Example 3.1.16. Let = = 5 and 3 = 4. Let � = {1, 2, 3, 4} and � = {2, 3, 4, 5}. As generators of the

strands algebra B=,3 , the strand diagrams
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1

2

3

4

5

1

2

3

4

5

and

1

2

3

4

5

1

2

3

4

5

are negatives of each other.

Example 3.1.17. Let = = 5 and 3 = 3. Let � = {1, 2, 3}, � = {2, 3, 4} and  = {3, 4, 5}. Consider the

following composite of strand diagrams � → � and � →  :

1

2

3

4

5

1

2

3

4

5

•

1

2

3

4

5

1

2

3

4

5

=

1

2

3

4

5

1

2

3

4

5

= 0.

Since concatenating the two strand diagrams results in a strand diagram in which two strands cross more

than once, their product vanishes in the strands algebra B=,3 .

Example 3.1.18. Let = = 5 and 3 = 3. Let � = {1, 2, 3} and � = {3, 4, 5}. We exemplify the action of

the differential on a strand diagram from � to �:

1

2

3

4

5

1

2

3

4

5

m↦−→

1

2

3

4

5

1

2

3

4

5

+

1

2

3

4

5

1.

2

3

4

5

Notice that resolving the second crossing would result in a strand diagram in which two strands cross

more than once; therefore, this resolution does not contribute to the differential.

The following observation is crucial for our purposes:

Proposition 3.1.19. Let �, � ∈ ( n
3 ) be such that � ≤ �. For each permutation c ∈ [4, c� �

0
], choose a

strand diagram i = ic : � → � such that ci = c. The set {ic | c ∈ [4, c� �
0
]} is a free k-basis of the

graded k-module hom(�, �). In particular, hom(�, �) is isomorphic to the cochain complex � [4, c� �
0
].

Proof. The proof of [Kho14, Lemma 1] applies verbatim. The second claim follows from Proposi-

tion 3.1.23, taking into account that the signs in the definition of the differential on hom(�, �) yield a

balanced signature on the Hasse quiver of the Bruhat interval [4, c� �
0
]. �

We also record the following elementary observation:

Lemma 3.1.20. There is a unique differential on the underlying graded k-algebra of the strands algebra
B=,3 which endows it with the structure of a differential graded k-algebra, subject to the additional
restriction that m (i) = 4� � for every strand diagram i : � → � with a single crossing.

Proof. By construction, the strands algebra B=,3 is generated as a graded k-algebra in cohomological

degrees 0 and −1 (since every reduced word is, by definition, a product of simple transpositions). The

graded Leibniz rule implies that the differential on B=,3 is completely determined by its action on the

generators of these cohomological degrees. The claim follows. �
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3.1.3. The quasi-isomorphism B=,3 ≃ �=,3
The following theorem is the first step in establishing the quasi-equivalence between the partially

wrapped Fukaya category W
(3)
= and the perfect derived category perf(�=,3):

Theorem 3.1.21. There is a quasi-isomorphism of differential graded k-algebras

B=,3 �0(B=,3)≃

and an isomorphism of (ungraded) k-algebras �0(B=,3) � �=,3 .

Remark 3.1.22. When working in characteristic 2, the cohomology of the strands algebra B=,3 is

computed additively in [LOT15, Section 4.1]. However, the authors do not relate the cohomology

algebra of the strands algebra with the higher Auslander algebra �=,3 .

Theorem 3.1.21 is a consequence of the following results:

Proposition 3.1.23. Let �, � ∈ ( n
3 ) be such that � ≤ � and let [4, c� �

0
] be the corresponding Bruhat

interval. There are isomorphisms of graded k-modules

�∗(hom(�, �)) �
{

k(0) if c� �
0

= 4,

0 otherwise.

In particular, the differential graded k-algebra B=,3 has its cohomology concentrated in degree 0:

�∗(B=,3) = �0 (B=,3).

Proof. Let �, � ∈ ( n
3 ). By Proposition 3.1.19 the cochain complex hom(�, �) is isomorphic to� [4, c� �

0
].

By Proposition 3.1.23 the latter complex is acyclic if the permutation c� �
0

is nontrivial and is otherwise

isomorphic to the ground ring k placed in cohomological degree 0. The claim follows. �

Remark 3.1.24. The analogue in characteristic 2 of Proposition 3.1.23 is proven in [LOT15, Proposition

4.2], where, in the case c� �
0

≠ 4, the authors construct an explicit null-homotopy of the identity morphism

of the cochain complex hom(�, �). In order to avoid the sign considerations involved in constructing an

explicit null-homotopy in arbitrary characteristic, we have opted for the alternative approach hinted at

in [LOT15, Remark 4.4].

Proposition 3.1.25. There is an isomorphism of (ungraded) k-algebras

�0(B=,3) � �=,3 .

Proof. Let �, � ∈ ( n
3 ). By construction, there is an isomorphism of graded k-modules

B
0
=,3 =

⊕
� ,� hom0(�, �) �

⊕
� ≤� k · 4� � ,

where 4� � ∈ [4, c� �
0
] is the trivial permutation. Notice that the right-hand side can be identified with the

underlying k-module of the incidence k-algebra of the poset ( n
3 ). Comparing the multiplication laws

on both sides, we conclude that the isomorphism is in fact an isomorphism of (ungraded) k-algebras.

Let �, � ∈ ( n
3 ) be such that � ≤ � and let 4� � ∈ [4, c� �

0
] be the trivial permutation (which we identify

with the unique equivalence class of strand diagrams � → � with no crossings). Suppose that there

exists an index 1 ≤ 0 < 3 such that 90 ≥ 80+1. We claim that 4� � = 0 in �0(B=,3) in this case. Indeed,

the simple transposition B0 = (0 + 1, 0) lies in [4, c� �
0
], since

80 ≤ 90 < 90+1 = 9B0 (0) and 80+1 ≤ 90 = 9B0 (0+1) ,
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where the inequalities on the left-hand side hold by definition and the inequality on the right-hand side

holds by assumption. Clearly, m (i) = 4� � for any strand diagram i such that ci = B0. The claim follows.

This argument shows that the given isomorphism of (ungraded) k-algebras between B
0
=,3 and⊕

� ≤� k · 4� � maps the image of the differential on the left-hand side to the submodule

〈4� � | ∃0 : 90 ≥ 80+1〉

on the right-hand side. Comparing with the definition of the higher Auslander algebra �=,3 , the claim

follows. �

We now give the proof of Theorem 3.1.21:

Proof of Theorem 3.1.21. According to Proposition 3.1.23, the differential graded algebra B=,3 has its

cohomology concentrated in degree 0. This immediately implies that the canonical morphism

B=,3 �0(B=,3)≃

is a quasi-isomorphism. Finally, Proposition 3.1.25 shows that there is an isomorphism of (ungraded)

k-algebras �0(B=,3) � �=,3 . �

3.2. The quasi-equivalence W
(3)
= ≃ perf (�=,3)

Notation 3.2.1. For 1 ≤ 8 ≤ =, we introduce the notation

!8 ≔ !08 .

More generally, for � ∈ ( n
3 ) we introduce the Lagrangian

!� ≔
∏3
0=1 !80 =

∏3
0=1 !080

in Sym3 (D \ Λ=) and define

A=,3 ≔
⊕

� ,� hom(!� , !� )

(the precise grading structures on these Lagrangians are determined in Proposition 3.2.6); we remind the

reader thatA=,3 is a differential graded k-algebra – that is, the higher products vanish (see Section 2.1.6).

The following proposition is an immediate consequence of Theorem 2.1.2:

Proposition 3.2.2. The collection {!� | � ∈ ( n
3 )} generates the partially wrapped Fukaya category

W
(3)
= as an idempotent-complete triangulated �∞-category. In particular, there is a quasi-equivalence

of triangulated �∞-categories

perf (A=,3) W
(3)
= ,

≃
A=,3

⊕
� !� .

In this section we establish the following quasi-equivalence:

Theorem 3.2.3. Let = ≥ 3 ≥ 1. There is a quasi-isomorphism of differential graded k-algebras

A=,3 �=,3 .
≃

Thus, there exists a quasi-equivalence of triangulated �∞-categories

perf (�=,3) W
(3)
= ,

≃
�=,3

⊕
� !� .

Corollary 3.2.4. The differential graded k-algebras and A=,3 and B=,3 are related by a zigzag of
quasi-isomorphisms

A=,3 �=,3 B=,3 .
≃ ≃
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Proof. This is an immediate consequence of Theorems 3.1.21 and 3.2.3. �

3.2.1. Grading structures

Our first task toward the proof of Theorem 3.2.3 consists of constructing suitable grading structures on

the Lagrangians {!� | � ∈ ( n
3 )}.

