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Isomorphic queues

A. Ghosal

Dedicated to P.A.P. Moran for his sixtieth birthday

Two systems of queues are said to be isomorphic in the

restricted sense if at least one of their output elements, for

example waiting time, queue- size, idle time, inter-departure

time, and so on, has exactly or approximately the same

probability distribution function, irrespective of differences

in their input elements, for example, inter-arrival time, service

time, and so on. This property has been used in deriving

approximate solutions to systems which do not have exact

solutions. The paper highlights the systems approach in

queueing problems and its practical usefulness.

1. Introducti on

The dictionary meaning of an isomorph is 'equivalent structure1;

hence a system A is an isomorph of another system A^ if both have

equivalent structures or input-output mechanisms. In the literature of

algebra or cybernetics, isomorphy usually implies strictly a one-to-one

mapping; in other words, there is a one-to-one correspondence in the input

structures as also in the output structures and the input-output relation

structures between A and A . There is no deviation from the

dictionary meaning of isomorph if we use it in a restrictive sense: A is

Received 20 May 1977- The work was done while the author was a
Visiting Professor at the Graduate Center of Management at Baruch College,
City University of New York. The author is grateful to Professor N. Paul
Loomba, Chairman of the Center, for providing facilities for working. He
also thanks Professor David G. Kendall, FES, for encouragement.

275

https://doi.org/10.1017/S0004972700010479 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010479


276 A. Ghosa I

an isomorph of A- with respect to only one or two specific output

properties. Talking about two queueing systems A and A , we may say

that A is a restricted isomorph (i?-isomorph) of A with respect to

the distribution function of the waiting time only or with respect to the

distribution function of the idle time only. This implies that the two

queueing systems (say both are single-server systems) may have different

inter-arrival and service time distribution functions but they are

equivalent only with respect to the distribution function of the waiting

time or idle time. We can call two such systems iso-functional also.

Isomorphic queueing systems (in the restricted sense), which we may

call iso-functional as well, have been discussed in this paper. Motivation

of this study has been to help in the numerical approximation of the

properties of complex queueing systems which do not generally have

analytical solutions. The concept of isomorphic queues was introduced by

the present author in his studies on the cybernetic modelling of queueing

and storage systems (GhosaI [3, 4, 5, 6]). A more detailed theoretical

treatment of the topic along with a few applications are reported in this

paper.

2. De f i n i t i ons

A cybernetic system A is defined by a set of elements

X = [x , ..., x ) and a set of mutual relations R among them (KIi r and

Valach [9], GhosaI [3, 6]):

(2.1) A = {X, R} .

The output of the system Y = [y,, • • •, y ) is given "by the following

mapping relationship

(2.2) / : {X, R} -> Y ,

meaning that

(2.3) fiX; R) =-7 .

A system is completely determined if we know the sets X, R , and the

mapping relation / .

When we express a single server queue as a system A , we have the

https://doi.org/10.1017/S0004972700010479 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010479


I s o m o r p h i c q u e u e s 277

input

(2.U) X = (S, T)

where

S represents the service mechanism, implying the service time

distribution function, state-dependence, and so on;

T represents the inter-arrival mechanism, implying the

distribution function of the inter-arrival time, its state-

dependence, if any, and so on;

R represents queue discipline (for example, first come first,

served, last come first served, priority feature, and so on).

The output is given by

(2.5) y = (w, Q, i, B, D)

where

W is the distribution function of the waiting time of a customer

at a stationary state or transient state;

Q is the distribution function of the queue size at a particular

time, departure epoch, and so on;

I is the idle time distribution function of the server;

B is the distribution function of the length of the successive

busy periods;

D is the distribution function of the inter-departure time of

customers.

We have the following definitions of isofunctional systems.

DEFINITION 2.1 (Strict Isomorphism). Let the system A. (i = 1, 2)
Is

be defined by

(2.6) A. = [X., I.; f^ ,

where X. and I. , for the -ith system are defined in (2.U) and (2.5),

and /. is the mapping relation. The systems are strictly isomorphic if

Y and Y ? are exactly equivalent in distribution functions, so are X.
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and X . This i s denoted by

(2.7) Yx~ Y2 and X± ~ X2 ,

where "~" stands for equivalence in distribution functions.

REMARKS. The equivalence in distribution functions between Y and

Y2 implies that the waiting times W • and (/„ are equivalent in

distribution functions, so are queue sizes Q and Q , and so on - in

other words, all output elements in one system are equivalent in

distribution functions to the corresponding output elements in the other

system.

