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Intermittency and critical mixing in internally
heated stratified channel flow
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Through direct numerical simulations we investigate the effects of spatiotemporal
intermittency as a result of stable stratification in surface heated stratified open channel
flow. By adapting the density inversion criterion method of Portwood et al. [J. Fluid
Mech., vol. 807, 2016, R2] for our flow, we demonstrate that the flow may be robustly
separated into regions of active turbulence for which ReB � O(10) and surrounding
quiescent fluid, where ReB is the buoyancy Reynolds number. The intermittency in the flow
spontaneously manifests as a deformed horizontal interface between the upper quiescent
and lower turbulent flow, characterised by vigorous mixing from ‘overturning’ shear
instabilities. The resulting vertical intermittency profile is accurately predicted by a local
Monin–Obukhov length normalised by viscous wall units Λ+ such that the flow displays
intermittency within the parameter range of 2.5 � Λ+ � 260. By considering conditional
averages of the ‘turbulent’ and ‘quiescent’ flow separately, we find the ‘turbulent’ flow
within this region to be described by constant critical gradient Richardson and turbulent
Froude numbers of Rig,c ≈ 0.2 and Frc ≈ 0.3. We find that the turbulent flow continues
to display a Γ ∼ Fr−1 relationship when Fr < Frc, whereas the quiescent flow shows no
correlation between Γ and Fr, where Γ is the flux coefficient. Hence, we demonstrate
directly that for our flow, the emergence of an asymptotic ‘saturated’ Γ regime in the
limit of a low ‘global’ Fr occurs due to intermittency and increasing contributions to
measurements of Γ from the quiescent flow.
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1. Introduction

Turbulent flows subject to strong stable stratification such as in the ocean and atmosphere
have been shown to exhibit strong spatiotemporal intermittency with isolated patches
of vigorous ‘weakly stratified’ turbulence encapsulated by an essentially quiescent yet
‘strongly stratified’ fluid (Baker & Gibson 1987; van de Wiel et al. 2002). In particular, if
the stabilising force of buoyancy is sufficiently strong the flow may partially relaminarise
such that the turbulent and non-turbulent phases may coexist and interact in a mutually
stable state (Brethouwer, Duguet & Schlatter 2012). This intermittency creates significant
challenges in the quantification of local mixing rates from measurements that are
inherently calculated as averages over finite volumes and time periods and in which
it is conceivable that contributions from both flow regimes are present in unknown
quantities (Caulfield 2021). In wall-bounded stratified flows, the complexity of the
intermittency problem is further confounded by the inherent vertical inhomogeneity of
the flow (Armenio & Sarkar 2002; Taylor, Sarkar & Armenio 2005). Accordingly, flow
properties and mixing diagnostics for wall-bounded flows are by convention presented
as appropriate volumetric averages across horizontal planes (García-Villalba & del Álamo
2011; Deusebio, Caulfield & Taylor 2015; Williamson et al. 2015; Zhou, Taylor & Caulfield
2017; Issaev et al. 2022). However, strong intermittency of turbulence has been observed
across horizontal layers in the very same studies. In this study, we explore the nature and
structure of intermittency in internally heated stratified open channel flow and its effect on
the estimation of local mixing rates.

Strongly stratified flows are highly anisotropic with a large separation of horizontal and
vertical scales. Such flows are typically defined by a sufficiently small turbulent Froude
number Fr = εK/(NEK), where εK is the dissipation rate of turbulent kinetic energy
(TKE), N is the buoyancy frequency and EK is the TKE. In addition, for turbulence to be
sustained, a global buoyancy Reynolds number ReB = εK/(N2ν) which acts as an indicator
of the inertial range, must be appropriately large such that buoyancy does not suppress the
smallest scales of turbulence (Riley & de Bruyn Kops 2003), where ν is the kinematic
viscosity of the fluid. In particular, much of the stratified turbulence theory developed and
investigated over the past decades that underlies the prediction of mixing and energetic
transfer in the ocean and atmosphere has focused on the so called ‘strongly stratified’ or
‘layered anisotropic stratified turbulence’ (LAST) regime in the limit of Fr � O(1) and
ReB � O(1) (Billant & Chomaz 2001; Riley & de Bruyn Kops 2003; Lindborg 2006;
Riley & Lindborg 2008; Falder, White & Caulfield 2016; Maffioli & Davidson 2016;
Maffioli 2019; Taylor et al. 2019).

Portwood et al. (2016) demonstrated that flow described by appropriate bulk measures of
Fr and ReB such that the flow approaches the LAST regime may be subdivided into three
dynamically distinct regimes: ‘turbulent patches’, ‘intermittent layers’ and ‘quiescent’
flow, with conditionally averaged values of ReB that vary by orders of magnitude across
the three regimes. Of particular note, they found that although for their most stratified case
of Fr = 0.015, the quiescent region occupies approximately 80 % of the flow domain, it
only accounts for less than 15 % of the total dissipation rates of TKE and scalar variance.
In their DNS study de Bruyn Kops (2015) similarly found that with decreasing Fr the flow
becomes increasing anistropic with an emerging bimodal distribution of the dissipation
rates. In their similar DNS study of homogeneous stratified turbulence Howland, Taylor
& Caulfield (2020) further observed the occurrence of ‘spontaneous layering’, such that
the flow organises into horizontal layers of vigorous and essentially isotropic turbulence
as well as definitively anisotropic quiescent flow. A fundamental question of stratified
turbulence is hence how such strong intermittency effects the parametrisation of diapycnal
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Intermittency and critical mixing in channel flow

mixing through non-dimensional parameters that are composed of flow properties that
display significant spatial variation over the different dynamical regions.

As outlined in Ivey, Bluteau & Jones (2018), one of the key aims in the study of mixing
in stratified flows is the accurate estimation of the diapycnal or eddy diffusivity Kρ which
can be expressed as (Osborn 1980)

Kρ = Γ
εK

N2 , (1.1)

where Γ is the flux coefficient: that is, the ratio of an appropriately defined mixing
rate to the dissipation rate of TKE. A considerable amount of work has focused on
parametrisation schemes for Γ (Ivey, Winters & Koseff 2008; Gregg et al. 2018; Caulfield
2020). Maffioli, Brethouwer & Lindborg (2016) presented scaling arguments based on
the underlying theory of the LAST regime to demonstrate that for quasi-stationary flow
in the limit of low Fr, Γ should become independent of Fr and asymptote to a constant
value. A number of studies with a variety of flow configurations and ranges of Fr and ReB
have demonstrated support for this result (Garanaik & Venayagamoorthy 2019; Howland
et al. 2020; Smith, Caulfield & Taylor 2021; Issaev et al. 2022), albeit with differing
asymptotic values of Γ . However, it remains unclear how the varying intermittency in
these studies influences this relationship as measurements of both Fr and Γ inherently
contain contributions from both turbulent and quiescent regions of the flow. It is becoming
more apparent that to accurately model turbulent fluxes within intermittent stratified
flow, accurate physically based parametrisation for the different flow regimes is required
(Allouche et al. 2022).

In the study of the stable atmospheric boundary layer, the theme of intermittency in
strongly stratified flow has been frequently explored through the Monin–Obhukov (M-O)
framework and the M-O length L which compares the turbulence generation through the
wall shear to the suppression of turbulence as a result of the surface buoyancy flux (Howell
& Sun 1999; van de Wiel et al. 2002; van de Wiel, Moene & Jonker 2012). In their
DNS study, Flores & Riley (2011) demonstrated that analogous to an ReB approach, the
collapse of turbulence in channel flow subject to bottom wall cooling is well predicted
by the ‘mixed’ parameter L+, where L+ is the M-O length normalised in viscous wall
units, often referred to as the Obhukov Reynolds number ReL (van Hooijdonk et al.
2018). Deusebio et al. (2015) demonstrated that the L+ criterion is similarly applicable to
stratified plane Couette flow for the prediction of intermittency. Past studies such as those
by Nieuwstadt (1984), Sorbjan (1986) and Chung & Matheou (2012) further showed that
a local M-O approach may be similarly applied to homogeneous stratified shear flow and
intermittency displays a dependence on a vertically varying ‘local’ normalised M-O length
Λ+. In their study of surface heated channel flow, Williamson et al. (2015) demonstrated
that an appreciable depth range for which the flow is sufficiently stratified, a state of
local energetic equilibrium is obtained and through scaling arguments demonstrate that
Λ+ ∼ ReB. As such each horizontal layer within such regions may be loosely considered
a slice of quasi-homogeneous sheared turbulence where it is expected that a ‘local’ Λ+
approach to quantify intermittency be valid (Chung & Matheou 2012; Zhou et al. 2017).
However, to date this has not been tested explicitly.

For stratified flows in the presence of a mean shear, the theme of intermittency and
relaminarisation has been frequently explored in literature through the gradient Richardson
number: Rig = N2/S2, where S is the mean shear. The underlying concept being that
the stabilising forces of the background stratification suppress turbulence whilst the
background shear deforms the flow leading to the formation of shear instabilities. Based on
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linear stability analysis, Miles (1961) proposed the ‘Miles–Howard criterion’ of an upper
limit of Rig = 1/4 for the formation of instabilities. Since then, a wide range of studies
have observed that in a stationary state, stratified sheared turbulence tends to converge
to an upper critical limit of Rig,c ≈ 0.16 ∼ 0.25 (Shih et al. 2000; Flores & Riley 2011;
Chung & Matheou 2012; Williamson et al. 2015; Zhou et al. 2017; Portwood, de Bruyn
Kops & Caulfield 2019). However, as discussed by Zhou et al. (2017), it is unclear whether
this result is indeed related to the stability of the local flow as argued by Miles (1961)
or is simply ‘fortuitous’. Thorpe & Liu (2009) further hypothesised that stratified shear
flow naturally converges to this state of ‘marginal instability’ that facilitates the formation
of relatively efficient mixing through local shear instabilities. This work was expanded
on by the studies of Salehipour, Peltier & Caulfield (2018) and Smyth, Nash & Moum
(2019) who used numerical and observational data to demonstrate this behaviour dubbed
‘self-organised criticality’ in stratified shear flows. However as noted in Caulfield (2020),
due to the inherent local intermittency of stratified flows it becomes somewhat ambiguous
as to what defines a local measure of the background shear and stratification and, hence,
the appropriate measure of Rig. As such the role of the intermittency in the concept of a
‘critical’ Rig remains unclear.

Mashayek, Caulfield & Peltier (2017) demonstrated that the mixing in a
Kelvin–Helmholtz instability (KHI) overturning event is most vigorous and efficient when
the flow enters this critical state such that the injection of energy into the flow through
overturning is precisely at the wavelength corresponding to the upper limit of the inertial
sub-range such that ROT ≈ 1, where ROT = LO/LT is the length scale ratio of the Ozmidov
length scale (LO) characterising the theoretical upper bound for scales largely unaffected
by the background stratification to the well-known Thorpe scale (LT ) describing the
extent of overturning motions. Mashayek, Caulfield & Alford (2021) expanded on this
idea, demonstrating through oceanic observational data sets that the distinct majority of
field observations correspond to this ‘critical’ and ‘optimal’ state defined by a marginally
unstable Rig and where ROT ≈ O(1). It is still however unclear how the theory and results
derived in studies of singular mixing events pertains to forced quasi-stationary flows and
the role of the inherent intermittency arising from stable stratification, in particular that of
wall-bounded vertically inhomogeneous flows. Furthermore, it is unclear how the concept
of a self-organised critical state within stratified shear flow reconciles with the numerous
observations of an asymptotic Γ regime in the limit of low Fr and how intermittency
effects this behaviour.

The concept of spatiotemporally intermittent mixing is directly physically relevant
to stratified river flows which underlies the motivation behind this study. Persistent
stratification and subsequent reduction in mixing rates in Australian rivers has been shown
to create conditions that directly facilitate harmful cyanobacterial blooms and reduce
vertical transport of key nutrients (i.e. CO2, O2) absorbed at the water/air interface (Turner
& Erskine 2005). As such the need to accurately predict the intermittency profile of the
flow and to better understand the mixing dynamics in regions of intermittency are crucial
to understanding such ecologically damaging processes.

Our study falls into two key themes. First, that of the robust identification and prediction
of the intermittency profile in internally heated open channel flow. Second, that of the role
of spatiotemporal intermittency in stratified shear flows on the estimation of mixing rates
through ‘local’ measurements of appropriately defined mixing diagnostics, with emphasis
on the concept of self-organised ‘critical’ mixing in stratified shear flows. We explore these
ideas through our DNS of temporally evolving stratified open channel flow which due to its
vertical inhomogeneity allows us to explore a wide range of local parameters with a varied
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intermittency profile within a single simulation. To that end the remainder of this paper is
structured as follows. In § 2 we present our numerical method and DNS configuration. In
§ 3 we present our adaption of the density gradient inversion method of Portwood et al.
(2016) to separate our intermittent flow into ‘turbulent’ and ‘quiescent’ regions and present
our prediction of the intermittency profile through both an ReB and a Λ+ approach. In § 4
we demonstrate the vertical distribution of key conditionally averaged flow properties and
non-dimensional parameters within the turbulent and quiescent regions of the flow . In § 5
we explore and quantify the effect of intermittency on the parametrisation of mixing rates
through Fr and discuss the implications of the results for stratified shear flow. Finally, in
§ 6 we summarise the main findings within this study.

2. Numerical method

2.1. Flow configuration
The flow configuration of our DNS employs the framework of Williamson et al. (2015)
for stationary internally heated open channel flow. For our DNS we consider not only the
stationary flow but also the temporally evolving case as an initially isothermal neutral open
channel flow is subject to internal heating and evolves towards a stationary stably stratified
state. The problem formulation for our evolving case follows the procedure outlined in
Issaev et al. (2022) (henceforth denoted as IWAN22).

