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Abstract

During the coronavirus disease 2019 pandemic, mathematical modeling has been widely used to understand epidemiological burden, trends,
and transmission dynamics, to facilitate policy decisions, and, to a lesser extent, to evaluate infection prevention and control (IPC) measures.
This review highlights the added value of using conventional epidemiology and modeling approaches to address the complexity of healthcare-
associated infections (HAI) and antimicrobial resistance. It demonstrates how epidemiological surveillance data and modeling can be used to
infer transmission dynamics in healthcare settings and to forecast healthcare impact, how modeling can be used to improve the validity of
interpretation of epidemiological surveillance data, howmodeling can be used to estimate the impact of IPC interventions, and howmodeling
can be used to guide IPC and antimicrobial treatment and stewardship decision-making. There are several priority areas for expanding the use
of modeling in healthcare epidemiology and IPC. Importantly, modeling should be viewed as complementary to conventional healthcare
epidemiological approaches, and this requires collaboration and active coordination between IPC, healthcare epidemiology, andmathematical
modeling groups.

(Received 29 April 2024; accepted 3 May 2024)

Introduction

Mathematical modeling has been widely used across all aspects of
public health response efforts during the coronavirus disease 2019
(COVID-19) pandemic to facilitate policy decisions; understand
epidemiological burden, trends, and transmission dynamics; and,
to a lesser extent, evaluate infection prevention and control (IPC)
measures.1–3 Although mathematical modeling was used to inform
IPC implementation prior to the COVID-19 pandemic, the use of
modeling during the pandemic underscored its value as a tool for
improving IPC in health care. In September 2023, 40 experts from
the fields of IPC, healthcare epidemiology, and mathematical
modeling convened in Geneva, Switzerland, for the 2023 IPC
Think Tank, funded by the US Centers for Disease Control and
Prevention. The Think Tank meeting sought to evaluate the use of
mathematical modeling as a tool for healthcare epidemiology in
light of the COVID-19 pandemic and highlight where mathemati-
cal modeling may augment current epidemiological approaches to
IPC more broadly. In this article, we summarize the key messages
and conclusions of the 2023 IPC Think Tank.

Complementary roles of conventional epidemiology
and modeling

The goals of healthcare epidemiology and IPC programs in
healthcare settings include protecting patients and care providers
from infectious diseases, including HAI, and limiting the spread of
antimicrobial resistance. These goals are achieved through efforts
such as epidemiological studies to identify risk factors for infection,
surveillance for infections in the healthcare setting, and imple-
mentation and evaluation of interventions to prevent transmission
of pathogens. Conventional epidemiology uses observational data
to assess predictive factors and outcomes; however, these methods,
at times, fall short in addressing many important questions in the
fields of healthcare epidemiology and IPC. This may be, in part,
because HAI and antimicrobial resistance emerge from very
complex systems that are difficult, if not impossible, to directly
observe or quantify and for which observational time frames are
necessarily longer than ideal when rapid interventions are needed.
Mathematical modeling provides a simplified representation of a
complex system formalized by mathematical equations. It is an
extension of conventional epidemiological analyses by which
mechanistic causal processes, often not directly observed, are
explicitly included. Mathematical modeling is, therefore, particu-
larly helpful in addressing the complexity of HAI and antimicro-
bial resistance. Some of the similarities and differences between
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conventional epidemiological and mathematical modeling
approaches are summarized in Table 1. Importantly, these 2
approaches are complementary rather than competing and can be
used to enhance healthcare epidemiology and IPC, as described in
the following examples.