Proposition 3.2.5. Let 4 ∈ S3 be the trivial permutation. The following statements hold:

1. Let �, � ∈ ( n
3 ). There are isomorphisms of (ungraded) k-modules

hom(!� , !� )4 �
{

k · 5� � if � ≤ �;

0 otherwise.

2. There is an isomorphism of (ungraded) k-algebras between

A
0
=,3 =

⊕
� ,� hom(!� , !� )4

and the incidence k-algebra of the poset ( n
3 ).

Proof. Recall that

hom(!� , !� )4 = hom(!81 , ! 91 ) ⊗ · · · ⊗ hom(!83 , ! 93 ).

Statement 1 follows immediately from formula (2.3.1), since the condition that 80 ≤ 90 for all 1 ≤ 0 ≤ 3

is precisely the condition that � ≤ � in the poset ( n
3 ).

We now prove statement 2. The isomorphism of (ungraded) k-modules

A
0
=,3 �

⊕
� ≤� k · 5� �

induces a product operation on the right-hand side of the form

5 � ◦ 5� � = Y� � 5 � ,

where the sign Y� � = ±1 is in general difficult to determine, as it is induced by the orientation of

certain moduli spaces of holomorphic disks. We claim that by possibly replacing some of the generators

with their negatives, we can assume that all these signs are positive (note that this immediately proves

statement 2). We proceed inductively. For 3 = 1 and = ≥ 3, the poset ( n
3 ) is isomorphic to a chain

with = elements. It is clear that we can inductively choose signs on the generators 58+1,8 : {8} → {8 + 1}
to ensure that all signs are positive in this case. Let now 3 > 1 and suppose that we have proven the

claim for all 3 − 1 and = ≥ 3 − 1. Observe first that
(

n−1
3

)
is a convex subset of ( n

3 ) – that is, a subset

closed under the passage to closed intervals. Similarly, the map � ′ ↦→ � ′ ∪ {=} induces an isomorphism

between
(

n−1
3−1

)
and the convex subset

( n
3 )= = {� ∈ ( n

3 ) | = ∈ �}

of ( n
3 ). Thus, by induction we can assume that the product of generators indexed by elements of either

of these subsets involves only positive signs (where we only allow for products of generators indexed

by elements of the same convex subset). Let

�min = {1, . . . , 3} and  max = {= − 3 + 1, . . . , = − 1, =}

be the minimal and the maximal elements in ( n
3 ), respectively. For each pair � <  such that � ∈

(
n−1
3

)

and  ∈ ( n
3 )=, replacing the generator 5 � with its negative if necessary, we can assume that

5 � ◦ 5� �min = 5 �min

(note that if � = �min this imposes no condition on the generator 5 � = 5 �min ). Let � <  be as before

and � ≤ � (so in particular � ∈
(

n−1
3

)
); we claim that

5 � ◦ 5� � = 5 � .
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Indeed,

5 �min = 5 � ◦ 5� �min

= 5 � ◦ ( 5� � ◦ 5� �min )
= ( 5 � ◦ 5� � ) ◦ 5� �min

= Y� � 5 � ◦ 5� �min = Y
�
 � 5 �min ,

and therefore Y� � = 1. Now, for each  ∈ ( n
3 )=, replacing the generator 5 �min with its negative if

necessary, we can assume that

5 max ◦ 5 �min = 5 max�min .

Let  ≤  ′ (so in particular  ′ ∈ ( n
3 )=); we claim that

5 ′ ◦ 5 �min = 5 ′�min .

Indeed,

5 max�min = 5 max ◦ 5 �min

= ( 5 max ′ ◦ 5 ′ ) ◦ 5 �min

= 5 max ′ ◦ ( 5 ′ ◦ 5 �min )
= Y  ′�min

5 max ′ ◦ 5 ′�min = Y
 
 ′�min

5 max�min ,

and therefore Y  ′�min
= 1. We can then proceed similarly as before to show that

5 ′ ◦ 5 � = 5 ′�

for all � <  ≤  ′ such that � ∈
(

n−1
3−1

)
and  ,  ′ ∈ ( n

3 )=, which is what we needed to show. This

proves the claim for all = ≥ 3, and by induction on 3, the general case follows. �

Proposition 3.2.6. Let 4 ∈ S3 be the trivial permutation. Up to simultaneous shift, there exist unique
grading structures on the Lagrangians {!� | � ∈ ( n

3 )} such that the graded k-algebra
⊕

� ,� hom(!� , !� )4 =
⊕

� ≤� hom(!� , !� )4

is concentrated in degree 0 (for an explanation of the notation
⊕

� ,� hom(!� , !� )4, see equa-
tion (2.1.2)).

Proof. According to Proposition 3.2.5, there is an isomorphism of (ungraded) k-algebras between⊕
� ,� hom(!� , !� )4 and the incidence k-algebra of the poset ( n

3 ). In particular, for subsets � ≤ � ≤  

in ( n
3 ), the composition map

hom(! , !� )4 ⊗ hom(!� , !� )4 hom(!� , ! )4≃

is an isomorphism of graded k-modules (after choosing arbitrary grading structures on the correspond-

ing Lagrangians).

Fix an arbitrary grading structure on the Lagrangian !1· · ·3 . For � ∈ ( n
3 ) equip the Lagrangian !�

with the unique grading structure such that the graded k-module

hom(!1· · ·3 , !� ) � k

is concentrated in degree 0 (notice that {1, . . . , 3} is the smallest element in the poset ( n
3 )). We claim

that this choice of grading structures has the desired property. Indeed, if � ∈ ( n
3 ) is such that � ≤ �,

then the composition map

hom(!� , !� )4 ⊗ hom(!1· · ·3 , !� )4 hom(!1· · ·3 , !� )4≃
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is an isomorphism of graded k-modules. Since, by construction, the graded k-modules

hom(!1· · ·3 , !� )4 and hom(!1· · ·3 , !� )4

are concentrated in degree 0, the graded k-module hom(!� , !� )4 must be concentrated in degree 0 as

well. Since the shift functor on W
(3)
= induces a free and transitive action on the set of grading structures

on the Lagrangian !1· · ·3 , the argument also shows that up to global shift, there is a unique choice of

grading structures with the required property. �

3.2.2. The proof of Theorem 3.2.3

Notation 3.2.7. Once and for all, we fix grading structures on the Lagrangians {!� | � ∈ ( n
3 )} as in

Proposition 3.2.6.

Proposition 3.2.8. Let �, � ∈ ( n
3 ). There are isomorphisms of graded k-modules

hom(!� , !� ) �
{

hom(�, �) if � ≤ �,

0 otherwise.

In particular, the differential graded k-algebra A=,3 has its cohomology concentrated in degree 0:

�∗(A=,3) = �0 (A=,3).

Proof. By formula (2.3.1) and Proposition 3.1.19, there is an isomorphism of (ungraded) k-modules

⊕
c∈S3

hom(!� , !� ) c =
⊕

c∈[4, c��
0

] hom(!� , !� ) c �
⊕

c∈[4, c��
0

] k · c.

Moreover, since the Lagrangians {!� | � ∈ ( n
3 )} all have an endpoint in the same boundary component,

the results in [Aur10b] show that the differential on a morphism 5 ∈ hom(!� , !� ) lies in the k-module

⊕
inv(c)=inv(c′)+1 hom(!� , !� ) c

′
.

Since, by Proposition 3.2.6, the graded k-module hom(!� , !� )4 is concentrated in degree 0, arguing by

induction on the number of inversions of c (and taking into account that the differential is a morphism of

degree −1) we conclude that hom(!� , !� ) c is concentrated in degree − inv(c). Thus, the isomorphism

can be promoted to an isomorphism of graded k-modules. The claim then follows, since the Bruhat

interval [4, c� �
0
] is nonempty if and only if � ≤ � (see Lemma 3.1.4). The proof of Proposition 3.1.23

applies verbatim to show that A=,3 has its cohomology concentrated in degree 0. �

We now give the proof of Theorem 3.2.3:

Proof of Theorem 3.2.3. By Proposition 3.2.8, the differential graded k-algebra A=,3 has its cohomol-

ogy concentrated in degree 0:

�∗(A=,3) � �0(A=,3).

In particular, the canonical map

A=,3 �0(A=,3)≃

is a quasi-isomorphism. By Proposition 3.2.5 there is an isomorphism of ungraded k-algebras between

A
0
=,3 and the incidence k-algebra of the poset ( n

3 ). The same argument used in the proof of Proposi-

tion 3.1.25 then shows that there is an isomorphism of ungraded k-algebras between �0 (A=,3) and the
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higher Auslander algebra �=,3 . The existence of the required quasi-equivalence

perf (�=,3) W
(3)
= ,

≃
�=,3

⊕
� !� ,

follows from Proposition 3.2.2. �

3.3. The quasi-equivalence W
(3)
= ≃ perf (�∨

=,3
)

Notation 3.3.1. For 1 ≤ 8 ≤ = we introduce the notation

!∨8 ≔ !8−1,8 .