A schematic depicting our flow configuration is presented in figure 1. The flow is
periodic in the streamwise (x) and spanwise ( y) directions and is driven by a constant
pressure gradient in x. The top and bottom boundary conditions are free-slip adiabatic
and no-slip adiabatic, respectively. The flow is subject to a depth-varying volumetric
temperature source q(z), modelled as radiative heating on the principle of Beer and
Lambert’s law and defined as

q(z) = Isα

Cρρ0
e(z−δ)α, (2.1)

where Is is the radiant surface heat flux, α is the absorption coefficient and δ is the channel
height, Cρ is the specific heat and ρ0 is the reference fluid density. Hence, we can define
both the domain-averaged mean heat source and representative heat source, respectively,
as

〈q〉 = 1
δ

∫ δ

0
q(z) dz, qN = 1

δ2

∫ δ

0
(〈q〉 − q(z))(z − δ) dz. (2.2a,b)

Subsequently, under the Oberbeck–Boussinesq assumption, the governing equations for
our flow, i.e. the incompressible Navier–Stokes equations, are

∇ · u = 0, (2.3)

∂u
∂t

+ u · ∇u = −∇p + ν∇2u + bez + Fex, (2.4)

∂b
∂t

+ u · ∇b = κ∇2b + gβq(z), (2.5)

where b = −gρ/ρ0 is the buoyancy, g is gravitational acceleration, ν is the kinematic
viscosity, κ is the thermal diffusivity, F is the driving mean pressure gradient and β is
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Free-slip, adiabatic

u(z)

q(z)

Lx

Lz = δ

z, w

y, v

x, u

Figure 1. Schematic diagram of the flow configuration, domain is periodic in x and y.

the coefficient of thermal expansion such that the transform from fluid temperature (θ ) to
density (ρ) is given by the equation of state

ρ = ρ0(1 − βθ). (2.6)

Our initial and boundary conditions are explicitly defined as

z = 0 : u = v = w = 0,
∂b
∂z

= 0, (2.7)

z = δ :
∂u
∂z

= ∂v

∂z
= w = 0,

∂b
∂z

= 0, (2.8)

t = 0 : b = 0. (2.9)

The initial velocity field is that of fully developed and neutrally stratified turbulent
open-channel flow at a given Re0

τ (to be defined shortly) as outlined in IWAN22.
Our flow is then fully defined by four non-dimensional parameters: the equilibrium

friction Reynolds number Re0
τ , the molecular Prandtl number Pr, the turbidity parameter

αδ that controls the vertical heating profile and an equilibrium bulk stability parameter λ0,
defined as

Re0
τ = u0

τ δ

ν
, Pr = ν

κ
, αδ, λ0 = δ

L0 . (2.10a–d)

Here, u0
τ is the initial equilibrium friction velocity defined as

u0
τ =

(
τ 0

w

ρ0

)1/2

, (2.11)

where τ 0
w is the initial equilibrium viscous shear stress at the bottom wall. The stability

parameter of our λ0 flow follows Williamson et al. (2015) and is defined in the M-O
framework as the ratio of the domain confinement scale δ to bulk Obhukov length L0

defined as

L0 = (u0
τ )

3

gβqNδ
. (2.12)

We note that this formulation of the Obhukov length which accounts for our volumetric
heat source is analogous to the standard definition used in the atmospheric literature
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L = u3
τ /(κcb∗), where κc ≈ 0.4 is the von Kármán’s constant and b∗ is the surface

buoyancy flux (Flores & Riley 2011). In (2.12) the term gβqNδ can hence be interpreted
as a representative buoyancy flux for the flow, analogous to b∗. Furthermore, as derived in
Williamson et al. (2015), for high αδ we can obtain

qN ≈ IS

δρ0Cp

(
1
2

− 1
αδ

)
, (2.13)

such that we can redefine

L0 = (u0
τ )

3

gβIs/(ρ0Cp)

(
1
2

− 1
αδ

)−1

. (2.14)

We choose this flow configuration primarily as the choice of a bottom adiabatic
bottom boundary conditions creates a buoyancy flux profile that ensures that the effect of
stratification on the bottom of the channel is negligible (Taylor et al. 2005; Williamson
et al. 2015; Kirkpatrick et al. 2019, 2020; Issaev et al. 2022). Subsequently, this
ensures that the primary mechanism for turbulence generation in the flow at the bottom
wall is relatively unaffected by stratification. As demonstrated in § 3 this creates an
inhomogeneous intermittency profile that varies from fully turbulent at the wall to fully
quiescent at the top boundary. This accordingly allows us to run simulations at stronger
levels of stability relative to bottom Dirichlet or Neumann boundary conditions such as in
stable boundary layer simulations (Flores & Riley 2011; van de Wiel et al. 2012; Atoufi,
Scott & Waite 2021), or stratified plane Couette flow (Deusebio et al. 2015; Zhou et al.
2017) where intermittency at the wall may cause a collapse of turbulence across the entire
flow domain. Furthermore, as discussed in § 1 our DNS configuration may be seen as an
idealised representation of stratified river flow in Australia, where the understanding of
intermittent mixing dynamics is a significant challenge.

2.2. Direct numerical simulations
Equations (2.3)–(2.5) were solved using the SnS code, fourth-order fractional-step
finite-volume solver as outlined in Armfield et al. (2003) and Williamson et al. (2015).
We refer the reader to IWAN22 for a detailed description of the DNS procedures used for
our simulations.

A detailed list of simulations performed is presented in table 1. Our simulations focus
on a friction Reynolds number of Re0

τ = 400, with a single Re0
τ = 900 case being run

until equilibrium. As we are primarily interested in flow where the dynamics are strongly
affected by stable stratification our simulations cover a range of λ0 = 0.5–2. Finally,
we keep the turbidity parameter constant at αδ = 8 for all simulations with a single
control case of αδ = 32. Note that te corresponds to the time at which the flow obtains
‘quasi-equilibrium’ in the sense that the TKE across the channel reaches steady state and
the buoyancy and momentum fluxes are in balance with their respective forcing terms (to
be defined in more detail in § 3). Meanwhile, ze corresponds to the vertical coordinate past
which the flow is no longer in a state of local quasi-equilibrium (also to be defined in § 4).

The procedures defining our choice of grid resolution and initial condition follow
the same specification as in IWAN22 based on past studies of stratified wall-bounded
turbulence (García-Villalba & del Álamo 2011; Deusebio et al. 2015; Williamson et al.
2015). For all simulations the stream- and span-wise grid size in initial viscous wall
units is kept constant at �x+

0 = 5 and �y+
0 = 2.5. The vertical grid size for the Re0

τ =
400 simulations is logarithmically stretched from �z+

0 = 0.4 at the wall to �z+
0 = 4 at
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Case Re0
τ λ0 Pr αδ Lx × Ly × Lz Nx × Ny × Nz tf /T0

τ te/T0
τ ze/δ

R400L0.5 400 0.5 1 8 2πδ × πδ × δ 512 × 512 × 150 50 15 0.86
R400L0.5AD32 400 0.5 1 32 2πδ × πδ × δ 512 × 512 × 150 40 15 0.89
R400L1 400 1 1 8 2πδ × πδ × δ 512 × 512 × 150 50 30 0.82
R400L1LD 400 1 1 8 8πδ × 2πδ × δ 2560 × 1280 × 150 40 30 0.83
R400L2 400 2 1 8 2πδ × πδ × δ 512 × 512 × 150 90 50 0.71
R900L1 900 1 1 8 2πδ × πδ × δ 1152 × 1152 × 450 43 33 0.91

Table 1. List of DNS performed and relevant parameters: tf corresponds to the total simulation time, te
corresponds to the time to obtain quasi-stationarity and ze corresponds to the upper vertical coordinate past
which the flow is no longer in a state of local quasi-equilibrium.

z = 0.25 where it stays constant to the half channel height z = 0.5. The vertical grid
spacing in the top half of the channel is then set as symmetrical about the midpoint axis
to ensure accurate resolution of viscous near-surface mechanics (Calmet & Magnaudet
2003). A similar procedure for the vertical grid size of the Re0

τ = 900 simulations was
employed with a further refinement of �z+

0 = 2.5 in the bulk of the flow. To maintain
accurate resolution of the viscosity affected near-wall and near-surface regions we ensure
that we have more than 10 grid points within a �z+

0 = 10 distance from either boundary.
For all simulations, transient data have been recorded at non-dimensional time intervals

of �t/T0
τ = 0.02 up to the non-dimensional time of t/T0

τ = 10 to ensure accurate
representation of the temporal effects during the early adjustment period of the flow. Here
T0

τ = δ/u0
τ is the initial friction time scale of the flow. For t/T0

τ > 10 data are collected at
non-dimensional time intervals of �t/T0

τ = 0.1.
We acknowledge past studies that have shown that the size of the domain may effect

the intermittent regime where laminar and turbulent patches coexist, such that a smaller
domain often leads to earlier laminarisation for the same set of bulk parameters (Flores
& Riley 2011; García-Villalba & del Álamo 2011; Brethouwer et al. 2012; Deusebio et al.
2015). However, as shown by Williamson et al. (2015), our adiabatic bottom boundary
condition ensures that the near-wall region remains fully turbulent, hence we do not expect
the domain size to significantly influence the results presented in this study. Furthermore,
our primary focus of this paper is the prediction of ‘local’ intermittency and its effect
on ‘local’ flow parameters. Accordingly for computational efficiency we keep the domain
size constant at Lx × Ly × Lz = 2πδ × πδ × δ across all simulations with the exception of
case R400L1LD (long domain) for which the domain size is increased to Lx × Ly × Lz =
8πδ × 2πδ × δ to demonstrate the independence of our results on the domain size.

3. Turbulent/non-turbulent identification algorithm

3.1. Method validation
We base our turbulent/non-turbulent flow identification algorithm on the method described
in Portwood et al. (2016) (henceforth denoted as PKTSC16). The underlying hypothesis
being that regions of active turbulence inevitably contain some measure of local
overturning down to a relevant length scale such that there exist appreciable regions in
the flow where the local buoyancy gradient is unstable; i.e. ∂b(x)/∂z < 0. We define our
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detector function Q as

Q(x) =
∫ ∞

−∞
H

(−∂b(x − r)
∂z

)
Gxy(r, lf ) dr, (3.1)

where H is the Heaviside function, Gxy is the two-dimensional Gaussian function (in the
x–y horizontal plane) with the input variance corresponding to the filter length scale lf and
r is the dummy variable for the convolution of the Gaussian function in the x–y plane.

In their study of homogeneous stratified turbulence, by filtering in all three dimensions
with a constant filter size lf , PKTSC16 are able to construct a cumulative filtered density
function (c.f.d.f.) which serves as a measure of the vertical extent of the density inversions
and acts as the final detector function within their algorithm. However, in our case,
the inherent vertical inhomogeneity of channel flow creates significant variation of the
turbulent length scales of the flow with respect to z (Taylor et al. 2005; Williamson et al.
2015), such that we cannot construct a similar sensible three-dimensional c.f.d.f. as in
PKTSC16. Our hypothesis, however, is that for regions of vigorous turbulence, overturns
of a particular vertical extent lf leave an ‘imprint’ of small-scale inversions on a horizontal
pancake of the same radius lf . Q(x) can hence be considered the smoothed probability that
within the two-dimensional horizontal circular filter range of lf the local buoyancy gradient
at (x) is unstable. The turbulent identification algorithm for our flow then requires two
choices, an appropriate filter size lf and a suitable threshold value of Q∗ to be defined in
(3.3).

PKTSC16 demonstrated that by defining two different filter radii based on physical
length scales, their flow may be separated into three regimes with varying values of
conditionally averaged ReB: vigorous ‘patch’ turbulence where buoyancy inversions occur
down to the buoyancy length scale LB and where ReB ≈ O(100), ‘turbulent layers’ where
buoyancy inversion occur down to the Taylor micro-scale Lλ where ReB ≈ O(10) and
‘quiescent’ flow where ReB ≈ O(1). Here

ReB = εK

N2ν
, LB = uh

N
, Lλ =

√
15

ν

εK
u′

rms, (3.2a–c)

where uh is the turbulent horizontal velocity scale, N = (∂ b̄/∂z)1/2 and εK = ν(∂u′
i/∂xj)

2.
As discussed in PKTSC16, LB > Lλ for all z, hence it is clear that regions of the flow
where buoyancy inversions occur down to a length scale of Lλ incorporate both turbulent
‘patch’ and ‘layer’ regions. Due to the vertical inhomogeneity of the stratification and
shear profiles of our flow as well as the modest Reτ range of our simulations, our flow
does not have the sufficient dynamic range to find horizontal planes where appreciable
contributions from all three regions exist. For our study we have chosen not to differentiate
between ‘patch’ and ‘layer’ turbulence, but rather classify them together as ‘turbulent’
with the remaining flow considered ‘quiescent’. This leads us to only consider one
depth-varying filter size in the definition of (3.1) such that lf (x) = Lλ(z).

Analogous to PKTSC16, we seek to define a single spatially independent (and for
our case also time-varying) threshold variable Q∗(t) such that the flow is considered
‘turbulent’ if Q(x, t) ≥ Q∗(t) and ‘quiescent’ or quasi-laminar if Q(x, t) < Q∗(t). In their
case the threshold criterion was derived by considering a reference simulation at high ReB
and moderate Fr where intermittency was negligible such that the entire flow domain may
be considered a turbulent ‘patch’. For our study we employ similar logic by considering
the bottom region of the channel is similarly described by Fr > O(1) and ReB > O(102)
and due to the bottom adiabatic boundary condition, may be considered fully turbulent
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Figure 2. (a) Stationary profiles of the horizontally averaged cutoff threshold parameter Q̄∗ and buoyancy
Reynolds number ReB as a function of z/δ. Shading indicates ± one standard deviation. (Shading for Q̄∗ cutoff
to minimise noise in the plot.) Horizontal lines indicate z/δ(ReB = 150) and z/δ = 0.083(z+ = 75). (b) Time
series of the global threshold parameter 〈Q∗〉. (c) Stationary profiles of the conditionally averaged ‘turbulent’
buoyancy Reynolds number 〈ReB〉|T plotted against z/δ for all simulations. Shading indicates ± one standard
deviation. Plots ended at a turbulent fraction threshold of γ < 0.05. Dotted lines of same colour correspond
to the full data set. Vertical dashed lines corresponds to ReB = 10 (d) Variation of conditionally averaged
〈ReB〉|T (left axes solid lines) and turbulent fraction γ (right axes dashed lines) with varied sampling of 〈Q∗〉
at z/δ = 0.875. Scatter plots correspond to the values of 〈ReB〉|T and γ as per the identification algorithm with
error bars showing a variation of ±0.005. Panels (a,b,d) for case R900L1.

(Williamson et al. 2015; Kirkpatrick et al. 2019; Issaev et al. 2022). We hence define a
depth- and time-varying threshold value of Q∗(z, t) such that almost the entire volume of
a horizontal plane at depth z would be considered turbulent. We explicitly define this as

Q∗(z, t) s.t.
1

LxLy

∫ Lx

0

∫ Ly

0
H(Q(x, t) − Q∗(z, t)) dx dy ≥ 0.99. (3.3)

We expect that for fully turbulent horizontal layers where ReB � O(102), Q∗(z, t) will
approach a constant value and for layers with strong intermittency where ReB � O(102),
Q∗(z, t) will trend towards zero. To demonstrate this we plot the stationary vertical profiles
of Q̄∗(z) and ReB for case R900L1 in figure 2(a). Here the (.̄) operator denotes temporal
averaging over the statistically stationary window of te ≤ t ≤ tf . Note that a reading of
Q̄∗(z) = 10−4 corresponds to the finest numerical sampling size of Q∗ in the algorithm to
satisfy the implicit equation (3.3) and may be interpreted as essentially zero.
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Intermittency and critical mixing in channel flow

The results show clear support for our hypothesis showing Q̄∗(z) approaches a constant
value of O(10−1) within a region approximately bounded by an upper vertical limit
corresponding to a vertical location where ReB ≈ 150 and a lower limit of z/δ ≈ 0.08–0.1.
The upper bound is consistent with the arguments presented in PKTSC16 for ReB ≈
O(100) as a criterion for vigorous turbulence where intermittency is negligible. The lower
bound which corresponds to a viscous wall-unit range of 72 < z+ < 90 represents the
dominance of near-wall mechanics and viscous effects that invalidate the assumption of
small-scale overturning as an indicator of active turbulence. Note that for the Reτ = 400
cases (not shown here), the lower bound was similarly found to be within the viscous
wall-unit range of 60 < z+ < 80. As near-wall mechanics are outside the scope of this
study, for simplicity we assume that this region is fully turbulent due to past studies
showing negligible effects of stratification for channel flow with a bottom adiabatic
boundary condition at a similar parameter range (Taylor et al. 2005; Williamson et al.
2015; Kirkpatrick et al. 2019). Although not shown here, qualitatively similar behaviour
occurs for all our other simulations as in figure 2(a), with an asymptotic region of constant
Q̄∗(z) developing within the aforementioned upper (zu) and lower (zl) vertical bounds.

