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Goldman Systems and Bending Systems

Yuichi Nohara and Kazushi Ueda

Abstract. We show that the moduli space of parabolic bundles on the projective line and the poly-
gon space are isomorphic, both as complex manifolds and as symplectic manifolds equipped with
structures of completely integrable systems, if the stability parameters are small.

1 Introduction

Let Nα be the moduli space of semi-stable parabolic bundles of rank 2 on the pro-
jective line X with n marked points z1 , . . . , zn , where α ∈ (0, 1/2)n is the parameter
for the parabolic weight. _e moduli space Nα is a smooth projective manifold for
a generic choice of α. Mehta and Seshadri [MS80] gave a construction of Nα using
geometric invariant theory and showed that it is diòeomorphic to themoduli space of
unitary representations of the fundamental group of the punctured Riemann surface
X ∖ {z1 , . . . , zn}.

With any pair-of-pants decomposition of the punctured Riemann surface
X ∖ {z1 , . . . , zn} one can associate a completely integrable system on Nα called the
Goldman system [Gol86]. _eGoldman system resembles themomentmap of a toric
variety [Wei92, JW92, JW94, JW97], although the natural complex structure onNα is
not preserved by the action of the Goldman’s Hamiltonians. Even worse, themoduli
space Nα as a complexmanifold usually does not admit a structure of a toric variety
at all.

A pair-of-pants decomposition of the punctured Riemann surface X∖{z1 , . . . , zn}
is described by a trivalent graph Γ with n leaves in such a way that nodes correspond
to pairs of pants and edges show how they are glued together, as shown in Figure 1. In
this paper, we consider the case when the genus of X is zero, so that Γ is a tree. _e
corresponding Goldman system will be denoted by ΘΓ ∶Nα → Rn−3.

_emoduli spaceNα is closely related to themoduli spaceMw of ordered n points
on the projective line, which is constructed as the geometric invariant theory quotient

Mw = Proj( ∞⊕
k=0

Γ((P1)n ,O(kw1 , . . . , kwn)) PGL2) .
Here, w = (w1 , . . . ,wn) ∈ Qn is the parameter for the PGL2-linearization, which
determines the stability condition and the ample line bundle on the quotient.

_emoduli spaceMw has a natural symplectic structure as a polarized projective
variety. As such, it admits an interpretation as themoduli space of polygons inR3 with
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Figure 1: A pair-of-pants decomposition and its dual graph

side lengths (w1 , . . . ,wn). Fix a convex planar n-gon P called the reference polygon.
We identify the set of triangulations of the reference polygon with the set of trivalent
trees with n leaves by assigning the dual graph to a triangulation. For any triangula-
tion Γ of the reference polygon,Klyachko [Kly94] andKapovich andMillson [KM96]
introduced a completely integrable systemΦΓ ∶Mw → Rn−3 called the bending system.

To relate a completely integrable system with a toric variety, the notion of a toric
degeneration of an integrable system was introduced in [NNU10, Deûnition 1.1]. For
each triangulation Γ of the reference polygon P, we have given a toric degeneration of
the corresponding bending system in [NU14, Corollary 1.3]. _e toric degeneration
of Mw underlying this toric degeneration of the bending system is the one given in
[HK97,KY02,SS04, FH05,HMM11].

_emain result in this paper is the following theorem.

_eorem 1.1 Let α = (α1 , . . . , αn) ∈ (0, 1/2)n be a parabolic weight satisfying ∣α∣ ∶=
α1 + ⋅ ⋅ ⋅ + αn < 1. _en for any triangulation Γ of the reference polygon P, there is a
symplectomorphism ψ∶Nα →Mw such that ψ∗ΦΓ = ΘΓ .

Combining with [NU14, Corollary 1.3], we have the following corollary.

Corollary 1.2 Suppose that α ∈ (0, 1/2)n satisûes ∣α∣ < 1. _en there exists a con-
tinuous family π∶Y→ [0, 1] of symplectic varieties equipped with completely integrable
systems Ft ∶Yt = π−1(t)→ Rn−3 such that (Y1 , F1) = (Nα ,ΘΓ), and (Y0 , F0) is a pair of
a toric variety and a toricmomentmap whosemoment polytope is ΘΓ(Nα). Moreover,
there is a continuous family of maps ψt ∶Y1 → Y1−t that are symplectomorphisms on an
open dense subset and satisfy ψ∗t F1−t = F1 = ΘΓ .

As a corollary, we obtain a new proof of the ∣α∣ < 1 case of the result of Jeòrey and
Weitsman [JW92] stating that the numbers of lattice points on themoment polytope
of the Goldman system is equal to the number of sections of the natural ample line
bundle onNα provided by GIT construction.

_is paper is organized as follows. In Section 2, we recall the description of coher-
ent sheaves on smooth rational orbifold curves due to Geigle and Lenzing [GL87],
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who call such curves weighted projective lines. In Section 3, we recall the relation
between quasi-parabolic bundles and orbifold bundles. In Section 4, we recall the
deûnition of parabolic weights and stability conditions. In Section 5, we recall the
relation between �at SU(2)-bundles and parabolic bundles of rank two and para-
bolic degree zero. In Section 6, we show that the moduli space Nα is the projective
space Pn−3 for a suitable choice of a stability parameter. In Section 7, we recall wall-
crossing phenomena in moduli spaces of parabolic bundles following Bauer [Bau91];
the space of stability parameters is divided into ûnitelymany chambers by walls, and
the change inmoduli spaces underwall-crossing can be described explicitly as a blow-
down followed by a blow-up. More general results on variation of geometric invariant
theory quotients are obtained by_addeus [_a96] and Dolgachev and Hu [DH98].
In Section 8, we use the wall-crossing phenomena to give an explicit description of
Nα for general α. _e strategy is to start with the stability parameter in Section 6 and
successively cross walls in the space of stability parameters to arrive at any stability
parameter. _is strategy was used in Bauer [Bau91], and themain diòerence between
hiswork and ours is thatwemake extensive use of the language of weighted projective
lines developed by Geigle and Lenzing [GL87], and the chamber that we start with is
diòerent from that of Bauer. In Section 9, we give a description of the moduli space
Mw parallel to that of Nα . _is immediately shows thatMw and Nα are isomorphic
if w = α and ∣α∣ < 1. In Section 10, we recall the construction of the bending sys-
tem onMw . In Section 11, we recall the description of the symplectic structure given
by Guruprasad, Huebschmann, Jeòrey, and Weinstein [GHJW97], and the Goldman
system. In Section 12 we recall extendedmoduli spaces deûned by Jeòrey [Jef94] and
Hurtubise and Jeòrey [HJ00] to construct Nα as a ûnite dimensional symplectic re-
duction, and as a quasi-Hamiltonian reduction [AMM98]. In Section 13, we see the
walls in Section 7 from the view point of quasi-Hamiltonian reduction. In Section
14, we study the Goldman system via gluing of Riemann surface, following the idea
of [HJ00] and [AMM98]. In Section 15, we construct a symplectomorphism between
Nα andNtα (0 < t ≤ 1) that identiûes the Goldman systems in the case where ∣α∣ < 1.
In Section 16, we show thatMα andNα are symplectomorphic in such a way that the
Goldman system onNα and the bending system onMw are identiûed for suõciently
small α. Combining with the result in Section 15,_eorem 1.1 is proved.

2 Orbifold Projective Lines

Let X be a smooth Deligne–Mumford stack of dimension one without generic stabi-
lizer. We assume that X is rational, so that the coarsemoduli space X of X is isomor-
phic to P1. Such a stack was studied in detail by Geigle and Lenzing [GL87] under
the name weighted projective lines, and we summarize some of their results in this
subsection. One can also see [Len11] and references therein formore on this subject.
Orbifold points of X will be denoted by w1 , . . . ,wn , and their images in X will be de-
noted by z1 , . . . , zn . _e absence of generic stabilizer implies that the stabilizer group
Γp i

at w i for any i = 1, . . . , n is a cyclic group, whose order will be denoted by p i .
Locally around the orbifold point w i , we can take an orbifold chart [A/Γw i

] ↪ X

where A = SpecC[u] is an aõne space and Γw i
acts linearly by a primitive p i-th root

of unity. Following [GL87], we letOX(x⃗ i) for i = 1, . . . , n, denote the dual ofO(−x⃗ i),
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deûned as the kernel of the natural morphism OX → Ow i
to the skyscraper sheaf

Ow i
= [(SpecC[u]/(u))/Γw i

] ∶
0→ OX(−x⃗ i)→ OX → Ow i

→ 0.

We also deûneOX(c⃗) as the line bundleOX(x), which does not depend on the choice
of a point x ∈ X ∖ {w1 , . . . ,wn}. One has relations

OX(p i x⃗ i) = OX(c⃗), i = 1, . . . , n,
and the Picard group of X is given by

L = PicX = Zx⃗1 ⊕ ⋅ ⋅ ⋅ ⊕Zx⃗n ⊕Zc⃗/(p1 x⃗1 − c⃗, . . . , pn x⃗n − c⃗).
Choose a global coordinate on X ≅ P1 so that the points z1 , . . . , zn on X are given in
this coordinate by λ1 =∞, λ2 = 0 and λ3 , . . . , λn ∈ A1

∖{0}. _e total coordinate ring
of X is given by

S = ⊕⃗
k∈L

H0(OX(k⃗)) = k[X0 , X1 , . . . , Xn] / (X p i

i − X
p2
2 + λ iX

p1
1 )ni=2 ,

which is graded by the abelian group L as deg X i = x⃗ i for i = 1, . . . , n. _e stack X is
recovered as the quotient stack

X = [(Spec S ∖ {0})/G]
by the aõne algebraic group G = SpecC[L]. _e graded ring S is Gorenstein with
parameter ω⃗ = (n − 2) −∑n

i=1 x⃗ i , and Serre duality on X is given by

Ext1(E,F) ≅ H0(F,E⊗OX(ω⃗))∨
for any coherent sheaves E and F.

3 Quasi-Parabolic Bundles as Orbifold Bundles

In this section, we recall the relation between quasi-parabolic bundles on punctured
curves and orbifold bundles on orbi-curves. Although this is well known to experts
and essentially goes back to [MS80], we provide a sketch of proof here for the reader’s
convenience.

Let Ũ = SpecC[u] be an aõne line and let U = [Ũ/Γ] be the quotient stack of Ũ
with respect to the Γ = Z/p jZ-action, which acts on points of Ũ as

u ↦ ζ−1u, ζ = exp(2π√−1/p j).
A complex analytic neighborhood of the origin in U is identiûed with a complex
analytic neighborhood of w j in X. _e coarse moduli space of U is given by U =
SpecC[v], where C[v] = C[u]Γ for v = up j is the invariant ring.

_e action of Γ on Ũ induces an action on the coordinate ringC[u] in such a way

that an element γ ∈ Γ sends a function f to its pull-back (γ−1)∗ f by γ−1∶ Ũ → Ũ .
It follows from the deûnition of sheaves on quotient stacks that a locally-free sheaf

E on U corresponds to a Γ-equivariant locally-free sheaf on Ũ . Since Ũ is aõne, a
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Γ-equivariant locally-free sheaf on Ũ = SpecC[u] is the same as a free C[u]-module
M, equipped with an action of Γ satisfying

γ ⋅ ( fm) = (γ ⋅ f )(γ ⋅m),(1)

for any γ ∈ Γ, f ∈ C[u] and m ∈ M. Here, ⋅ is the Γ-action on C[u] and M. _e
crossed product algebra C[u]⋊ Γ consists of elements of the form f ⊗ γ for f ∈ C[u]
and γ ∈ Γ, with relations

( f ⊗ γ) ○ (g ⊗ δ) = f (γ ⋅ g)⊗ (γδ).(2)

It follows from (1) and (2) that a Γ-equivariant C[u]-module can be identiûed with a
C[u] ⋊ Γ-module.

Let P be a ûnitely-generatedC[u]⋊ Γ-module. As a Γ-module, it has a direct sum

decomposition P = ⊕p j

i=1 Pi into isotypical components, where the generator [1] ∈ Γ
acts on Pi bymultiplication by exp(2π√−1(i − 1)/p j). _eC[u]-module structure is
determined by the action of u, which is just a collection of C-linearmaps

u∶ Pi Ð→ Pi−1 , i ∈ Z/p jZ.