More generally, for � ∈ ( n
3 ) we introduce the Lagrangian

!∨� ≔
∏3
0=1 !

∨
80

=
∏3
0=1 !80−1,80

in Sym3 (D \ Λ=). We equip this Lagrangian with the unique grading structure such that the apparent

morphism

!� =

3∏

0=1

!0,80

3∏

0=1

!80−1,80 = !∨� ,

given by the Reeb chords !0,80 → !80−1,80 induced by the Reeb flow along the boundary component of

D \ Λ= labelled 80, is a morphism of degree 0. Finally, we define the differential graded k-algebra

A
∨
=,3 ≔

⊕
� ,� hom(!∨� , !∨� ).

The following proposition is an immediate consequence of Theorem 2.1.2:

Proposition 3.3.2. The collection {!∨� | � ∈ ( n
3 )} generates the partially wrapped Fukaya category

W
(3)
= as an idempotent-complete triangulated �∞-category. Thus, there exists a quasi-equivalence of

triangulated �∞-categories

perf (A∨
=,3) W

(3)
= ,

≃
A

∨
=,3

⊕
� !

∨
� .

In this section we establish the following equivalences:

Theorem 3.3.3. Let = ≥ 3 ≥ 1. There is an isomorphism of �∞-algebras A
∨
=,3 � �∨

=,3
and, conse-

quently, a quasi-equivalence of triangulated �∞-categories

perf(�∨
=,3) W

(3)
= ,

≃
�∨
=,3

⊕
� !

∨
� ,

where �∨
=,3 denotes the Koszul dual of the (augmented) k-algebra �=,3 . Moreover, there is a commutative

diagram

perf (�∨
=,3

) perf (�=,3)

W
(3)
=

Koszul duality

of quasi-equivalences between triangulated �∞-categories.
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Proof. By Theorem 3.2.3 and Propositions 3.3.2 and 3.2.2, it is enough to show that the collections

{!� | � ∈ ( n
3 )} and {!∨� | � ∈ ( n

3 )} are Koszul duals of each other; this is the content of Proposi-

tion 3.3.10. Indeed, a theorem of Keller concerning the derived Morita equivalence between Koszul

dual differential graded k-algebras which are homologically smooth and proper over k yields the desired

quasi-equivalences (see [Kel94, Section 10.5]). �

3.3.1. Standard resolutions in W
(3)
=

We recall the existence of certain exact triangles in W
(3)
= (see [Aur10b, Lemma 5.2] for details).

Lemma 3.3.4 (Auroux). Let 0 ≤ 8 < 9 < : ≤ =. The following statements hold (with respect to a
suitable choice of grading structures on the corresponding Lagrangians):

1. There is an exact triangle

!8 9 !8: ! 9: !8 9 [1]

in the partially wrapped Fukaya category W
(1)
= .

2. More generally, let ! be the product of 3 − 1 pairwise disjoint properly embedded arcs in D \ Λ=
which are not homotopic to any of the arcs !8 9 , !8: , ! 9: . There is a nonsplit exact triangle

! × !8 9 ! × !8: ! × ! 9: (! × !8 9 ) [1]

in the partially wrapped Fukaya category W
(3)
= .

3. Suppose that 3 ≥ 2. Let ! be the product of 3 − 2 pairwise disjoint properly embedded arcs in
D \ Λ= which are not homotopic to any of the arcs !8 9 , !8: , ! 9: . There is a quasi-isomorphism

! × !8 9 × !8: ! × !8 9 × ! 9:≃

in the partially wrapped Fukaya category W
(3)
= .

Lemma 3.3.4 has several useful corollaries. To state them, it is convenient to introduce the following

notation:

Notation 3.3.5. Let n+ = {0, 1, . . . , =}. The map

� � ≔ {0} ∪ �

identifies ( n
3 ) with the subset of

( n+
3+1

)
consisting of those (3 + 1)-element subsets � ⊆ n+ such that

0 ∈ �. For � = {80 < 81 < · · · < 83} in
( n+
3+1

)
, we introduce the Lagrangian

!� =
∏3
0=1 !80 ,80

in Sym3 (D \ Λ(3)
= ). Thus the set {!� | � ∈ ( n

3 )} of generators of W
(3)
= can be identified with the set

{!� | � ∈
( n+
3+1

)
: 0 ∈ �}.

Finally, for a subset � ∈
( n+
3+1

)
such that 0 ∉ �, we introduce the subsets

�0 = {0} ∪ (� \ {80}), 0 ≤ 0 ≤ 3,

together with the corresponding Lagrangians !�0 , which, by construction, belong to the set of generators

of W
(3)
= .
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Corollary 3.3.6. Let � ∈
( n+
3+1

)
be such that 0 ∉ �. For each 0 ≤ 0 ≤ 3, there is an exact triangle

!80−1 ,80 ×∏
1≠0,0+1 !81−1 ,81 !80−1 ,80+1

×∏
1≠0,0+1 !81−1 ,81

!80 ,80+1
×∏

1≠0,0+1 !81−1 ,81
1

in the partially wrapped Fukaya category W
(3)
= , where the middle term is quasi-isomorphic to !�: .

Proof. This is a special case of Lemma 3.3.4(3.3.4) for the triple 0 ≤ 80−1 < 80 < 80+1 ≤ =, where

8−1 = 0 by convention. �

Corollary 3.3.7. Let � ∈
( n+
3+1

)
. There is a quasi-isomorphism

!� !80 ,81 × !81 ,82 × · · · × !83−1 ,83
≃

in the partially wrapped Fukaya category W
(3)
= . In particular, if 0 ∉ �, there is a quasi-isomorphism

!�0 !80−1 ,80+1
×∏

1≠:,:+1 !81−1 ,81
≃

in W
(3)
= for each 0 ≤ 0 ≤ 3.

Proof. The existence of the claimed quasi-isomorphism follows by iterative application of the quasi-

isomorphisms in Lemma 3.3.4(3.3.4). �

Corollary 3.3.8. Fix grading structures on the standard generators of W(3)
= as in Proposition 3.2.6. Let

� ∈
( n+
3+1

)
be such that 0 ∉ �. Then the object !� of W(3)

= admits a (triangulated) resolution of the form

!�3−1
· · · !�1 !�0

!�3 -3−1 · · · -2 -1 !� ,1 1 1

where the grading structure on !� is uniquely determined by the requirement that the morphism
!�0 → !� be of degree 0.

Proof. The required resolution is obtained by splicing together the exact triangles from Corollary 3.3.6

in the apparent manner. The existence of a unique grading structure on the Lagrangian !� with the

desired property is clear because the grading structure on the Lagrangian !�0 is already fixed. �

3.3.2. Koszul duality for W
(3)
=

Let A →
⊕C

8=1 k be an augmented differential graded k-algebra. The differential graded k-algebra

A
∨
= homA(

⊕C
8=1 k,

⊕C
8=1 k),

called the Koszul dual of A, admits a canonical augmentation A
∨ →

⊕C
8=1 k. Moreover, if A is proper

and homologically smooth over k, then there is an equivalence of differential graded k-categories

perf(A) perf(A∨),≃ ⊕C
8=1 k A

∨,

with quasi-inverse

perf (A∨) perf (A),≃ ⊕C
8=1 k A

(see [Kel94] for details).
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Lemma 3.3.9. The higher Auslander algebra �=,3 is proper and homologically smooth over k.

Proof. The higher Auslander algebra �=,3 is clearly proper over k, since its underlying k-module is

free of finite rank. To prove that �=,3 is homologically smooth over k, one can proceed as follows. First,

�=,= � k is certainly homologically smooth over k. Second, we observe that there exists a recollement

perf (�=−1,3−1) perf (�=,3) perf (�=−1,3),
8'

?!

which expresses perf(�=,3) as the upper-triangular gluing of perf (�=−1,3−1) and perf(�=−1,3) (see, for

example, [DJW19, Proposition 2.50]). Inductively, we may assume that the k-algebras �=−1,3−1 and

�=−1,3 are already known to be homologically smooth over k. The claim follows from [LS14], which

shows that the gluing of two differential graded k-categories which are homologically smooth over k is

again homologically smooth over k, provided that the gluing bimodule is perfect. To see that the gluing

functor

� ≔ 8' ◦ ?! : perf(�=−1,3) perf (�=−1,3−1)

in the recollement is indeed given by a perfect bimodule, consider the induced (homotopy) colimit-

preserving functor

L�! : D(�=−1,3) D(�=−1,3−1)

obtained by passing to the Ind-completions of perf(�=−1,3) and perf (�=−1,3−1), respectively. By con-

struction, the functor L�! preserves compact objects, and therefore its underlying bimodule is perfect

by [TV07, Lemma 2.8] (keeping in mind that the k-algebra �=−1,3 is homologically smooth over k by

the inductive hypothesis). �

Theorem 3.3.3 is an immediate consequence of the following statement:

Proposition 3.3.10. The generating collections

{!� | � ∈ ( n
3 )} and {!∨� | � ∈ ( n

3 )}

of the partially wrapped Fukaya category W
(3)
= are Koszul duals of each other.