We can therefore construct a global threshold value of 〈Q∗〉(t) for each DNS of the form

〈Q∗〉(t) = 1
(zu − zl)

∫ zu

zl

Q∗(z, t) dz, (3.4)

where zu and zl are defined as

zu s.t. ReB(zu) = 150, zl s.t. z+
l = 75. (3.5a,b)

Figure 2(b) shows the time series of 〈Q∗(t)〉 for case R900L1, both the instantaneous
realisations and a line of best fit using a moving average filter. Note we do not consider
the data for t/T0

τ < 1 as these correspond to an initial nonlinear adjustment period of
the flow due to the sudden imposition of buoyancy on an idealised isothermal flow field
(see IWAN22). The results show that 〈Q∗〉(t) is well behaved in time, with a slight
initial decline during the early ‘suppression period’ of the flow (Atoufi, Scott & Waite
2020), after which it approaches a constant value of 〈Q∗〉(t) ≈ 0.09. The scatter in the
instantaneous data has a clear normal distribution about the line of best fit of the order
of 0.005 in agreement with the narrow spread of Q̄∗(z) observed in the vertical profiles
of figure 2(a). We therefore propose that for any given simulation, provided a sufficient
amount of flow falls within the fully turbulent vertical range of zl < z < zu, a single
realisation of the flow at time t and the corresponding measurement of the global threshold
value of 〈Q∗〉(t) is sufficient to separate the flow into turbulent and quiescent regions as
outlined above.

To first test the validity of our identification algorithm, we consider that a consensus has
formed in stratified flow literature that for active stratified turbulence a requirement is that
ReB � O(10) (Maffioli et al. 2016; Portwood et al. 2016). We hence define a conditionally
averaged (and inherently depth varying) 〈ReB〉|I such that

〈ReB〉|I = 〈εK〉|I
ν〈N2〉|I , (3.6)

where the 〈.〉|I operator denotes conditional averaging over the set I where |F, |T , |Q
correspond to the full (unsorted), turbulent and quiescent data sets, respectively, and where
〈N2〉|I = 〈∂b(x)/∂z〉|I . In the limit of low ReB ,we expect that for horizontal layers with
strong intermittency, the conditionally averaged 〈ReB〉|T should trend towards O(10) if our
turbulent identification algorithm is robust.
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Figure 2(c) shows the stationary profiles of 〈ReB〉|T against z/δ for all simulations. To
minimise noise, we restrict the plots within the limits of 0.05 < γ ≤ 1, where we define
γ is the depth-varying turbulent fraction defined as

γ (z) = VF(z)
VF(z) + VQ(z)

, (3.7)

where VF(z) and VQ(z) are the total volume of a horizontal plane at location z that are
classified as ‘turbulent’ or ‘quiescent’, respectively. For reference the profiles of 〈ReB〉|F
for the full data set are also plotted (dashed lines of the same colour). From the results it
is clear that for all simulations, despite the variation in the profiles of the unconditionally
averaged 〈ReB〉|F, the turbulent counterpart 〈ReB〉|T appears to approach a lower limit of
O(10) confirming the hypothesis underlying our algorithm.

Second, we seek to demonstrate the insensitivity of our results to any noise in the
instantaneous measurements of 〈Q∗〉(t). To test this, we consider the depth of z/δ =
0.875 of case R900L1 where throughout the entire flow evolution 〈ReB〉|F ≈ O(1) and
a significant portion of the flow is quiescent. Figure 2(d) shows the variation of 〈ReB〉|T
(solid lines, left axes) and the turbulent volume fraction γ (dashed lines, right axes) as we
vary the threshold parameter 〈Q∗〉.

We plot the results for two instances in time: t/T0
τ = 5, 35, corresponding to the

developing and statistically stationary flow, respectively. To help interpret this figure it
is important to consider that 〈Q∗〉(t) = 0 corresponds to the assumption that the entire
horizontal plane is considered turbulent such that 〈ReB〉|T = 〈ReB〉|F. In addition, we
overlay the plot with the values of 〈ReB〉|T and γ that correspond to the threshold 〈Q∗〉(t)
as per the algorithm above. Furthermore, we also plot error bars of ±0.005 depicting
the potential scatter in the data as identified in figure 2(b). From the results it is clear
that both conditions are satisfied. Within the 〈Q∗〉(t) range of potential error, we maintain
〈ReB〉|T ≈ O(10) and both 〈ReB〉|T and γ show negligible variation with < 3 % variability
within the region of uncertainty.

Finally, for visual reference we also verify our identification algorithm by considering
flow visualisations of the εK field for case R900L1 across all three planes in figure 3 at
t/T0

τ = 35 which has been chosen to display the full range of intermittency in the flow.
The overlaying red contours display the separation of turbulent and quiescent regions as
outlined in the method above. Figure 3(a,b) show slices in the x–y plane at depths of
z/δ = 0.75 and z/δ = 0.875, respectively, and where there is significant variation in the
amount of intermittency between the two depths. The results show convincing support
for the robustness of our algorithm as the small-scale high-dissipation regions of active
turbulence are distinctly separated from quiescent regions of essentially constant near-zero
dissipation.

Figures 3(c) and 3(d) show realisations of the flow in the x–z and y–z planes,
respectively. The results clearly depict our unique flow structure with a weakly stratified
fully turbulent lower region, a distinctly sheared central bulk flow and an upper quiescent
or quasi-laminar layer (see IWAN22 for a more detailed discussion on vertical flow
structure). We further observe the inherent three-dimensional aspect of the intermittency
which highlights a key feature of our flow: that the intermittency in our flow manifests
as a deformed horizontal interface between the lower turbulent and upper quiescent
flow that forms within the flow due to the inhomogeneous stratification profile enforced
on the flow through q(z). This allows us the opportunity to explore the effect of
intermittency in wall-bounded flows at a wide range of local parameters and with a
distinctly inhomogeneous intermittency profile that is not effected by the suppression of
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Figure 3. Instantaneous realisations of the dissipation rate of kinetic energy field εK at t/T0
τ = 35 for case

R900L1. Red lines indicate the separation of the ‘turbulent’ and ‘quiescent’ flow regions as per the algorithm
in § 3. Colour scale for all figures is logarithmic. (a,b) Slices in the x–y plane at z = 0.75, 0.875, respectively.
(c) Slice in the x–z plane. (d) Slice in the y–z plane.
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near-wall mechanics. This being fundamentally different to that of past studies of stratified
wall-bounded flow where intermittency is ‘global’ in the sense that it also originates at the
bottom wall (Flores & Riley 2011; Deusebio et al. 2015; van Hooijdonk et al. 2018). We
return to the vertical structure of the intermittency in more detail in §§ 3.2 and 4.4.

In particular, we also highlight that the shear layer that forms between the turbulent bulk
flow and upper quasi-laminar layer is notably defined by energetic mixing from distinct
braided-eye ‘overturning’ structures that somewhat resemble KHI structures. Similar
structures were observed in the large eddy simulation (LES) stable atmospheric boundary
layer study of van der Linden et al. (2020), who showed using linear stability analysis that
sporadic ‘bursts’ of turbulence at the turbulent/non-turbulent boundary were susceptible
to KHI. We note in our flow, such structures may then be ejected from the layer into the
upper quiescent flow during upwelling events from below. From figure 3(c) we note that
our algorithm is able to robustly capture these mechanics identifying separated overturning
structures within the upper layer as ‘turbulent’.

3.2. Vertical intermittency profile
Figure 4(a) shows the resulting intermittency profile as a result of the turbulent/quiescent
identification algorithm outlined above by plotting the stationary turbulent volume fraction
γ̄ against z/δ for all simulations. In agreement with the distinctly inhomogeneous profiles
of ReB, the profiles of γ̄ show significant variation with z as the flow sharply transitions
from its fully turbulent state in the lower portion of the channel to an entirely quiescent
state at the upper boundary.

Figure 4(b) shows the bin-averaged values of γ plotted against corresponding bins of
〈ReB〉|F. The bin-averaged data include both the transitional and quasi-stationary data
and are constructed for t/T0

τ > 1 to exclude the initial adjustment period as described
above. The results confirm the dependency of the intermittency profile on ReB with a clear
collapse for all DNS showing a transition to fully turbulent flow at ReB ≈ 100 and fully
quiescent flow at ReB ≈ 1 consistent with the results of PKTSC16.

We note that the intermittency profiles observed in figure 4(a) show a remarkable
resemblance to that of the intermittency observed in studies of neutrally stratified Ekman
flow (Ansorge & Mellado 2014, 2016; Lee, Gohari & Sarkar 2020). In atmospheric
literature such intermittency is classified as ‘external’: that is, the flow is separated into in
an inner turbulent flow near the wall and an outer or external non-turbulent flow above.
However, we must be somewhat cautious in drawing direct comparisons between our
work and the aforementioned Ekman flow studies. In our case the external intermittency
can still be considered ‘local’ in the sense that the collapse of turbulence is caused by
strong buoyancy gradients which form in the upper channel where the heating is strongest.
Conversely in neutral Ekman flow, the absence of turbulence in the outer flow is caused
by an equilibrium balance between the mean geostrophic wind and the Coriolis force
(Coleman, Ferziger & Spalart 1990). Rather, the external intermittency in our flow bears
closer resemblance to that of convective boundary layer (CBL) flow where the outer
non-turbulent layer is defined by a stable stratification profile separated from the turbulent
bulk flow by an entrainment or interfacial layer (Garcia & Mellado 2014; Fodor & Mellado
2020). This is addressed in more detail in § 4.4.

3.3. M-O prediction of intermittency
The scaling of flow sufficiently far from the wall and prediction of intermittency have
been investigated extensively in the literature through the M-O framework for a variety
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Figure 4. (a) Vertical profiles of the stationary turbulent fraction γ̄ for all simulations. (b) Bin-averaged values
of the turbulent fraction 〈γ 〉 plotted against corresponding bins of 〈ReB〉|F . (c) Bin-averaged values of the
turbulent fraction 〈γ 〉 plotted against corresponding bins of Λ+. Bin-averaged values in (b, c) constructed for
all z and t/T0

τ > 1. (d) Stationary profiles of γ̄ plotted against the theoretical maximum value of Λ+
M . Shading

corresponds to ± one standard deviation. Horizontal dashed lines in (b) indicate ReB = 1100. Horizontal
dashed lines in (c,d) indicate Λ+ = 2.5, 260.

of flow configurations (Howell & Sun 1999; Flores & Riley 2011; García-Villalba & del
Álamo 2011; Chung & Matheou 2012; van de Wiel et al. 2012; Deusebio et al. 2015;
Williamson et al. 2015; Zhou et al. 2017). As outlined in § 1, one of the key aims of
this study is to investigate the efficacy of a ‘local’ (vertically varying) Λ+ approach to the
parametrisation of intermittency within surface heated open channel flow, where following
Chung & Matheou (2012)

Λ = 〈−u′w′〉3/2

κcB
, Λ+ = 〈−u′w′〉2

κcBν
, (3.8a,b)

where B = 〈−b′w′〉 is the turbulent buoyancy flux. Here Λ constructed out of the local
buoyancy and momentum fluxes can be interpreted as a direct local variant of the classic
M-O L, whereas Λ+ is the non-dimensional length normalised through viscous units,
analogous to L+ = Luτ /ν as defined by Flores & Riley (2011).
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Figure 4(b) shows the bin-averaged values of γ plotted against corresponding bins
of Λ+. The results show clear collapse of the data for all DNS as intermittency is
introduced into the flow within the bounds of 2.5 � Λ+ � 260. These transitional values
being directly equivalent to the range 1 � ReB � 100 observed in figure 4(b) under the
assumption that for flow in a state of local ‘quasi-equilibrium’ we can obtain ReB ≈ κcΛ

+
(Williamson et al. 2015; van Hooijdonk et al. 2018).

It is further worth noting that the data here include both the transitional period of the
flow as well as the quasi-stationary state. Furthermore, our flow is highly inhomogeneous
with distinctly varying flux profiles with respect to depth. As such the excellent collapse of
the results presents a further strong argument for the applicability of a local Λ+ approach
in the prediction of the onset of intermittency for a variety sheared flows where the local
flow can be described as a competition of shear, buoyancy and viscous forces.

In a practical sense, the accurate prediction or measurement of the depth varying
turbulent fluxes 〈−u′w′〉, B or the dissipation rate εK and, hence, ReB or Λ+ is very
challenging outside of DNS. However, an advantage of our flow configuration is that for
the quasi-stationary case, the vertical profiles of the momentum and buoyancy fluxes and
hence Λ+(z) may be roughly estimated a priori. For the flow to obtain a quasi-equilibrium
state, the forced heating profile q(z) and driving pressure gradient F seek to attain balance
with the total downward buoyancy B and momentum M fluxes which are composed of
their turbulent and laminar components such that

B = B + κN2, M = 〈−u′w′〉 + νS. (3.9a,b)

For the stationary state, the equilibrium profiles of BE and momentum ME may be
obtained analytically (Williamson et al. 2015):

BE(z) = gβIS

CPρ0δ
(z(1 − e(z−δ)α)), ME(z) = u2

τ

(
1 − z

δ

)
. (3.10a,b)

By neglecting the molecular terms we can, hence, construct a theoretical maximum value
for Λ+

M(z) from the analytical profiles of the form

Λ+
M(z) = M2

E(z)
κcBE(z)ν

. (3.11)

In this sense Λ+
M(z) represents an ideal state which the flow seeks to achieve such that the

turbulent flux profiles develop to obtain equilibrium.
Figure 4(c) shows the quasi-stationary values of γ̄ plotted against Λ+

M(z) for all
simulations. The results show excellent agreement with identical bounding values of
Λ+

M ≈ 2.5–260 that define the intermittent region of the flow. We observe that the slope
of γ in the intermittent region is slightly reduced to that of figure 4(b) due to our
idealised assumption of neglecting the molecular terms in Λ+

M . However, the data remain
well collapsed suggesting the variation between the turbulent and molecular components
due to the suppression of turbulent fluxes is captured in our idealised measure of Λ+

M .
The exception to this is the least intermittent case R400L0.5 where the stationary flow
never reaches a state of γ = 0. Accordingly as the flow approaches the surface where
the confinement effects modify the turbulence properties (Calmet & Magnaudet 2003;
Flores, Riley & Horner-Devine 2017), the assumptions of local equilibrium underpinning
the construction of Λ become somewhat invalid and the data asymptote to the final value
of γ even as Λ+

M continues to decrease.
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As Λ+
M may be constructed entirely from bulk flow proprieties and the geometry of the

flow, our results suggest Λ+
M may lend itself as a useful forecasting tool for the onset of

intermittency and subsequent reduction in ‘local’ mixing of real stratified river flows for
which our DNS configuration is an idealised representation.

We note further from the comparison of our results of cases R400L1 and R400L1LD
that their is negligible difference in the intermittency profile and its dependence on ReB
or Λ+ with increased domain size. The results hence suggest that our results pertaining to
‘local’ intermittency and its effect on ‘local’ parameters is independent of the domain size
of our DNS.

4. Vertical distribution of conditionally averaged flow properties and
non-dimensional parameters

4.1. Mean gradients and energetic quantities
We briefly present the variation in key flow properties due to intermittency for our
representative case R900L1. We similarly plot both the turbulent and quiescent data sets
within the limits of 0.05 ≤ γ ≤ 1 and 0 ≤ γ ≤ 0.95, respectively, to minimise the effect
of noisy measurements in the presentation of our results. Dimensional flow properties are
non-dimensionalised by the friction velocity uτ and channel height δ.

Figures 5(a) and 5(b) show the conditionally averaged stationary profiles of the
buoyancy frequency 〈N̄〉|I and mean shear 〈S̄〉|I , respectively, where 〈S〉|I = 〈∂u(x)/∂z〉|I
is the local conditionally averaged shear. As discussed above, the flow attempts to balance
the imposed heating profile and pressure gradient through B and M, respectively. We
find that in regions of non-trivial intermittency, the turbulent mean stratification 〈N̄〉|T
and shear 〈S̄〉|T are appreciably reduced relative to the full data set as the turbulent fluxes
are less suppressed within these regions. Analogously the mean profiles in the quiescent
data set 〈N̄〉|Q and shear 〈S̄〉|Q are both larger than the full data set as the flow tends to
develop steeper gradients locally to account for the strong suppression of turbulence within
these regions. As such our results support the concern raised in Caulfield (2020) about the
validity of any assumptions made of mean gradients of buoyancy or shear, particularly
from field measurements where the data set may be limited or biased by time-dependent
events.