Each Pi is aC[v]-module, andmultiplication by u is a homomorphismofC[v]-mod-
ules, which must satisfy um = v∶ Pi → Pi−m . In terms of sheaves Pi of OU -modules
associated with C[v]-modules Pi , this gives a quasi-parabolic sheaf, deûned as an in-
ûnite sequence

(3) ⋅ ⋅ ⋅
uÐ→ Pi

uÐ→ Pi+1
uÐ→ ⋅ ⋅ ⋅

such that Pi+p j
= Pi(−z j) and the composition

Pi+p j

u
p jÐÐ→ Pi

is equal to themultiplication

Pi(−z j) vÐ→ Pi

by v for any i ∈ Z. Amorphism of quasi-parabolic sheaves is a collection ofmorphisms
f i ∶Pi → Qi making the diagram

⋅ ⋅ ⋅
uÐÐÐÐ→ Pi

uÐÐÐÐ→ Pi+1
uÐÐÐÐ→ ⋅ ⋅ ⋅

f i
×××Ö f i+1

×××Ö
⋅ ⋅ ⋅

uÐÐÐÐ→ Qi
uÐÐÐÐ→ Qi+1

uÐÐÐÐ→ ⋅ ⋅ ⋅
commutative. Under the correspondence between C[v]-modules with quasi-para-
bolic structures and C[u] ⋊ Γ-modules, a morphism of quasi-parabolic sheaves can
be identiûed with a morphism of C[u] ⋊ Γ-modules. By using this correspondence
around each orbifold points, one obtains the following proposition.

Proposition 3.1 _e category of quasi-parabolic sheaves on X is equivalent to the
category of coherent sheaves on X.

If P is locally-free, thenmultiplication by v is an injection, so that (3) gives a ûltra-
tion

P1(−z j) ≅ Pp j+1 ↪ Pp j
↪ ⋅ ⋅ ⋅↪ P2 ↪ P1
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of sheaves, which in turn gives a ûltration

0 = Fp j+1(Pz j) ⊂ Fp j
(Pz j) ⊂ ⋅ ⋅ ⋅ ⊂ F1(Pz j) = Pz j

of the ûber Pz j = P1/v ⋅ P1 of P1 at z j . A pair consisting of a locally-free sheaf and a
ûltration at each z j is called a quasi-parabolic bundle. Amorphism of quasi-parabolic
bundles P and Q can be described, in terms of a ûltration at each z j , as a morphism
ϕ of the underlying vector bundle such that ϕ(Fi(Pz j)) ⊂ Fi(Qz j). _e equivalence
in Proposition 3.1 restricts to an equivalence between the category of vector bundles
on X and the category of quasi-parabolic bundles on X.

4 Parabolic Weights and Stability Conditions

Assume that the stabilizer groups at all orbifold points are cyclic groups of order two:
Γw j
= Z/2Z for j = 1, . . . , n. A vector bundle on X corresponds to a quasi-parabolic

bundle consisting vector bundle P on X and 2-step �ags

0 = F3(Pz j) ⊂ F2(Pz j) ⊂ F1(Pz j) = Pz j

for each j = 1, . . . , n. _e Picard group of X is given by

L = PicX = Zx⃗1 ⊕ ⋅ ⋅ ⋅ ⊕Zx⃗n ⊕Zc⃗/(2x⃗1 − c⃗, . . . , 2x⃗n − c⃗).
_e structure sheaf OX corresponds to the trivial bundle P = OX equipped with the
ûltration F2(Pz j) = 0 for any z j . _e line bundle OX(x⃗ i) corresponds to the trivial
bundle P = OX equipped with the ûltration

F2(Pz j) =
⎧⎪⎪⎨⎪⎪⎩
Pz j i = j,

0 otherwise.

A parabolic bundle is a quasi-parabolic bundle together with a choice of parabolic
weights

(a j,1 , a j,2) ∈ Q2 , 0 ≤ a j,1 < a j,2 < 1
for each j = 1, . . . , n. In this paper, we always assume that a parabolic weight satisûes
a j,1 + a j,2 = 1 for j = 1, . . . , n. Any subbundle E of a parabolic bundle P has a natural
parabolic structure whose quasi-parabolic structure is given by

Fi(Ez j) = Fi(Pz j) ∩ Ez j

with the same parabolic weight as P. _e parabolic degree of P is deûned by

pardegP = degP + n∑
j=1
[ a j,1(dim F1(Pz j) − dim F2(Pz j)) + a j,2 dim F2(Pz j)] .

For example, if rankP = 2 and
dim F1(Pz j) − dim F2(Pz j) = dim F2(Pz j) = 1, j = 1, . . . , n,

then the parabolic degree of P is given by

pardegP = degP + n∑
j=1
(a j,1 + a j,2) = degP + n.
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A parabolic bundle is semi-stable if one has

(4)
pardegE

rankE
≤ pardegP

rankP

for any subbundle E ⊂ P. It is stable if the strict inequality holds in (4) for any non-
trivial subbundle 0 /= E ⊊ P.

_e Picard group L of X acts onQn by

x⃗ i(α) = α′ , α′j =
⎧⎪⎪⎨⎪⎪⎩
α j i /= j,

−α j i = j.

Note that this action factors through L/(2c⃗) ≅ (Z/2Z)n . Any element of L can be

written uniquely as k⃗ = k1 x⃗1 + ⋅ ⋅ ⋅ + kn x⃗n + k0 c⃗, where k i ∈ {0, 1} for i = 1, . . . , n and

k0 ∈ Z, and the parabolic degree of the line bundle O(k⃗) is given by

pardegα O(k⃗) = ∣k⃗∣ + ∣k⃗(α)∣ ∶= k0 + k1 + ⋅ ⋅ ⋅ + kn + (−1)k1α1 + ⋅ ⋅ ⋅ + (−1)knαn .

5 Moduli Spaces of Parabolic Bundles

Mehta and Seshadri [MS80] constructed themoduli spaceNα of semistable parabolic
bundles, which is a normal projective variety parametrizing S-equivalence classes of
semistableparabolic bundles._eyhave also shown that theopen subvarietyNs

α ⊂ Nα

parametrizing stable parabolic bundles of parabolic degree zero is diòeomorphic to
themoduli space of irreducible unitary representations of the fundamental group of
X○ ∶= X ∖ {z1 , . . . , zn}:

N
s
α ≅ {ρ ∈ Hom(π1(X○), SU(2))irred ∣ ρ(γ j) ∈ Cα j

} /∼.(5)

Here γ j ∈ π1(X○) is a loop around z j , and Cα j
⊂ SU(2) is the conjugacy class con-

taining exp [2π√−1diag(a j,1 , a j,2)]. _e equivalence relation ∼ is deûned by conju-

gation; two representations ρ and ρ′ are equivalent if there is some g ∈ SU(2) such
that ρ′(γ) = gρ(γ)g−1 for any γ ∈ π1(X○). A parabolic weight is generic if semistabil-
ity implies stability. If the parabolic weight α is generic, then themoduli space Nα is
smooth.

_e diòeomorphism(5) is given as follows. For any irreducible unitary representa-
tion ρ of π1(X○), one has the �atC2-bundle Eρ on X○ associatedwith ρ. By tensoring
Eρ with the structure sheaf OX○ over the constant sheaf CX○ , one obtains a coherent
sheaf E○ ∶= Eρ ⊗CX○

OX○ on X○. Around each puncture z j ∈ X, we take a coordinate
v centered at z j , and consider following the universal cover of a small disk centered
at z j :

{x +√−1y ∈ C ∣ y ≫ 1}→ X○, x +
√
−1y ↦ v = exp [2π√−1(x +√−1y)] .

Let g = ρ(γ j) ∈ SU(2) be the holonomy of the �at bundle Eρ around z j . _en a

holomorphic section of E○ near z j is a holomorphic function f ∶{x + √−1y ∈ C ∣
y ≫ 1} → C2 satisfying f ((x + 1) + √−1y) = g ⋅ f (x +√−1y), and one deûnes
the locally-free extension E of E○ by saying that f gives a holomorphic section of E
near z j if f is bounded. By a suitable choice of a coordinate of C

2, one can assume

that g is diagonal; g = exp [2π√−1diag(a j,1 , a j,2)] . _en the space of holomorphic
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sections of E is spanned by v ↦ (vα j+k , v(1−α j)+l) for non-negative integers k and l .
_e quasi-parabolic structure of E at z j is deûned as the one-dimensional subspace
C ⋅ (1, 0) in

∞⊕
k , l=0

C ⋅ (vα j+k , v(1−α j)+l)/v ⋅ ∞⊕
k , l=0

C ⋅ (vα j+k , v(1−α j)+l) ≅ C2 .

6 The Moduli Space for a Distinguished Stability Parameter

Let Nα be the moduli space of semistable parabolic bundles of rank two and par-
abolic degree zero on X = P1 with n marked points (z1 , . . . , zn). Here, the stabil-
ity parameter α = (α1 , . . . , αn) ∈ (0, 1/2)n is related to the parabolic weight a =
((a i ,1 , a i ,2), . . . , (an ,1 , an ,2)) ∈ ((0, 1)×(0, 1))n by (a i ,1 , a i ,2) = (α i , 1−α i)._e vec-
tor bundle P on X corresponding to a parabolic bundle in Nα has the same class as
O⊕O(−s⃗) in theGrothendieck group K(X)where s⃗ = x⃗1 +⋅ ⋅ ⋅+ x⃗n . Consider the line
bundle L = O(−s⃗ + x⃗n). Since

H0(O(−x⃗n)) = 0,
H1(O(−x⃗n)) ≅ H0(O(ω⃗ + x⃗n))∨ = H0(O((n − 2)c⃗ − s⃗ + x⃗n)∨ = 0,

H0(O(s⃗ − x⃗n)) ≅ C,
H1(O(s⃗ − x⃗n)) ≅ H0(O(ω⃗ − s⃗ + x⃗n))∨ = H0(O((n − 2)c⃗ − s⃗ − s⃗ + x⃗n))∨

= H0(O((n − 2)c⃗ − nc⃗ + x⃗n))∨ = H0(O(x⃗n − 2c⃗))∨ = 0,
where O(ω⃗) = O((n − 2)c⃗ − s⃗) is the dualizing sheaf, one has

χ(L,P) = χ(L,O⊕O(s⃗ − n)) = χ(O(s⃗ − x⃗n)) + χ(O(−x⃗n)) = 1,
so thatHom(L,P) /= 0. By taking the saturation of the image of a non-zeromorphism

ϕ ∈ Hom(L,P), one obtains a subbundle ofP of the formL(k⃗),where k⃗ ∈ Nx⃗1+⋅ ⋅ ⋅+
Nx⃗n . Note that

pardegα L(k⃗) > pardegα L = −α1 − ⋅ ⋅ ⋅ − αn−1 + αn ,

so thatL(k⃗) destabilizes P if α1 + ⋅ ⋅ ⋅ +αn−1 < αn ._is deûnes a chamber in the space
of stability parameters, where every bundle is unstable and Nα = ∅. _e quotient
bundle is

Q = P/L(k⃗) ≅ O(−x⃗n − k⃗),
and the destabilizing sequence is

0→ O(−s⃗ + x⃗n + k⃗)→ P→ O(−x⃗n − k⃗)→ 0.

Consider vector bundles obtained as extensions

0→ O(−s⃗ + x⃗n)→ P→ O(−x⃗n)→ 0,

which are classiûed by

eP ∈ Ext1(O(−x⃗n),O(−s⃗ + x⃗n))
= H1(O(−s⃗ + x⃗n + x⃗n)) = H1(O(c⃗ − s⃗))
= H0(O((n − 2)c⃗ − s⃗ − c⃗ + s⃗))∨ = H0(O((n − 3)c⃗))∨.
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Given amorphism

0 ÐÐÐÐ→ O(−s⃗ + x⃗n) ÐÐÐÐ→ P ÐÐÐÐ→ O(−x⃗n) ÐÐÐÐ→ 0
×××Ö

0 ÐÐÐÐ→ O(−s⃗ + x⃗n) ÐÐÐÐ→ P
′ ÐÐÐÐ→ O(−x⃗n) ÐÐÐÐ→ 0

between two such bundles P and P
′, one obtains a diagram

0 ÐÐÐÐ→ O(−s⃗ + x⃗n) ÐÐÐÐ→ P ÐÐÐÐ→ O(−x⃗n) ÐÐÐÐ→ 0
×××Ö

×××Ö
×××Ö

0 ÐÐÐÐ→ O(−s⃗ + x⃗n) ÐÐÐÐ→ P
′ ÐÐÐÐ→ O(−x⃗n) ÐÐÐÐ→ 0

since

Hom(O(−s⃗ + x⃗n),O(−x⃗n)) = H0(O(s⃗ − 2x⃗n)) = 0.
It follows that the isomorphism classes of such P are classiûed by

PExt1(O(−x⃗n),O(−s⃗ + x⃗n)) ≅ PH0(O((n − 3)c⃗)∨ ≅ Symn−3 P1 ≅ Pn−3 .

Proposition 6.1 One hasNα ≅ Pn−3 if 2αn < ∣α∣ < 1 and ∣α∣ − 2α i − 2αn < 0 for any
i = 1, . . . , n − 1.
Proof Let P be a rank 2 bundle on X obtained as an extension

(6) 0→ O(−s⃗ + x⃗n)→ P→ O(−x⃗n)→ 0.