DEFINITION 2.2 (Restricted Isomorphism). Restricted isomorphism (or

i?-isomorphism) between A. and A^ implies that they are equivalent in

distribution functions with respect to one or more but not all of the out-

put elements.

REMARKS. The systems A and A may have the same waiting time

distribution function but may have different idle time distribution

functions.

DEFINITION 2.3 (Quasi-isomorphism). Two systems are quasi-

isomorphic with each other if systems A and X_ have either

(i) approximately the same distribution function for each of

the output elements, or

(ii) approximately the same distribution function for one or two

of output elements (which is in fact quasi /?-isomorphism).

The definition of approximately the same distribution function of an output

element implies either of the following:

(a) given F.[x) the distribution function of the specific

output element, i = 1, 2 , we fail to reject the hypothesis

B{F1 = F^ ; or

(b) given a small number e(0) ,

(2.8) \F1(x)-F2(x)\ < e , x (. (0, <*>) .
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In many practical problems (2.8) may be a good substitute for (a),

particularly when Kolmogoroff-Smirnoff's test is too sensitive.

DEFINITION 2.4 (Isomorph). The system A is an isomorph of j4p

or vioe-vevsa if A and 4_ are isomorphic in the strict, restricted,

quasi- or quasi-restricted sense as per Definitions 2.1, 2.2, and 2.3.

In most of the problems involving approximations of complex queueing

processes we shall be concerned with restricted, quasi-, and quasi-

restricted isomorphs.

3. Isomorphs of a few one-server models

In this section we determine isomorphs (in the R- or quasi-/? sense)

of a few one server models. We shall represent the isomorph in the form of

an equivalent M/M/l, M/G/l , or M/H/l system (H implies a hyper-

exponential distribution). We give the following interpretations by

drawing on the results in queueing theory.

THEOREM 3.1. For every GI/M/X system there exists an M/M/l

R-isomorph (with respect to ~bhe waiting time distribution function).

Proof. Let A be a GI/M/1 system in which the service time [s )

of the nth customer follows the exponential distribution function

(3.1) u exp(-u«)dr (y > 0; x ? (0, «>)) ,

and the inter-arrival time follows a general distribution function

B{x) = prob(T 5 a:) , where T is the interval between the arrival times

of the nth and (n+l)th customers. Then, if the traffic density (p)

is less than 1 , the waiting time distribution function

F{x) = prob(W S x) is given by

(3.2) F(0) = 1 - 6 and dF(x) = (l-6)6u exp{-ux(l-6)}<ic , x € (0, ~) ,

where 6 is the unique positive root of the equation

(3.3) K{z) = z ,

GO

in which K{z) = £ 2 ^ » where k is the probability that r services
r=0 P r

are completed during a period (0, x) , where the origin is arbitrary. The
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result (3.2) is due to Smith [73],who proved that the waiting time in a

GI/M/1 system follows an exponential distribution. The interpretation of

Theorem 3.1 is slight different: from (3.2) it follows that there is an

M/M/l system {A ) in which the inter-arrival time follows an exponential

distribution function with parameter 6 and the service time is the same

as that of the system A (which is a GI/M/l system) - the waiting time

distribution function and the queue size distribution function of the two

systems are exactly the same.

The inter-departure characteristics of the systems -4 and A^ are

different, because in /!„ the inter-departure times \D) are independent

identically distributed random variables (Finch [7]), while in .4 they

are not so.

EXAMPLE 3.1.1. There is an M/M/l isomorph (with respect to the

distribution functions of waiting time and queue size) of an E /M/l

system. If the inter-arrival time follows the distribution function

(3.it) [a?/T(p)']xP~1 exp(^x)dx {p > 0; x i ( 0 , » ) ) ,

then (3 .3) becomes

(3.5)

where a = u/(a+u) , the service time following the exponential

distribution function with parameter p . The equivalent M/M/l system

has the inter-arrival distribution function

a' exv(-a'x)dx , x (. (0, °°) ,

where

a ' = u6 ,

w h e r e 6 i s t h e p o s i t i v e r o o t o f ( 3 . 5 ) on t h e r a n g e ( 0 , l ) .

THEOREM 3.2. For every M/G/l system, there exists an M/M/l

B-isomorph with respect to idle time distribution functions.