Figure 5(c) shows the stationary vertical profiles of the conditionally averaged
TKE 〈EK〉|I where EK = 1/2〈u′

iu
′
i〉. From the results it is clear that in the region of

intermittency, 〈EK〉|T does not decline towards zero with increasing distance from the
wall as does the full data set, but rather plateaus to an approximately constant value within
the energetic shear mixing layer. Conversely, we observe low but non-zero TKE for the
quiescent data set as 〈EK〉|Q remains relatively small for its entire range. We conjecture that
the energy remaining within the flow is kept at long wavelengths similar to the analysis
presented for the diffusive regime of Brethouwer et al. (2007). Accordingly the results
highlight the subtle difference between a ‘quiescent’ in the presence of nearby turbulence
to that of steady laminar flow where the TKE is strictly zero.

Figures 5(d)–5( f ) shows the stationary conditionally averaged profiles of the dominant
terms in the TKE budget, that being the production term 〈P̄〉|I , the dissipation rate of
kinetic energy 〈ε̄K〉|I and the buoyancy flux 〈B̄〉|I where

〈P̄〉|I = 〈−u′w′〉|I〈S〉|I . (4.1)

The results show qualitatively similar results within the intermittent region for all three
quantities with the turbulent data sets showing clear growth up to a secondary peak
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Figure 5. Stationary vertical profiles of key conditionally averaged flow properties for case R900L1.
(a) Buoyancy frequency 〈N̄〉|I . (b) Mean shear rate 〈S̄〉|I . (c) The TKE 〈EK〉|I . (d) Production of TKE 〈P̄〉|I .
(e) Dissipation rate of TKE 〈ε̄K〉|I . ( f ) The vertical buoyancy flux 〈B̄〉|I . (g) The local energetic equilibrium
ratio 〈P〉|I/(〈B〉|I + 〈εK〉|I). Turbulent and quiescent data sets are cut off at γ < 0.05 and γ > 0.95
respectively. Shading corresponds to ± one standard deviation.

at z/δ ≈ 0.8, roughly corresponding to the location of maximum shear and where the
KHI-driven shear layer is observed in figure 3. As we show, this can be directly attributed
to the idea of an ‘energetic’ mixing regime as argued by Mashayek et al. (2021) where the
flows self-organises to a critical state such that the mixing is most vigorous and becomes
most efficient. Conversely, the three quantities within quiescent data set remain relatively
negligible and trend towards a constant limit with increasing distance from the free surface.

Figure 5(g) shows the profiles of the ratio 〈P〉|I/(〈B〉|I + 〈εK〉|I) which represents a
measure of how close the flow is to a state of local energetic equilibrium. For horizontal
layers where the ratio is unity we expect the local flow dynamics to be representative of
an instance of homogeneous flow such that local scaling and parametrisation becomes
valid. We observe that the ‘turbulent’ flow exists in a state of local equilibrium for
the majority of the channel depth and this region has a slightly greater vertical extent
relative to the full data set as the quasi-laminar quiescent contributions are filtered out.
Accordingly, we define ze as listed in table 1 as the upper vertical intercept for which
the local equilibrium assumption holds true such that 〈P〉|T/(〈B〉|T + 〈εK〉|T) ≈ 1 and
where we expect negligible influence over local flow dynamics from the confinement
effects of the upper boundary which remains poorly understood (Flores et al. 2017).
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Intermittency and critical mixing in channel flow

For the other simulations not presented here we note similar regions develop where the
local equilibrium assumption is valid, albeit with different individual values of ze due the
varying thickness of the upper fully quiescent regions as the quasi-laminar flow is unable
to produce enough TKE to maintain local equilibrium. In agreement with this, we observe
that in the quiescent regions where the turbulent fluxes are almost fully suppressed, the
local equilibrium assumption becomes strictly invalid for all z.

4.2. Gradient Richardson number and ‘marginal instability’
Through separation of the turbulent and quiescent data sets we can define a conditionally
averaged gradient Richardson number of the form

〈Rig〉|I = 〈N2〉|I
〈S2〉|I . (4.2)

Figures 6(a) and 6(b) show the quasi-stationary and conditionally averaged vertical profiles
of the gradient Richardson number for the ‘turbulent’ 〈Rig〉|T and ‘quiescent’ data sets
〈Rig〉|Q for all simulations. For reference we include the full data set (dashed line of same
colour) on both plots.

From the results we observe that even though the mean stratification and shear vary
appreciably over the intermittent region as seen in figure 5(a,b), Rig shows relatively small
variation from its full data set values as the mean profiles of N, S evolve proportionally in
the turbulent and quiescent regions. Similar to past results of open channel and Poiseille
flow (Armenio & Sarkar 2002; García-Villalba & del Álamo 2011; Williamson et al.
2015), we observe the core of the channel which directly corresponds to the region
of intermittency equilibrates to a constant critical value of approximately Rig,c ≈ 0.2.
Towards the free surface where B and M are composed almost entirely through the
molecular terms, Rig grows rapidly large as the upper boundary condition dictates the
mean gradient profiles of S and N through (3.10a,b).

A key finding from these results is that although the profiles of 〈Rig〉|T and 〈Rig〉|Q
are qualitatively similar in the region of intermittency, the turbulent data set is marginally
smaller than the visually estimated asymptotic value of Rig,c ≈ 0.2, whilst the quiescent
data set is marginally larger. To show this more clearly, figure 6(c) shows the ratio of
〈Rig〉|T/〈Rig〉|Q plotted against z/δ within the region of intermittency of 0.05 ≤ γ ≤ 0.95.
The results clearly show that sufficiently far from the upper boundary the ratio approaches
a constant of approximately 0.8 for all simulations, regardless of the external parameter
set. The results hence provide strong evidence for the ‘marginal instability’ hypothesis
of Thorpe & Liu (2009). As outlined in § 1, the underlying theory being that the mean
shear and stratification self-modulate in a cycle between states of marginal stability
and instability. Under the assumption that Rig,c ≈ 0.2 represents some critical measure
of stability for our particular flow, our results suggest that the turbulent flow exists in
an energetic and marginally unstable state prone to the formation of local instabilities.
Meanwhile the quiescent flow remains suppressed, yet exists in a state where a marginal
acceleration of the flow and increase in mean shear reverts the flow back to an unstable
state defined by Rig < Rig,c. Considering the distinct inhomogeneity of the S, N vertical
profiles for our flow, our results present very strong evidence for this self-modulating
behaviour.

A further and crucial observation is that this critical state defined by Rig = Rig,c only
occurs within regions of intermittency. To make this clear we plot the stationary values
of 〈Rig〉|F against corresponding turbulent fraction γ̄ for a given depth in figure 6(d).
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Figure 6. Stationary vertical profiles of: (a) the ‘turbulent’ conditionally averaged gradient Richardson number
〈Rig〉|T ; (b) the ‘quiescent’ conditionally averaged gradient Richardson number 〈Rig〉|Q. Vertical dashed line
in (a,b) indicates Rig = 0.2. Dotted lines of the same colour depict full data sets in both figures. Turbulent and
quiescent data sets are cut off at γ < 0.05 and γ > 0.95, respectively. (c) Ratio of the turbulent to quiescent
gradient Richardson numbers 〈Rig〉|T/Rig〉|Q plotted against z/δ within the vertical range corresponding to
0.05 ≤ γ ≤ 0.95. (d) The ‘full’ unconditionally averaged gradient Richardson number 〈Rig〉|F plotted against
the corresponding turbulent fraction γ̄ . Shading corresponds to ± one standard deviation. Note the vertical
scale in (c) is different to (a,b,d).

The results clearly show that the transition to Rig ≈ 0.2 occurs for all simulations at
precisely the location where intermittency is introduced into the flow such that γ becomes
less than unity. The results hence suggest that for our flow, criticality and intermittency
may be fundamentally linked as a critical Rig represents a saturated state past which the
stationary flow cannot sustain turbulence.

The results are further consistent with the DNS findings of van Hooijdonk et al. (2018)
who investigate the transition to intermittency in stratified plane Couette flow. They
find the bulk flow transition to intermittency is dependent on both an outer stability
parameter SCC (shear capacity, see van Hooijdonk et al. (2015) for a derivation) and
a Reynolds number analogous to how local stratified flow is defined by both Rig (or
Fr) and ReB (or Λ+) (Billant & Chomaz 2001; Lindborg 2006; Chung & Matheou
2012). In particular, they find that when SCC ∼ SCcrit

C (i.e. when the flow approaches
intermittent critical conditions), the flow obtains its maximum buoyancy flux analogous
to the results shown in figure 5( f ) and Rig similarly saturates to a constant critical value.
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Intermittency and critical mixing in channel flow

Considering the distinctly differing nature of the intermittency within the two studies:
external intermittency permeating down from the free surface due to internal heating
(concentrated near the surface) in our case and global intermittency due to cooling at the
walls in theirs, the results presented here similarly seem to support the classic argument
of Phillips (1972) that the buoyancy flux–gradient relationship obtains a maximum value
at a given critical stratification strength under the caveat that the Reynolds number is
sufficiently large.

4.3. Turbulent Froude number and the mixing efficiency
As outlined in § 1 one of the core aims of this study is to identify the effect of intermittency
on the scaling arguments of Maffioli et al. (2016) and Garanaik & Venayagamoorthy (2019)
that suggest the flux coefficient Γ trends towards a constant asymptotic value in the limit of
Fr � O(1). In § 5 we thoroughly investigate the effects of intermittency within the Fr–Γ

parameter space across the varying mixing regimes. However, we first consider the effects
of intermittency on the spatial distribution of Fr and Γ by considering their conditionally
averaged vertical profiles. We hence explicitly define the conditionally averaged measures
of 〈Fr〉|I and 〈Γ 〉|I of the form

〈Fr〉|I = 〈εK〉|I
〈N〉|I〈EK〉|I , 〈Γ 〉|I = 〈B〉|I

〈εK〉|I . (4.3a,b)

Note that Γ can be directly related to the flux Richardson number Rf = B/(B + εK)

(often referred to as the mixing efficiency) through the relation Γ = Rf /(1 − Rf ). We note
that as discussed IWAN22, we defer to a more classic definition of Γ through the buoyancy
flux B as defined in Ivey & Imberger (1991) rather than through the normalised rate of
buoyancy variance destruction χ = (κ/N2)(∇b′)2. We acknowledge that B may become
contaminated through inherently reversible ‘stirring’ motions and counter-gradient fluxes
and may underestimate the true irreversible mixing rate (Venayagamoorthy & Koseff
2016). However, χ begins to lose relevance as a measure of mixing in a spatiotemporally
inhomogeneous flow such as ours in which the buoyancy frequency N varies significantly
with z and t (Caulfield 2020). Furthermore, our results in IWAN22 have shown that the
qualitative behaviour of Γ defined through (4.3a,b) relative to Fr remains consistent with
past studies in which Γ has been defined through χ .

Figures 7(a) and 7(b) show the stationary vertical profiles of Fr within the turbulent and
quiescent data sets respectively. For reference, the vertical profiles of the full data set of
each simulation are plotted as the dashed lines of the same colour on all figures.

We observe the distinct trend that irrespective of the external parameter set and the
subsequent range of Fr for the full data set, the Froude number for the ‘turbulent’ data
set appears to asymptote towards a lower critical limit of Frc ≈ 0.3. The critical value
being in direct agreement of the value for the maximum mixing efficiency within the
homogeneous simulations of Maffioli et al. (2016) and the value at which in IWAN22 we
observe the transition to the ‘saturated’ constant Γ regime. Accordingly, this result adds
further evidence to the hypothesis of self-organised criticality of stratified shear flow, as
the turbulent flow naturally converges towards an optimal or critical state that facilitates
conditions for relatively ‘efficient’ KHI-induced mixing (Thorpe & Liu 2009; Mashayek
et al. 2017, 2021).

We note that similar to the results regarding Rig in figure 6, the flow obtains Fr ≈ Frc
at the location in the flow where intermittency becomes appreciable. Furthermore, as
observed in figure 4, the intermittency profile displays a clear dependence on Λ+ and,
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Figure 7. Stationary vertical profiles of ‘turbulent’ and ‘quiescent’ conditionally averaged: (a,b) turbulent
Froude number 〈Fr〉|I , where the vertical dashed line corresponds to Fr = 0.3; (c,d) flux coefficient Γ , where
the vertical dashed line corresponds to Γ = 0.2. Turbulent and quiescent data sets are cut off at γ < 0.05
and γ > 0.95, respectively. Shading where presented corresponds to ± one standard deviation. Shading is not
included in (c,d) due to excessive noise.

hence, ReB in direct agreement with the theory of PKTSC16. Accordingly our results
which suggest criticality and intermittency are fundamentally linked for our flow, present
compelling evidence for the arguments of Caulfield (2021) that active vigorous turbulence
in stratified sheared flow may not be able to access the LAST regime and should not
be considered ‘strongly stratified’ as the underlying requirements of ReB � O(1) and
Fr � O(1) are inherently unsatisfied.

Conversely, the quiescent vertical profiles of Fr essentially follow that of the full data
set as the turbulent properties (εK, EK) go towards zero and the parameters become
predominantly defined by the shape of the vertical profile of the background stratification
N. We observe that similarly to the lower limit for the turbulent data set, Fr appears to
have an analogous asymptotic upper limits within the quiescent regime of Fr ≈ 0.3. This
is conceptually consistent with the underlying theme of criticality in stratified shear flow
and our analysis in IWAN22 that shows a functional relationship between Fr and Rig. As
such, finite bounds must exist on Fr within the turbulent and quiescent regions such that
the respective measurements of Rig remain in a marginally unstable or stable state.
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Intermittency and critical mixing in channel flow

Figures 7(c) and 7(d) show the stationary vertical profiles of Γ within the turbulent and
quiescent data sets, respectively. Again, the vertical profiles of the full data set of each
simulation are plotted as the dashed lines of the same colour on all figures.

From the results we observe that the variation in Γ between the conditionally averaged
and full data sets is relatively subtle as the qualitative behaviour remains essentially
the same. However, within the region of intermittency it is clear that the ‘turbulent’
mixing efficiency is slightly larger than the full data. In particular, this variation is most
pronounced at the secondary energetic peak corresponding to the overturning driven
mixing within the interfacial layer separating the turbulent and quiescent regimes. This
again directly corresponds to a critical state and the ‘optimal’ energetic mixing regime
described above.

Conversely, the results show that for the majority of the intermittent region,
measurements of Γ in the quiescent regime are relatively smaller than the full data set
as the quasi-laminar flow is not able to mix the flow as efficiently. We note, however, with
increasing distance from the free surface or analogously as the turbulent fraction γ → 1, Γ
within the quiescent flow grows larger and exceeds the full data set. As observed in Smith
et al. (2021) in quiescent regions described by low ReB, even as εK goes towards zero the
diapycnal flux may not fully suppressed resulting in high readings of Γ . Furthermore, we
note that this occurs at the lower fringes of the intermittent region where the quiescent
data set is relatively sparse and measurements of B become very noisy resulting in large
fluctuations of Γ . It is also worth noting that the corresponding ‘quiescent’ Froude number
for these higher values is appreciably smaller than that of the full or turbulent data sets for
the same vertical location.