Note that

pardegα O(−s⃗ + x⃗n) = −α1 − ⋅ ⋅ ⋅ − αn−1 + αn = − ∣α∣ + 2αn ,

so that O(−s⃗ + x⃗n) does not destabilize P if 2αn < ∣α∣ . If a line bundle L other than
O(−s⃗ + x⃗n) has a non-trivial morphism to P, then L has a non-trivial morphism to

O(−x⃗n), so that it can be written as O(−x⃗n − k⃗) for some k⃗ = k1 x⃗1 + ⋅ ⋅ ⋅ + kn x⃗n + k0 c⃗
where k i ∈ {0, 1} for i = 1, . . . , n and k0 ∈ N. Its parabolic degree is given by

pardegα O(−x⃗n − k⃗) =
⎧⎪⎪⎨⎪⎪⎩
−k0 + ∣α∣ − 2∑i∈I α i − 2αn kn = 0,
−k0 − 1 + ∣α∣ − 2∑i∈I α i kn = 1,

where I = {i ∈ {1, . . . , n−1} ∣ k i = 1}. Note that if the extension (6) does not split, then
one has k⃗ /= 0. For k⃗ /= 0, the conditions ∣α∣ − 2α i − 2αn < 0 for any i ∈ {1, . . . , n − 1}
and ∣α∣ < 1 imply that

pardegα O(−x⃗n − k⃗) < 0,
so that the line bundle O(−x⃗n − k⃗) does not destabilize P. _e same condition also

implies that the line bundleO(−s⃗+ x⃗n + k⃗) destabilizes any vector bundle P obtained
as an extension

0→ O(−s⃗ + x⃗n + k⃗)→ P→ O(−x⃗n − k⃗)→ 0

for any non-zero k⃗ ∈ Nx⃗1 + ⋅ ⋅ ⋅ +Nx⃗n , and Proposition 6.1 is proved.
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7 Wall-crossings in Moduli Spaces of Parabolic Bundles

_e space A = [0, 1/2)n of stability parameters is divided into chambers by walls

HI ,k = {α ∈ A ∣ ∑
j∈J

α j − ∑
i∈I

α i = k} ,
where I ⊂ {1, . . . , n}, J = {1, . . . , n}∖ I and k is a non-negative integer. Let C+ and C−
be two chambers separated by the wall WI ,k and take stability parameters α+ ∈ C+,
α− ∈ C− and α0 ∈WI ,k . _ere is a diagram

(7)

Nα+ Nα−

Nα0

ϕ+ ϕ−

where ϕ±∶Nα± → Nα0
are natural projective morphisms sending a α±-stable bundle

to the S-equivalence class of the same bundle considered as an α0-semistable bundle.
Let Σα± ⊂ Nα± be the subscheme parametrizing α∓-unstable bundles.

Proposition 7.1 (Bauer [Bau91, Proposition 2.7]) _e following hold.

(i) If we set Σα0
∶= ϕ+(Σα+), then one has Σα0

= ϕ−(Σα−).
(ii) Any point in Σα0

can bewritten as [S⊕Q],where pardegα+(S) = −pardegα+(Q)< 0 and pardegα−(S) = −pardegα−(Q) > 0.
(iii) ϕ−1+ ([S⊕Q]) ≅ PExt1(Q, S)∨ .
(iv) ϕ−1− ([S⊕Q]) ≅ PExt1(S,Q)∨ .
Proof For any bundle P in Σα+ , let

(8) 0→ S→ P→ Q→ 0

be the α−-destabilizing sequence. Since P is of rank two, both the destabilizing sub-
bundle S and the quotient bundle Q are line bundles. Any point in the ûber of ϕ+
above the point [S⊕Q] ∈ Nα0

is given by the extension of the form (8), and any such
extension is α+-stable, so that one has ϕ

−1
+ ([S⊕Q]) ≅ PExt1(Q, S)∨ ._e ûber of ϕ−

is obtained by exchanging the roles of S and Q, and Proposition 7.1 is proved.

If α0 does not lie on any otherwall, then Σα0
consists of one point, and the diagram

(7) is a blow-down followed by a blow-up. It may also happen that ϕ+ or ϕ− is an
isomorphism.

8 Detailed Description of the Wall-crossing

Recall that X is the coarse moduli space of X, and one has a natural isomorphism
H0(OX((n − 3)c⃗)) ≅ H0(OX(n − 3)). Since X is a projective line, one has

PH0(OX(n − 3)) ≅ Symn−3 X ≅ Pn−3 .

_eVeronese embedding is the diagonal map X ↪ Symn−3 X sending a point x ∈ X to

[x , . . . , x] ∈ Symn−3 X. For k⃗ = ∑i∈I x⃗ i + k0 c⃗ ∈ L, where I = {i1 , . . . , ir} ⊂ {1, . . . , n}
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and k0 ∈ Z, the k⃗-th secant variety V(k⃗) ⊂ Symn−3 X is deûned by

V(k⃗) = ⎧⎪⎪⎨⎪⎪⎩
z i1 ∗ ⋅ ⋅ ⋅ ∗ z ir ∗ Seck0(X) k0 ≥ 0,
∅ k0 < 0,

where X and themarked points zk ∈ X are considered as subvarieties of Symn−3 X by
theVeronese embedding. Here, the join A∗B of two subvarieties of a projective space
is the union ⋃a∈A, b∈B ℓa ,b of lines ℓa ,b passing through points a ∈ A and b ∈ B, and
the k0-th secant variety Seck0(X) = X ∗ ⋅ ⋅ ⋅ ∗ X is the join of k0 copies of X.

Let I = {i1 , . . . , ir} be a subset of {1, . . . , n} and let

J = { j1 , . . . , jn−r} = {1, . . . , n} ∖ I
be its complement. Assume that one has

−∑
i∈I

α+, i + ∑
j∈J

α+, j − k < 0 and − ∑
i∈I

α−, i + ∑
j∈J

α−, j − k > 0.
If a vector bundle P admits a non-trivial homomorphism from the line bundle

L = O(−s⃗ + ∑
j∈J

x⃗ j − k c⃗) , pardegα L = −∑
i∈I

α i + ∑
j∈J

α j − k,

then its saturation destabilizes the bundle P with respect to the stability parameter
α−. Assume that P is given as an extension

0→ O(−s⃗ + x⃗n)→ P→ O(−x⃗n)→ 0

classiûed by an element

eP ∈ Ext1(O(−x⃗n),O(−s⃗ + x⃗n)) ≅ H0(O((n − 3)c⃗))∨,
andO(−s⃗+ x⃗n) does not destabilizePwith respect to the stability parameter α−._en
one has Hom(L,O(−s⃗ + x⃗n)) = 0 and the α−-destabilizing morphism L → P must
come from anon-trivialmorphismL→ O(−x⃗n).Conversely, anon-trivialmorphism
ϕ ∈ Hom(L,O(−x⃗n)) li�s to a non-trivial morphism ϕ ∈ Hom(L,P) if and only if
eP ○ ϕ ∈ Ext1(L,O(−s⃗ + x⃗n)) vanishes. Under the isomorphisms

Hom(L,O(−x⃗n)) = H0(O(∑
i∈I

x⃗ i − x⃗n + k c⃗)) ,
Ext1(O(−x⃗n),O(−s⃗ + x⃗n)) ≅ H0(O((n − 3)c⃗))∨ ,

Ext1(L,O(−s⃗ + x⃗n)) ≅ H0(O((n − 3)c⃗ − (∑
i∈I

x⃗ i − x⃗n + k c⃗)))∨,
the Yoneda product

Hom(L,O(−x⃗n)) ⊗ Ext1(O(−x⃗n),O(−s⃗ + x⃗n)) → Ext1(L,O(−s⃗ + x⃗n))
corresponds to the composition

H0(O((n − 3)c⃗ − (∑
i∈I

x⃗ i − x⃗n + k c⃗))) ⊗H0(O(∑
i∈I

x⃗ i − x⃗n + k c⃗))
→ H0(O((n − 3)c⃗)) ,

so that there is a non-trivial morphism L→ P if and only if

[eP] ∈ PH0(OX(n − 3)) ≅ Symn−3 X ≅ Pn−3
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belongs to the secant variety V(∑i∈I x⃗ i − x⃗n + k c⃗) .
Remark 8.1 Bauer uses a diòerent parametrization of the space of stability param-
eters, and the stability parameter that he has chosen as the starting point is written
as

α =
⎧⎪⎪⎨⎪⎪⎩
( 1

2n−2 ,
n−2
2n−2 , . . . ,

n−2
2n−2) if n is even,

( n−2
2n−2 , . . . ,

n−2
2n−2) if n is odd

in the notation here, which does not satisfy ∣α∣ < 1. _e advantage of this stability
parameter is that the underlying bundle of a stable parabolic bundle is always given
by

E ≅
⎧⎪⎪⎨⎪⎪⎩
O(−n/2)⊕O(−n/2) if n is even,

O(−(n + 1)/2)⊕O(−(n − 1)/2) if n is odd.

For example, if n is even and the underlying bundle is O(−n/2 − k) ⊕ O(−n/2 + k)
for some k > 0, then the parabolic degree of the subbundle O(−n/2 + k) satisûes

pardegO(−n/2 + k) ≥ degO(−n/2 + k) + n∑
j=1

α j

= −n/2 + k + 1

2n − 2
+ (n − 1) n − 2

2n − 2

= k − 1 + 1

2n − 2
> 0.

_e discussion so far can be summarized as _eorem 8.2, which is a variation of
[Bau91,_eorem 2.9]. For the sake of simplicity of the exposition,we restrict ourselves
to the case ∣α∣ < 1,which is the case of interest for the purpose of this paper; this allows
us to deal only with walls HI ,k with k = 0.
_eorem 8.2 _e moduli space Nα for any parameter α = (α1 , . . . , αn) satisfying∣α∣ = α1 + ⋅ ⋅ ⋅ + αn < 1 is described as follows.

(i) Assume α1 ≤ α2 ≤ ⋅ ⋅ ⋅ ≤ αn by reordering the points if necessary. Set β0 =(rα1 , . . . , rαn−1 , αn) for a suõciently small positive number r, so that β0 belongs to the

chamber described in Proposition 6.1 and one hasNβ
0
≅ Symn−3 X ≅ Pn−3.

(ii) We ûrst cross walls of the form H{i ,n},0 for 1 ≤ i ≤ n − 1 satisfying
(9) ∣α∣ − 2α i − 2αn > 0.
When we cross the wall H{i ,n},0, the moduli space is blown-up at the point z i ∈ X ⊂
Symn−3 X ≅ Pn−3. A�er crossing all these walls, we arrive at the stability parameter β1

such thatNβ
1
is obtained fromNβ

0
by blowing up the points z i for 1 ≤ i ≤ n−1 satisfying

(9).
(iii) We then cross walls of the form H{i1 , i2 ,n},0 for 1 ≤ i1 < i2 ≤ n − 1 satisfying

∣α∣ − 2α i1 − 2α i1 − 2αn > 0.
When we cross the wall H{i1 , i2 ,n},0, the moduli space is blown-down along the strict
transform of the line passing through z i1 and z i2 , and then blown-up in the other direc-
tion so that the exceptional divisor is isomorphic to Pn−5. In other words, we blow-up
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the moduli space along the strict transform of the line passing through z i1 and z i2 , and
contract it down in the other direction.

(iv) In the r-th step, we cross the walls H{i1 , . . . , ir ,n},0 for 1 ≤ i1 < ⋅ ⋅ ⋅ < ir ≤ n − 1
satisfying

∣α∣ − 2α i1 − ⋅ ⋅ ⋅ − 2α ir − 2αn > 0.
Note that this condition can be written as

α i1 + ⋅ ⋅ ⋅ + α ir + αn < α j1 + ⋅ ⋅ ⋅ + α jn−r−1

where { j1 , . . . , jn−r−1} is the complement of {i1 , . . . , ir , n} in {1, . . . , n}. Whenwe cross
the wall H{i1 , . . . , ir ,n},0, the moduli space is blown-up along the strict transform of the(r − 1)-dimensional linear subspace spanned by z i1 , . . . , z ir , and then contracted in the
other direction. _is is a birational transformation that replaces Pr−1 with Pn−r−4.

(v) By successively crossing thewalls as above,we arrive at the chamber containing α.

9 Wall Crossing in Mw

Let w = (w1 , . . . ,wn) ∈ Qn be a stability parameter for the moduli space of ordered
n-points on P1, which can be taken from

W = {w = (w1 , . . . ,wn) ∈ Qn ∣ ∣w∣ = w1 + ⋅ ⋅ ⋅ +wn = 2}
by rescaling w if necessary; unlike the moduli space Nα , the overall rescaling of w
only changes the ample Q-line bundle on Mw and does not aòect the moduli space
Mw . A conûguration (x1 , . . . , xn) of ordered n points on P1 isw-semistable if for any
point x ∈ P1, one has

n∑
i=1

δx ,x i
w i ≤ 1.

_emoduli spaceMw contains the conûguration space

X(2, n) = ((P1)n ∖ ∆)/PGL2

of n points on P1 as an open subscheme if and only if w ∈ (0, 1)n , where
∆ = {(x1 , . . . , xn) ∈ (P1)n ∣ x i = x j for some i /= j}

is the big diagonal. Normalizing the last three points as (xn−2 , xn−1 , xn) = (0, 1,∞)
by the PGL2-action, one can realize X(2, n) as an open subscheme

X(2, n) ≅ {[x1 ∶ ⋅ ⋅ ⋅ ∶ xn−3 ∶ 1] ∈ Pn−3 ∣ x i /= 0, 1, x j for i /= j} ,
which is the complement of a hyperplane arrangement in Pn−3.