1) Transmission pathways in healthcare settings

Understanding transmission pathways by reconstructing out-
breaks (ie, who infected whom) in healthcare settings can help
inform and refine infection control policies. Successful epidemio-
logical approaches for identifying and halting nosocomial trans-
mission rely heavily on early identification and isolation of cases and
their contacts. However, conventional epidemiological approaches
may not be able to provide a complete or correct picture of
transmission pathways in an epidemic. This is because of the
variability in the incubation period of infections due to different
pathogens and variation in the extent to which transmission occurs
from asymptomatic or presymptomatic persons with viral infections
or from people colonized with antimicrobial-resistant bacteria.4

Further, key events in the mechanistic chain often cannot be directly

observed in epidemiological studies; mathematical modeling
approaches offer insights into unobserved events.

During the COVID-19 pandemic, the integration of viral
genomic, epidemiological, and location data using a modeling
framework was used to identify more accurate estimates of within-
hospital transmission and transmission mechanisms and to
identify individuals or groups who contribute disproportionately
to transmission. In this approach, transmission is supported if the
time of symptom onset and the serial interval distribution (ie, time
from illness onset in a primary case to illness onset in a secondary
case) of severe acute respiratory coronavirus virus 2 (SARS-CoV-2)
are compatible, if location data indicate that the individuals were in
the same hospital location at the time of a suspected transmission
event, and if there is a high degree of relatedness between viral
genomes.4 This approach has been used to understand SARS-CoV-2
transmission among patients and health workers in a large UK
National Health Service Trust,4 as well as between older patients and
healthcare workers in acute geriatric settings.5

The integration of genomic and epidemiological data to
enhance understanding of nosocomial transmission was not a
novel development during the COVID-19 pandemic; this method

Table 1. Similarities and differences between conventional epidemiological approaches and mathematical modeling approaches

Conventional healthcare epidemiology Mathematical modeling

Data Collection and analysis of observed and empirical epidemiological,
clinical, and laboratory data

Abstraction of a complex system, formalized by mathematical
constructs; relies heavily on assumptions; parameters can be
estimated directly from epidemiological data or informed by the
literature or expert opinion; mechanistic causal processes are
explicitly included

Techniques
(examples)

Case series, case-control studies, cohort studies, randomized
controlled trials

Compartmental models, network models, individual-based models,
Bayesian approaches

Population Usually hospitalized patients or persons seeking healthcare (ie,
outpatient and inpatient care, residents of skilled nursing facilities);
often misses community/populations up- and downstream from
hospitalization

Can be used to estimate unobserved events, such as the indirect
effects of secondary and tertiary transmission when empirical data
are not available

Complexity Spectrum of complexity, but may struggle to represent complex
dynamic transmission or disease processes

Spectrum of complexity—often a balance between including
enough information to accurately represent the system, while
excluding extraneous information that limits tractability or
interpretation

Feasibility Observational studies or randomized trials are often expensive or
infeasible to conceptualize and implement

More feasible, particularly when observational studies or
randomized trials may be too costly, unethical, or otherwise
unachievable

Time frame Often retrospective, fixed time frame Can be used to forecast or represent scenarios in the future

Reporting Checklists and guidelines for reporting by study type are widely
available (eg, EQUATOR network)

Increased transparency of inputs, assumptions, uncertainties, and
results is needed33

Updates Generally not performed Iterative process—models can be updated as more data becomes
available

Generalizability Spectrum of generalizability, often based on study design Spectrum of generalizability; highly specific parameterization may
limit generalizability

Interpretability Explicit interpretation of observed and measured outcomes Can assess unmeasured outcomes and counterfactual
considerations

Accessibility Conventional statistical analysis methods and ready-to-use tools
widely available

Limited access to modeling expertise; less widespread
understanding of methodologies

Equity More studies needed in low- and middle-income settings Modeling predominantly based in high-income settings; more data
generation and modeling needed in low- and middle-income
settings

Informing
policy
decisions

Widely used to inform policy-making Limited use to date in policy-making, likely due to limited
generalizability (above); need for better communication of models
and results

Note. EQUATOR, Enhancing the QUAlity and Transparency Of health Research.
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has been used to enhance understanding of methicillin-
resistant Staphylococcus aureus (MRSA) transmission in a high
transmission hospital setting6 and of healthcare-associated
Clostridioides difficile.7 The increased availability and decreasing
costs of high-throughput genomic sequencing and the develop-
ment of specific software packages8 facilitate the integration of
genomic sequencing and epidemiological data for reconstructing
nosocomial transmission dynamics. This approach can be applied
to the transmission of other respiratory viruses, beyond SARS-
CoV-2, and potentially to multidrug-resistant organisms (MDRO)
in healthcare settings.

2) Forecasting transmission and healthcare impact

The ability to anticipate epidemic dynamics through mathematical
modeling has proven critical during the COVID-19 pandemic.
The use of these models has allowed for optimizing the public
health response (eg, facility closures and reopening) and allocation
of healthcare demand, supplies (eg, personal protective equipment,
therapeutics, and vaccines), personnel, and resources.2,9–14

Forecasting models have been used to provide quantitative,
evaluable, and probabilistic predictions about the trajectory of
SARS-CoV-2 transmission and COVID-19 impact across the near-
term future.15 Although there may be high variation inaccuracy in
forecasting COVID-19 deaths between and within individual
models, there is greater accuracy using multimodel ensemble
forecasts for which individual forecasts from all eligible models are
combined and for which the performance exceeds most, if not all,
of themodels that contributed to it.9,15 Importantly, the accuracy of
both standalone and multimodel ensemble forecasts is dependent
on the quality of surveillance data. This highlights both the
complementarity of conventional epidemiological and mathemati-
cal modeling approaches and the need for collaboration and active
coordination between public health surveillance and mathematical
modeling groups.

MDRO surveillance in Europe, for example, relies on the
submission of antimicrobial susceptibility data from invasive
clinical isolates. Some of the modeling approaches developed
during the COVID-19 pandemic to forecast COVID-19 impact
across the near-term future could be used to forecast the
emergence and impact of MDRO within populations and
healthcare facilities, although this is not without substantial
challenges compared to forecasting acute viral infections. The
major challenges to forecastingMDRO include, but are not limited
to, the extent of asymptomatic carriage, susceptible and resistant
strain competition and the effect of antimicrobial drug use, and
longer time scales than acute viral infections.16 Despite these
challenges, the addition of more data on colonization derived from
community-based specimens and asymptomatic carriage in
patients in healthcare settings could be used in a modeling
framework to more accurately estimate MDRO burden (ie, deaths,
hospitalizations, days of work lost, direct and indirect economic
costs, and evolution of resistance).

3) Improving the validity of interpretation of surveillance data

Surveillance of the asymptomatic carriage of antimicrobial-
resistant organisms provides data that are used to target IPC
activities and to provide a deeper epidemiological understanding
than is feasible with data from surveillance that includes
only microbiology testing performed for clinical care. However,
analyzing colonization data using conventional analytical

methods has limitations, which can be resolved, at least in part,
by model-based approaches. A simple example is the use of
admission screening to estimate the admission prevalence of
asymptomatic carriage. A more complex example is construing
that a positive follow-up test in a patient with a negative admission
test represents an acquisition event. In both instances, the
likelihood that the observed test results are being correctly
interpreted depends on the characteristics of the microbiological
test (ie, false negativity and false positivity), as well as several other
assumptions about the underlying dynamics. Modeling methods
that explicitly represent transmission while also accounting for
imperfect tests can reduce the bias associated with estimating
admission prevalence and acquisition rates.17 Similarly, modeling
approaches can provide a more accurate assessment of the
probability that colonization with a resistant organism has
resolved, given 2 or more consecutive negative tests.17 Yet another
example where transmission dynamic models improve the
interpretation of epidemiological data is in the analysis of
the effect of colonization pressure on acquisition rates.17,18 All of
these examples highlight the importance of using analytic methods
that explicitly distinguish between observed and unobserved events.