4.4. Turbulent/quiescent interface coordinate system
A key observation from the flow visualisations in figure 3 and the vertical profiles of
turbulent fraction γ in figure 4 is that the intermittency of the flow is largely defined by
an upper quasi-laminar quiescent layer separated from the lower turbulent channel by a
deformed horizontal interface. The exception to this being occasional detached turbulent
overturning structures within the quiescent layer and localised pockets of quiescent fluid
within the turbulent flow. We can, hence, consider the vertical distribution of flow
properties and non-dimensional parameters from the reference coordinate system of the
interface location analogous to past studies of turbulent/non-turbulent interface flows
(Garcia & Mellado 2014; Ansorge & Mellado 2016; Watanabe et al. 2016).

Within the horizontal (x–y) plane we, hence, define the vertical reference coordinate
of the turbulent/quiescent interface zi(x, y) = 0 as the uppermost location that vertically
separates an upper ‘quiescent’ and lower ‘turbulent’ location according to the algorithm
defined in § 3. To ensure that we do not define the interface along a separated overturning
structure we place an additional constraint such that along a one-dimensional search vector
of length L/δ = 0.2 in the −z direction originating at zi(x, y) = 0, more than half of the
flow must be ‘turbulent’. The choice of L/δ = 0.2 being the visually estimated vertical size
of the largest turbulent structures within the central region of intermittency. Dimensional
flow quantities (i.e. N, S, EK, εK at a given x, y, z, t are, hence, calculated cell-wise relative
to their reference interface location zi(x, y, t) = 0 and subsequently bin-averaged into
vertical bins of size �z+

i = 4, 2.5 for the Reτ = 400, 900 cases, respectively, which
correspond to the coarsest vertical grid size. Non- dimensional parameters for a given
zi are constructed out of the bin-averaged dimensional quantities.
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Figure 8. Stationary vertical profiles in the zi turbulent/quiescent interface system of: (a) TKE production P̄,
(b) buoyancy flux B̄; (c) TKE dissipation rate εK ; and (d) local equilibrium ratio P/(B + εK). Dimensional
quantities in (a–c) normalised by their respective mid-interface values at zi = 0. For all figures: vertical
interface location zi normalised by the Ellison length calculated at the centre of the interface. Vertical dashed
lines indicate a value of unity. Horizontal dashed lines indicate values of zi/LE = −2, 0, 2. Shading where
presented corresponds to ± one standard deviation.

Figures 8(a)–8(c) shows the stationary vertical profiles of the dominant energetic terms
P̄, B̄, εK , normalised by their mean interfacial values P̄(zi = 0), B̄(zi = 0), εK(zi = 0) in
the zi reference coordinate system for all simulations. As the turbulent/quiescent interface
is markedly defined by distinct ‘overturning’ shear instability structures, we hypothesise
that the size of the interfacial layer will scale with the size of the overturns. Accordingly,
we normalise zi by LE(zi = 0) calculated at the interface, where LE is the well-known
Ellison length describing the characteristic size of the overturns in a stratified fluid (Ellison
1957; Shih et al. 2005; Mater, Schaad & Venayagamoorthy 2013), defined as

LE = b′
rms

N2 . (4.4)
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Intermittency and critical mixing in channel flow

The results show clear behaviour of two distinctly different flow regimes separated by
an interfacial layer where the properties rapidly change, showing qualitatively similar
behaviour to the results of Watanabe et al. (2016). Above the interface, the energetic
terms go to zero as the flow approaches quasi-laminar conditions. Below the interface
the flow is actively turbulent, in particular the mixing being most energetic just
below the interfacial layer as seen from the peak in B. Crucially, the interfacial layer
does appear to characterised by the Ellison length, with thickness of approximately
4LE/δ.

We note that on the ‘turbulent side’ of the interface the energetic quantities follow
individual trajectories with each simulations. This is unsurprising as the location of the
vertical region of intermittency varies with each simulation, which combined with the
vertically inhomogeneous nature of the depth-dependent mean shear and stratification
profiles causes variation in the energetic quantities with respect to the turbulent/quiescent
interface.

Figure 8(d) shows the stationary vertical profiles of the local equilibrium ratio
P/(B + εK) in the zi coordinate system. Note that the data in the positive zi direction have
been abbreviated to minimise excessively noisy measurements of the local equilibrium
ratio as all terms become small and minor fluctuations in any quantity cause large
variations in the local equilibrium ratio. A state of local energetic equilibrium is only
evident for the actively turbulent flow as the suppressed momentum flux in the quiescent
layer is unable to extract sufficient TKE from the mean shear to maintain local equilibrium
in agreement with our analysis in § 4.

Figure 9(a) shows the stationary profiles of the buoyancy Reynolds number ReB(zi). We
again normalise zi by LE(zi = 0) to demonstrate self-similar behaviour of the interfacial
layer. The results are well collapsed for all simulations. At the quiescent-side boundary
of the interfacial layer, the flow obtains ReB ≈ O(1) confirming the observation of
a quasi-laminar or diffusive state. Conversely at the turbulent-side boundary of the
interfacial layer, the flow obtains ReB ≈ O(10). The results are consistent with the
assumptions of PKTSC16 and past work on stratified flows discussed in § 3 regarding the
lower ‘local’ limit of ReB ≈ 10 for actively turbulent flow.

Figure 9(b) shows the stationary profiles of the gradient Richardson number Rig(zi). The
results clearly show support for our argument that the criticality of the flow is inherently
linked to the intermittency as the flow deviates from its critical state of Rig ≈ 0.2 at
precisely the interface location zi = 0 for all simulations. Above the interface Rig rapidly
grows as the flow approaches stable and quasi-laminar conditions. Further evidence to
support this idea is seen in figure 9(c), which analogously shows that through the stationary
profiles of the turbulent Froude number Fr(zi) that the flow similarly departs from its
critical state of Fr ≈ 0.3 within the interfacial layer again suggesting that actively turbulent
shear flow is unable to access Fr � O(1) locally.

Figure 9(d) shows the stationary profiles of the flux coefficient Γ̄ (zi). We interestingly
observe non-monotonic behaviour of Γ with zi. We note that the mixing is most efficient
with a clear peak of Γ ≈ 0.25 at the lower turbulent-side boundary of the interfacial layer
at zi/LE = −2 rather than at zi = 0, corresponding to the peak in B observed in figure 8(b)
and where Rig and Fr obtain their critical values. Past this point where ReB < O(10),
the flow begins to enter a diffusive regime which is not able to mix the buoyancy field
as efficiently such that Γ drops slightly and approaches a constant value (albeit with a
significant amount of scatter) within the quiescent regime. This suggests the asymptotic
nature of a ‘saturated’ Γ at low Fr is linked to the quiescent flow. We explore this concept
in more detail in § 5.
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Figure 9. Stationary vertical profiles in the zi turbulent/quiescent interface system of: (a) buoyancy Reynolds
number ReB, where the vertical dashed lines indicate ReB = 1, 10; (b) gradient Richardson number Rig, where
the vertical dashed line indicates Rig = 0.2; (c) turbulent Froude number Fr, where the vertical dashed line
indicates Fr = 0.3; (d) flux coefficient Γ̄ , where the vertical dashed line indicates Γ = 0.2. For all figures:
vertical interface location zi normalised by the Ellison length calculated at the centre of the interface. Horizontal
dashed lines indicate values of zi/LE = −2, 0, 2. Shading where presented corresponds to ± one standard
deviation and has been abbreviated to minimise excessive noise in the quiescent region. Legend same as
figure 8.

We again observe that on the ‘turbulent side’ of the interface the profiles the mixing
diagnostics do not universally collapse when normalised by the interfacial value of LE.
In particular, this is accentuated in our R900L1 results. This can be explained if we
consider figure 9(a) showing that for all cases the transition to the intermittent interfacial
region occurs at ReB ≈ 10, consistent with the underlying theory and our analysis so far.
Furthermore, we note that ReB can be defined as a ratio of length scales such that

ReB =
(

LO

LK

)4/3

, (4.5)
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where LO = (εK/N3)1/2 is the Ozmidov length roughly defining the upper limit of the
inertial subrange in stratified flow and LK = (ν3/εK)1/4 is the Kolmogorov micro scale.
Hence, ReB represents an estimate of the isotropic inertial subrange of the flow. Thus,
if we assume LK decreases with increasing Reτ , then to maintain ReB ≈ 10 we expect
LO to similarly decrease. As argued by Mashayek et al. (2021) and as shown directly in
§ 5, we expect this region of ‘optimal’ or critical mixing to be defined by LE ≈ LO such
that the injection of energy into the flow through overturns is precisely at the wavelength
corresponding to the upper limit of the inertial subrange. Hence, as the interfacial value of
LE accordingly shrinks with increasing Reτ , the vertical profiles of the Reτ = 900 appear
more ‘stretched’ than the Reτ = 400 cases. Furthermore, we do not expect that in our flow
where LE and LO vary significantly with depth, that a local interfacial scale at zi = 0 would
scale the turbulence within the bulk flow below. However, the significant takeaway from
the results is that regardless of Reynolds number, the behaviour of the energetic quantities
and mixing diagnostics within the interfacial layer as seen in figures 8 and 9 remains
self-similar when scaled with the interfacial mean value of LE.

It is worth noting that zi-based vertical profiles of the turbulence properties and
non-dimensional parameters in figures 8 and 9 bear striking similarity to the vorticity
profiles observed for CBL flow with respect to an appropriately defined encroachment
length (analogous to zi = 0 in our case) (Garcia & Mellado 2014; Fodor & Mellado 2020).
They similarly found that the flow is divided into two regimes: an outer non-turbulent
and stably stratified layer and a lower well-mixed turbulent layer, between which the
strength of the vorticity varies by orders of magnitude. These regimes being separated
by an entrainment layer where the magnitude of the vorticity rapidly changes. Garcia
& Mellado (2014) further found that the thickness of this layer scales with the vertical
buoyancy scale Lw

B = w′
rms/N. As shown in IWAN22, for strong stratification (Fr ≤ 0.3)

we expect the buoyancy scale to determine the size of the overturns such that Lw
B ∼ LE.

As such our results suggest that the structure of the interfacial layer in surface heated
channel flow bears remarkable similarity to that of the entrainment layer structure in the
aforementioned CBL studies. Considering the distinctly differing mechanisms governing
the entrainment or mixing process itself: convective turbulence as opposed to shear-driven
instabilities in a pressure gradient-driven flow, the results suggest a degree of universality
on a local buoyancy scaling of an entrainment or interfacial layer for stably stratified flows
with a clear turbulent/non-turbulent interface. How this pertains to a wider range of flow
configurations remains to be seen and presents clear direction for future work.

5. Effect of intermittency on a Fr-based parametrisation of Γ

5.1. Horizontal averages
We now consider how the spatially varying distributions of the conditionally and
horizontally averaged values of Fr and Γ correlate and to what effect the parametrisation
of the mixing efficiency is effected by highly intermittent flow. We note that a caveat to
the use of our conditionally averaged data sets in this section is that the ‘turbulent’ and
‘quiescent’ patches within the horizontal layers for which statistics are calculated, must
be larger than all the physically relevant scales such that the two regions may be seen as
self-contained. If this condition is met, we conceptually expect the two flow regimes to be
independent of each other and local measures of Fr to correlate with local measures of Γ .

To demonstrate that this is strictly true for our flow, we consider that the largest length
scales most physically relevant to the mixing dynamics of our flow are: the Ellison length
LE defining the size of the overturns, the mean shear mixing length LS, the Ozmidov length
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Figure 10. Stationary vertical profiles of the Ellison length LE , shear mixing length LS, Ozmidov length LO,
inertial turbulent length LIT normalised by the channel height δ. (a) ‘Turbulent’ data set. (b) ‘Quiescent’ data
set. Turbulent and quiescent data sets are cut off at γ < 0.05 and γ > 0.95, respectively. Shading where
presented corresponds to ± one standard deviation. Data presented for case R900L1 in both figures.

LO defining the upper limit of the inertial subrange and the inertial turbulent length LIT
roughly characterising the integral scale of the flow. We hence explicitly define the above
conditionally averaged lengths:

〈LE〉|I = 〈b′
rms〉|I

〈N2〉|I , 〈LS〉|I = 〈E1/2
K 〉|I
〈S〉|I , (5.1a,b)

and

〈LO〉|I =
( 〈εK〉|I

〈N3〉|I〈EK〉|I

)1/2

, 〈LIT〉|I = 〈E3/2
K 〉|I

〈εK〉|I . (5.2a,b)

Figures 10(a) and 10(b) show the stationary vertical profiles of the turbulent and
quiescent length scales LE, LS, LO, LIT , respectively, normalised by the domain height δ

for case R900L1. From the results it is clear that for both data sets, within the region
of intermittency all the normalised lengths are of size L/δ ≈ O(10−1). In particular, we
note that within the ‘turbulent’ data sets LE, LS and LO appear to be of similar scale
and approach an asymptotic limit in agreement with the concept of criticality as argued
by Mashayek et al. (2021) where all three length scales equate. Conversely, from our
visualisations in figure 3 it is clear that with the exception of small isolated overturning
events, contiguous turbulent or quiescent patches are of size L/δ ≈ O(1). Furthermore, as
the turbulent and quiescent flow regions may be loosely considered two large dynamically
distinct regions separated by a deformed horizontal interface, the results confirm our
underlying assumption that the local dynamics describing both regions are self-contained.

We have used a singular case R900L1 to show this result for brevity. Although the size of
the four aforementioned length scales vary slightly with each simulation, they all remain of
size L/δ ≈ O(10−1) validating our assumption of self-contained flow within the quiescent
and turbulent patches.

Figure 11 shows the bin-averaged values of instantaneous measurements of 〈Γ (z, t)〉|I ,
plotted against their corresponding bins of 〈Fr〉|I for each individual simulation. To show
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Figure 11. Bin-averaged values and 2D p.d.f.s of the conditionally averaged flux coefficient 〈Γ 〉|I , plotted
against corresponding bins of conditionally averaged 〈Fr〉|I . Bin-averaged values and 2D p.d.f. constructed
with the temporal range of t/T0

τ > 1 and the vertical range of 0.2 < z < zle. (a) ‘Full’ data set. (b) ‘Turbulent’
data set. (c) ‘Quiescent data set’. For (a,b) solid diagonal lines indicate Γ ∝ Fr−1 and Γ ∝ Fr−2. Dashed
vertical lines indicate Fr = 0.3, 1. Horizontal thin lines in all figures indicate Γ = 0.2, 0.33. Legend same as
figure 4(b).

the spread of the instantaneous data, we plot the two-dimensional probability density
functions (2D p.d.f.s) of the same variables constructed from all simulations as a single
2D p.d.f. in the inset of the figures. To demonstrate the invariance of our results to
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time, we include data for both the temporally evolving and quasi-stationary state such
that both the bin-averaged values and p.d.f.s are constructed for data where t/T0

τ > 1.
Furthermore, to ensure our results are not susceptible to the confinement effects from the
top and bottom boundaries, we limit the vertical range from which we construct our figures
between 0.2 < z < ze. Here z = 0.2 corresponds to the approximate lower bound in which
Williamson et al. (2015) observe a transition of the flow to a state of local equilibrium
such that P ≈ B + εK for their Reτ = 395 simulations. Meanwhile, ze as defined in § 4
varies with each simulation. Accordingly within this vertical range we expect the mixing
dynamics of the flow to be free from boundary effects and to be characterised by local
processes.