Walls in the spaceW of stability parameters are given by

HI = {w ∈W ∣ ∑
i∈I

w i = 1}
for a proper subset I = {i1 , . . . , ir} of {1, . . . , n}. Note that ∑i∈I w i = 1 implies

∑ j∈J w j = 1 for J = { j1 , . . . , jn−r} = {1, . . . , n} ∖ I. Let C+ and C− be two cham-
bers separated by the wall WI , and take stability conditions w+ ∈ C+, w− ∈ C−, and
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w0 ∈ WI . Assume that ∑i∈I w i ,+ > 1, ∑i∈I w i ,− < 1, and w0 is not on any other walls.
_en one has a diagram

(10)

Mw+ Mw−

Mw0

ϕ+ ϕ−

where ϕ+ blows-down the subvariety

Sw+ = {x j1 = ⋅ ⋅ ⋅ = x jn−r} ≅ Pr−2

ofMw+ to the subvariety

Sw0
= {x i1 = ⋅ ⋅ ⋅ = x ir , x j1 = ⋅ ⋅ ⋅ = x jn−r}

ofMw0
consisting of just one point, and ϕ− blows-down the subvariety

Sw− = {x i1 = ⋅ ⋅ ⋅ = x ir} ≅ Pn−r−2

ofMw− to the same point inMw0
.

_e diagram (10) for the special case I = {n} gives a wall-crossing from the empty
spaceMw+ = Sw+ ≅ P−1 = ∅ to the projective spaceMw− = Sw− ≅ Pn−3 through one
pointMw0

= Sw0
. _e chamber C− containing w− in this case is deûned by

(11) C− = {w ∈W ∣ wn < 1 and w i +wn > 1 for any 1 ≤ i ≤ n − 1}.
_emoduli spaceMw for w ∈ C− is described explicitly as follows. One can set xn =
∞ ∈ P1 by the PGL2-action. Since one has x i /= xn for any 1 ≤ i ≤ n− 1 by the stability
condition, onemust have (x1 , . . . , xn−1) ∈ An−1. One can set xn−1 = 0 by the residual
PGL2-action, and then one is le�with theGm-action onA

n−2._e stability condition
prohibits x1 = ⋅ ⋅ ⋅ = xn−1, so that one cannot have x1 = ⋅ ⋅ ⋅ = xn−2 = 0. _is shows that
one has

Mw = (An−2
∖ {0})/Gm ,

which is nothing but the projective space Pn−3.

_eorem 9.1 _e moduli space Mw for any stability parameter w = (w1 , . . . ,wn)
can be obtained from Pn−3 by the following birational transformations: Assume w1 ≤
w2 ≤ ⋅ ⋅ ⋅ ≤ wn by reordering the points if necessary. We start from the chamber (11) and
gradually increase w1 , . . . ,wn−1 and decrease wn . Set p i = [δ i0 ∶ ⋅ ⋅ ⋅ ∶ δ i ,n−2] ∈ Pn−3 for
1 ≤ i ≤ n − 2 and pn−1 = [1 ∶ ⋅ ⋅ ⋅ ∶ 1] ∈ Pn−3.

(i) We ûrst cross the walls H{i ,n} for 1 ≤ i ≤ n − 1 satisfying w i +wn < 1. When we
cross the wall H{i ,n}, themoduli space is blown-up at the point p i .

(ii) We then cross the walls H{i1 , i2 ,n} for 1 ≤ i1 < i2 ≤ n − 1 satisfying w i1 + w i1 +

wn < 1. When we cross the wall H{i1 , i2 ,n}, the moduli space is blown-down along the
strict transform of the line passing through p i1 and p i2 , and then blown-up in the other
direction, so that the exceptional divisor is isomorphic to Pn−5. In otherwords,we blow-
up the moduli space along the strict transform of the line passing through p i1 and p i2 ,
and contract it down in the other direction.
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(iii) In the r-th step, we cross the walls H{i1 , . . . , ir ,n} for 1 ≤ i1 < ⋅ ⋅ ⋅ < ir ≤ n − 1
satisfying w i1 + ⋅ ⋅ ⋅ + w ir + wn < 1. Note that this condition is equivalent to w i1 + ⋅ ⋅ ⋅ +

w ir +wn < w j1 +⋅ ⋅ ⋅+w jn−r−1 ,where { j1 , . . . , jn−r−1} is the complement of {i1 , . . . , ir , n}
in {1, . . . , n}. When we cross the wall H{i1 , . . . , ir ,n}, the moduli space is blown-up along
the strict transform of the (r − 1)-dimensional linear subspace spanned by p i1 , . . . , p ir ,
and then contracted down in the other direction. _is is a birational transformation
which replaces Pr−1 with Pn−r−4.

(iv) By successively crossing the walls as above, we arrive at the chamber containing
w.

Example 9.2 Set n = 5 and
w1 = ( 2

5
,
2

5
,
2

5
,
2

5
,
2

5
) .

We consider the straight line segmentw t = (1− t)w0 + tw1 starting from the stability
parameter

w0 = ( 5

16
,
5

16
,
5

16
,
5

16
,
3

4
)

in the chamber (11) satisfyingMw0
≅ P2. _e wall-crossing takes place at t = 5

21
and

w t = ( 1
3
,
1

3
,
1

3
,
1

3
,
2

3
) ,

where the points x i = x j = xk for 1 ≤ i < j < k ≤ 4 are stable for t ≤ 5
21
and unstable for

t > 5
21
. _ese points are blown-up by the wall-crossing, so that the point x i = x j = xk

is replaced by the exceptional divisor xℓ = x5 where {i , j, k, ℓ} = {1, 2, 3, 4}. With
respect to the normalization

(x1 , x2 , x3 , x4 , x5) = (x , y, 1, 0,∞),
four points at the center of the blow-up are given by

x1 = x2 = x3∶ [x ∶ y ∶1] = [1 ∶1 ∶1] ∈ P2 ,

x1 = x2 = x4∶ [x ∶ y ∶1] = [0 ∶0 ∶1] ∈ P2 ,

x1 = x3 = x4∶ [x ∶ y ∶1] = [0 ∶1 ∶0] ∈ P2 ,

x2 = x3 = x4∶ [x ∶ y ∶1] = [1 ∶0 ∶0] ∈ P2 .

_ese points are in general position, so that Mw 1
is P2 blown-up at four points in

general position.

We are now ready to prove the following theorem.

_eorem 9.3 Let α be a stability parameter for themoduli space of parabolic bundles
satisfying ∣α∣ < 1, and let w = 2α/∣α∣ be the corresponding normalized stability parame-
ter for themoduli space ordered n points onP1._en one has an isomorphismNα ≅Mw

of algebraic varieties.

Proof Since the wall-crossing inNα andMw described in_eorems 8.2 and 9.1 are
identical, it suõces to show the existence of an isomorphismNα ≅Mw for a stability
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parameter α satisfying the condition in Proposition 6.1, such that the points z i ∈ Nα

are mapped to p i ∈ Mw for i = 1, . . . , n − 1. _is is clear, since both moduli spaces
are (n − 3)-dimensional projective spaces, and the points are n − 1 points in general
position.

A more general result, which gives an isomorphism between the moduli space of
parabolicG-bundles for a simply-connected simple algebraic groupG and aGIT quo-
tient of a product of �ag varieties, is shown in [Man, Proposition 4.8].

10 Bending Systems on Mw

LetG = SU(2), and identify the Lie algebra g = su(2)with its dual by theKilling form⟨ ⋅ , ⋅ ⟩∶g × g → R. Let T ⊂ G be the maximal torus consisting of diagonal matrices,
and take a base

x0 = (2π
√
−1 0

0 −2π
√
−1
)

of the Lie algebra t of T . For α ∈ R>0, the adjoint orbit Oα ⊂ g of αx0 has a natural
symplectic form called the Kostant–Kirillov form, as follows. Recall that a tangent
vector of Oα at x can be written as adξ(x) = [x , ξ] for ξ ∈ g. _e Kostant–Kirillov
form ωOα

is given by

ωOα
(adξ(x), adη(x)) = ⟨x , [ξ, η]⟩ .

For α = (α1 , . . . , αn) ∈ (R>0)n , we deûne Oα = ∏i Oα i
⊂ gn with the i-th projec-

tion pri ∶Oα → Oα i
, i = 1, . . . , n. _e diagonal G-action on Oα is Hamiltonian with

respect to the symplectic form∑i pr
∗
i ωOαi

, and itsmomentmap is given by

µ∶Oα Ð→ g, x = (x1 , . . . , xn)z→ x1 + ⋅ ⋅ ⋅ + xn .

From the Kirwan–Kempf–Ness _eorem, the symplectic reduction

(12) µ−1(0)/G = {x ∈ Oα ∣ x1 + ⋅ ⋅ ⋅ + xn = 0}/G
isdiòeomorphic toMw forw = 2α/∣α∣, and the induced symplectic formis compatible
with the complex structure (on the smooth locus of Mw). In what follows we write
this space asMα to emphasize its symplectic structure ωMα

. Note that (Mkα ,ωMkα
)

is symplectomorphic to (Mα , kωMα
) for k > 0. _e expression (12) shows that Mα

parametrizes n-gons in g ≅ R3 with ûxed side lengths α1 , . . . , αn modulo Euclidean
motions.

Let e1 , . . . , en ∈ R2 denote side edge vectors of a reference n-gon P ⊂ R2, satisfying
e1 + ⋅ ⋅ ⋅ + en = 0. For a diagonal d = e i + e i+1 + ⋅ ⋅ ⋅ + e i+k of P, we deûne ϕd ∶Mα → R

as the length function

ϕd(x) = ∣x i + x i+1 + ⋅ ⋅ ⋅ + x i+k ∣
of the corresponding diagonal in x. _is function is called a bending Hamiltonian,
since the Hamiltonian �ow of ϕd bends n-gons around the diagonal corresponding
to d (see [KM96] or [Kly94]).

We ûx a triangulation of P given by n−3 diagonals d1 , . . . , dn−3 that do not intersect
in the interior of P, and let Γ denote its dual graph. Note that Γ is a trivalent tree with
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n leaves. _e bending system associated with Γ is deûned by

ΦΓ = (ϕd1
, . . . , ϕdn−3

)∶Mα Ð→ Rn−3 .

_eorem 10.1 (Kapovich &Millson [KM96], Klyachko [Kly94]) _e (n − 3)-tuple
of functions ΦΓ is a completely integrable system on Mα . _e functions ϕd i

are action
variables, and hence deûne a Hamiltonian torus action on an open dense subset where
ϕd i

are smooth. _e image

∆Γ(α) ∶= ΦΓ(Mα) ⊂ Rn−3

is a convex polytope deûned by triangle inequalities.

11 Goldman Systems on Nα

Let (X , (z1 , . . . , zn)) be a projective linewith nmarked points. For eachmarked point

z i ∈ X, we take a small open disk D i ⊂ X around z i such that D i ∩ D j = ∅ for i /= j,
and set Σ = X ∖ (D1 ∪ ⋅ ⋅ ⋅ ∪ Dn). _en the fundamental group of Σ is given by

π1(Σ) = ⟨γ1 , γ2 , . . . , γn ∣ γ1 . . . γn = 1⟩,
where γ i is the homotopy class representing the i-th boundary component ∂D i .

For α = (α1 , . . . , αn) ∈ (0, 1/2)n , let Cα i
⊂ G denote the conjugacy class of eα i x0 =

diag(e2π√−1α i , e−2π
√
−1α i ), and set Cα = ∏n

i=1 Cα i
⊂ Gn . As recalled in Section 5,

the moduli space of parabolic SU(2)-bundles on X with parabolic weight α can be

identiûed with themoduli space

Nα(Σ) ∶= {ρ ∈ Hom(π1(Σ),G) ∣ ρ(γ i) ∈ Cα i
, i = 1, . . . , n}/G

≅ {g = (g1 , . . . , gn) ∈ Cα ∣ g1 . . . gn = 1}/G
of G-representations of π1(Σ). Since Cα i

is a geodesic sphere around the identity,
Nα(Σ) is regarded as a moduli space of n-gons in G ≅ S3 with ûxed side lengths
(cf. e.g., [MP01]).

We recall the description of the symplectic structure on Nα(Σ) from [GHJW97].
Fix a representation ρ in

Ñα = {ρ ∈ Hom(π1(Σ),G) ∣ ρ(γ i) ∈ Cα i
, i = 1, . . . , n}

and let gρ denote the representation of π1(Σ) on g given by

π1(Σ) ρÐ→ G
AdÐ→ Aut(g).