Proof. Let the M/G/l system {AA have an inter-arrival distribution

function a exp(-ca;)cfc (a > 0, x 6 (0, <*>)] , and the service time follow

a general distribution function G[x) . Then the idle time follows, under
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equilibrium conditions, the distribution function

(3.6) prob(J > x) = C exp(-ca:)

where C = 1 - aE(S) , in which E{S) is the expectation of the service

time (Ghosal [3], p. 18, equation 1.1+9).

Let A be an M/M/l system in which the inter-arrival time follows

an exponential distribution function with parameter a and the service

time follows an exponential distribution function with parameter y • Then

E{S) = 1/u ;

the idle time distribution function of A. is the same as that of A~ •

THEOREM 3.3. The isomorph (with respect to idle time distribution

function) of an M/G/l system does not have equivalent waiting time, queue

size, and inter-departure time distribution functions.

Proof. Let D be the interval between departure times of the nth

and (n+l)th customers, I the idle time of the server after serving the

nth customer; then we have

Since the distribution function of the service time in system A.(M/G/l)

is not the same as that in the system J4 (the M/M/l i?-isomorph with

respect to idle time distribution function), the distribution function of

D differs in the two systems.

The waiting time distribution function in the system A^ follows the

exponential distribution function (3.2), in which 6 = a/y . The waiting

time distribution function of the system A is not exponential; its

Laplace transform ;p(9) is given by

(3.8) <p(e) = [(i-6)e]/[e-a+a$(e)] ,

where $(9) is the Laplace transform of the service time. While the

traffic density a is the same for both the systems A and A , $(9)

are different for two systems. In fact, if (p.(9) is the Laplace

transform of the waiting time distribution function for the ith system,
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*.(6) the Laplace transform of the service time distribution function for
"Z-

the ith system (-£=1,2) , then shifts in mean and variance of two

waiting time distributions can be estimated.

4. Quasi-isomorphs

In this section we give examples of a few useful quasi-isomorphs for

approximation of queueing systems.

4.1 N/M/l SYSTEM

In a few experimental studies done by the present author the inter-

arrival time of a one-server queueing system was found to follow

approximately a truncated normal distribution on the range (0, <*>) , and

the service distribution approximated an exponential distribution. This

we call an N/M/l system, where N stands for the truncated normal

distribution (we may also write TN for N ). In one case the mean A

was 2.3 X(m) times the standard deviation (a) . Theorem 3.1 states that

the waiting time for such a system follows an exponential distribution

(3.2) in which 6 is determined by

(k.l) z = K{z) =n(p-ys)

where ri(') is the Laplace transformation of the truncated normal

distribution.

For m > 2a , we can assume the Laplace transformation of the whole

distribution to be approximately the same ae that of the truncated

distribution, that is,

n(u) = (e/VSro) I

= (1/V2TO)

where a is a constant for the truncated distribution; hence

n(u) = exp[2mu-KJ u ] .

Thus (k.l) leads to

(It.2) z = exp[2my(l-s)-Kr2y2(l-3)2] .
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The solution of (U.2) by numerical methods gives the root 6 in (3.2).

Consequently the M/M/l equivalent system is a quasi-isomorph.

A few other experimental studies on N/M/l systems have been done by

the author and his associates; it is indicated that sometimes, even if

m > 1.50 , the error obtained through a quasi-isomorph is not high. The

distribution function of the waiting time obtained through the quasi-

isomorph is tested against the simulated waiting time distribution. Values

of <S for a few N/M/l distributions have been calculated in Table U.I

below.

TABLE 4.1

Values of 6, E{W) , and var(ftO

1

2

3

m

m

m

= 6 , a = 2

= 8 , a = 2

= 10, a = 5

0

0

0

6

-715

.386

.326

y = 0.2

E(W)

12.53

3.1U

2.1*2

var(V)

282.3

1*1.2

30.0

0

0

0

6

.065

.018

.156

y = 0.6

E(W)

0.115

0.030

0.308

var(V)

0.398

0.102

1.121

Calculations are due to Stern [74] .

4.2 QUASI-ISOMORPHS OF M/G/l SYSTEM

From (3.8) we find that an M/M/l isomorph, with respect to the id le

time distribution function of the server, of an M/G/l system wil l differ

in respect of waiting time d is t r ibut ion . I t has been proved tha t the

waiting time of an M/E / I system follows a generalized hyperexponential

distribution

(4 .3 ) prob(f/ > x) = •I exp(-<L.x) ,

where a., d. may be complex-valued (i = 1, ..., k) .
If *V

Proof. Let (p(#) be the Laplace transformation of the waiting time

distribution function and *( •) that of the service time distribution.