For reference, figure 11(a) shows the correlations between Γ with Fr for the ‘full’ data
set. The results show the same qualitative behaviour as shown in figure 6 of IWAN22,
with a distinct collapse of the data along the lines of scaling as proposed by Maffioli
et al. (2016) and Garanaik & Venayagamoorthy (2019). For Fr � 1 the flow displays a
Γ ∼ Fr−2 scaling consistent with the arguments of Maffioli et al. (2016) for ‘weakly
stratified’ flow. For 0.3 � Fr � 1 we observe the ‘moderately stratified Γ ∼ Fr−1 scaling
of Garanaik & Venayagamoorthy (2019). Importantly, we observe that similarly to the
results presented in IWAN22, the full data set displays an asymptotic Γ regime for
Fr < 0.3 which corresponds directly to the regions of the flow where we observe strong
intermittency. Within this regime Γ approaches a constant value within the bounds of
Γ = 0.2 as predicted by Osborn (1980) and Γ = 0.33 as predicted for the optimal mixing
regime of Mashayek et al. (2021).

Figure 11(b) shows the correlations between Fr and Γ for the turbulent data set and
the comparison with the full data set is striking. The results clearly show that within the
turbulent data set there is no indication of a constant Γ regime. Rather for flow where
Fr � 1, the mixing efficiency continues to display an inverse correlation with Fr, such that
the Γ ∼ Fr−1 ‘intermediate’ scaling of GV19 clearly holds for an entire decade of Fr with
a distinct collapse of the data for all simulations even for Fr < Frc. This is again seemingly
in agreement with the arguments of Caulfield (2021) suggesting turbulent stratified shear
flow is unable to access a strongly stratified buoyancy dominated regime. However, as
discussed in Mashayek et al. (2021), the emergence of an ‘intermediate’ Γ ∼ Fr−1 mixing
regime under the assumption of Garanaik & Venayagamoorthy (2019) that buoyancy
influences the evolution of B to leading order appears somewhat in contradiction of their
primary assumption underlying the theory of self-organised criticality of stratified shear
flow. Being that for the entire mixing life cycle of a shear driven overturning event, the
flow is weakly stratified in the sense that the mixing of the buoyancy field defined through
B is ‘slaved’ to that of momentum and, hence, the shear and inertial forces of the flow. We
return to this idea in more detail in § 5.3.

It is important however to consider our distinct observation from figure 6(a) which
shows that for the stationary case and when considering only the ‘turbulent’ flow, Fr
approaches its clear critical limit of Frc = 0.3. For our results this directly corresponds to
a measurement of Γ = 0.2–0.33 conceptually consistent with the critical mixing regime
of Mashayek et al. (2021) and with numerous studies for the saturated value of the mixing
efficiency in the limit of strong stratification (Osborn 1980; Ivey & Imberger 1991; Shih
et al. 2005; Maffioli et al. 2016; Portwood et al. 2019; Howland et al. 2020). This is
reflected by the high concentration of data on the 2D p.d.f. at the critical point in the
flow.

In contrast, within figure 11(b), we note that the instances where Fr < 0.3 and we
observe measurements of Γ ≥ 0.2–0.33 higher than the asymptotic value observed in
figure 11(a) are significantly less frequent and can be interpreted as transient mixing
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events at strong levels of stratification. This interpretation of the results is conceptually
consistent with the findings of numerous stratified free shear layer studies that show the
mixing efficiency grows very large during an initial ‘roll-up’ of a KHI mixing event in a
quiescent and, hence, more strongly stratified background fluid (Caulfield & Peltier 2000;
Peltier & Caulfield 2003; Salehipour, Peltier & Mashayek 2015; Mashayek et al. 2017).

In stark contrast to the above results, figure 11(c) clearly show that within the quiescent
flow, Γ does not show any functional relationship on Fr. Rather, the mixing efficiency
appears to remain constant such that Γ ranges between 0.2 and 0.33 for the full parameter
range presented. We explain this by employing the scaling arguments of Garanaik
& Venayagamoorthy (2019). Within this regime the flow is essentially quasi-laminar
such that buoyancy has almost entirely suppressed turbulent motions and ReB � O(1).
Accordingly, we expect shear and inertial forces to be negligible and all dynamics of the
flow to be characterised by processes occurring at the buoyancy time scale TN = 1/N.
This leads to their scaling argument of

B ∼ εK ∼ w′2

TN
, (5.3)

and, subsequently,

Γ = B
εK

∼ w′2TN

w′2TN
= const. (5.4)

We note within this quiescent data set there is a significant amount of spread in the results
as B and εK approach zero and small fluctuations in either quantities cause large variations
in Γ . However, the main observation from the results that Γ appears independent of Fr
within the quiescent regions of the flow remains distinctly clear.

The results presented in figure 11 show that at our parameter range and for our flow
configuration, flow described by a global (unconditionally averaged) Fr < Frc and, hence,
low ReB corresponds to highly intermittent flow with appreciable contributions from both
the turbulent and quiescent data sets. Accordingly for our flow the transition observed in
figure 11(a) at the critical point of Frc = 0.3 from the Γ ∼ Fr−1 regime to a ‘saturated’
constant Γ regime occurs due to the increasing contributions from the quiescent flow
regions leading to a plateau in a ‘global’ measure of Γ . Hence, assuming that Fr ≈ 0.3
represents a critical lower bound for our sheared flow in the same sense that Rig,c ≈ 0.2
represents an upper bound, the results suggest that the manifestation of a constant Γ

regime within stratified shear flows in the limit of low Fr as argued by Maffioli et al.
(2016) and Garanaik & Venayagamoorthy (2019) occurs directly due to the intermittency
of the flow as the ‘saturated’ flow cannot exceed critical conditions. The results again
provide clear evidence for the concept that the self-organised criticality of stratified shear
flow is linked with and arises directly due to the strong spatiotemporal intermittency of
the flow. Although this concept has been discussed in past studies (Caulfield 2020, 2021;
Mashayek et al. 2021), to the best of the authors’ knowledge, ours is the first study to
directly demonstrate this with DNS data. Furthermore, considering the collapse of the
results irrespective of the external parameter set, time or vertical location, we believe this
behaviour will display a degree of universality for a variety of forced stratified shear flows.

We also note that it becomes clear that for rare transient mixing events where Fr < Frc,
Γ can significantly vary for a single measured value of Fr depending on whether the
composition of the flow is turbulent, quiescent or contains varied contributions from both
flow regimes.
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Figure 12. Bin-averaged values and 2D p.d.f.s of the flux coefficient 〈Γ 〉|I(zi), plotted against corresponding
bins of conditionally averaged 〈Fr〉|I(zi) calculated within the zi turbulent/quiescent interface-based coordinate
system. Bin-averaged values and 2D p.d.f. constructed with the temporal range of t/T0

τ > 1. Solid diagonal
lines indicate Γ ∝ Fr−1 and Γ ∝ Fr−2. Dashed vertical lines indicate Fr = 0.3, 1. Horizontal thin lines in all
figures indicate Γ = 0.2, 0.33. Legend same as figure 4(b).

5.2. Interface-based parametrisation within the region of intermittency
We also investigate a Fr-based parametrisation of Γ within the turbulent/quiescent
interface-based coordinate system. Figure 12 shows the bin-averaged values and
the 2D p.d.f. of 〈Γ 〉|(zi, t) plotted against corresponding bins of 〈Fr〉|(zi, t)
constructed out of instantaneous measurements of Γ (zi, t) and Fr(zi, t), which
are constructed from the instantaneous zi bin-averaged dimensional quantities, i.e.
B(zi, t), εK(zi, t), EK(zi, t), N(zi, t).

The data for t/T0
τ < 1 are again excluded. For 0.3 � Fr � 1 and Fr � 1 the results

show the same result as the horizontally averaged data with clear respective Γ ∼ Fr−1

and Γ ∼ Fr−2 regimes. This is consistent with our results in figures 6(a) and 9(c) which
suggests that within both a z- and zi-based coordinate system, sub-critical flow where
Fr � 0.3 may be considered almost entirely turbulent and, hence, we expect the same
behaviour as the horizontally averaged data.

However, in contrast to our horizontally averaged results we observe non-monotonic
behaviour of Γ in the left flank of the figure. Here the critical value of Fr(zi) ≈ 0.3
corresponds to a clear peak in the mixing efficiency consistent with the underlying theme
of this study being the concept of optimal and most ‘efficient’ mixing under critical
conditions defined by Fr = 0.3. Past this critical point, the mixing efficiency drops off
slightly before plateauing to an ‘Osborne’ constant value at approximately Γ ≈ 0.2,
although this is somewhat unclear due to the significant scatter in the measurements of
Γ within this regime.

We note that the peak is most pronounced for our least intermittent case R400L0.5
and conversely most pronounced for the most intermittent case R400L2. This can be
explained if we recall figure 7(c,d) where we observe that Γ rapidly declines as the free
surface is approached due to the confinement effects of the upper boundary. Accordingly
with reduced intermittency such as in case R400L0.5, the vertical location of the
turbulent/quiescent interface where Γ obtains its peak value is vertically shifted up the
domain and the subsequent rapid drop in Γ as the free surface is approached becomes
more pronounced. Conversely, for case R400L2 the interface is appreciably below the free
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surface and its confinement effects such that the quiescent flow is able to display a constant
Γ regime for an extended vertical range.

The results here are consistent with the findings and arguments of Maffioli et al. (2016)
who similarly find a peak in the mixing efficiency at Fr = 0.3 in their high-resolution DNS
study. We note that although the nature of the mixing in their body-forced homogeneous
DNS is appreciably different to ours being driven by the mean shear, we find their
results conceptually consistent with our hypothesis that intermittency in stratified flows is
responsible for the asymptotic nature of Γ at low Fr. In their study, flow for which Fr < 0.3
and where they observe a constant Γ regime corresponds to flow where ReB ≈ O(10) and
we expect strong intermittency. Conversely, their Fr = 0.3 case where they observe a peak
in mixing efficiency corresponds to ReB ≈ O(103) and, hence, we expect intermittency
to be negligible. Accordingly, the results presented in this section provide further strong
evidence not only for the concept of self-organised criticality manifesting due to the
intermittency of the flow, but also for our hypothesis that within stratified flow the
asymptotic behaviour of Γ for Fr � 0.3 comes directly as a result of the intermittency
and contributions from quasi-laminar quiescent flow. How this result pertains to a wide
variety of stratified flows and at significantly higher Reynolds presents clear direction for
future high-resolution DNS studies.

5.3. Underlying assumptions of the ‘intermediate’ mixing regime
In light of our results in figures 11 and 12 and the discussion presented in Mashayek
et al. (2021) (henceforth denoted as MCA21) regarding the potential discrepancies of
the ‘intermediate’ Γ ∼ Fr−1 scaling of Garanaik & Venayagamoorthy (2019) (henceforth
denoted as GV19) and their assumptions of stratified shear flow, we explore this regime
and the scaling arguments of both studies. In particular our data set for which the majority
of the flow falls within 0.3 � Fr � 1 ‘intermediate’ regime within a quasi-steady state
allows us to explore this in more detail than previously reported in literature.

Central to the scaling arguments of MCA21 are two key assumptions. First, that within
the critical mixing regime, the flow approaches a critical state defined by Rig ≈ Rig,c.
Second, that buoyancy in stratified shear flows inherently never dominates the dynamics
of the flow such that the mixing of the buoyancy field is ‘slaved’ to that of the momentum
field resulting in PrT = KM/Kρ ≈ 1 for all stages of the shear instability mixing cycle,
where KM and Kρ are the eddy viscosity and diffusivity defined as

KM = 〈−u′w′〉
S

, Kρ = B
N2 . (5.5a,b)

Figures 13(a) and 13(b) respectively show the ‘turbulent’ conditionally bin-averaged
values and 2D p.d.f.s of 〈Rig〉|T and 〈PrT〉|T plotted against corresponding bins of 〈Fr〉|T
for all simulations. The plots are constructed analogously to figure 11. The results distinctly
present confirmation of the two assumptions of MCA21. In agreement with our past
analysis, it is clear from the high concentration of data that the flow organises towards a
critical point of Fr = Frc ≈ 0.3 and Rig = Rig,c ≈ 0.2. For Fr ≥ 1, we obtain the classic
scaling of Rig ∼ Fr−2 for weakly stratified flow (Maffioli et al. 2016; Zhou et al. 2017).
For the ‘intermediate’ regime of 0.3 � Fr � 1, the flow displays the transitional scaling
of Rig ∼ Fr−1 between the weakly stratified and critical states as derived in IWAN22. For
Fr � 0.3, we observe that Rig seems to remain constant and become independent of Fr in
agreement with our scaling analysis in IWAN22. Furthermore, from the results it is clear
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Figure 13. Bin-averaged values and 2D p.d.f.s of (a) the conditionally averaged gradient Richardson number
within the turbulent data set 〈Rig〉|T , where the thin horizontal line indicates Rig = 0.2 and diagonal lines
indicate Rig ∝ Fr−1 and Rig ∝ Fr−2, and (b) conditionally averaged turbulent Prandtl number within the
turbulent data set 〈PrT 〉|T plotted against corresponding bins of conditionally averaged 〈Fr〉|T , where the thin
horizontal line indicates PrT = 1. Bin-averaged values and 2D p.d.f.z constructed with the temporal range of
t/T0

τ > 1 and the vertical range of 0.2 < z < zle. Vertical dashed lines indicate Fr = 0.3, 1. Legend same as
figure 4(b).

that for all Fr, we obtain PrT ≈ 1 as argued in MCA21, albeit with significant scatter in
the left tail of the figure for Fr � 0.3 where the data set becomes quite scarce.

As discussed in MCA21, the scaling arguments of GV19 for the intermediate regime of
B ∼ EKN (to be derived in more detail shortly) present an apparent contradiction of the
PrT ≈ 1 assumption. If we employ this scaling and initially assume that EK ∼ 〈−u′w′〉,
we can show that

PrT = KM

Kρ

= 〈−u′w′〉N2

BS
∼ 〈−u′w′〉N2

EKNS
∼ N

S
= Ri1/2

g . (5.6)

From the results presented in figure 13(a) this implies that PrT has an inverse and
functional relationship with Fr for Fr > 0.3. However, the results in 13(b) demonstrate
this to be untrue.

We, hence, consider the arguments of GV19. They argued that the evolution of the
buoyancy perturbation b′ evolves due to a turbulent vertical displacement of a fluid parcel
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from its background stratification such that

b′ ∼ w′N2T∗, (5.7)

where T∗ is the time scale relative to the mixing dynamics of the local flow. Hence, by
multiplying both sides of (5.7) by w′ we can obtain

b′w′ ∼ B ∼ w′2N2T∗ ∼ EKN2T∗. (5.8)

Accordingly they argued that for the weakly stratified regime, inertial effects are dominant
such that T∗ = TL, where TL = EK/εK is the turbulent time scale. For the ‘intermediate’
regime, GV19 proposed that buoyancy dominates the evolution of B such that T∗ = TN .
Accordingly they derived

Γ = B
εK

∼ EKN2TL

εK
= E2

KN2

ε2
K

= Fr−2, (5.9)

for the weakly stratified regime and

Γ = B
εK

∼ EKN2TN

εK
= EKN

εK
= Fr−1, (5.10)

for the intermediate regime. However, note that inherent within (5.7) lie two key
assumptions. First, that the separation of vertical and horizontal scales is negligible such
that w′2 ∼ EK . A similar assumption in (5.6) leads to EK ∼ 〈−u′w′〉. Second, considering
the statistical nature of B, that the multiplication of the root-mean-square (r.m.s.) values
of b′

rms and w′
rms corresponds to the correlation between their local values such that

b′
rmsw

′
rms ∼ B. We can directly investigate the validity of these assumptions by defining

the ratios

C1 = w′2
rms

EK
, C2 = 〈−u′w′〉

EK
, C3 = B

b′
rmsw′

rms
. (5.11a–c)

To test this, figure 14 shows the ‘turbulent’ conditionally bin-averaged values and 2D
p.d.f.s of 〈C1〉|T , 〈C2〉|T and 〈C3〉|T plotted against corresponding bins of 〈Fr〉|T . For the
weakly stratified case of Fr � 1, the assumptions are clearly valid and all three ratios
approach a constant asymptotic value as buoyancy effects are negligible and the flow
remains in a state of relative isotropy. However, for Fr � 1 the assumptions become
distinctly invalid as all three ratios grow smaller with decreasing Fr such that we can
empirically observe

C1 ∼ C2 ∼ C3 ∼
{

const. Fr ≥ 1,

Fr1/2 Fr ≤ 1.
(5.12)

Conceptually this is consistent with the stratified turbulence theory of Billant & Chomaz
(2001) and Lindborg (2006) if we consider that Fr may be interpreted as a ratio of length
scales such that

Fr =
(

LO

LI

)2/3

. (5.13)

Accordingly as Fr < 1, we obtain LO < LI such that buoyancy begins to constrain the
vertical component of the largest energetic scales leading to large-scale anisotropy. Hence,
we observe that the vertical and horizontal velocity scales diverge as seen in the evolution
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of C1 and C2. Similarly as Fr grows smaller and b′ becomes increasingly affected by
motions due to the resulting internal waves of the stable flow field (Itsweire et al. 1993),
we similarly observe C3 to grow smaller. We note that for Fr < 0.3 there is significant
scatter in the results as the data set becomes sparse, corresponding to the rare high
stratification mixing events. However, it is still reasonably clear that a positive correlation
continues to exist between C1, C2, C3 and Fr. These results are consistent with the
experimental findings of Ivey & Imberger (1991) who demonstrated that the correlation
coefficient between the vertical density flux and r.m.s. values of vertical velocity and
density fluctuations goes to zero as Fr → 0.

