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Goldman Systems and Bending Systems
Yuichi Nohara and Kazushi Ueda

Abstract. 'We show that the moduli space of parabolic bundles on the projective line and the poly-
gon space are isomorphic, both as complex manifolds and as symplectic manifolds equipped with
structures of completely integrable systems, if the stability parameters are small.

1 Introduction

Let N be the moduli space of semi-stable parabolic bundles of rank 2 on the pro-
jective line X with n marked points zy, ..., z,, where a € (0,1/2)" is the parameter
for the parabolic weight. The moduli space N, is a smooth projective manifold for
a generic choice of @. