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Finite zero-simple semigroups over

an elementary abelian group

C.H. Houghton

Finite 0-simple semigroups with a Rees representation over an

elementary abelian group are considered. The isomorphism classes

of such semigroups with class graph F and coefficient group of

order p are shown to correspond to the orbits under the

automorphism group of T of those subspaces of the circuit space

of F over Z which have codimension at most d . A semigroup

interpretation of the inclusion relation between subspaces is

given and results are obtained on the structure of the

automorphism group and the enumeration of the semigroups under

consideration.

1 . Introduction

A Rees representation of a completely 0-simple semigroup S was

interpreted in [2] as associating with 5 a graph F , a group G , and a

cohomology class in H (F, G) . The isomorphism classes of T and G are

invariants of 5 and two cohomology classes represent the same semigroup

if and only if they are in the same orbit of H (F, G) under the action of

the automorphism groups of F and G .

Here we consider the case where F is finite and G is elementary

abelian. The detailed information that we obtain provides a basis for

comparison in the general situation. Moreover, this special case occurs

frequently among the semigroups of small order; for example, of the 293
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O-simple semigroups of order less than or equal to 2k with non-trivial

G , 213 are associated with an elementary abelian group (see [3]).

If G is elementary abelian of order p , then G is the additive

group of a d-dimensional vector space over Z and all automorphisms of

G are linear. Let F be any finite graph and let V be a vector space

of finite dimension d over a field F . Suppose that the circuit space

R of T over F has dimension e . We show that the set of GL(V)-

orbits of H (F , V) is bijective with the set of subspaces of the circuit

space having dimension at least e - d . Thus the orbits of H (F, V)

under aut(r) x GL(K) may be identified with the orbits under aut(F) of

the appropriate subspaces of R . Wow let F be a directed graph with

disjoint source and target sets and let V be the vector space

corresponding to the elementary abelian group G of order p . Then each

isomorphism class of semigroups associated with F and G will correspond

to an orbit of subspaces of if under the action of aut(F) . In

particular, as d increases, with F and p fixed, the number of

associated semigroups becomes constant.

The subspaces of if form a lattice and we show that the inclusion

relation corresponds to the existence of idempotent-separating

homomorphisms between associated semigroups. We describe the automorphism

groups of the semigroups under consideration and we show that a simple

semigroup with elementary abelian coefficient group rarely admits the

action of the whole of aut(F) . Finally, we apply the initial results to

investigate the number of isomorphism classes of semigroups associated with

certain graphs T .

We begin with a summary of the relevant graph theory; further details

may be found in [1].

2. Cohomology of graphs

Suppose that V is a finite directed graph and that V is a finite

dimensional vector space over the field F . A map from the edge set of F

to V is called a cochain (or chain, since F is finite). Such maps form

a vector space C(F, V) . Given a map t from the vertex set of F to

V , we can define a corresponding cochain by sending an edge with source x
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and target y to yt - xt . Such cochains are called coboundaries and

they form a subspace B(F, V) of C(T, V) . The quotient space

C(r, V)/B{Y, V) is the first cohomology group H1{Y, V) of F with

coefficients in V .

If X is the vertex set of F , then the edge set of F can be

identified with a subset E of X x X . Given a group A of auto-

morphisms of T , we can define an action of A on C{T, V) . For

6 € A , q € C(F, V) , and (x, y) € E , we put

(x, 2/)(<?6) = (xG"1, yQ^q .

Then 4 leaves B{T, V) invariant and hence H (T, V) is an 4-group.

In a similar way, there is an action of the general linear group L = GL( F )

on <7(I\ V) and on HX(T, V) . For q e C{T, V) , a 6 L , and

(x, y) € £ , we put (x, y)(qa) = {{x, y)q)a . The actions of A and L

commute and so H (V, V) is an (A x L)-group.

Taking V = F , we can associate with each a € C(T, F) , a map e6

from T̂ to F by letting x(e6) be the sum of all (y, x)a and

-(x, y)c as j/ ranges over the vertices adjacent to x . The kernel R

of 6 is the circuit space of T over F . It is spanned by the elements

of C(F, F) obtained from the circuits in F , where an edge sequence is

associated with the corresponding signed sum of edges. For any V , a

cochain q € C(T, V) induces a linear transformation from C{T, F) to

V , whose restriction to R we denote by q . A standard result of

cohomology [5, p. 165] asserts that the map q -*• q induces an isomorphism

between H (T, V) and horn^i?, V) . This can be seen by first choosing a

maximal forest T in T . Then each class in H (F, V) contains a unique

element trivial on T . But the circuits in F with just one edge not in

T form a basis for R and the result follows.

We now investigate the action of L = GL(7) on honL,(i?, V) . If

K(q) denotes the kernel of q t honL,(i?, V) and if a € L , then

K(q) = K(qa) . Conversely, suppose K(q) = K(p) , with p € hom(R, V) .
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Then defining (rq)a = rp gives a well-defined isomorphism from the image

of q to the image of p and this extends to an automorphism of V . If

dim(i?) = e and dim(F) = d , then dim[K(q)) > e - d . Now any subspace

of R of dimension at least e - d is the kernel of some q € horn (R, V) .

Thus the orbits of H (T, V) under the action of h are in one-to-one

correspondence with the subspaces of R having codimension at most d .

Then the action of A x L on Ii{Y, V) will induce an action of A on

these subspaces. If Q £ A , then r(qQ) = [rQ~ )q , for r € R , and so

r € #((76) if and only if r € K(q)6 . Thus the action of A on the

subspaces is induced by the natural action of A on R . We summarise

these resul ts .

THEOREM 1. Suppose that R is the circuit space of a finite graph

T over the field F . If V is a finite dimensional vector space over F

and A is a group of automorphisms of Y 3 then there is a bisection

between the [A X GL(7))-orbits of ff1(r, V) and the A-orbits of

subspaces of R having codimension at most equal to the dimension of V .

We now apply these results to semigroups, using the terminology of [4] .

3. App l i ca t i on to semigroups

Rees C6D showed that a semigroup is completely O-simple if and only

if i t is isomorphic to a regular Rees semigroup M = M (G; I, A; q) . Such

a semigroup is determined by a group G , sets I and A , and a map q

from A x j to G u {0} such that the support of q projects onto A

and I . The class graph T of M is the directed bipartite graph whose

edges are a l l (X, i) such that (X, i)q ± 0 ; the condition on q

implies that the vertex set of V is A u I . Then q defines a cochain

and hence a cohomology class of Y . I t is shown in [2] that the set of

isomorphism classes of completely 0-simple semigroups associated with

fixed F and G is bijective with the set of orbits of H {Y, G) under

the action of aut(T) x aut(G) . If G is elementary abelian of order

p , then aut(ff) = aut (V) , where F = Z and V is the F-space

corresponding to G . Each finite 0-simple semigroup is completely

0-simple and so we have the following consequence of Theorem 1.
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THEOREM 2. Suppose that T is a directed graph with a finite set
A u J of vertices suah that each edge has source in A and target in I
and no vertices are isolated. Let G be an elementary abeliccn group of

order p and let R be the circuit space of Y over Z . Then the set

of isomorphism classes of finite 0-simple semigroups with class graph Y
and coefficient group G is bijective with the aut(F)-orbits of subspaces
of R having codimension at most d .

COROLLARY 3. The number of O-simple semigroups with fixed finite

graph Y and elementary abelian coefficient group of order p , becomes
constant as d increases.

We note that if M = M (G; I, A; q) has class graph V , then the
subspace K associated with M by Theorems 1 and 2 is the kernel of the
map from if to V induced by q . The isomorphism class of M is
determined by the graph Y , the group G , and the subspace K .

A finite 0-simple semigroup is orthodox if and only if i t corresponds
to the tr ivial cohomology class of a graph Y which is a union of disjoint
complete bipartite graphs [2] . Suppose K is a subspace of R
corresponding to a 0-simple semigroup M with graph Y of this type and
with G elementary abelian. Then the codimension of K represents the
degree of unorthodoxy of M . Similarly, for general Y , the codimension
of K measures the obstruction to weak orthodoxy, where a semigroup is
said to be weak orthodox if each H-class contains at most one non-zero
product of idempotents [2] .

The subspaces of R form a lat t ice and our next result gives an
interpretation, in terms of semigroups, of the sublattice above a
particular subspace of R . Here the graph Y is fixed but G may vary.

THEOREM 4. Let the semigroup M correspond to a subspace K of R
together with the additive group of the vector space V of dimension d
over Z . Suppose that J is a subspace of R containing K and that

N is a semigroup associated with J and with a vector space W over Z

such that

dim(i?) - dimU) < dim(W) S dim(7) - dirnU) + dimU) .
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Then N is the image of an idempotent separating homomorphism of M and

each such image of M corresponds to a subspace J and space W

satisfying the given conditions.

Proof. Let M = M {V; I, A; q) , where K is the kernel of the map

from R to V induced by q . Then there is a natural epimorphism from

Rq to R/J which can be extended to a homomorphism w from V onto the

space W . From [2, Theorem 3.6], the map w , in conjunction with the

identity map on T , defines an idempotent separating homomorphism from M

onto the semigroup M = M (Vw; J, A; qu>) . The corresponding subspace of

R is the kernel J of the map induced by qw on R .

Conversely, from [2, Theorem 3.6], an image of M under an idempotent

separating homomorphism will be isomorphic to a semigroup N defined by

qw € horn (i?, W) , where w is an epimorphism from V to W . Then the

kernel J of qm contains K and dim(!/) satisfies the given

inequality.

A normal series for the automorphism group of a completely O-simple

semigroup was given in [2].- We interpret this result in our special

situation.

THEOREM 5. Let M be the finite regular semigroup M°(K; J, A; q) ,

with V elementary abelian. Then L = aut(M) has a normal series

L > L > L > L > 1 , where

(i) L/L is isomorphic to the subgroup of aut(r) fixing the

kernel of the map from R to V induced by q ,

(ii) L/L is isomorphic to GL(V) , where W is an F-space

of dimension dim(7) - dim(ifc7) ,

(Hi) L JL is isomorphic to the direct sum of dim(V) - dim{Rq)

copies of Rq ,

(iv) L is the direct sum of o - 1 copies of Z , where c

is the number of components of V .

Proof. From Theorems 3.3 and 3.5 of [2], L/L. is isomorphic to the
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image in aut(D of the (aut(T) x GL(V))-stabiliser of q and so (i)

follows from Theorem 2. The description of £_ is given in [2] and L IL*

is shown to be the subgroup of GL(7) consisting of those maps fixing Rq

elementwise. The result follows by considering the effect of such a map on

a basis of V extending a basis of Rq .

If the kernel of q is the maximum or minimum element of the lattice

of subspaces of R , then L/L.. = aut(T) . We shall consider a situation

in which the semigroups corresponding to these subspaces are the only ones

admitting the whole automorphism group of T . This is equivalent to the

irreducibility of R as an aut(F)-space.

A finite O-simple semigroup is the union of {0} and a simple semi-

group if and only if V is a complete bipartite graph B(m, n) , with

edges directed from left to right [2]. The automorphism group of V is

then S x S . W e shall investigate the action of this group on the
171 71

circuit space of V .

There is a natural representation of S on r given by permuting a
n

basis {e., ..., e } according to the action of S . This induces a

representation p on the subspace J of vectors £ X.e. with

Y X. = 0 . Let J-. be the cyclic module generated by j = V X.e. 6 J

under the action of S . If X, # X. , then g - j(hi) = (X, -X.) (e, -e.)

and so J = J . Thus J is irreducible, unless £ \e. € J , for some

X ^ 0 . This occurs if and only if p divides n .

THEOREM 6. The representation of S x S on the circuit space of

B(m, n) over the field F is p ® p and is irreducible unless the

m n
oharasteria'bui p of F divides m or n .

Proof. The natural permutation representation of S x S on
m n

{l, ..., m} x {l, ..., n} induces a linear representation on F ® r ,

where bases {e., ..., e } and {/ , ..., / } are permuted according to

their suffices. Now ]?" ® F*1 is isomorphic to the space C{T, F) and the
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action of S x S on R is induced by its action on C{T, F) . The

element £ KeA ® Z V -f A = I x-P -{ej ® /•) corresponds to an element
L ' - ' - j (. J u) 1 3 % 3

of i? if and only if 0 = - £ X ^ uje^ + £ JJKJX X̂ J/̂ . ; that is,

£ X. = Y u . = 0 . Thus B. contains the space J ® J . But R has
1* 3 m n

dimension rm-m-n + l= (m-l)(n-l) and so R = J ® J ; hence the

representation of 5 x S on /? is p ® p . If p divides neither m
m n m n

nor n , then p and p are irreducible, so p ® p is irreducible.

COROLLARY 7. Suppose that p divides neither m nor n , and that

M is a simple semigroup with class graph B(m, n) and elementary abelian

coefficient group of order p . Then M admits the full automorphism

group S x S of the directed graph B(m, n) if and only if it

corresponds to the maximum or minimum element of the lattice of subspaces

of the circuit space of B(m, n) over Z

Theorem 2 gives a method of counting the semigroups associated with a

graph F and an elementary abelian group of order p . We consider some

special cases.

Let e be the dimension of the circuit space R . If Y has trivial

automorphism group, then the isomorphism classes of semigroups simply

correspond to the subspaces of codimension at most d of the vector

space of dimension e over Z . Now suppose that aut(F) is

unrestricted. We have e = 0 if and only if F is a forest and then

there is just one isomorphism class of semigroups. If e = 1 , then R

has two subspaces, both fixed by aut(T) , so there are two semigroups.

For e > 1 , it is convenient to treat R as a projective space PR . In

the case e = 2 , Pi? is a projective line and, for given T , the action

of aut(T) can usually be determined without difficulty. As an

illustration of the case e = 3 , let V be the graph 5(3, 3) with one

edge removed. The automorphism group of the directed graph T is C ? x C
1-

and, for p = 2 , PR is the projective plane with seven points. The

action of aut(P) can be shown to fix one point and the three lines
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through that point, so, for d > 3 , the number of semigroups is

l + lt + l»+l = 10 , with an appropriate reduction if d < 3 . For

p > 2 , one can apply Burnside's Lemma, which states that the number of

orbits is |aut(r)|~ £ F(B) , where F(d) is the number of subspaces

fixed by 6 , and 6 runs through aut(r) . Each non-trivial element of

our automorphism group fixes a point and a disjoint line pointwise and

thus, for d > 3 , the number of orbits is

%(2(np2-tp+l)+(3*2)(l+l+p+l)) = %(p2+l(p+ll) .

For d < 3 , one omits the fixed subspaces of dimension less than 3 - d .

The last example illustrates some general principles involved in

counting the semigroups associated with a particular graph T . To apply

Burnside's Lemma, one must find the subspaces fixed by 6 € aut(T) . If p

does not divide the order of 9 , then if is completely reducible as a

Z <9>-module and each fixed subspace is a direct sum of irreducible

subspaces. Wow 6 is an element (a, $) of 5 x 5 , where m and n
m n

are the orders of the source and target sets of T . The eigenvalues of a

acting on J and $ acting on J are roots of unity in a suitable
m n

splitting field and the eigenvalues of 6 acting on J ® J are all the
m n

products of an eigenvalue of a and of 3 • One can thus determine the

decomposition of J ® J as a direct sum of irreducible Z <9>-modules
m n p

and hence the decomposition of its submodule i? . This procedure is not

available when p divides the order of 9 , in which case one works

directly in terms of R .

Using these methods, one can derive formulae for the number of

isomorphism classes of semigroups associated with elementary abelian groups

and various classes of graphs. This complements the crude counting

procedure of [3], which takes no account of the structure of the class

graph. As a typical example, let a[p ) be the number of simple semi-

groups with three L-classes, two R-classes, and elementary abelian

coefficient group of order p . If d > 2 , then e{^) = 2 , a[3 ) = h ,

and for p > 3 , a[pd) = 3 + (p+l)/6 if p ^ 1 (mod 3) ,
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a[pd) = h + (p - l ) /6 i f p B 1 (mod 3) .
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