Proof. First, note that the k-algebra �=,3 has a natural augmentation �=,3 →
⊕

� k · 5� � obtained by

taking the quotient by its two-sided ideal generated by { 5� � , � < �}. Lemmas 3.3.11 and 3.3.13 are

precisely the homological conditions which characterise the �=,3-module
⊕

� k · 5� � in the perfect

derived category perf (�=,3). Since the higher Auslander algebra �=,3 is proper and homologically

smooth over k (see Lemma 3.3.9), the claim follows. �

Lemma 3.3.11. Let �, � ∈ ( n
3 ). There are isomorphisms of graded k-modules

hom(!� , !∨� ) �
{

k(0) if � = �,

0 otherwise.

Proof. Recall that, as (ungraded) k-modules,

hom(!� , !∨� ) =
⊕

c∈S3
hom(!� , !∨� ) c ,

where

hom(!� , !∨� ) c = hom(!81 , !∨9c (1)
) ⊗ hom(!82 , !∨9c (2)

) ⊗ · · · ⊗ hom(!83 , !∨9c (3)
).
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Figure 5. Orthogonality between the generators {!� } and {!∨� } in the case where = = 5.

Moreover, there are isomorphisms of (ungraded) k-modules

hom(!8 , !∨9 ) �
{

k if 8 = 9 ,

0 otherwise.

Indeed, since by definition !8 = !0,8 and !∨9 = ! 9−1, 9 , there is an isomorphism !8 → !∨9 if and only

if 8 = 9 (note that if 9 − 1 = 0 and 8 ≤ 9 , we must have 8 = 9 = 1). It follows readily from the latter

isomorphisms that the graded k-module hom(!� , !∨� ) c is nonzero if and only if � = � and c = 4 is the

trivial permutation; see Figure 5 for an illustration in the case where = = 5. Finally, the grading structure

on the Lagrangian !∨� is, by definition, the unique grading structure such that the graded k-module

hom(!� , !∨� ) � k

is concentrated in degree 0. The claim follows. �

We introduce the following auxiliary notation:

Notation 3.3.12. The function � ↦→ ∑3
0=1 80 endows the poset ( n

3 ) ⊂ N3 with the structure of a graded

poset. For our purposes it is more convenient to consider the (normalised) rank function

rk(�) ≔ ∑3
0=1(80 − 0),

obtained from the usual rank function by subtracting from it the rank of the minimal element {1, . . . , 3}
of ( n

3 ).

Lemma 3.3.13. Let �, � ∈ ( n
3 ). There are isomorphisms of graded k-modules

hom(!∨� , !∨� ) �
{

k(rk(�) − rk(�)) if ∀0 : 0 ≤ 90 − 80 ≤ 1,

0 otherwise.

In particular, the graded k-algebra

A
∨
=,3 =

⊕
� ,� hom(!∨� , !∨� )

is generated in cohomological degrees 0 and 1.
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Figure 6. Auxiliary morphisms in the proof of Lemma 3.3.13.

Proof. Recall that, as (ungraded) k-modules,

hom(!∨� , !∨� ) =
⊕

c∈S3
hom(!∨� , !∨� ) c ,

where

hom(!∨� , !∨� ) c = hom(!∨91 , !
∨
8c (1)

) ⊗ hom(!∨92 , !
∨
8c (2)

) ⊗ · · · ⊗ hom(!∨93 , !
∨
8c (3)

).

Moreover, by formula (2.3.2) there are isomorphisms of (ungraded) k-modules

hom(!∨9 , !∨8 ) �
{

k if 0 ≤ 9 − 8 ≤ 1,

0 otherwise.

It readily follows that there are isomorphisms of (ungraded) k-modules

hom(!∨� , !∨� ) �
{

k if ∀0 : 0 ≤ 90 − 80 ≤ 1,

0 otherwise.

It remains to show that if 0 ≤ 90−80 ≤ 1, then the graded k-module hom(!∨� , !∨� ) is in fact concentrated

in degree rk(�) − rk(�) ≥ 0. We consider first the following special case: there exists an index 8 ∈ � such

that � = (� \ {8}) ∪ {8 + 1}. For simplicity, we set

! =
∏
:∈� \{8 } !: =

∏
:∈�\{8+1} !:

and

!∨ =
∏
:∈� \{8 } !

∨
:
=
∏
:∈�\{8+1} !

∨
:
.

Consider now the morphism of exact triangles

!0,8 !0,8+1 !8,8+1 !0,8 [1]

!8−1,8 !8−1,8+1 !8,8+1 !8−1,8 [1]

in the partially wrapped Fukaya category W
(1)
= (see Figure 6 for an illustration depicting the relevant

morphisms). We analyse the induced commutative diagram
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!8 × ! !8+1 × ! !∨
8+1

× ! (!8 × !) [1]

!∨8 × !∨ !8−1,8+1 × !∨ !∨
8+1

× !∨ (!∨8 × !∨) [1],

which takes place in the partially wrapped Fukaya category W
(3)
= . We make the following observations:

◦ By assumption, the morphism !8 × ! → !8+1 × ! is of degree 0 (see Proposition 3.2.6). In

particular, by Lemma 3.3.4 there exists a grading structure on the Lagrangian !∨8+1
× ! such that

the top row of the diagram is an exact triangle (with all morphisms of degree 0).

◦ The morphisms

(!8 × !) [1] (!∨8 × !∨) [1]

and

!8+1 × ! !∨8+1
× ! !∨8+1

× !∨

are of degree 0 by our choice of grading structures on the Lagrangians

!∨� = !∨8 × !∨ and !∨� = !∨8+1 × !∨.

In particular, the morphism

!∨
8+1

× ! !∨
8+1

× !∨

is of degree 0 as well.

◦ We conclude that the bottom row in the commutative square

!8+1 × ! (!8 × !) [1]

!∨8+1
× !∨ (!∨8 × !∨) [1]

must be given by a morphism of degree 0, and consequently, the morphism !∨� → !∨� must be a

morphism of degree 1 = rk(�) − rk(�).

This proves the claim in this special case.

We now return to the general case of two subsets �, � ∈ ( n
3 ) such that the inequality 0 ≤ 90 − 80 ≤ 1

is satisfied for all 1 ≤ 0 ≤ 3. Write

� = (� ∩ �) ∪ { 901
, . . . , 90A },

where 80C ∈ � and 90C − 80C = 1; note that A = rk(�) − rk(�). The apparent morphism !∨� → !∨� factorises

as the composite of the A morphisms

∏B
C=1 !

∨
80C

×∏A
C=B+1 !

∨
90C

×∏
:∈�∩� !

∨
:

∏B−1
C=1 !

∨
80C

×∏A
C=B !

∨
90C

×∏
:∈�∩� !

∨
:
,

indexed by A ≥ B ≥ 1. Since each of these morphisms has degree 1 by the previous argument, the

morphism !∨� → !∨� has degree A = rk(�) − rk(�), which is what we needed to prove. �
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3.4. The quasi-equivalence W
(3)
= ≃ perf(�=,=−3)

Notation 3.4.1. For � ∈ ( n
3 ) we introduce the (graded) Lagrangian

!
♯
� ≔ !∨� [− rk(�)]

in Sym3 (D \ Λ=) and define the differential graded k-algebra

A
♯
=,3
≔

⊕
� ,� hom(!♯� , !

♯
� ).

The following proposition is an immediate consequence of Theorem 2.1.2:

Proposition 3.4.2. The collection {!♯� | � ∈ ( n
3 )} generates the partially wrapped Fukaya category

W
(3)
= as an idempotent-complete triangulated �∞-category. Thus there exists a quasi-equivalence of

triangulated �∞-categories

perf (A♯
=,3

) W
(3)
= ,

≃
�=,=−3

⊕
� !

♯
� .

In this section we establish the following quasi-equivalence:

Theorem 3.4.3. Let = ≥ 3 ≥ 1. There is an isomorphism of differential graded k-algebras A
♯
=,3
�

�=,=−3 . Thus there is a quasi-equivalence of triangulated �∞-categories

perf (�=,=−3) W
(3)
= ,

≃
�=,=−3

⊕
� !