When considering the above results we must however be somewhat cautious in inferring
a universal dependence of C1, C2, C3 on Fr for all stratified flows. We note in our flow
configuration, both Fr and ReB are free parameters and as defined in Billant & Chomaz
(2001) can be directly related through the expression

ReB = ReTFr2, (5.14)

where ReT = E2
K/νεK is the turbulent Reynolds number. As derived in IWAN22 it can

be easily shown that ReT ∼ Reτ , such that for the majority of our flow, Fr and ReB
become strongly correlated. Figure 15(a) shows this clearly by plotting the conditionally
bin-averaged values and 2D p.d.f. of 〈ReB〉|T against 〈Fr〉|T for all simulations. In the left
flank of the figure, the flow approaches its critical state at the intermittency boundary
such that Fr ≈ 0.3 and ReB ≈ 10. However, for the remainder of the flow, the results
show distinct ReB ∼ Fr2 behaviour with a clear upward vertical shift of the data for the
Reτ = 900 case, consistent with the analysis above.

It is therefore unclear whether the decrease of C1, C2, C3 as Fr < O(1) has a
dependency on ReB. To investigate this we plot the conditionally bin-averaged values and
2D p.d.f. of 〈C2〉|T against 〈ReB〉|T in figure 15(b), constructed analogously to figure 13 but
now binned by ReB. The results indeed show that C2 similarly shows a positive correlation
with ReB for ReB � O(103). Although subtle, there is a clear shift to the right-hand side for
the R900L1 case, and it becomes clear that the transitional value of ReB for the asymptotic
regime displays a clear dependence on Reτ . In contrast, if we recall figure 14(b), it is clear
that a singular value of Fr ≈ 1 determines this transition for all simulations. As such we
argue that the large-scale anisotropy which causes decreasing behaviour of C1, C2, C3 is
determined by Fr (or Rig) as argued by Brethouwer et al. (2007) rather than ReB. However,
at the modest Reτ range explored within this study we cannot confirm this for all Reτ . Note
that, for brevity, we have chosen to display C2 alone as out of the three constants the results
have the least scatter and highlights this behaviour most clearly.

Returning now to the parametrisation of Γ , we can now rewrite (5.8) explicitly
incorporating the above assumptions:

B ∼ C1C3EKN2T∗. (5.15)

Hence, if we take the assumption of MCA21 that active turbulence in stratified shear flow
may always be considered ‘weakly stratified’ for all Fr, we take T∗ = TL to obtain

Γ = B
εK

∼ C1C3EKN2TL

εK
= C1C3Fr−2. (5.16)

Accordingly for Fr > 1, the flow approaches relative isotropy and buoyancy acts as a
passive scalar such that C1 ∼ C3 ∼ const. and, hence, we recover the Γ ∼ Fr−2 scaling
of Maffioli et al. (2016) and GV19.
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Figure 14. Bin-averaged values and 2D p.d.f.s of (a) 〈C1〉|T , (b) 〈C2〉|T and (c) 〈C3〉|T as defined in (5.11a–c)
within the turbulent data set plotted against corresponding bins of conditionally averaged 〈Fr〉|T . Bin-averaged
values and 2D p.d.f. constructed with the temporal range of t/T0

τ > 1 and the vertical range of 0.2 < z < zle.
Solid diagonal lines in all figures indicate C ∝ Fr1/2. Vertical dashed lines indicate Fr = 0.3, 1. Legend is the
same as figure 4(b).

For the 0.3 ≤ Fr ≤ 1 ‘intermediate’ transitional regime, the flow begins to develop the
shear and large scale anisotropy to reach its critical and ‘optimal’ state such that C1 ∼
C3 ∼ Fr1/2. Accordingly, we obtain

Γ ∼ C1C3Fr−2 ∼ Fr1/2Fr1/2Fr−2 ∼ Fr−1, (5.17)
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Figure 15. Bin-averaged values and 2D p.d.f.s of (a) 〈ReB〉|T plotted against 〈Fr〉|T and (b) 〈C2〉|T plotted
against 〈ReB〉|T . Bin-averaged values and 2D p.d.f. constructed with the temporal range of t/T0

τ > 1 and
the vertical range of 0.2 < z < zle. Solid diagonal line in (a) indicates ReB ∝ Fr2. Vertical dashed lines in
(a) indicate Fr = 0.3, 1. Vertical dashed lines in (b) indicate ReB = 101, 102, 103. Legend is the same as
figure 4(b).

the same as the results presented in GV19 and directly supported by our results in this
study. We now directly reconcile this with the primary assumption of MCA21 by rewriting
(5.6) using (5.11a–c) and (5.15) to obtain

PrT = KM

Kρ

= −u′w′N2

BS
∼ 1

C1C3

−u′w′

EK

N2

N2
TS

T∗
∼ C2

C1C3

TS

TL
, (5.18)

where TS = 1/S is the shear time scale. We also recall that Rig and Fr may be interpreted
as a ratio of time scales such that

Rig = T2
S

T2
N

, Fr = TN

TL
. (5.19a,b)

Accordingly, from the results in figure 10(a) we obtain

Rig ∼ Fr−2 → TS/TL = const., Fr ≥ 1, (5.20)

and
Rig ∼ Fr−1 → TS/TL ∼ Fr1/2, 0.3 ≤ Fr ≤ 1. (5.21)
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Hence, for the Fr ≥ 1 regime we recall that C1 ∼ C2 ∼ C3 ∼ const. to obtain

PrT ∼ C2

C1C3

TS

TL
∼ const., (5.22)

and for the intermediate regime we recall that C1 ∼ C2 ∼ C3 ∼ Fr1/2 to obtain

PrT ∼ C2

C1C3

TS

TL
∼ Fr1/2

Fr1/2Fr1/2 Fr1/2 ∼ const. (5.23)

This is consistent with our observations that PrT ≈ 1 across both the weakly stratified and
intermediate regimes. Hence, we reconcile a Γ ∼ Fr−1 mixing regime with the PrT ≈ 1
assumption of MCA21 by accounting for the large-scale anisotropy of the flow at Fr �
O(1). For the super-critical regime of Fr < 0.3 where Rig becomes constant, we hence
expect no correlation between TS and TL. Due to the sparsity of data and scatter of our
results in figures 9 and 10 within this regime in our study, it becomes somewhat unclear
whether PrT would remain constant with further decreasing Fr. However, as Fr ≈ 0.3
represents a critical state for the stationary flow, we expect the infrequent deviations from
this state to be relatively small and, hence, the PrT ≈ 1 assumption to hold.

As such our results and analysis directly support the arguments of Caulfield (2021) that
vigorous turbulence in stratified shear flow should never be considered ‘strongly stratified’
in the same sense as the LAST regime where buoyancy effects dominate the flow dynamics
to leading order. However, our results distinctly show that for Fr ≤ 1, the assumption that
buoyancy acts purely as a passive scalar is also invalid. The results suggest, that as argued
by GV19, the emergence of a Γ ∼ Fr−1 intermediate mixing regime indeed manifests due
to buoyancy beginning to influence flow dynamics. However, our results suggest that this
does not occur due to buoyancy playing a leading-order role in the evolution of b′ and,
hence, B. Rather, consistent with previous studies (Ivey & Imberger 1991; Jacobitz, Sarkar
& Atta 1997; van Hooijdonk et al. 2018; Portwood, de Bruyn Kops & Caulfield 2022), this
occurs due to the secondary effect of buoyancy and shear distorting the large scales of the
flow when Fr ≤ 1 which acts to modify both the buoyancy and momentum field towards
an ‘optimal’ anisotropic state.

6. Conclusions

In summary, we have investigated the behaviour of spatiotemporal intermittency in our
DNS of stratified open channel flow due to the suppression of turbulence through the
stabilising effects of buoyancy. In particular, our study has focused on the prediction of
the vertical intermittency profile and on the effect of the inherent intermittency in stratified
shear flows on the accurate parametrisation of the flux coefficient Γ .

By adapting the density inversion criterion method of PKTSC16 to our inhomogeneous
flow, we have been able to robustly separate the flow into regions of active turbulence
defined by ReB � O(10) and the surrounding quiescent fluid which approaches a
quasi-laminar state. Our method demonstrates that we are able to construct our reference
state of ‘fully turbulent’ flow from a single instantaneous realisation of the flow, provided
a sufficient vertical range emerges in the flow where ReB > O(100).

We subsequently find our flow configuration modelled as a canonical representation of
radiatively heated stratified river flows in the framework of Williamson et al. (2015) is
distinctly defined by a intermittency profile that is highly inhomogeneous in the vertical
direction that results from the spontaneous formation of an interface separating the upper
quiescent flow from the turbulent bulk flow. We quantify this local intermittency through a
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depth-varying turbulent volume fraction γ . The flow displays a fully turbulent and weakly
stratified lower region near the wall defined by γ = 1, ReB > O(100) and Fr > O(1).
Conversely, at our parameter range (with the exclusion of our most weakly stratified case
R400L0.5) the region at the top free surface transitions into a fully quiescent quasi-laminar
state defined by γ = 0, ReB < O(1) and Fr � O(1). The central bulk flow hence develops
as a region of vertically varying intermittency separating the two regions. By applying
local M-O scaling, we find that γ is well predicted by a locally defined Obhukov length
(normalised in wall units) Λ+ across all simulations and their respective external bulk
parameter set. We have found that in direct agreement with the analysis of Chung &
Matheou (2012), the transition away from the fully turbulent regime occurs at Λ+ ≈ 260,
whereas the flow approaches quasi-laminar conditions at Λ+ ≈ 2.5. As such, our results
add further evidence that the M-O framework is highly applicable for the prediction of
intermittency in a variety of stratified shear flows where the flow exists in a state of balance
between the production of turbulence through the mean shear and suppressing nature of
buoyancy and viscosity.

We find that within the region of intermittency, the background stratification N and
shear S are marginally lower in the ‘turbulent’ flow relative to the surrounding quiescent
fluid as the suppression of the turbulent fluxes causes the quiescent flow to develop steeper
mean gradients such that the total buoyancy and momentum fluxes are in balance with the
forcing terms of the flow. Accordingly we find this region to be described by a critical
value of Rig,c ≈ 0.2 and where the turbulent and quiescent flow organises towards local
Rig values marginally smaller and larger, respectively, than the conceptual critical value for
stability suggesting the flow exists in a state of ‘marginal instability’ as argued by Thorpe
& Liu (2009). This region is notably defined by vigorous KHI-driven mixing that form
in these critical conditions and where we find that the dominant energetic terms within
the ‘turbulent’ flow P, B, εK all come to a local maxima. In agreement with the concept
of optimal mixing under critical conditions as argued by Mashayek et al. (2021), we find
that within this region the turbulent flow is described by Γ ≈ 0.2–0.33. Considering the
distinct vertical inhomogeneity in the profiles of the mean and turbulent flow, our results
strongly suggest as to a degree of universality for the self-organisation of stratified shear
flows towards this ‘optimal’ state. Furthermore, we have found that within this region of
critical flow, the stationary profiles of Fr within the ‘turbulent’ flow all clearly converge
to a clear lower critical limit of Frc ≈ 0.3 in direct agreement with the transitional value
towards an asymptotic regime proposed by Maffioli et al. (2016). Hence, we have provided
further evidence for the arguments of Caulfield (2021) that active and vigorous turbulence
in stratified shear flow should not be considered ‘strongly stratified’ in the same theoretical
sense as the LAST regime due to a clear lower limit on Fr.

By considering the flow from the zi turbulent/quiescent interface reference coordinate
system, we find that the thickness of the interfacial layer separating the two regimes
to scale with the Ellison length LE. This being in direct agreement with our visual
observations of KHI overturning within this region. In particular we find that the critical
values of Rig,c ≈ 0.2, Frc ≈ 0.3 and the peak in Γ occur directly at the lower bound of the
interfacial layer. Accordingly our results directly suggest that criticality and intermittency
are intrinsically linked within stratified open channel consistent with the concept of
self-organised criticality in stratified shear flows as argued by Smyth et al. (2019).

By examining the correlations between horizontal averages of Fr and Γ across the
conditionally averaged data sets we show that in the limit of low Fr, Γ shows continued
dependence on Fr within the ‘turbulent’ flow such that the flow continues to display
Γ ∼ Fr−1 behaviour for Fr < Frc. Conversely, within the quiescent regions of the flow
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we find Γ is independent of Fr for the full parameter range presented and maintains a
constant value of Γ ≈ 0.2–0.33. The emergence of an asymptotic constant Γ regime for
Fr ≤ 0.3 in the full data set comes directly as a result of the intermittency of the flow and
increasing contributions to measurements of Fr and Γ from the surrounding quiescent
fluid. We argue that the observation of a ‘saturated’ Γ regime in numerous past studies
of stratified shear flow is fundamentally linked to the inherent intermittency of the flow at
finite ReB.

Within the turbulent patches of the flow, we observe the emergence of a Γ ∼ Fr−1

intermediate regime for Fr ≤ 1 manifests due to the separation of the vertical and
horizontal velocity scales within such patches as buoyancy and the mean shear distorts the
flow towards an anisotropic state to facilitate efficient mixing through shear instabilities.
As such, our results present evidence for the arguments of MCA21 that suggest when
considering energetic turbulent patches within stratified shear flow, buoyancy does not
play a leading-order role in the evolution of the mixing rate but rather it is ‘slaved’ to the
mixing of momentum such that PrT ≈ 1 for all Fr.

Acknowledgements. The authors would like to gratefully acknowledge the National Computational
Infrastructure (NCI) and the Sydney Informatics Hub and high-performance computing cluster, Artemis, at
the University of Sydney, for providing the high-performance computing resources and services that have been
crucial to this paper.

Decleration of interests. The authors report no conflict of interest.

Author ORCIDs.
Vassili Issaev https://orcid.org/0000-0002-1637-1725;
N. Williamson https://orcid.org/0000-0001-7246-8356.