Take a curve ρt in Ñα with ρ0 = ρ and set u = d
d t
∣
t=0 ρt ∶ π1(Σ) → g. _en ρt can be

written as

ρt(γ) = exp( tu(γ) + O(t2)) ρ(γ).
_e homomorphism condition ρt(γγ′) = ρt(γ)ρt(γ′) implies that

(13) u(γγ′) = u(γ) +Adρ(γ) u(γ′).
From the boundary condition ρt(γ i) ∈ Cα i

, we have ρt(γ i) = g−1i ,tρ(γ i)g i ,t for some

g i ,t ∈ G. _is implies that

(14) u(γ i) = Adρ(γ i) ξ i − ξ i
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for each i, where ξ i = d
d t
∣
t=0 g i ,t ∈ g. Namely, TρÑα is identiûed with the space of

parabolic 1-cocycles

TρÑα ≅ Z1
par(π1(Σ);gρ)

= {u∶ π1(Σ) → g ∣ u satisûes (13) and (14)}.
Similarly, the tangent space to theG-orbit of ρ is spanned by parabolic 1-coboundaries

u(γ) = Adρ(γ) ξ − ξ, ξ ∈ g.
Let B1

par(π1(Σ);gρ) denote the vector space of parabolic 1-coboundaries. _en the

tangent space TρNα at ρ is identiûed with the ûrst parabolic cohomology

H1
par(π1(Σ);gρ) = Z1

par(π1(Σ);gρ)/B1
par(π1(Σ);gρ) .

_e space of 2-chains C2(π1(Σ);Z) is generated by symbols [γ∣γ′] for γ, γ′ ∈ π1(Σ),
and the cup product

∪∶H1
par(π1(Σ);gρ) ×H1

par(π1(Σ);gρ) Ð→ H2(π1(Σ), ∂π1(Σ);R)
is given by

(u ∪ v)([γ ∣ γ′]) = ⟨u(γ), Adρ(γ) v(γ′)⟩
for 1-cocycles u, v. In what follows we write Adγ = Adρ(γ) for short. _e relative

fundamental class in H2(π1(Σ), ∂π1(Σ);Z) is represented by

[π1(Σ), ∂π1(Σ)] = n−1∑
i=1
[γ1 . . . γ i ∣ γ i+1].

_eorem 11.1 (Guruprasad et al. [GHJW97, Key Lemma 8.4]) Let u, v be para-
bolic 1-cocycles such that u(γ i) = Adγ i

ξ i − ξ i and v(γ i) = Adγ i
η i − η i , i = 1, . . . , n,

respectively. _en the symplectic form onNα(Σ) is given by

(15) ωNα
(u, v) = (u ∪ v)([π1 , ∂π1]) + 1

2

n∑
i=1
( ⟨ξ i , Adγ i

η i⟩ − ⟨η i , Adγ i
ξ i⟩) .

For a later use, we write the ûrst term of (15) more explicitly. By using (13) induc-
tively, we have

u(γ1 . . . γ i) = i∑
k=1

Adγ1 . . .γk−1 u(γk) = i∑
k=1

Adγ1 . . .γk−1(Adγk ξk − ξk).
Hence, we obtain

(u ∪ v)([π1 , ∂π1]) = n−1∑
i=1
⟨u(γ1 . . . γ i), Adγ1 . . .γ i

v(γ i+1)⟩
= n−1∑

i=1

i∑
k=1
⟨Adγ1 . . .γk−1 u(γk), Adγ1 . . .γ i

v(γ i+1)⟩
= n−1∑

i=1

i∑
k=1
⟨u(γk), Adγk . . .γ i

v(γ i+1)⟩
= n−1∑

i=1

i∑
k=1
⟨Adγk ξk − ξk , Adγk . . .γ i

(Adγ i+1
η i+1 − η i+1)⟩ .
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Next we recall a completely integrable system on Nα(Σ) introduced by Goldman
[Gol86]. For a simple closed curve C ⊂ Σ, we write [C] = γ iγ i+1 . . . γ i+k in π1(Σ),
and deûne a function ϑC = θα ,C ∶Nα(Σ)→ R by

ϑC(g) = cos−1( 1
2
tr(g i g i+1 . . . g i+k)) .

Take a set C1 , . . . ,Cn−3 of simple closed curves deûning a pair-of-pants decomposi-
tion of Σ. Note that the set of such choices is in one-to-one correspondence with the
set of trivalent trees Γ with n-leaves. We then obtain a set of n − 3 functions

Θα ,Γ = ΘΓ = (ϑC1
, . . . , ϑCn−3

)∶Nα Ð→ Rn−3 .

_eorem 11.2 (Goldman [Gol86], Jeòrey & Weitsman [JW92]) For each pair-of-
pants decomposition of Σ with dual graph Γ, the set of functions ΘΓ ∶Nα → Rn−3 is a
completely integrable system. _e functions ϑC i

are action variables, and hence deûne a
Hamiltonian torus action on an open dense subset of Nα . _e image ΘΓ(Nα) ⊂ Rn−3

is a convex polytope given by the inequalities

∣uk1 − uk2 ∣ ≤ uk3 ≤min{uk1 + uk2 , 2 − (uk1 + uk2)}
for each pair-of-pants. In particular, if ∣α∣ < 1, then the image is given by triangle in-
equalities, i.e., ΘΓ(Nα) = ∆Γ(α).

12 Extended Moduli Spaces

Fix base points of ∂D i for i = 1, . . . , n. Let B i for i = 1, . . . , n be the loop around ∂D i

starting and ending at the base point on ∂D i , and A i for i = 2, . . . , n be the path from
the base point on ∂D i to the base point on ∂D1. _en the generators of π1(Σ) are
given by γ1 = [B1], γ2 = [A2B2A

−1
2 ], . . . , γn = [AnBnA

−1
n ]. Let

At = {αx0 ∈ t ∣ α ∈ [0, 1/2]} ⊂ t
denote the fundamental alcove.

Deûnition 12.1 (Jeòrey [Jef94], Hurtubise & Jeòrey [HJ00, Section 2]) _e G-ex-
tended moduli space NG(Σ) is the space of G-representations of the groupoid gener-
ated by A2 , . . . ,An and B1 , . . . , Bn , or equivalently,

N
G(Σ) = {(a, b) ∈ Gn−1

×Gn ∣ b1(a2b2a−12 ) . . . (anbna−1n ) = 1} ,
where (a, b) = (a2 , . . . , an , b1 , . . . , bn). _e T-extendedmoduli space is deûned by

N
T(Σ) = {(a, b) ∈ NG(Σ) ∣ b i ∈ exp(At), i = 1, . . . , n} ⊂ Gn−1

× Tn .

_e g- and t-extendedmoduli spaces are deûned by

N
g(Σ) = {(a, x) ∈ Gn−1

× gn ∣ ex1(a2ex2a−12 ) . . . (anexn a−1n ) = 1},
N

t(Σ) = {(a, x) ∈ Gn−1
× tn ∣ ex1(a2ex2a−12 ) . . . (anexn a−1n ) = 1},

respectively, where (a, x) = (a2 , . . . , an , x1 , . . . , xn).
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Each a i and b i are regarded as holonomies of a �at parabolic connection along A i

and B i , respectively. Note that we have a natural surjection N
g(Σ) → N

G(Σ) given
by (a2 , . . . , an , x1 , . . . , xn)z→ (a2 , . . . , an , ex1 , . . . , exn).
On the other hand,NT(Σ) is canonically embedded intoNt(Σ) by

(a2 , . . . , an , ex1 , . . . , exn)z→ (a2 , . . . , an , x1 , . . . , xn).
Proposition 12.2 ([HJ00, Propositions 2.11 and 2.12]) _e spaceNG(Σ) is diòeomor-

phic to G2(n−1) by

N
G(Σ)→ G2(n−1) , (a2 , . . . , an , b1 , b2 , . . . , bn)z→ (a2 , . . . , an , b2 , . . . , bn),

and hence it is smooth. On the other hand,Ng(Σ) is smooth outside the subset consisting
of (a, x) satisfying ex i = −1 for all i.

_e group Gn acts onN
G(Σ) andN

g(Σ) by
σ ⋅ (a, b) = (σ1a2σ−12 , . . . , σ1anσ

−1
n , σ1b1σ

−1
1 , . . . , σnbnσ

−1
n ),

σ ⋅ (a, x) = (σ1a2σ−12 , . . . , σ1anσ
−1
n , Adσ1 x1 , . . . , Adσn xn),

for σ = (σ1 , . . . , σn) ∈ Gn . _ese actions induce Tn-actions

σ ⋅ (a, b) = (σ1a2σ−12 , . . . , σ1anσ
−1
n , b1 , . . . , bn),

σ ⋅ (a, x) = (σ1a2σ−12 , . . . , σ1anσ
−1
n , x1 , . . . , xn)

onN
T(Σ) andN

t(Σ), respectively.
Proposition 12.3 ([Jef94], [HJ00, Proposition 2.14]) _ere exists a closed two-form
onN

g(Σ) that is non-degenerate on an open dense subset, and for which themap

µg∶Ng(Σ)Ð→ gn , (a, x)z→ −x = (−x1 , . . . ,−xn)
is themomentmap of theGn-action. _e symplectic reduction ( µg)−1(Oα)/Gn is sym-

plectomorphic toNα(Σ).
On the other hand,NG(Σ) admits a structure of quasi-HamiltonianGn-space. We

brie�y recall the notion of quasi-Hamiltonian spaces introduced byAlekseev,Malkin
andMeinrenken [AMM98].

Given a compact connected Lie group K with an invariant inner product ⟨ ⋅ , ⋅ ⟩ on
the Lie algebra k, let θ (resp. θ) be the le�-invariant (resp. right-invariant) Maurer–
Cartan form, and let

χ = 1

12
⟨θ , [θ , θ]⟩ = 1

12
⟨θ , [θ , θ]⟩

be the canonical bi-invariant 3-form on K.

Deûnition 12.4 (Alekseev, Malkin, and Meinrenken [AMM98, Deûnition 2.2]) A

quasi-Hamiltonian K-space M = (M ,ω, µ) is a K-manifold M equipped with a

K-invariant 2-form ω and K-equivariantmap µ∶M → K such that

(i) dω = −µ∗χ,
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(ii) ι(vξ)ω = (1/2)µ∗(θ + θ) for each ξ ∈ k, where vξ is the vector ûeld on M given
by the inûnitesimal action of ξ, and

(iii) kerωx = {vξ(x) ∣ ξ ∈ ker(Adµ(x) +1)} for each x ∈ M.

We call µ∶M → K the K-valued momentmap, or simply themomentmap.

Example 12.5 (_e double [AMM98, Remark 3.2]) Let D(G) = G ×G, and deûne
a G2-action on D(G) by

(σ1 , σ2) ⋅ (a, b) ∶= (σ1aσ−12 , Adσ2 b)
for (a, b) ∈ D(G) and (σ1 , σ2) ∈ G2. _en D(G) is a quasi-Hamiltonian G2-space
with the 2-form

ωD = 1

2
⟨Adb a∗θ , a∗θ⟩ + 1

2
⟨ a∗θ , b∗(θ + θ)⟩

and themomentmap

µ = (µ1 , µ2)∶D(G) Ð→ G2 , (a, b) z→ (Ada b, b
−1).

_eorem 12.6 (Fusion product [AMM98,_eorem 6.1]) Let (M ,ω, µ) be a quasi-
Hamiltonian K × K × H-space, with µ = (µ1 , µ2 , µ3), and consider the diagonal em-
bedding K ×H ↪ K × K × H, (k, h) ↦ (k, k, h). _en M is a quasi-Hamiltonian
K ×H-space with the 2-form

ω̃ = ω + 1

2
⟨µ∗1 θ , µ∗2 θ⟩

and themoment map

µ̃ = (µ1 ⋅ µ2 , µ3)∶M Ð→ K ×H.

_e product M1 × M2 of quasi-Hamiltonian K × H j-spaces M j ( j = 1, 2) is a
quasi-Hamiltonian K × H1 × K × H2-space. _e fusion product M1 ⊛M2 is a quasi-
Hamiltonian K × H1 × H2-space obtained from M1 ×M2 by fusing K-factors. Note
that the fusion product is associative:

(M1 ⊛M2)⊛M3 = M1 ⊛ (M2 ⊛M3).
We consider n − 1 copies of double D i = (D(G),ωD i

, µ i) (i = 2, . . . , n) with mo-
mentmap

µ i = (µ i ,1 , µ i ,2)∶D(G) Ð→ G2 , (a i , b i) z→ (Ada i
b i , b

−1
i ).