♯
� .

Lemma 3.4.4. The graded k-algebra A
♯
=,3

is concentrated in degree 0.

Proof. Let �, � ∈ ( n
3 ). By Lemma 3.3.13, the graded k-module hom(!∨� , !∨� ) either vanishes or is

concentrated in degree rk(�) − rk(�). Consequently, the graded k-module

hom(!♯� , !
♯
� ) = hom(!∨� [− rk(�)], !∨� [− rk(�)])
� hom(!∨� , !∨� [rk(�) − rk(�)])
� hom(!∨� , !∨� ) (rk(�) − rk(�))

is concentrated in degree 0. The claim follows. �

The proof of the following combinatorial statement is straightforward and is left to the reader:

Lemma 3.4.5. Let = > 3 ≥ 1 and �, � ∈ ( n
3 ). We let

�◦ = n \ � = {D1 < · · · < D=−3} and �◦ = n \ � = {E1 < · · · < E=−3}.

The inequalities 0 ≤ 90 − 80 ≤ 1 are satisfied for all 1 ≤ 0 ≤ 3 if and only if �◦ ≤ �◦ and E1 < D1+1 for
all 1 ≤ 1 < = − 3.

We are ready to prove Theorem 3.4.3.
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Proof of Theorem 3.4.3. First, by Lemmas 3.4.4 and 3.3.13 there are isomorphisms of k-modules

hom(!♯� , !
♯
� ) �

{
k · 6� � if ∀ 0 : 0 ≤ 90 − 80 ≤ 1,

0 otherwise.

Let

�◦ = n \ � = {D1 < · · · < D=−3} and �◦ = n \ � = {E1 < · · · < E=−3}.

By Lemma 3.4.5, the condition that 0 ≤ 90 − 80 ≤ 1 for all 1 ≤ 0 ≤ 3 is equivalent to the condition

that �◦ ≤ �◦ and E1 < D1+1 for all 1 ≤ 1 < = − 3. Keeping in mind the poset anti-isomorphism

( n
3 ) → ( n

=−3 ), � ↦→ �◦, we see that the underlying k-modules of the k-algebras A
♯
=,3

and �=,=−3 can be

identified. Comparing the multiplication laws on both sides, we conclude that there is an isomorphism

of k-algebras

A
♯
=,3

=
⊕

� ,� hom(!♯� , !
♯
� ) � �=,=−3 .

The existence of the required quasi-equivalence follows from Proposition 3.4.2. �

3.5. The Serre functor and Iyama’s cluster tilting subcategory of W
(3)
=

In this section we give a simple geometric description of the Serre functor on the partially wrapped

Fukaya category W
(3)
= and use it to describe a distinguished subcategory first investigated by Iyama in

the context of higher Auslander–Reiten theory. Throughout this subsection, we assume that k is a field.

3.5.1. Geometric description of the Serre functor on W
(3)
=

For definiteness, let D be the 2-dimensional unit disk and Λ= be the set of (= + 1)th roots of unity.

Observe that there is a symplectomorphism D→ D, given by counterclockwise rotation by 2c
=+1 , which

cyclically permutes the set Λ= of stops. Passing to symmetric products, we obtain a symplectomorphism

A : Sym3 (D) Sym3 (D)�

which preserves Λ
(3)
= . To extract an autoequivalence of W

(3)
= from A we need to lift it to a graded

symplectomorphism; since �1(Sym3 (D)) = 0, there is no obstruction to the existence of such a graded

lift, and all possible graded lifts of A form a Z-torsor (see [Sei00]). Each graded lift of A induces an

autoequivalence

r : W
(3)
= W

(3)
= ;

≃

different choices of graded lifts of A induce autoequivalences that differ only by a power of the shift functor

on W
(3)
= . The next proposition shows that a particular graded lift of A gives rise to an autoequivalence r

of W
(3)
= that agrees with its Serre functor on W

(3)
= :

Proposition 3.5.1. Let k be a field. Let D be the 2-dimensional unit disk and Λ= be the set of (= + 1)th
roots of unity. Let A : D → D be the symplectomorphism given by counterclockwise rotation by 2c

=+1 .
There exists a graded lift of the induced symplectomorphism

A : Sym3 (D) Sym3 (D)�
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such that the induced diagram of �∞-functors

W
(3)
= perf(�=,3)

W
(3)
= perf(�=,3)

≃

r S

≃

commutes, where

S = − ⊗L
�=,3

Homk (�=,3 , k) : perf (�=,3) perf (�=,3)≃

is the Serre functor on perf(�=,3) and both horizontal quasi-equivalences are the quasi-equivalence
from Theorem 3.2.3.

Proof. Let � ∈
(

n+1
3+1

)
be such that 0 ∈ � and let 5� � be the corresponding idempotent in �=,3 . The image

of the right module 5� � �=,3 under the composite

perf (�=,3) W
(3)
= W

(3)
=

≃ r

is the object

r!� =
∏3
0=1 A!0,80 =

∏3
0=1 !80−1,=.

Iterated application of Lemma 3.3.4 yields a quasi-isomorphism r!� ≃ !A � , where

A � = {81 − 1, . . . , 83 − 1, =} ∈
(

n+1
3+1

)
.

It is straightforward to verify that the standard resolution of the object !A � provided by Corollary 3.3.8

corresponds to the minimal projective resolution of the injective right �=,3-module � (�=,3 5� � ), as

described, for example, in [OT12, Proposition 3.17] or [JK19, Proposition 2.7]. It follows that the

restriction of the composite

perf (�=,3) W
(3)
= W

(3)
= perf (�=,3)≃ r ≃

to the full subcategory of perf (�=,3) spanned by the regular representation �=,3 agrees with the Serre

functor on perf(�=,3) up to a power of the shift, corresponding to a choice of a graded lift of the

symplectomorphism A : Sym3 (D) → Sym3 (D). The claim follows. �

Remark 3.5.2. The geometric description of the Serre functor onW
(3)
= given in Proposition 3.5.1 makes

it apparent that its (=+1)th iteration must be a power of the shift functor; indeed, the symplectomorphism

A=+1 : D→ D is the identity. More precisely, there is a quasi-isomorphism

S=+1 ≃ [3 (= − 3)]

of functors W
(3)
= → W

(3)
= expressing the known fractionally Calabi–Yau property of the quasi-

equivalent category perf (�=,3) (see [HI11] for details). Note that this power of the shift is invariant under

the passage 3 ↦→ = − 3, in agreement with the quasi-equivalence W
(3)
= ≃ W

(=−3)
= from Theorem 3.3.3.

3.5.2. Geometric description of Iyama’s 3-cluster-tilting subcategory of W
(3)
=

Notation 3.5.3. For an idempotent complete �∞-categoryA admitting finite direct sums and a collection

X of objects of A, we let addX be the smallest full subcategory of A which is idempotent complete, is

closed under finite direct sums and contains X.
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As explained in the introduction, [Iya11, Theorem 1.18] – one of the main results of that paper –

shows that the higher Auslander algebra �=,3 is a 3-Auslander algebra in the sense that it satisfies the

inequalities

gl. dim �=,3 ≤ 3 ≤ dom. dim �=,3 .

As a consequence of the Auslander–Iyama correspondence [Iya07a] and [Iya11, Theorem 1.23], the

subcategory

U(�=,3) ≔ add{S:3 (�=,3) | : ∈ Z}

is a so-called 3Z-cluster-tilting subcategory [Iya07b, IJ17] of the triangulated category �0(perf (�=,3)),
where

S = − ⊗L
�=,3

Homk (�=,3 , k) : perf (�=,3) perf(�=,3)≃

is the Serre functor and S3 = S[−3]. By definition, this means that a perfect complex - lies in U(�=,3)
if and only if

∀: ∉ 3Z and ∀" ∈ U(�=,3) : Hom(-, " [:]) = 0

if and only if

∀: ∉ 3Z and ∀" ∈ U(�=,3) : Hom(", - [:]) = 0.

This kind of subcategory plays an important role in higher Auslander–Reiten theory and in a higher-

dimensional version of homological algebra. For example, as shown by Geiss, Keller and Oppermann

[GKO13], the additive category �0 (U(�=,3)), equipped with the 3-fold shift functor [3], has the

structure of a (3 + 2)-angulated category. Similarly, the subcategory

M(�=,3) ≔ U(�=,3) ∩ mod(�=,3) ⊆ mod(�=,3)

is a 3Z-cluster-tilting subcategory of the abelian category mod(�=,3) of finite-dimensional �=,3-

modules, which implies that M(�=,3) is a 3-abelian category in the sense of [Jas16]. In some sense, the

homological properties of these subcategories can be thought of as ‘witnesses’ to the higher-dimensional

nature of the k-algebra �=,3 .