Then the traffic density is 6 = aE{S) and <p(-) is given by (3.8). When

the service time follows the gamma (p) distribution function

[yP/r(p))exp(-ux)xP"1
(fe (y > 0; x € (0, <*>)) ,
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then we get

*(e) =
so that we can decompose (3.8) in the form

<p(e) = 1 - 5 + (i6)

where a., b., ... are constants. Hence we get
7s If

prob(V = 0) = 1 - 6

and

+ k
(I t .5) ( p ( 9 ) = £ c . / ( < £ . +e) ,

where a., d. a r e c o n s t a n t s (i = 1 , . . . , p ) . Hence

probdv' > x) = £ a- e x p ( - d . x ) ,

where a., d. are complex-valued.

It may be interesting to investigate the nature of poles of cp (•) in

(It.5). The following can be proved without difficulty.

(i) For p = 2 , the poles of ip (•) in (It. 5) are both real-valued

and negative. Hence the waiting time distribution function is hyper-

exponential - both d-. and d2 in (It.5) are real.

(ii) For p = 3 , only one pole of <p (• ) is real and there is a

pair of complex-valued poles, so that

(It.6) H(x) = prob(Af > x) = a ex-p{-d^x) + 2a2 exp(-rac)cos qx ,

where the real valued pole is -d and the pair of complex poles is

-w ± jq (<7 = v'-l) • Thus H{x) is a mixture of exponential distribution

functions and a damped vibration.

(iii) For p = h , two poles of <p (•) are real and there is a pair
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of complex-valued poles: and so on.

EXAMPLE. Let p = 2 , a = 0.1* , y = 0.9 , so that 6 = 0.889 . We
get

<p+(e) = 0.111(0.i»e+o.72)/(e2+i.i+e+o.09)

= 0.1+05/(9+1.3325) + 0.0039/(9+0.676) ,

so that

prob(V = 0) = 0.111

and

dF(x) = 0.1*05 exp(-1.3325*) + 0.0039 exp(-.0676a;) .

From studies by Li I Iiefors P O ] and the experimental studies of the

present author, we know that an M/G/l system can "be approximated by an

M/E /I system. The choice of p can be done in a heuristic way. Hence

we have the following theorem.

THEOREM 4.1. For an M/G/l system we can in most oases get an

M/E /I quasi-isomorph with, respect to the waiting time distribution. In

other words, we can choose p such that the waiting time distribution

function of the M/E /I system is almost equivalent to that of the M/G/l

system - and it follows a generalized hyperexponential distribution.

NOTE. It can be shown without difficulty that such a quasi-isomorph

of type M/E /l which approximates the waiting time distribution function

will also approximate the other outputs, for example idle time_ distribution

function, departure process, and so on. However, experiments have shown

(not reported here) that when p is large (say 6, 7, . . . ) , the optimal

quasi-isomorph with respect to the waiting time distribution function may

not be optimal with respect to the idle time distribution function. For

example, the optimal quasi-isomorph with respect to waiting time

distribution functions may have a value of p = 5 , while the optimal

quasi-isomorph with respect to the idle time distribution function may have

a value p = 7 , and so on.

Theorem U.I is somewhat like a continuity theorem for M/G/l systems

(for more elaborate works in continuity theorems, see Kennedy [8], Whi tt

https://doi.org/10.1017/S0004972700010479 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010479


286 A. Ghosal

4.3 EXISTENCE OF AN M/M/l QUASI-ISOMORPH

We state the following theorem regarding approximation of any general

single-server system GI/G/1 system "by an M/M/l quasi-isomorph with

respect to the waiting time distribution function.

THEOREM 4.2. A GI/G/1 system can be approximated by an M/M/l

quasi-isomorph, with respect to the waiting time distribution function,

In H{x) , where H{x) = prob(W > x) , can be approximated by a linear form

ik.-J) In H{x) = -a - bx ,

where a (< l ) and b are positive numbers.