_en the fusion product D(G)⊛(n−1) = D2 ⊛ ⋅ ⋅ ⋅ ⊛ Dn given by fusing ûrst G-factors
is isomorphic to N

G(Σ) as a Gn-manifold, and hence it deûnes a structure of quasi-
Hamiltonian Gn-space onN

G(Σ). Since
b−11 = (Ada2 b2) . . . (Adan

bn) = µ2,1 ⋅ µ3,1 ⋅ ⋅ ⋅ µn ,1(16)

is a component of themomentmap on D(G)⊛(n−1) ≅ NG(Σ), we have the following
theorem.
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_eorem 12.7 ([AMM98, Section 9]) _ere exists a structure of quasi-Hamiltonian
Gn-space onN

G(Σ) such that
µG ∶NG(Σ) Ð→ Gn , (a, b) z→ b−1 = (b−11 , . . . , b−1n )

is the moment map. _e quasi-Hamiltonian reduction (µG)−1(Cα)/Gn is symplecto-
morphic toNα(Σ).
Remark 12.8 Treloar [Tre02] also shows this fact, and describes the Goldman sys-
tem as bending Hamiltonians on themoduli space of n-gons in S3 ≅ SU(2).

Set µ≤i = µ2,1 ⋅ µ3,1 . . . µ i ,1 for simplicity. _en the 2-form ωNG(Σ) on N
G(Σ) is

given by

ωNG(Σ) =
n∑
i=2

ωD i
+
1

2

n∑
i=3
⟨(µ≤i−1)∗θ , (µ i ,1)∗θ⟩(17)

= n∑
i=2

ωD i
+
1

2

n∑
i=3
⟨Adµ−1

i ,1
(µ≤i−1)∗θ , Adµ−1

i ,1
(µ i ,1)∗θ⟩

= n∑
i=2

ωD i
+
1

2

n∑
i=3
⟨(µ≤i)∗θ , (µ i ,1)∗θ⟩

= n∑
i=2
(ωD i

+
1

2
⟨(µ≤i)∗θ , (µ i ,1)∗θ⟩) .

Here, we have used

Adµ−1
i ,1
[(µ≤i−1)∗θ] = (µ≤i)∗θ − (µ i ,1)∗θ ,

Adµ−1
i ,1
(µ i ,1)∗θ = (µ i ,1)∗θ ,

⟨(µ i ,1)∗θ , (µ i ,1)∗θ⟩ = 0,
which follow from

g−1(h−1dh)g = (hg)−1d(hg) − g−1dg ,
g−1((dg)g−1)g = g−1dg ,

and the fact that pairing ⟨ ⋅ , ⋅ ⟩ is symmetric and θ is a one-form.

13 Walls and Quasi-Hamiltonian Reductions

Recall that walls in the space of parabolic weights are given by

HI ,k = {α ∈ [0, 1/2)n ∣ ∑
j∈J

α j − ∑
i∈I

α i = k}
for I ⊂ {1, . . . , n}, J = {1, . . . , n} ∖ I, and k ∈ Z. We deûne є = (є1 , . . . , єn) as

є i =
⎧⎪⎪⎨⎪⎪⎩
1 i ∈ J ,
−1 i ∈ I,(18)

so that∑n
i=1 є iα i = k.
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Lemma 13.1 A parabolicweight α ∈ [0, 1)n lies on awall if and only ifCα contains g =(g1 , . . . , gn) such that g1 , . . . , gn lie on a commonmaximal torus and satisfy g1 . . . gn =
1.

Proof If Cα contains g = (g1 , . . . , gn) such that g1 , . . . , gn lie on a commonmaximal
torus and satisfy g1 ⋅ ⋅ ⋅ gn = 1, then one can simultaneously diagonalize g1 , . . . , gn so
that g i = exp(є iα ix0) for some є = (є1 , . . . , єn) ∈ {±1}n . _en g1 ⋅ ⋅ ⋅ gn = exp[(є1α1 +

⋅ ⋅ ⋅ + єnαn)x0] = 1 implies є1α1 + ⋅ ⋅ ⋅ + єnαn ∈ Z, so that α is on the wall deûned by є.
Conversely, if α satisûes є1α1 + ⋅ ⋅ ⋅ + єnαn ∈ Z for some є ∈ {±1}n , then (g i =

exp(є iα ix0))ni=1 gives an element of Cα contained in the samemaximal torus satisfy-
ing g1 ⋅ ⋅ ⋅ gn = 1.

SinceNα(Σ) is described as the quasi-Hamiltonian reduction (µG)−1 (Cα)/Gn by

_eorem 12.7, there are twoways forNα(Σ) to be singular. Oneway is for µG to have
a critical point.

Proposition 13.2 _e critical point set of µG consists of (a, b) ∈ NG(Σ) such that
b1 , a2b2a

−1
2 , . . . , anbna

−1
n lie on a common maximal torus.

Proof Suppose that µG(a, b) = b−1 ∈ Cα . Under the identiûcations T(a ,b)N
G(Σ) ≅

T(a ,b)G
2(n−1) ≅ g2(n−1) and Tb−1G

n ≅ gn by right translations, dµG(a ,b)∶g2(n−1) → gn

is given by

dµG(a ,b)(ξ2 , . . . , ξn , η2 , . . . , ηn) = (−Adb−11
η1 , . . . ,−Adb−1n ηn)

with

−Adb−1
1
η1 =

n∑
i=2

Ad(a2b2a−12
). . .(a i−1b i−1a

−1
i−1
)( ξ i −Ada i b i a

−1
i
ξ i −Ada i

η i) .
Hence, (ξ, η) ∈ ker dµG(a ,b) if and only if η = 0 and
(19)

n∑
i=2

Ad(a2b2a−12
). . .(a i−1b i−1a

−1
i−1
)( ξ i −Ada i b i a

−1
i
ξ i) = 0.

Since b i ∈ Cα i
, there exists g i ∈ G such that b i = g i eα i x0 g−1i . Setting

h i = (a2b2a−12 ) . . . (a i−1b i−1a−1i−1)a i g i , ξ′i = Adg−1
i
a−1
i
ξ i ,

the equation (19) is written as

n∑
i=2

Adh i
( ξ′i −Adexp(α i x0) ξ

′
i) = 0.

Since

ξ′ −Adexp(α i x0) ξ
′ = ( 0 (1 − e4π√−1α i )ξ′12(1 − e−4π√−1α i )ξ′21 0

)
for ξ′ = (ξ′i j) ∈ g, the dimension of the image of themap

gn−1 → g, (ξ′2 , . . . , ξ′n)z→ n∑
i=2

Adh i
( ξ′i −Adexp(α i x0) ξ

′
i)
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is at least two, and is exactly two if and only if there exists some g ∈ G such that
gh2 , . . . , ghn are diagonal matrices. Note that

(gh i)eα i x0(gh i)−1 =
g((a2b2a−12 ) . . . (a i−1b i−1a−1i−1))(a ib ia−1i )((a2b2a−12 ) . . . (a i−1b i−1a−1i−1))−1g−1 .

If gh2 is a diagonal matrix, then so is ga2b2a
−1
2 g−1. If h3 is also a diagonal matrix,

then so is g(a2b2a−12 )(a3b3a−13 )(a2b2a−12 )−1g−1, and hence ga3b3a
−1
3 g−1 is also a di-

agonal matrix. By continuing the same discussion, one shows that if gh2 , . . . , ghn are
diagonal matrices, then so are ga ib ia

−1
i g−1 for n = 2, . . . , n. _en (16) implies that

gb1g
−1 is also a diagonal matrix. _ismeans that b1 , a2b2a

−1
2 , . . . , anbna

−1
n are in the

samemaximal torus, and Proposition 13.2 is proved.

_e other way for Nα(Σ) to be singular is for the Gn-action on the level set
N

G(Σ; α) = (µG)−1(Cα) to have larger stabilizer than the generic orbit. Note that
the generic stabilizer is given by {±1} = {±(1, . . . , 1)} ⊂ Gn .

Proposition 13.3 _e non-free locus of the Gn/{±1}-action on N
G(Σ; α) consists of(a, b) ∈ NG(Σ) such that b1 , a2b2a−12 , . . . , anbna

−1
n lie on a common maximal torus.

Proof Suppose that σ = (σ1 , . . . , σn) ∈ Gn ûxes (a, b) ∈ NG(Σ; α), i.e.,
σ1a l σ

−1
l = a l , l = 2, . . . , n,(20)

σib iσ
−1
i = b i , i = 1, . . . , n.(21)

Condition (20) iswritten as σl = a−1l σ1a l ,whichmeans that σ1 , . . . , σn are in the same

conjugacy class. By the Gn-action

a l ↦ g1a l g
−1
l , b i ↦ g ib i g

−1
i , σi ↦ g iσi g

−1
i ,

wemay assume that b i = eα i x0 are diagonal matrices for i = 1, . . . , n._en (21) implies
that σi is a diagonal matrix if b i /= 1.Wemay assume that σi is diagonal also in the case
b i = 1 by the Gn-action. Since σ1 , . . . , σn are diagonal matrices in the same conjugacy
class, one has σi = σ є i

1 for some diagonal matrix σ1 and є i ∈ {±1}. Now we assume

that σ /= ±1. _is implies σi /= ±1 for all i = 1, . . . , n, since (±1)−1 = ±1. From (20), a l
has the form

a l = (0 1
1 0
)
(1−є l )/2 (e2π

√
−1τ l 0

0 e−2π
√
−1τ l
) ,

and hence

a lb l a
−1
l = (e2π

√
−1є l α l 0

0 e−2π
√
−1є l α l

) .
_e condition b1(a2b2a−12 ) . . . (anbna−1n ) = 1 implies that ∑i є iα i = k ∈ Z, which
means that α ∈ HI ,k for I = {i ∣ є i = 1}.

Conversely, if α ∈ HI ,k , then the above argument shows that there exists a set of
diagonal matrices (a, b) ∈ NG(Σ; α) that has a non-trivial stabilizer.
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_e proof of Proposition 13.3 shows that any element of the stabilizer of (a, b) ∈
N

G(Σ; α) has the form
σ = (σ1 , . . . , σn) = (σ1 , a−12 σ1a2 , . . . , a

−1
n σ1an).

Note that b i = ±1 if and only if α i ∈ {0, 1/2}. If b i /= ±1 for some i, then (21) implies
that σi = a−1i σ1a i must be in amaximal torus, and hence the stabilizer is isomorphic to
T . On the other hand, if b i = ±1 for all i, then the stabilizer is isomorphic toG, since σ1
can be arbitrary. When α ∈ {0, 1/2}n , b ∈ {±1}n carries no degree of freedom and the
a-projection induces an isomorphismofNG(Σ; α)withGn−1. _eGn action onGn−1

indeed has a stabilizer isomorphic to G, and the quotient Nα(Σ) = N
G(Σ; α)/Gn

consists of one point.
Propositions 13.2 and 13.3 show that if α lies on some HI ,k , then the singular lo-

cus of Nα(Σ) is given by [g1 , . . . , gn] ∈ Cα/G such that g1 , . . . , gn lie on a com-
mon maximal torus. _en one can diagonalize g1 , . . . , gn simultaneously, so that
g i = exp(є iα ix0), where є are given in (18). If α lies on k walls, then Nα(Σ) has
k isolated singularities, each of which is given by [exp(є1α1x0), . . . , exp(єnαnx0)].
Corollary 13.4 Suppose that α is aweight lying on someHI ,k . Let (a, b) ∈ NG(Σ; α)
be a critical point of µG , and g ∈ Nα(Σ) be the corresponding singular point. _en there
exists an open neighborhoodU ⊂ Nα(Σ) of g such thatNG(Σ; α) is locally homeomor-

phic to (gn/t)×((U×T)/({g}×T)) . In particular,NG(Σ; α) admits aGn-invariant
Whitney stratiûcation.

Here, (U × T)/({g} × T) is the topological space obtained from U × T by con-

tracting the subset {g} × T ⊂ U × T to a point, and gn/t is the quotient vector space.
Propositions 13.2 and 13.3 imply the following corollary.

Corollary 13.5 If α and α′ are in the same chamber, thenNα(Σ) is diòeomorphic to
Nα′(Σ).

Let

µT = µG ∣NT(Σ)∶N
T(Σ)Ð→ Tn , (a, b)z→ b−1

be the restriction of the group-valuedmomentmap. _en

(µG)−1(Cα) ∩NT(Σ) = (µT)−1(e−α1x0 , . . . , e−αnx0).
Corollary 13.6 If α ∉ {0, 1/2}n , then the diòeomorphism (µG)−1(Cα)/Gn ≅ Nα(Σ)
induces (µT)−1(e−α1x0 , . . . , e−αnx0)/Tn ≅ Nα(Σ).

14 Gluing and Goldman Systems

In this section, we see the Goldman’s functions via gluing of Riemann surfaces, fol-
lowing the idea ofHurtubise and Jeòrey [HJ00].

Fix a simple closed curve C in Σ and consider a decomposition Σ = Σ+ ∪C Σ− into
two surfaces by cutting Σ along C. We may assume that the boundary components
of Σ+ (resp. Σ−) are B+1 = B1 , . . . , B

+
m+1 = Bm+1, and B+m+2 = C (resp. B−1 = C , B−2 =
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Bm+2 , . . . , B
−
n−m = Bn). _en N

G(Σ+) (resp. N
G(Σ−)) has the action of Gm+2 =

G+1 × ⋅ ⋅ ⋅ × G
+
m+2 (resp. G

n−m = G−1 × ⋅ ⋅ ⋅ × G
−
n−m) corresponding to the boundary

components. We write themomentmaps µG± onN
G(Σ±) as

µG+ = (µGB+
1
, . . . , µGB+m+2

) = (µ+≤m+2 , µ+2,2 , . . . , µ+m+2,2),
µG− = (µGB−

1
, . . . , µGB−n−m) = (µ−≤n−m , µ−2,2 , . . . , µ−n−m ,2).