REFERENCES

ALLOUCHE, M., BOU-ZEID, E., ANSORGE, C., KATUL, G.G., CHAMECKI, M., ACEVEDO, O.,
THANEKAR, S. & FUENTES, J.D. 2022 The detection, genesis, and modeling of turbulence intermittency
in the stable atmospheric surface layer. J. Atmos. Sci. 79 (4), 1171–1190.

ANSORGE, C. & MELLADO, J.P. 2014 Global intermittency and collapsing turbulence in the stratified
planetary boundary layer. Boundary-Layer Meteorol. 153 (1), 89–116.

ANSORGE, C. & MELLADO, J.P. 2016 Analyses of external and global intermittency in the logarithmic layer
of Ekman flow. J. Fluid Mech. 805, 611–635.

ARMENIO, V. & SARKAR, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy
simulation. J. Fluid Mech. 459, 1–42.

ARMFIELD, S., MORGAN, P., NORRIS, S. & STREET, R. 2003 A parallel non-staggered Navier–Stokes
solver implemented on a workstation cluster. In Computational Fluid Dynamics 2002 (ed. S.W. Armfield,
P. Morgan & K. Srinivas), pp. 30–45. Springer.

ATOUFI, A., SCOTT, K.A. & WAITE, M.L. 2020 Characteristics of quasistationary near-wall turbulence
subjected to strong stable stratification in open-channel flows. Phys. Rev. Fluids 5 (6), 064603.

ATOUFI, A., SCOTT, K.A. & WAITE, M.L. 2021 Kinetic energy cascade in stably stratified open-channel
flows. J. Fluid Mech. 925, A25.

BAKER, M.A. & GIBSON, C.H. 1987 Sampling turbulence in the stratified ocean: statistical consequences of
strong intermittency. J. Phys. Oceanogr. 17 (10), 1817–1836.

BILLANT, P. & CHOMAZ, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6),
1645–1651.

BRETHOUWER, G., BILLANT, P., LINDBORG, E. & CHOMAZ, J.-M. 2007 Scaling analysis and simulation
of strongly stratified turbulent flows. J. Fluid Mech. 585, 343.

BRETHOUWER, G., DUGUET, Y. & SCHLATTER, P. 2012 Turbulent–laminar coexistence in wall flows with
Coriolis, buoyancy or Lorentz forces. J. Fluid Mech. 704, 137–172.

DE BRUYN KOPS, S.M. 2015 Classical scaling and intermittency in strongly stratified Boussinesq turbulence.
J. Fluid Mech. 775, 436–463.

963 A5-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-1637-1725
https://orcid.org/0000-0002-1637-1725
https://orcid.org/0000-0001-7246-8356
https://orcid.org/0000-0001-7246-8356
https://doi.org/10.1017/jfm.2023.303


V. Issaev, N. Williamson and S.W. Armfield

CALMET, I. & MAGNAUDET, J. 2003 Statistical structure of high-Reynolds-number turbulence close to the
free surface of an open-channel flow. J. Fluid Mech. 474, 355–378.

CAULFIELD, C.-C.P. 2020 Open questions in turbulent stratified mixing: do we even know what we do not
know? Phys. Rev. Fluids 5 (11), 110518.

CAULFIELD, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech.
53 (1), 113–145.

CAULFIELD, C.P. & PELTIER, W.R. 2000 The anatomy of the mixing transition in homogeneous and stratified
free shear layers. J. Fluid Mech. 413, 1–47.

CHUNG, D. & MATHEOU, G. 2012 Direct numerical simulation of stationary homogeneous stratified sheared
turbulence. J. Fluid Mech. 696, 434–467.

COLEMAN, G.N., FERZIGER, J.H. & SPALART, P.R. 1990 A numerical study of the turbulent Ekman layer.
J. Fluid Mech. 213, 313–348.

DEUSEBIO, E., CAULFIELD, C.P. & TAYLOR, J.R. 2015 The intermittency boundary in stratified plane
Couette flow. J. Fluid Mech. 781, 298–329.

ELLISON, T.H. 1957 Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech.
2 (5), 456–466.

FALDER, M., WHITE, N.J. & CAULFIELD, C.P. 2016 Seismic imaging of rapid onset of stratified turbulence
in the South Atlantic Ocean. J. Phys. Oceanogr. 46 (4), 1023–1044.

FLORES, O. & RILEY, J.J. 2011 Analysis of turbulence collapse in the stably stratified surface layer using
direct numerical simulation. Boundary-Layer Meteorol. 139 (2), 241–259.

FLORES, O., RILEY, J.J. & HORNER-DEVINE, A.R. 2017 On the dynamics of turbulence near a free surface.
J. Fluid Mech. 821, 248–265.

FODOR, K. & MELLADO, J.P. 2020 New insights into wind shear effects on entrainment in convective
boundary layers using conditional analysis. J. Atmos. Sci. 77 (9), 3227–3248.

GARANAIK, A. & VENAYAGAMOORTHY, S.K. 2019 On the inference of the state of turbulence and mixing
efficiency in stably stratified flows. J. Fluid Mech. 867, 323–333.

GARCIA, J.R. & MELLADO, J.P. 2014 The two-layer structure of the entrainment zone in the convective
boundary layer. J. Atmos. Sci. 71 (6), 1935–1955.

GARCÍA-VILLALBA, M. & DEL ÁLAMO, J.C. 2011 Turbulence modification by stable stratification in channel
flow. Phys. Fluids 23 (4), 045104.

GREGG, M.C., D’ASARO, E.A., RILEY, J.J. & KUNZE, E. 2018 Mixing efficiency in the ocean. Annu. Rev.
Mar. Sci. 10 (1), 443–473.

VAN HOOIJDONK, I.G.S., CLERCX, H.J.H., ANSORGE, C., MOENE, A.F. & VAN DE WIEL, B.J.H. 2018
Parameters for the collapse of turbulence in the stratified plane Couette flow. J. Atmos. Sci. 75 (9),
3211–3231.

VAN HOOIJDONK, I.G.S., DONDA, J.M.M., CLERCX, H.J.H., BOSVELD, F.C. & VAN DE WIEL, B.J.H.
2015 Shear capacity as prognostic for nocturnal boundary layer regimes. J. Atmos. Sci. 72 (4), 1518–1532.

HOWELL, J.F. & SUN, J. 1999 Surface-layer fluxes in stable conditions. Boundary-Layer Meteorol. 90 (3),
495–520.

HOWLAND, C.J., TAYLOR, J.R. & CAULFIELD, C.P. 2020 Mixing in forced stratified turbulence and its
dependence on large-scale forcing. J. Fluid Mech. 898, A7.

ISSAEV, V., WILLIAMSON, N., ARMFIELD, S.W. & NORRIS, S.E. 2022 Parameterization of mixing in
stratified open channel flow. J. Fluid Mech. 935, A17.

ITSWEIRE, E.C., KOSEFF, J.R., BRIGGS, D.A. & FERZIGER, J.H. 1993 Turbulence in stratified shear flows:
implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr. 23 (7), 1508–1522.

IVEY, G.N., BLUTEAU, C.E. & JONES, N.L. 2018 Quantifying diapycnal mixing in an energetic ocean.
J. Geophys. Res.: Oceans 123 (1), 346–357.

IVEY, G.N. & IMBERGER, J. 1991 On the nature of turbulence in a stratified fluid. Part I: the energetics of
mixing. J. Phys. Oceanogr. 21 (5), 650–658.

IVEY, G.N., WINTERS, K.B. & KOSEFF, J.R. 2008 Density stratification, turbulence, but how much mixing?
Annu. Rev. Fluid Mech. 40 (1), 169–184.

JACOBITZ, F.G., SARKAR, S. & ATTA, C.W.V. 1997 Direct numerical simulations of the turbulence evolution
in a uniformly sheared and stably stratified flow. J. Fluid Mech. 342, 231–261.

KIRKPATRICK, M.P., WILLIAMSON, N., ARMFIELD, S.W. & ZECEVIC, V. 2019 Evolution of thermally
stratified turbulent open channel flow after removal of the heat source. J. Fluid Mech. 876, 356–412.

KIRKPATRICK, M.P., WILLIAMSON, N., ARMFIELD, S.W. & ZECEVIC, V. 2020 Destratification of
thermally stratified turbulent open-channel flow by surface cooling. J. Fluid Mech. 899, A29.

LEE, S., GOHARI, S.M.I. & SARKAR, S. 2020 Direct numerical simulation of stratified Ekman layers over a
periodic rough surface. J. Fluid Mech. 902, A25.

963 A5-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.303


Intermittency and critical mixing in channel flow

LINDBORG, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–242.
VAN DER LINDEN, S.J.A., VAN DE WIEL, B.J.H., PETENKO, I., VAN HEERWAARDEN, C.C., BAAS, P.

& JONKER, H.J.J. 2020 A businger mechanism for intermittent bursting in the stable boundary layer.
J. Atmos. Sci. 77 (10), 3343–3360.

MAFFIOLI, A. 2019 Asymmetry of vertical buoyancy gradient in stratified turbulence. J. Fluid Mech.
870, 266–289.

MAFFIOLI, A., BRETHOUWER, G. & LINDBORG, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid
Mech. 794, R3.

MAFFIOLI, A. & DAVIDSON, P.A. 2016 Dynamics of stratified turbulence decaying from a high buoyancy
Reynolds number. J. Fluid Mech. 786, 210–233.

MASHAYEK, A., CAULFIELD, C.P. & ALFORD, M.H. 2021 Goldilocks mixing in oceanic shear-induced
turbulent overturns. J. Fluid Mech. 928, A1.

MASHAYEK, A., CAULFIELD, C.P. & PELTIER, W.R. 2017 Role of overturns in optimal mixing in stratified
mixing layers. J. Fluid Mech. 826, 522–552.

MATER, B.D., SCHAAD, S.M. & VENAYAGAMOORTHY, S.K. 2013 Relevance of the Thorpe length scale in
stably stratified turbulence. Phys. Fluids 25 (7), 076604.

MILES, J.W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10 (4), 496–508.
NIEUWSTADT, F.T.M. 1984 Some aspects of the turbulent stable boundary layer. Boundary-Layer Meteorol.

30 (1), 31–55.
OSBORN, T.R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys.

Oceanogr. 10 (1), 83–89.
PELTIER, W.R. & CAULFIELD, C.P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech.

35 (1), 135–167.
PHILLIPS, O.M. 1972 Turbulence in a strongly stratified fluid—is it unstable? Deep Sea Res. Oceanogr.

Abstracts 19 (1), 79–81.
PORTWOOD, G.D., DE BRUYN KOPS, S.M. & CAULFIELD, C.P. 2019 Asymptotic dynamics of high dynamic

range stratified turbulence. Phys. Rev. Lett. 122 (19), 194504.
PORTWOOD, G.D., DE BRUYN KOPS, S.M. & CAULFIELD, C.P. 2022 Implications of inertial subrange

scaling for stably stratified mixing. J. Fluid Mech. 939, A10.
PORTWOOD, G.D., DE BRUYN KOPS, S.M., TAYLOR, J.R., SALEHIPOUR, H. & CAULFIELD, C.P. 2016

Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech. 807, R2.
RILEY, J.J. & DE BRUYN KOPS, S.M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys.

Fluids 15 (7), 2047–2059.
RILEY, J.J. & LINDBORG, E. 2008 Stratified turbulence: a possible interpretation of some geophysical

turbulence measurements. J. Atmos. Sci. 65 (7), 2416–2424.
SALEHIPOUR, H., PELTIER, W.R. & CAULFIELD, C.P. 2018 Self-organized criticality of turbulence in

strongly stratified mixing layers. J. Fluid Mech. 856, 228–256.
SALEHIPOUR, H., PELTIER, W.R. & MASHAYEK, A. 2015 Turbulent diapycnal mixing in stratified shear

flows: the influence of Prandtl number on mixing efficiency and transition at high Reynolds number. J. Fluid
Mech. 773, 178–223.

SHIH, L.H., KOSEFF, J.R., FERZIGER, J.H. & REHMANN, C.R. 2000 Scaling and parameterization of
stratified homogeneous turbulent shear flow. J. Fluid Mech. 412, 1–20.

SHIH, L.H., KOSEFF, J.R., IVEY, G.N. & FERZIGER, J.H. 2005 Parameterization of turbulent fluxes and
scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193–214.

SMITH, K.M., CAULFIELD, C.P. & TAYLOR, J.R. 2021 Turbulence in forced stratified shear flows. J. Fluid
Mech. 910, A42.

SMYTH, W.D., NASH, J.D. & MOUM, J.N. 2019 Self-organized criticality in geophysical turbulence. Sci.
Rep. 9 (1), 3747.

SORBJAN, Z. 1986 On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol. 34 (4),
377–397.

TAYLOR, J.R., DE BRUYN KOPS, S.M., CAULFIELD, C.P. & LINDEN, P.F. 2019 Testing the assumptions
underlying ocean mixing methodologies using direct numerical simulations. J. Phys. Oceanogr. 49 (11),
2761–2779.

TAYLOR, J.R., SARKAR, S. & ARMENIO, V. 2005 Large eddy simulation of stably stratified open channel
flow. Phys. Fluids 17 (11), 116602.

THORPE, S.A. & LIU, Z. 2009 Marginal instability? J. Phys. Oceanogr. 39 (9), 2373–2381.
TURNER, L. & ERSKINE, W.D. 2005 Variability in the development, persistence and breakdown of thermal,

oxygen and salt stratification on regulated rivers of southeastern Australia. River Res. Appl. 21 (2-3),
151–168.

963 A5-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.303


V. Issaev, N. Williamson and S.W. Armfield

VENAYAGAMOORTHY, S.K. & KOSEFF, J.R. 2016 On the flux Richardson number in stably stratified
turbulence. J. Fluid Mech. 798, R1.

WATANABE, T., RILEY, J.J., DE BRUYN KOPS, S.M., DIAMESSIS, P.J. & ZHOU, Q. 2016
Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid Mech. 797, R1.

VAN DE WIEL, B.J.H., MOENE, A.F. & JONKER, H.J.J. 2012 The cessation of continuous turbulence as
precursor of the very stable nocturnal boundary layer. J. Atmos. Sci. 69 (11), 3097–3115.

VAN DE WIEL, B.J.H., RONDA, R.J., MOENE, A.F., DE BRUIN, H.A.R. & HOLTSLAG, A.A.M. 2002
Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: a bulk model.
J. Atmos. Sci. 59 (5), 942–958.

WILLIAMSON, N., ARMFIELD, S.W., KIRKPATRICK, M.P. & NORRIS, S.E. 2015 Transition to stably
stratified states in open channel flow with radiative surface heating. J. Fluid Mech. 766, 528–555.

ZHOU, Q., TAYLOR, J.R. & CAULFIELD, C.P. 2017 Self-similar mixing in stratified plane Couette flow for
varying Prandtl number. J. Fluid Mech. 820, 86–120.

963 A5-44

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

30
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.303

	1 Introduction
	2 Numerical method
	2.1 Flow configuration
	2.2 Direct numerical simulations

	3 Turbulent/non-turbulent identification algorithm
	3.1 Method validation
	3.2 Vertical intermittency profile
	3.3 M-O prediction of intermittency

	4 Vertical distribution of conditionally averaged flow properties andnon-dimensional parameters
	4.1 Mean gradients and energetic quantities
	4.2 Gradient Richardson number and `marginal instability'
	4.3 Turbulent Froude number and the mixing efficiency
	4.4 Turbulent/quiescent interface coordinate system

	5 Effect of intermittency on a Fr-based parametrisation of 
	5.1 Horizontal averages
	5.2 Interface-based parametrisation within the region of intermittency
	5.3 Underlying assumptions of the `intermediate' mixing regime

	6 Conclusions
	References