Under the quasi-equivalence perf (�=,3) ≃ W
(3)
= from Theorem 3.2.3, the subcategory U(�=,3) of

perf (�=,3) induces a 3Z-cluster-tilting subcategory of the partially wrapped Fukaya category W
(3)
=

which we describe later.

Proposition 3.5.4. Let k be a field. Fix grading structures on the Lagrangians {!� | � ∈ ( n
3 )} as in

Proposition 3.2.6. Fix the grading structure on the symplectomorphism A : Sym3 (D) → Sym3 (D) from
Proposition 3.5.1 so that the induced autoequivalence

r : W
(3)
= W

(3)
=

≃

is the Serre functor, and define r3 ≔ r [−3]. The full subcategory

U
(3)
= ≔ add{r:3 (!� ) | � ∈ ( n

3 ) , : ∈ Z}

of W(3)
= is a 3Z-cluster-tilting subcategory of �0(W(3)

= ).
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Proof. Note that �=,3 ↦→
⊕

� !� under the quasi-equivalence perf (�=,3) ≃ W
(3)
= , from Theorem 3.2.3.

Moreover, Proposition 3.5.1 implies the existence of a commutative diagram

perf (�=,3) W
(3)
=

perf (�=,3) W
(3)
= .

≃

S3
r3

≃

Therefore, U(�3,=) corresponds to U
(3)
= under the quasi-equivalence perf (�=,3) ≃ W

(3)
= . The claim

follows. �

Remark 3.5.5. The indecomposable objects in the 3Z-cluster-tilting subcategory U
(3)
= of W

(3)
= are

represented by the 3-fold shifts of the Lagrangians {!� | � ∈
( n+
3+1

)
} (equipped with grading structures

as in Corollary 3.3.8). Since U
(3)
= is a 3Z-cluster-tilting subcategory of the partially wrapped Fukaya

category W
(3)
= , an object - lies in the 3Z-cluster-tilting subcategory U

(3)
= if and only if

∀: ∉ 3Z and ∀! ∈ U
(3)
= : Hom(-, ! [:]) = 0

if and only if

∀: ∉ 3Z and ∀! ∈ U
(3)
= : Hom(!, - [:]) = 0.

In particular, given �, � ∈
(

n+1
3+1

)
, the extension space Hom(!� , !� [:]) vanishes for all : ∉ 3Z.

Remark 3.5.6. Oppermann and Thomas [OT12] provide a beautiful classification of the Miyashita

tilting modules [Miy86] which belong to the 3-cluster-tilting subcategory

M(�=,3) = U(�=,3) ∩ mod(�=,3)

of mod(�=,3) in terms of triangulations of a 23-dimensional cyclic polytope with = + 3 + 1 vertices (we

remind the reader that �=,3 is associated with the Dynkin typeA=−3+1); under this bijection, the so-called

‘mutation’ of tilting modules corresponds to the bistellar flip of triangulations (see [Ram97] or [DLRS10,

Section 6.1] for further information on cyclic polytopes and their triangulations). Under the quasi-

equivalence W
(3)
= ≃ perf(�=,3) from Theorem 3.2.3, this representation-theoretic procedure provides

numerous generators for the partially wrapped Fukaya category W
(3)
= whose derived endomorphism

algebras have their cohomology concentrated in degree 0.

Remark 3.5.7. In the foregoing discussion, it is essential that we work over a field rather than over an

arbitrary commutative ring. Recall that for each 3 ≥ 1, there is a quasi-equivalence

perf(k) ≃ W
(3)
3
.

If k is a field, the triangulated category �0(perf (k)) has a 3Z-cluster-tilting subcategory

add{k[−3:] | : ∈ Z} ⊆ perf(k)

for each 3 ≥ 1, where we use the fact that the Serre functor on perf(k) is the identity functor. In contrast,

if k = Z it is easy to see that �0(perf (Z)) does not admit a 3Z-cluster-tilting subcategory for 3 > 1 (a

1Z-cluster-tilting subcategory always exists and coincides with the ambient category).

3.6. Examples

We conclude this section with some examples to illustrate our results.
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3.6.1. The quasi-equivalence W
(1)
3

≃ W
(2)
3

For simplicity, we let k be a field. We illustrate the quasi-equivalence W
(3)
= ≃ W

(=−3)
= in the simplest

nontrivial case: = = 3 and 3 = 1.

The following diagram depicts the so-called Auslander–Reiten quiver [Hap88] of the triangulated

category �0(W(1)
3

), where for simplicity we write 8 9 in place of the Lagrangian !8 9 :

· · ·

01[−1]

23[−2]

02[−1]

12[−1]

03[−1]

13[−1]

23[−1]

01

02

03

12

13

01[1]

23

02[1]

12[1]

03[1]

13[1]

23[1]

01[2].

· · ·

The vertices of the quiver correspond to the indecomposable objects in�0(W(1)
3

); the arrows correspond

to a k-basis of the space of irreducible morphisms – that is, the nonisomorphisms which cannot

be expressed as a nontrivial composite of nonisomorphisms. The dotted lines indicate the apparent

commutativity and zero relations. We have chosen grading structures on the Lagrangians so that all

depicted morphisms have degree 0. The action of the derived Auslander–Reiten translation S1 = S[−1]
is given by left horizontal translation. Finally, we have boxed the six indecomposable objects that belong

to the heart of the C-structure induced by the quasi-equivalence W
(1)
3

≃ perf (�3,1); these objects form

a complete set of representatives of the isomorphism classes of indecomposable objects in W
(1)
3

up to

the action of the shift functor.

We remind the reader that for 0 ≤ 8 < 9 < : ≤ =, there is an equivalence !8 9 × !8: ≃ !8 9 × ! 9: in

W
(2)
= induced by the exact triangle

!8 9 !8: ! 9: !8 9 [1]

in the partially wrapped Fukaya category W
(1)
= (see Lemma 3.3.4). The following diagram depicts the

Auslander–Reiten quiver of the triangulated category �0(W(2)
3

), where for simplicity we write 8 9 , :ℓ in

place of the Lagrangian !8 9 × !:ℓ :

· · ·

(02, 23) [−1]

01, 12

(03, 12) [−1]

01, 13

(12, 23) [−1]

01, 23

(01, 12) [1]

02, 23

03, 12

12, 23

(01, 13) [1]

(01, 23) [1]

(02, 23) [1]

(01, 12) [2]

(03, 12) [1]

(01, 13) [2]

(12, 23) [1]

(01, 23) [2]

(01, 12) [3]

(02, 23) [2].

· · ·

Again, we have chosen grading structures on the Lagrangians so that all depicted morphisms have degree

0. We have boxed the five indecomposable objects that belong to the heart of the C-structure induced by

the quasi-equivalence W
(2)
3

≃ perf (�3,2); together with the Lagrangian !03 × !12, these objects form a

complete set of representatives of the isomorphism classes of indecomposable objects in W
(1)
3

up to the

action of the shift functor. The indecomposable objects in the 2Z-cluster-tilting subcategory U
(2)
3

of the

triangulated category �0(W(2)
3

) are highlighted; notice that this subcategory is spanned by the (finite

direct sums of) even shifts of the four highlighted objects in the heart.

3.6.2. The 2Z-cluster-tilting subcategory of �0 (W(2)
4

)
The following diagram depicts a complete set of representatives of the isomorphism classes of inde-

composable objects in the 2Z-cluster-tilting subcategory U
(2)
4

of the triangulated category �0 (W(2)
4

)
(see Proposition 3.5.4; all other objects in this subcategory are obtained as even shifts of those

depicted):
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!01 × !02

!01 × !03

!01 × !04

0

!02 × !03

!02 × !04

0

!03 × !04

0

0

0

0

!12 × !13

!12 × !14

0

!13 × !14

0

0

0

!23 × !24.

The generators {!� } of the partially wrapped Fukaya category W
(2)
4

are boxed. In the diagram, all

squares commute; note, however, that in the �∞-category W
(2)
4

there are further higher operations

which witness the fact that the apparent rectilinear cubes are bicartesian.

3.6.3. Explicit examples in the case where = = 5

We conclude this section by displaying the endomorphism algebras

�∗(A=,3) � �=,3 and A
♯
=,3
� �=,=−3

in the case where = = 5 for all 1 ≤ 3 < =.