For the diagonal subgroup GC ⊂ G+m+2 × G−1 , the moment map of the GC-action on

the fusion productNG(Σ+ ∐ Σ−) ∶= NG(Σ+)⊛N
G(Σ−) is given by

νGC = µGB+m+2 ⋅ µGB−1 ∶NG(Σ+ ∐ Σ−)Ð→ G , ((a+ , b+), (a−, b−)) z→ (b−1 b+m+2)−1 .
We deûne the “gluing map” πG

C ∶ (νGC)−1(1)→ N
G(Σ) by

πC((a+, b+), (a−, b−)) =
(a+2 , . . . , a+m+1 , a+m+2a−2 , . . . , a+m+2a−n−m ; b+1 , . . . , b+m+1 , b−2 , . . . , b−n−m).

(See Figure 2.)

b+2

⋅ ⋅ ⋅

b+m+1

b+1

b−2 b−n−m

⋅ ⋅ ⋅

b−1
b+m+2

a+m+2

a+m+1a+1
a−n−ma−2

b+3 b−3

Figure 2: _e dual graph of Σ+ ∐ Σ−.

_en we have the following proposition.

Proposition 14.1 _emap πC ∶ (νGC)−1(1)→ N
G(Σ) induces an isomorphism

(νGC)−1(1)/GC ≅ NG(Σ)
of quasi-Hamiltonian Gn-space.

Proof It is easy to see that πC is well deûned and surjective. To see that the induced
map is injective, suppose that

πC((a+ , b+), (a−, b−)) = πC((c+, d+), (c− , d−))
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for ((a+, b+), (a−, b−)), ((c+ , d+), (c−, d−)) ∈ (νGC )−1(1). _en we have

a+i = c+i , i = 2, . . . ,m + 1,(22)

a+m+2a
−
j = c+m+2c−j , j = 2, . . . , n −m,

b+i = d+i , i = 1, . . . ,m + 1,
b−j = d−j , j = 2, . . . , n −m.

Note that b+m+2 , b
−
1 , d

+
m+2 , d

−
1 are determined by

b+1 ( a+2 b+2 (a+2 )−1) . . . ( a+m+2b+m+2(a+m+2)−1) = 1,
b−1 ( a−2 b−2 (a−2 )−1) . . . ( a+n−mb+n−m(a+n−m)−1) = 1,
d+1 ( c+2 d+2 (c+2 )−1) . . . ( c+m+2d+m+2(c+m+2)−1) = 1,
d−1 ( c−2 d−2 (c−2 )−1) . . . ( c+n−md+n−m(c+n−m)−1) = 1.

Setting σ = (c+m+2)−1a+m+2 ∈ G = GC , condition (22) is written as

c−j = σa−j , j = 2, . . . , n −m.

_is implies that ((c+, d+), (c−, d−)) = σ ⋅ ((a+, b+), (a−, b−)). Hence the induced
map (νGC )−1(1)/G → N

G(Σ) is injective.
It remains to check that ι∗ωNG(Σ+∐Σ−) = π∗CωNG(Σ), where

ι∶ (νGC )−1(1)↪ N
G(Σ+ ∐ Σ−)

is the inclusion. From (17), the 2-form ωNG(Σ+∐Σ−) onN
G(Σ+ ∐ Σ−) is given by

ωNG(Σ+∐Σ−) = ωNG(Σ+) + ωNG(Σ−) +
1

2
⟨(µ+m+2,2)∗θ , (µ−≤n−m)∗θ⟩

= m+2∑
i=2
(ωD+

i
+
1

2
⟨(µ+≤i)∗θ , (µ+i ,1)∗θ⟩)

+

n−m∑
j=2
(ωD−

i
+
1

2
⟨(µ−≤ j)∗θ , (µ−j,1)∗θ⟩)

+
1

2
⟨(µ+m+2,2)∗θ , (µ−≤n−m)∗θ⟩ .

Since (µ+m+2,2)−1 = b+m+2 = (b−1 )−1 = µ−≤n−m and µ+m+1,1 = Ada+m+2
µ−≤n−m on (νGC )−1(1),

we have

ι∗ωD+m+2
= ⟨(a+m+2)∗ , (µ−≤n−m)∗(θ + θ) −Adµ−

≤n−m
(a+m+2)∗θ⟩

and

ι∗⟨(µ+≤m+2)∗θ , (µ+m+2,1)∗θ⟩ = ⟨(µ+≤m+1)∗θ , (Ada+m+2
µ−≤n−m)∗θ⟩

ι∗⟨(µ+m+2,2)∗θ , (µ−≤n−m)∗θ⟩ = 0.
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_en the restriction ι∗ωNG(Σ+∐Σ−) is given by

ι∗ωNG(Σ+∐Σ−) =
m+1∑
i=2
(ωD+

i
+
1

2
⟨(µ+≤i)∗θ , (µ+i ,1)∗θ⟩)

+

n−m∑
j=2
(ωD−

i
+
1

2
⟨(µ−≤ j)∗θ , (µ−j,1)∗θ⟩)

+
1

2
⟨(µ+≤m+1)∗θ , (Ada+m+2

µ−≤n−m)∗θ⟩
+
1

2
⟨(a+m+2)∗θ , (µ−≤n−m)∗(θ + θ) −Adµ−

≤n−m
(a+m+2)∗θ⟩ .

On the other hand, the pull-back of ωNG(Σ) is given by

π∗CωNG(Σ) = π∗C
m+1∑
i=2
(ωD i

+
1

2
⟨(µ≤i)∗θ , (µ i ,1)∗θ⟩)

+ π∗C
n−m∑
j=2
(ωDm+ j

+
1

2
⟨(µ≤m+ j)∗θ , (µm+ j,1)∗θ⟩)

with

(23) π∗C(ωD i
+
1

2
⟨(µ≤i)∗θ , (µ i ,1)∗θ⟩) = ωD+

i
+
1

2
⟨(µ+≤i)∗θ , (µ+i ,1)∗θ⟩

for i = 2, . . . ,m + 1. By using
π∗Ca

∗
m+ jθ = (a+m+2a−j )∗θ = Ad(a−j )−1(a+m+2)∗θ + (a−j )∗θ

for j = 2, . . . , n −m and formulae

(Ada b)∗θ = Adab−1 a
∗θ +Ada b

∗θ − a∗θ ,(24)

(Ada b)∗θ = a∗θ +Ada b
∗θ −Adab a

∗θ ,(25)

we have

π∗CωDm+ j
= ωD−

j
+
1

2
⟨(a+m+2)∗θ , (µ−j,1)∗(θ + θ) −Adµ−

j,1
(a+m+2)∗θ⟩ .(26)

Similarly,

π∗C⟨(µ≤m+ j)∗θ , (µm+ j,1)∗θ⟩
= ⟨(µ+≤m+1 ⋅Ada+m+2

µ−≤ j)∗θ , (Ada+m+2
µ−j,1)∗θ⟩

= ⟨Ad(Ada+
m+2

µ−
≤ j
)−1(µ+≤m+1)∗θ + (Ada+m+2

µ−≤ j)∗θ , (Ada+m+2
µ−j,1)∗θ⟩

= ⟨(µ+≤m+1)∗θ , AdAda+
m+2

µ−
≤ j
(Ada+m+2

µ−j,1)∗θ⟩
+ ⟨(Ada+m+2

µ−≤ j)∗θ , (Ada+m+2
µ−j,1)∗θ⟩ ,
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and formulae (24) and (25) imply

π∗C⟨(µ≤m+ j)∗θ , (µm+ j,1)∗θ⟩(27)

= ⟨(µ−≤ j)∗θ , (µ−j,1)∗θ⟩ + ⟨(a+m+2)∗θ , Adµ−
j,1
(a+m+2)∗θ − (µ−j,1)∗(θ + θ)⟩

− ⟨(a+m+2)∗θ , Adµ−
≤ j
(a+m+2)∗θ −Adµ−

≤ j−1
(a+m+2)∗θ⟩

+ ⟨(a+m+2)∗θ , (µ−≤ j)∗(θ + θ) − (µ−≤ j−1)∗(θ + θ)⟩
+ ⟨(µ+≤m+1)∗θ , (Ada+m+2

µ−≤ j)∗θ − (Ada+m+2
µ−≤ j−1)∗θ⟩ ,

where we assume that µ−≤1 = 1 is a constant map. Combining (23), (26), and (27), we
have π∗CωNG(Σ) = ι∗ωNG(Σ+∐Σ−).

We consider the action of G+m+2 = G+m+2 × {1} ⊂ G+m+2 ×G−1 with momentmap

µGC = µGB+m+2 ∶NG(Σ+ ∐ Σ−) Ð→ G , µGC (a± , b±) = (b+m+2)−1 .
Since Gn−3 acts on the b+m+2-component by conjugation, the function

ϑ̃C = cos−1( 1
2
tr µGC) ∶NG(Σ+ ∐ Σ−) Ð→ R

descends to N
G(Σ), and induces a Goldman’s function ϑC ∶Nα(Σ) → R. Let νTC =

νGC ∣NT(Σ+∐Σ−) be the restriction of the moment map to N
T(Σ+ ∐ Σ−) = N

T(Σ+) ×
N

T(Σ−). _en (νTC)−1(1) ⊂ (νGC )−1(1) is preserved under the action of the maximal
torus T+m+2 × T

−
1 ⊂ G+m+2 × G−1 . _e Hamiltonian torus action of ϑC is induced from

the action of T+m+2 × {1} ⊂ T+m+2 × T−1 on (νTC)−1(1) (see [HJ00]).

Now we ûx a pair-of-pants decomposition Σ = ⋃n−2
i=1 Σ i given by n − 3 simple

closed curves C1 , . . . ,Cn−3 with dual graph Γ, and let C+i , C
−
i denote the copies of

C i in the disjoint union ∐i Σ i . _en the fusion product NG(∐i Σ i) ∶= N
G(Σ1) ⊛

⋅ ⋅ ⋅ ⊛ N
G(Σn−2) has the actions of diagonal subgroups Gn−3 = ∏i GC i

in G2(n−3) =
∏i GC+

i
× GC−

i
with momentmap νGΓ ∶N

G(∐i Σ i) → Gn−3. We can deûne the gluing

map πΓ ∶ (νGΓ )−1(1) → N
G(Σ) in a similarmanner.

Corollary 14.2 _emap πΓ ∶ (νGΓ )−1(1) → N
G(Σ) induces an isomorphism

(νGΓ )−1(1)/Gn−3 ≅ NG(Σ)
of quasi-Hamiltonian Gn-spaces. _e functions ϑ̃C1

, . . . , ϑ̃Cn−3
induces the Goldman

system

Θα ,Γ = (ϑC1
, . . . , ϑCn−3

)∶Nα(Σ) Ð→ Rn−3 .

_e Hamiltonian torus action of Θα ,Γ is given by the action of the maximal torus

∏n−3
i=1 TC+

i
⊂ ∏n−3

i=1 (GC+
i
× {1}) on (νTΓ )−1(1) ⊂ NT(∐i Σ i).

Remark 14.3 _e reduction (νTΓ )−1(1)/Tn−3 of the T-extended moduli space

N
T(∐i Σ i) is not homeomorphic to N

T(Σ) on the locus where holonomies along
any components of ∂Σ i are central for some i.
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15 Isomorphisms of Goldman Systems

Fix a generic parabolicweight α ∈ (0, 1/2)n such that ∣α∣ < 1._en tα = (tα1 , . . . , tαn)
and α are in the same chamber for t ∈ (0, 1], and hence Ntα(Σ) is diòeomorphic to
Nα(Σ) for t ∈ (0, 1]. Note that the images ∆Γ(tα) = Θtα ,Γ(Ntα(Σ)) of the Gold-
man systems are related by scalings ∆Γ(tα) = t∆Γ(α). In this section we prove the
following theorem.

_eorem 15.1 Suppose that α satisûes the above condition. _en for each Γ, there
exists a family of symplectomorphism

ψt ∶ (Nα(Σ),ωNα
) Ð→ (Ntα(Σ), (1/t)ωNtα

)
such that (1/t)ψ∗t Θtα ,Γ = Θα ,Γ . Namely,

N(Σ) = ⋃
t∈(0,1]

Ntα(Σ) Ð→ (0, 1](28)

is trivial as a family of symplecticmanifolds equippedwith completely integrable systems.

We ûrst consider a decomposition Σ = Σ+ ∪C Σ− given by a single simple closed
curve as in Section 14.