4) Evaluating the impact of infection prevention and control
interventions

Another area of healthcare epidemiology that mathematical
modeling can support is in estimating or anticipating the impact
of IPC interventions, particularly when several preventive measures
are bundled together. More specifically, dynamic transmission
models can be used to better understand clinical trial study design
and statistical power, both to re-evaluate the true impact of a
completed intervention (post hoc) and to improve the design of
future clinical trials (ex ante). The use of these models can address
some of the most challenging issues with IPC intervention trials,
including insufficient follow-up times, outcome measurement
biases, and disentangling the effects of multiple intervention
components.

Two examples of post hoc analyses that illustrate how dynamic
models can be used to more precisely estimate the impact of
different IPC interventions studied in large clinical trials are the
2 published re-analyses of the Strategies to Reduce Transmission
of Antimicrobial Resistant Bacteria in Intensive Care Units
(STAR*ICU) trial17 and the Benefits of Universal Glove and
Gown (BUGG) study.19,20 In the former, a Bayesian transmission
modeling framework was created using data collected from the
STAR*ICU trial to estimate the observed transmission and
clearance rates separately for MRSA and vancomycin-resistant
enterococci (VRE) while accounting for the imperfect coverage of
surveillance tests. Consistent with the original trial, this work
suggested no reduction of transmission for either MRSA or VRE
due to the intervention, though it also revealed subtle but
important differences between the pathogens regarding trans-
mission, importation, and clearance rates. In the latter, an agent-
based model calibrated and validated using data from the BUGG
study was used to quantify the relative benefits of the 3 different
components of the intervention, ultimately concluding that the
decrease in MRSA acquisition seen in the clinical trial was likely
due primarily to the barrier effects of glove and gown use. These 2
post hoc analyses show how dynamic transmission models can be
used to gain deeper insights into clinical trial results and potentially
direct subsequent investigations, including further evaluations of
components of IPC bundles.
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Mathematical models can also be very useful for improving the
design of intervention trials, particularly in evaluating whether
trials employ valid designs to estimate the effect of the
interventions being studied accurately. Because of the nature of
most hospital- or facility-based IPC intervention trials, it is
difficult, complex, and costly to account for several challenging
issues related to disease transmission. For instance, short hospital
stays may result in unobserved acquisitions or infections that
manifest postdischarge, short intervention and follow-up times
may result in missing intervention effects that can build for many
years before plateauing, and studies done at single centers may
underestimate an intervention’s effect by not accounting for effects
that may occur at other network facilities as a consequence of
patient transfer. Many types of mathematical transmission models
can be employed to explore the impact of accounting for these
design issues on the validity of a proposed study and the extent to
which it can fully estimate the effect of the intervention and its
individual components.

5) Guiding IPC and antimicrobial treatment and stewardship
decision-making

During the COVID-19 pandemic, mathematical modeling studies
explored various IPC decision-making questions, including the
impact of community-based non-pharmaceutical interven-
tions,12,21 implementation factors for vaccination programs,22

and evaluation of changes to screening, vaccination, and IPC
policies in nursing homes across the pandemic waves.13,14,23–25

Scenario modeling has been used to create and analyze different
hypothetical situations and assess how they affect nosocomial
transmission dynamics of SARS-CoV-2, therefore guiding imple-
mentation and, crucially, de-implementation of various IPC
measures in hospitals.25,26

Beyond COVID-19, models have been used to assess the trade-
offs of different regional containment strategies for resistant
infections, helping decision-makers evaluate the trade-offs of
selection of facilities and frequency of conducting point prevalence
surveys27–30 and the cost-effectiveness of such approaches.31

Additionally, models have evaluated the trade-offs among
prevention strategies and aided in the selection of priority facilities
for recruitment into a large public health demonstration project,