We begin with the k-algebras �∗(A=,3) � �=,3 . For 3 = 1 we obtain the k-algebra with generators

!1 !2 !3 !4 !5

with no relations between the morphisms. For 3 = 2, 3, we obtain the k-algebras with generators

!1 × !2 !1 × !3 !1 × !4 !1 × !5

0 !2 × !3 !2 × !4 !2 × !5

0 !3 × !4 !3 × !5

0 !4 × !5

and
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!1 × !2 × !3

!1 × !2 × !4

!1 × !2 × !5

0

!1 × !3 × !4

!1 × !3 × !5

0

!1 × !4 × !5

0

0

!2 × !3 × !4

!2 × !3 × !5

0

!2 × !4 × !5

0

!3 × !4 × !5

equipped with all possible commutativity relations. Finally, for 3 = 4, we obtain the k-algebra with

generators

∏
8≠5 !8

∏
8≠4 !8

∏

8≠3

!8
∏
8≠2 !8

∏
8≠1 !8

and such that all consecutive composites vanish. Note that this last quiver is better drawn as a maximal

path in a 4-dimensional hypercube.

We continue with the k-algebras A
♯
=,3
� �=,=−3; for simplicity, we omit the shifts on the generators

{!♯� = !∨� [− rk(�)]}. For 3 = 4, we obtain the k-algebra with generators

∏
8≠1 !8−1,8

∏
8≠2 !8−1,8

∏
8≠3 !8−1,8

∏
8≠4 !8−1,8

∏
8≠5 !8−1,8

and no relations between the morphisms. For 3 = 3, 2, we obtain the k-algebras with generators

!23 × !34 × !45 !12 × !34 × !45 !12 × !23 × !45 !12 × !23 × !34

0 !01 × !34 × !45 !01 × !23 × !45 !01 × !23 × !34

0 !01 × !12 × !45 !01 × !12 × !45

0 !01 × !12 × !23

and
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!34 × !45

!23 × !45

!23 × !34

0

!12 × !45

!12 × !34

0

!12 × !34

0

0

!01 × !45

!01 × !34

0

!01 × !23

0

!01 × !12

with all possible commutativity relations. Finally, for 3 = 1 we obtain the k-algebra with generators

!45 !34 !23 !12 !01

and such that all consecutive composites vanish. Again, this last quiver is better drawn as a maximal

path in a 4-dimensional hypercube.

4. Partially wrapped Fukaya categories and models for Waldhausen  -theory

In this section we provide an interpretation of the partially wrapped Fukaya categories

W
(3)
= = W(Sym3 (D),Λ(3)

= ), 3 ≥ 1, = ≥ 0,

as the cells of a simplicial model for Waldhausen  -theory. This interpretation arises as an immediate

consequence of the results of this work combined with the results of [DJW19], which provide a relation

between the 3-dimensional S•-construction and the 3-dimensional Auslander algebras of type A. We

freely use the language of ∞-categories [Lur09] as well as basic aspects of the theory of stable ∞-

categories [Lur17].

4.1. The 3-dimensional Waldhausen S•-construction

4.1.1. Stable ∞-categories versus differential graded k-categories

Recall that a pointed ∞-category A is stable if it admits all finite (homotopy) limits and all finite

(homotopy) colimits and the suspension functor

Σ : A A, 0 0 ∐0 0,

is an equivalence. If A is a stable ∞-category, then the homotopy category Ho(A), equipped with the

suspension autoequivalence Ho(Σ), is additive and can be endowed with a canonical triangulation. For

this reason, stable ∞-categories can be regarded as a refinement of Verdier’s triangulated categories.

We recall from [Coh13] that Lurie’s differential graded nerve [Lur17, Construction 1.3.1.6] yields a

Quillen equivalence between
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◦ the homotopy theory of (small) idempotent-complete pretriangulated differential graded k-

categories (up to quasi-equivalence) and

◦ the homotopy theory of (small) idempotent-complete k-linear stable ∞-categories.

Thus, the theory of stable ∞-categories can be regarded as an extension of the theory of differential

graded categories which encompasses higher categories that are not linear over any commutative ring,

such as the stable ∞-category of spectra. In addition, the language of ∞-categories affords a powerful

calculus of (homotopy) Kan extensions which which many of the statements to come are reliant upon.

In the following, we identify differential graded k-categories with their differential graded nerves

without further mention. In this process, we implicitly replace W
(3)
= with a quasi-equivalent differential

graded model (for example, by means of the differential graded Yoneda embedding; see, for example,

[Sei08, Section 2(g)]).

4.1.2. Waldhausen  -theory

Notation 4.1.1. For an ∞-category A, we let A≃ ⊆ A be the largest ∞-groupoid (=Kan complex)

contained in A. The passage A ↦→ A
≃ yields a right adjoint to the inclusion of ∞-groupoids into

∞-categories.

An important invariant associated to a stable ∞-category A is its Waldhausen  -theory space  (A).
For example, if ' is a ring, then the Waldhausen  -theory space  (') =  (perf(')) of the stable

∞-category perf(') of perfect '-modules is homotopy equivalent to the algebraic  -theory space of

' defined by Quillen [Qui73] in terms of the &-construction of the (split-exact) category of finitely

generated projective '-modules.

Waldhausen’s definition [Wal85, BGT13] of the space  (A) involves the construction of a simplicial

∞-groupoid S
〈1〉
• (A)≃ whose geometric realisation is then the delooping of the Waldhausen  -theory

space of A – that is,

 (A) ≔ Ω
1 | S〈1〉

• (A)≃ |.

More generally, for each integer 3 ≥ 1, Dyckerhoff [Dyc17b] and Poguntke [Pog17] introduce an

analogous simplicial object S
〈3〉
• (A) such that

 (A) ≃ Ω
3 | S〈3〉

• (A)≃ |.

For each 3 ≥ 1, the 3-dimensional Waldhausen S•-construction S
〈3〉
• (A) of A exhibits  (A) as the

3-fold loop space of a (3 − 1)-connected space or, equivalently, as a connective spectrum. We remark

that the simplicial object

S
〈3〉
• (A) : = S

〈3〉
= (A)

takes its values in the ∞-category St∞ of stable ∞-categories and exact functors between them (see

[DJW19, Section 1.4] for details).

Remark 4.1.2. The 3-dimensional Waldhausen S•-construction of a stable ∞-category is not the 3-fold

iteration of the S•-construction, which is a multisimplicial object rather than a simplicial object.

4.2. The equivalence W
(3)
= ≃ S

〈3〉
=

The following theorem is an immediate consequence of [DJW19, Corollary 2.25] in the caseA = perf (k)
and our Theorem 3.2.3:

Theorem 4.2.1. Let 3 ≥ 1. For each = ≥ 0, there are equivalences of ∞-categories

S
〈3〉
= (perf (k)) perf (�=,3) W

(3)
= .

≃ ≃
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Remark 4.2.2. Let 3 ≥ 1. The equivalent stable ∞-categories

S
〈3〉
= (perf (k)) ≃ perf (�=,3) ≃ W

(3)
=

vanish if = < 3. This vanishing is closely related to the fact that the space | S〈3〉
• (perf (k))≃ | is (3 − 1)-

connected, which is to say that its homotopy groups vanish in degrees less than or equal to 3.

In fact, the 3-dimensional Waldhausen S•-construction of a stable ∞-category can be canonically

extended from a simplicial object to a paracyclic object (see [DJW19, Proposition 2.47]). In view of

Theorem 4.2.1, this implies that the partially wrapped Fukaya categories W
(3)
= , = ≥ 0, themselves

arrange into a paracyclic object

W
(3)
• : �op Stk

∞

with values in the ∞-category of k-linear stable ∞-categories and exact functors between them, where �

is the paracyclic category [Nis90, FL91, GJ93]. Passing to homotopy categories yields a paracylic object

Ho(W(3)
• ) : �op Ho(Stk

∞)

with values in the homotopy category of the∞-category Stk
∞. Such a paracylic object Ho(W(3)

• ) amounts

to the data of exact functors

30 : W
(3)
=+1

W
(3)
= and B0 : W

(3)
= W

(3)
=+1

and an (exact) autoequivalence

C = C=+1 : W
(3)
= W

(3)
=

≃

for each = ≥ 0; these functors induce additional distinguished functors

38 = C
830C

−8 : W(3)
=+1

W
(3)
= and B8 = C

8B0C
−8 : W(3)

= W
(3)
=+1

for each = ≥ 0 and each 1 ≤ 8 ≤ =. In the homotopy category Ho(Stk
∞), these functors must satisfy the

simplicial identities

30B0 = 1,

31B0 = 1,

3038 = 38−130, 1 ≤ 8 ≤ =,
30B8 = B8−130, 1 ≤ 8 < =,

B0B8 = B8+1B0, 0 ≤ 8 ≤ =,
38B0 = B038−1, 1 < 8 ≤ =,

as well as the paracyclic identities

30C
=+1

= C=30 and B0C
=+1

= C=+2B0.