Lemma 15.2 For t ∈ (0, 1], there exists a diòeomorphism ψt ∶Nα(Σ) → Ntα(Σ) such
that (1/t)ψ∗t ϑtα ,C = ϑα ,C .
Proof Let C = ⋃t∈(0,1] Ctα ⊂ Gn be the family of conjugacy classes with projection

πC∶C→ (0, 1]. _en the total spaceN(Σ) of the family (28) is given by

N(Σ) = (µG)−1(C)/Gn ,

where µG ∶ NG(Σ) → Gn is themomentmap. Since ∣α∣ < 1, the family C is trivialized
by

(29) Cα Ð→ Ctα , c = (c1 , . . . , cn) z→ c t = ((c1)t , . . . , (cn)t) ,
where c t = ge tx g−1 for c = gex g−1 ∈ Cα with x ∈ At.

Let

µG∂Σ = ( µGB+
1
, . . . , µGB+m+1

, µGB−
2
, . . . , µGB+n−m) ∶NG(Σ+ ∐ Σ−) Ð→ Gn

be themomentmap corresponding to the boundary components of Σ, and set

Ñ(Σ+ ∐ Σ−) = (µG∂Σ)−1(C)
= ⋃

t∈(0,1]
( ⋃
α+m+2 , α

−

1

N
G(Σ+; tα+) ×NG(Σ−; tα−)) ,

where α+ = (α+1 , . . . , α+m+2), α− = (α−1 , . . . , α−n−m) with
(α+1 , . . . , α+m+1) = (α1 , . . . , αm+1), (α−2 , . . . , α−n−m) = (αm+2 , . . . , αn).

_is space has an action of Gn+2 = ∏m+2
i=1 G+i ×∏n−m

i=1 G−i and a Gn+2-invariant strat-
iûcation induced from those onN

G(Σ±; α±). Note that the lower dimensional strata
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of Ñ(Σ+ ∐ Σ−) has the form
⋃

t∈(0,1]
N

G(Σ+; tα+) × SingNG(Σ−; tα−)
with α−1 = ∑n−m

i=2 є iα
−
i , or

⋃
t∈(0,1]

SingNG(Σ+; tα+) ×NG(Σ−; tα−)
with α+m+2 = ∑m+1

i=1 є iα
+
i for some є i ∈ {±1}. From Proposition 13.2 and ∣α±∣ < 1,

trivialization (29) li�s to that on ⋃t∈(0,1] SingN
G(Σ±; tα±) given by

SingNG(Σ±; α±) Ð→ SingNG(Σ±; tα±), (a, b) z→ (a, bt).
From Corollary 13.4, the space Ñ(Σ+ ∐ Σ−) is locally homeomorphic to V × C(L)
for some open set V in a strata and a cone C(L) = ([0,∞) × L)/({0} × L) over a
submanifold L. We ûx aGn+2-invariant Riemannianmetric on Ñ(Σ+∐Σ−) such that
it has the form gV +dr

2
+ r2gL on each neighborhood V ×C(L) of the singular locus,

where gV and gL are Gn+2-invariant Riemannian metrics on V and L, respectively,
and r ∈ [0,∞).

Let νGC ∶N
G(Σ+ ∐ Σ−) → GC be the moment map of the action of the diagonal

subgroup GC ⊂ G+m+2 ×G−1 , and deûne

NG(Σ+ ∐ Σ−) = (µG∂Σ , νGC )−1(C × {1}) = (νGC )−1(1) ∩ Ñ(Σ+ ∐ Σ−)
so that the familyN(Σ)→ (0, 1] is given by

πC ○ µ
G
∂Σ ∶N(Σ) ≅NG(Σ+ ∐ Σ−)/(Gn

×GC)Ð→ CÐ→ (0, 1].
_en the horizontal li� of the trivialization (29) ofC→ (0, 1] gives aGn+1-equivariant
trivialization

ψt ∶N
G(Σ+ ∐ Σ−)1 Ð→NG(Σ+ ∐ Σ−)t ,(30)

((a+, ex+), (a−, ex−)) z→ ((c+(a, x , t), e tx+), (c−(a, x , t), e tx−))
of the family Ñ(Σ+ ∐ Σ−)→ (0, 1] preserving the stratiûcation, where

NG(Σ+ ∐ Σ−)t = (µG∂Σ , νGC )−1(Ctα × {1})
is the ûber over t ∈ (0, 1]. Since ψt is G

n+1-equivariant, it descends to a diòeomor-
phism ψt ∶Nα(Σ)→ Ntα(Σ). From the construction of ψt , we have

1

t
ψ∗t ϑ̃t ,αC = 1

t
ψ∗t cos

−1( 1
2
tr ex

+

m+2) = 1

t
cos−1( 1

2
tr e tx

+

m+2) = ϑ̃α ,C ,
which completes the proof.

Remark 15.3 From (30), the �ow ψt preserves the subfamily

NT(Σ+ ∐ Σ−) = ⋃
t∈(0,1]

(µT
∂Σ , ν

G
T )−1(e−tα1x0 , . . . , e−tα1x0 , 1)

=NG(Σ+ ∐ Σ−) ∩NT(Σ+ ∐ Σ−)
ofNG(Σ+ ∐Σ−). _e �ow ψt restricted toN

T(Σ+ ∐Σ−) is also equivariant under the
action of T+m+2 × {1} ⊂ G+m+2 × G

−
1 , and hence ψt ∶Nα(Σ) → Ntα(Σ) is equivariant

under the action of theHamiltonian S1-action of ϑC .
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Proof of_eorem 15.1 Let Σ = ⋃n−2
i=1 Σ i be the pair-of-pants decomposition given

by Γ. For the group valuedmomentmap

µG = (µG∂Σ , νGC1
, . . . , νGCn−3

) ∶ NG(Σ1 ∐ ⋅ ⋅ ⋅ ∐ Σn−2)Ð→ Gn
×Gn−3

of the Gn
×Gn−3-action, we deûne

NG(∐
i
Σ i) = (µG)−1(C × {1}) and NT(∐

i
Σ i) =NG(∐

i
Σ i) ∩NT(∐

i
Σ i) .

By applying the above argument, we obtain a trivialization ψt ∶N
G(∐i Σ i)1 →

NG(∐i Σ i)t ofNG(∐i Σ i) that induces trivializations ofNT(∐i Σ i) andN(Σ) and
satisûes

1

t
ψ∗t Θtα ,Γ = Θα ,Γ .

In particular, ψ i preserves the action variables onNα(Σ).
_e Hamiltonian torus action of the Goldman system, which is deûned on an

open dense subset U ⊂ Nα(Σ), is induced from the action of a maximal torus

∏n−3
i=1 (TC+

i
× {1}) in ∏i(GC+

i
× {1}) ⊂ ∏i(GC+

i
× GC−

i
). Since the trivialization

ψt ∶N
T(∐i Σ i)1 →NT(∐i Σ i)t is∏i(TC+

i
×TC−

i
)-equivariant, theHamiltonian torus

action of the Goldman systems are preserved by ψt . _is means that ψt ∶Nα(Σ) →
Ntα(Σ) preserves angle variables. Hence, (1/t)ψ∗t ωNtα

coincides with ωNα
on U .

Since ψt is a diòeomorphism and U is dense, we have (1/t)ψ∗t ωNtα
= ωNα

on
Nα(Σ).

16 Goldman Systems and Bending Systems

We see in_eorem 9.3 that Nα is isomorphic toMα as complex manifolds if ∣α∣ < 1.
On the other hand, Jeòrey [Jef94] proved the following by using the g-extendedmod-
uli space.

Proposition 16.1 (Jeòrey [Jef94, _eorem 6.6]) For suõciently small α ∈ (0, 1/2)n ,
themoduli spaceNα(Σ) is symplectomorphic toMα .

Outline of the proof _e proposition is proved by using a canonical local model
of Hamiltonian spaces called the Marle–Guillemin–Sternberg form [GS84,Mar85].
Recall that themomentmap of theGn-action on the g-extendedmoduli spaceNg(Σ)
is given by

µg∶Ng(Σ)Ð→ gn , (a, x)z→ −x .
Since the stabilizer of (1, 0) ∈ (µg)−1(0) is the diagonal subgroup G ⊂ Gn , the ûber(µg)−1(0) is identiûed with Gn/G by

Gn/G Ð→ (µg)−1(0), [σ1 , σ2 , . . . , σn]Ð→ (σ1σ−12 , . . . , σ1σ
−1
n ).

_en the Marle–Guillemin–Sternberg form of a neighborhood of (µg)−1(0) is a

neighborhood of the zero section of the vector bundle Gn
×G (gn/g)∗ → Gn/G

equipped with themomentmap

µMGS ∶G
n
×G (gn/g)∗ Ð→ gn , [σ , y]Ð→ (Ad(σi)y i)i .
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_is implies that

(µg)−1(Oα)/Gn = (µMGS)−1(Oα)/Gn

= {[σ , y] ∈ Gn
×G (gn/g)∗ ∣ Ad(σi)y i ∈ Oα i

, i = 1, . . . , n}/Gn

≅ (Oα ∩ {(x , . . . , x) ∈ gn ∣ x ∈ g}⊥)/G
= {(x1 , . . . , xn) ∈ Oα ∣ x1 + ⋅ ⋅ ⋅ + xn = 0}/G =Mα .

Fix α such that ∣α∣ < 1, and consider the family

f ∶N(Σ) = ⋃
t∈(0,1]

(Ntα(Σ), (1/t)ωNtα
) Ð→ (0, 1]

of symplectic manifolds. From Proposition 16.1, a ûber (Ntα ,ωNtα
) over suõciently

small t ∈ (0, 1] is symplectomorphic to (Mtα ,ωMtα
). Since (Mα ,ωMα

) is sym-
plectomorphic to (Mtα , (1/t)ωMtα

) by scaling x z→ tx, we can extend the family
f ∶N(Σ)→ (0, 1] to a family over [0, 1] by setting f −1(0) = (Mα ,ωMα

).
Proposition 16.2 _e symplectic trivialization {ψt} ofN(Σ) → (0, 1] given in _e-
orem 15.1 extends to the family over [0, 1]. Moreover, this trivialization identiûes Gold-
man systems (1/t)Θtα ,Γ ∶Ntα → Rn−3 and the bending system ΦΓ ∶Mα → Rn−3.

Proof Fix g ∈ Nα and let

g(t) = ( g1(t), . . . , gn(t)) = ( ex1(t), . . . , exn(t)) ∶= ψt(g) ∈ Ntα

be the trajectory of ψt starting from g. _en x(t) = (x1(t), . . . , xn(t)) is a smooth
curve in⋃t Otα of the form x i(t) = tx i +O(t2). Since g1(t) . . . gn(t) = 1+ t(x1+⋅ ⋅ ⋅+
xn) + O(t2), the point x = (x1 , . . . , xn) lies in Mα . We also take smooth families of
tangent vectors u(t), v(t) ∈ Tg(t)Ntα such that dψt(u(1)) = u(t) and dψt(v(1)) =
v(t). _en

1

t
ωNtα
(u(t), v(t)) = ωNα

(u(1), v(1))
for all t ∈ (0, 1]. Let ξ(t) = ξ + O(t), η(t) = η + O(t) be smooth curves in gn such
that

u(t)(γ i) = Adg i(t) ξ i(t) − ξ i(t), v(t)(γ i) = Adg i(t) η i(t) − η i(t).
Since

(31) Adg i(t) ξ i(t) − ξ i(t) = t[x i , ξ i] + O(t2),
ξ = (ξ1 , . . . , ξn), η = (η1 , . . . , ηn) ∈ gn give tangent vectors ofMα at x. Note that (31)

also implies that (u(t) ∪ v(t))[π1(Σ), ∂π1(Σ)]) = O(t2). On the other hand, the
second term of ωNtα

in (15) has the form

1

2

n∑
i=1
(⟨ ξ i(t), Adg i(t) η i(t)⟩ − ⟨η i(t), Adg i(t) ξ i(t)⟩) = t n∑

i=1
⟨x i , [ξ i , η i]⟩ + O(t2).

_us we have
1

t
ωNtα
(u(t), v(t)) = ωMα

(ξ, η) + O(t).
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Since the le�-hand side is independent of t,we have 1
t
ωNtα
(u(t), v(t)) = ωMα

(ξ, η),
or equivalently ψ∗0ωMα

= ωNα
.

Next we show that the integrable systems are identiûed. Suppose that the k-th
boundary component Ck is given by [Ck] = γ ik . . . γ ik+nk

. If we write

g ik(t) . . . g ik+nk
(t) = e yk(t)

for yk(t) ∈ g, then yk(t) has eigenvalues ±ϑtα ,Ck
(g(t)). Since yk(t) = t(x ik + ⋅ ⋅ ⋅ +

x ik+nk
) + O(t2) and the eigenvalues of x ik + ⋅ ⋅ ⋅ + x ik+nk

are ±ϕdk
(x), we have

1

t
ϑtα ,Ck

(g(t)) = ϕdk
(x) + O(t).

_eorem15.1 implies that the le�-hand side is also independent of t, andhence 1
t
ϑtα ,Ck

is identiûed with ϕdk
by the trivialization.
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