“Shared Healthcare Intervention to Eliminate Life-threatening
Dissemination of MDROs.”32,33 As novel vaccines or agents
designed to reduce MDRO colonization or infection make their
way through the development pipeline, modeling can be used to
evaluate the potential impact of these agents by accounting for not
only the direct benefit to the treated individual but also the indirect
population benefit resulting from prevention of transmission.34,35

Expanding the use of modeling in healthcare
epidemiology

The examples described above demonstrate the added value of
mathematical modeling as a tool for improving understanding of
HAIs and IPC efforts and facilitating public health decision-
making. Table 2 highlights current priority areas for expanding the
use of modeling in healthcare epidemiology and IPC. Nonetheless,
there is a need to exercise some caution in this endeavor.
Importantly, mathematical modeling does not replace the need for
observational studies and interventional trials. Although modeling
can be used when empirical data are not available, modeling cannot
substitute for the absolute absence of empirical data. As such, it is
increasingly important that modelers are active in the design of
high-quality epidemiological studies to ensure that data needed for
models are collected. Further, the expectations of modeling, as well
as howmodeling output should and should not be used, need to be
clear. Finally, efforts to harmonize the reporting standards for
modeling studies are needed to increase transparency of inputs,
assumptions, uncertainties, and results. For example, the MInD-
Healthcare Framework provides a standardized approach for
describing and reporting agent-basedmodels ofMDROandHAIs.36

It must also be underscored that traditional epidemiological
studies offer invaluable insights that can enhance the accuracy and
relevance of mathematical modeling in healthcare epidemiology.
By providing detailed observations of the disease’s natural history,
incidence rates, and risk factors, these studies offer critical data
points for model calibration. For example, the detailed contact
tracing efforts during the Ebola outbreak in West Africa provided
data on transmission rates and incubation periods, which were
crucial for developing predictive models to forecast the spread and
guide intervention strategies.37–41 Similarly, traditional epidemio-
logical investigations into influenza outbreaks contribute to

Table 2. Priority areas for expanding the use of modeling in healthcare epidemiology and infection prevention and control

Priority areas

Transmission modeling – Understanding disease transmission dynamics in healthcare settings using integration of genomic,
epidemiological, and location data for respiratory viruses, beyond SARS-CoV-2, and susceptible and
multidrug-resistant organisms.

Forecasting – Improved forecast accuracy for COVID-19 healthcare burden at longer horizons by all forecasting
methods

– Forecasting healthcare burden of infections due to multidrug-resistant organisms
– Use of modeling to inform the design of surveillance systems and refine the interpretation of surveillance
data

Evaluating the impact of infection prevention
and control interventions

– Reanalysis of intervention clinical trial results to inform subsequent investigations
– Evaluation of the effectiveness of components of infection prevention and control bundles
– Use of modeling to inform the design of intervention trials

Guiding infection prevention and control
decision-making

– Evaluation of the impact of novel vaccines or agents designed to reduce multidrug-resistant organism
colonization or infection

– Inform strategies for healthcare-associated infections, considering the potential outcomes and trade-offs
associated with different interventions

Note. SARS-CoV-2, severe acute respiratory coronavirus virus 2; COVID 19, coronavirus disease 2019.
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refining mathematical models that can be used to predict the
timing, peak, and intensity of influenza seasons, thereby aiding in
vaccine distribution and public health preparedness.38 These
examples underline how empirical data from traditional epi-
demiological studies are instrumental in informing and validating
mathematical models, making them more robust and tailored to
real-world scenarios in healthcare epidemiology.

Conclusion

During the COVID-19 pandemic, there has been a rapid expansion
in the use of mathematical modeling, underscoring the utility of
modeling for public health and patient care. Opportunities remain
to expand the use of mathematical modeling in healthcare
epidemiology and IPC. Importantly, this should be seen as
complementary to conventional healthcare epidemiological
approaches and requires collaboration and active coordination
between IPC, healthcare epidemiology, and mathematical model-
ing groups.
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