By definition, these identities encode the mere existence of natural isomorphism between the corre-

sponding functors. In contrast, the paracyclic object W
(3)
• is a functor of ∞-categories, and hence it

contains an infinite amount of coherence data (including explicit natural isomorphisms witnessing the

validity of the identities).

Remark 4.2.3. Let 3 ≥ 1. It follows from our previous discussion that there is a homotopy equivalence

 (W(3)
3

) ≃  (perf(k)) ≃ Ω
3 |W(3)

• |,
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where we remind the reader that W
(3)
3

is equivalent to perf (k). More generally, if (",Λ) is an arbitrary

Weinstein manifold with stops, there are equivalences of stable ∞-categories

W(" × Sym3 (D), (Λ × Sym3 (D)) ∪ (" × Λ
(3)
= )) ≃ Funk (W

(3)
= ,W(",Λ))

≃ Funk (�=,3 ,W(",Λ))
≃ S

〈3〉
= (W(",Λ)) .

Indeed:

◦ the leftmost equivalence is a consequence of

– the Künneth formula [GPS18, Corollary 1.11]

W(",Λ) ⊗k W(Sym3 (D),Λ(3)
= )

W(" × Sym3 (D), (Λ × Sym3 (D)) ∪ (" × Λ
(3)
= )),

≃

– the equivalence

W(",Λ) ⊗k Fun
k
(W(3)

= , perf(k)) Fun
k
(W(3)

= ,W(",Λ))≃

– and the equivalences

Funk (W
(3)
= , perf(k)) ≃ (W(3)

= )op ≃ W
(3)
= = W(Sym3 (D),Λ(3)

= ),

where the existence of the second and third equivalences is a consequence of the fact that W
(3)
= ≃

perf (�=,3) is a dualisable object of the symmetric monoidal ∞-category (Stk
∞, ⊗k, perf (k)), since

the higher Auslander algebra �=,3 is proper and homologically smooth over k;

◦ the middle equivalence stems from the fact that W
(3)
= ≃ perf(�=,3) is the k-linear stable hull of

the k-algebra �=,3; and

◦ the rightmost equivalence is a consequence of [DJW19, Propositions 2.10 and 2.24].

Consequently, we have a paracyclic object

W(" × Sym3 (D), (Λ × Sym3 (D)) ∪ (" × Λ
(3)
• )) : �op Stk

∞

and homotopy equivalences

 (W(",Λ)) ≃ Ω
3 | S〈3〉

• (W(",Λ))≃ |
≃ Ω

3 |W(" × Sym3 (D), (Λ × Sym3 (D)) ∪ (" × Λ
(3)
• ))≃ |

which describe the 3-fold delooping of the Waldhausen  -theory space of the partially wrapped Fukaya

category W(",Λ) by means of partially wrapped Fukaya categories of symmetric products of marked

disks. Compare with [Tan19, Section 1.2], where the case 3 = 1 is discussed.

4.2.1. Symplecto-geometric description of the structure maps of W
(3)
•

The generating structure maps of the paracyclic object W
(3)
• admit a natural symplecto-geometric

interpretation. Fix = ≥ 0. First, the paracyclic shift

C : W
(3)
= W

(3)
=

≃
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can be identified with the autoequivalence r−1 [3] of W
(3)
= , which, according to Proposition 3.5.1,

is induced by rotating the disk clockwise by an angle of 2c
=+1 (here r denotes the Serre functor of

W
(3)
= ).

Second, for 0 ≤ 8 ≤ = + 1, the face functor

38 : W
(3)
=+1

W
(3)
=

≃

can be identified with the stop-removal functor which removes the stop {?8} × Sym3−1 (D) from Λ
(3)
=+1

.

These functors are described as follows: consider the smallest idempotent-complete stable subcategory

of W
(3)
=+1

containing the objects of the form

! × !8−1,8 ,

where ! is a product of 3 − 1 mutually disjoint arcs in D \ Λ(3)
= which are also disjoint from the arc

!8−1,8; here, we identify Λ= with Λ=+1 \ {?8}. Equivalently, this subcategory is the essential image of

the Orlov functor

]8 : W
(3−1)
= W

(3)
=+1
, - - × !8−1,8 .

The functor 38 is defined in terms of the Verdier quotient1

W
(3−1)
= W

(3)
=+1

W
(3)
=+1

/W(3−1)
=

]8 38

of W
(3)
=+1

by the essential image of ]8 . As a consequence of general stop-removal theorems [GPS18,

Syl19a, Syl19b], we can identify the target W
(3)
=+1

/W(3−1)
= of the localisation functor 38 with the partially

wrapped Fukaya category W
(3)
= .

Let 1 ≤ 8 ≤ =. Finally, we describe the degeneracy functor

B8 : W
(3)
= W

(3)
=+1
.

For this, we introduce a new stop into Λ
(3)
= by adding positive push-off of the component {?8} ×

Sym3−1 (D) in the direction of the Reeb flow on the disk. That is, we consider the new set of stops

Λ
(3)
=+1

= Λ
(3)
= ∪ {{?Y8 } × Sym3−1 (D)},

where ?Y8 is a point on the boundary of the disk obtained by rotating ?8 by a small angle Y > 0 in the

counterclockwise direction. This construction gives rise to a push-forward functor B8 with the desired

source and target categories. The restriction of the functor B8 to the full subcategory of W
(3)
= spanned

by those objects given by products of disjoint arcs inD \Λ= is the identity functor, from which it readily

follows that B8 is fully faithful. This is a consequence of the fact that at the geometric level, a product of

arcs in D \ Λ= can also be seen as a product of arcs in D \ (Λ= ∪ {?Y8 }); as can be seen from Auroux’s

description of morphisms in terms of strand diagrams, the fact that Y is chosen to be sufficiently small

guarantees that B8 induces an isomorphism between the cochain complexes of morphisms between such

objects. The construction of the functor B8 should be compared with the forward stopped inclusions

introduced in [GPS18].

1Under the differential graded nerve, the Verdier quotient of k-linear stable ∞-categories corresponds to the Drinfeld quotient
[Dri04] of differential graded k-categories. This is a consequence of the fact that both quotients are characterised as homotopy
cofibres in the corresponding ∞-categories.
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4.2.2. Relation to the categorified Dold–Kan correspondence

As a consequence of a categorified version of the Dold–Kan correspondence [Dyc17b], the 3-

dimensional Waldhausen S•-construction of perf(k) is characterised, as a 2-simplicial object, by the

existence of equivalences of stable ∞-categories S
〈3〉
0

(A) ≃ 0 and

⋂=
8=1 ker(38 : S

〈3〉
= (A) ։ S

〈3〉
=−1

(A)) ≃
{

perf (k) if = = 3,

0 otherwise,

for = ≥ 1. These vanishing conditions have a natural interpretation in terms of the stop-removal functors

already described.

Proposition 4.2.4. Let 3 ≥ 1. There are equivalences of stable ∞-categories W(0)
3

≃ 0 and

W
(3)
= ≔

⋂=
8=1 ker(38 : W(3)

= ։W
(3)
=−1

) ≃
{

perf (k) if = = 3,

0 otherwise,

for = ≥ 1.

Proof. The claim is obvious for = < 3, sinceW
(3)
= vanishes in this case. For = = 3 there is an equivalence

perf (k) ≃ W
(3)
3

= W
(3)
= =

⋂3
8=1 ker(38 : W(3)

3
։W

(3)
3−1

),

since W
(3)
3−1

≃ 0 and the higher Auslander algebra �3,3 is isomorphic to the base commutative ring k in

this case. It remains to prove that the intersection

W
(3)
= =

⋂=
8=1 ker(38 : W(3)

= ։W
(3)
=−1

) = ⋂=
8=1 im(]8 : W(3−1)

=−1
↩→ W

(3)
= )

vanishes for = > 3, where ]8 is the Orlov functor corresponding to the point ?8 ∈ Λ=. This is clear because

W
(3)
= is generated by Lagrangians of the form

∏3
8=1 !8 , where !1, . . . , !3 are pairwise nonintersecting

arcs inD\Λ= that must be jointly supported near all the stops ?1, . . . , ?=; but the assumption that = > 3

implies that no such a collection of arcs exists. The claim follows. �

Remark 4.2.5. An interesting challenge – which we do not pursue here – is to extend these descriptions

to a construction of the paracyclic object

W
(3)
• : �op Stk

∞

carried entirely within the framework of partially wrapped Fukaya categories (see [Tan19] for a related

discussion in the case 3 = 1). In particular, notice that we have not described the higher-order components

of the paracyclic object W
(3)
• , nor have we given symplectic explanations of the fact that these satisfy

the required coherence equations.
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