Proof. If (It.7) holds good, then the waiting time follows an

exponential dis t r ibut ion, which is uniquely identified by a and b :

H{x) = c exp(-fcx)

where a = exp(-a) . Thus we have to have the observed H (x) in the form

In H (x) = -a - bx + e ,

where e is the error. It has to satisfy, for a good fit, the hypothesis

that e = 0 ; we may test the null hypothesis that e follows a normal

distribution with zero mean and unit standard deviation.

Theorem k.2 leads to a useful graphical test. If we plot the results

of an actual or experimented simulation, and find that H{x) follows

approximately a linear form on a logarithmic scale, then we can have an

M/M/l quasi (or quasi-restricted) isomorph with respect to the waiting

time di s tribution.

It can be easily proved that we can obtain an M/M/l restricted

isomorph for a GI/M/s system. From the results of KendalI [7], the

interpretation in terms of isomorphs would be that, unlike the situation in

a GI/M/1 system, the isomorph with respect to the waiting time

distribution function will not be the same as the isomorph with respect to

the queue size distribution function because in a GI/M/s system,

prob(V = 0) is not the same as prob(S = 0) .

5. A p p l i c a t i o n in q u e u e s in series

The real utility of the approach of approximation through isomorphic
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systems (in the i?-sense or quasi- sense) l ies in complex queueing systems

like series queues, parallel queues, and so on. We can easily determine

the waiting time distribution function in the second queue of a series of

two queues M/M/l •* • /ff/1 , "because the second queue behaves as a queue

M/G/l where the inter-arrival time has the same exponential distribution

function as the system of two queues in series (see GhosaI [3] ) .

Approximations have been worked for an MlEji -* • /M/l system (Ghosa I

[2])- I t is conjectured by the present author that the waiting time in the

second queue in a two-queue series M/E / I -*• •/E / I system follows
P q.

approximately a generalized hyperexponential distribution function of order

p + q (detailed discourses will be presented in subsequent publications

and also in the monograph by the present author, Applied cybernetics: its

relevance in operations research, to be published by Gordon and Breach,

London and New York).

Interesting experiments have been done by the students of the present

author (Affisco (unpublished) and Dan Shimshak, PhD thesis, Department of

Management, Baruch College, New York - see also Shimshak [72]) on series

queueing systems. It has been found from these experiments that in a large

number of cases we can approximate the waiting time in a GI/G/1 •*• '/G/l
(P)

system (both for the waiting time in the second queue W or the sum of

waiting times in two queues W + W ) by an M/M/l isomorph. In all

such experiments our approach was to determine the error in such

simplification.

In one experiment done by the author with a sample of 509

observations for estimating the distribution function of the waiting time

distribution function in the third queue in an assembly process, the

waiting time distribution function H{x) was estimated by the hyper-

exponential distribution

(5.1) H(x) = 0.25 exp(-1.20c) + 0.1+6 exp(-0.17x) , x > 0 .

The goodness of fit was tested by the Kolmogoroff-Smirnov test (see Massey

[//]) against the observed H {x) :

(5.2) D = max |ff°(a:)-S(a:) |
x

where the prob((v' > x) was observed through a frequency distribution with
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time intervals of 0.1* minutes. The value of D was 0.59 , which was

less than the critical value at P = .05 , which was 1.36/n . This

suggested a reasonably good fit. The distribution function H{x) could be

approximated by an M/E^/l quasi-isomorph, in which £( inter-arrival time)

equals 2.6h6, and i?(service time) equals 1.26 minutes.

Another approach was to get upper and lower bounds of M/M/l or

M/H /I or M/E /I isomorphs for network queues by two alternative

methods - one used by Ghosal [5], which is an extension of Marshall's

methods (see [75]) in queues in series, the other used by Shimshak and

Sphicas (unpublished) by a set of inequalities in terms of coefficients of

variation.

6. Concluding remarks

This paper gives some exploratory research done for solving

approximately complex or analytically intractible queueing models with the

help of equivalent or isomorphic systems. Isomorphisms have been used in

a special sense - restricted and quasi-isomorphs have "been obtained for a

few cases. An isomorph which may give an equivalent waiting time

distribution function may show shifts in the distribution function of queue

size or idle time - in some cases shifts in the expectation and variance

in these can be estimated. Seventy years' research on queueing systems

indicates that analytical solutions are obtained in onlya]imited number of

cases. Future research lies in innovating methods of approximation - the

approach of deriving if-isomorphs or quasi-isomorphs appears to be a

promising field of research not only in queueing systems but in statistical

systems at large.
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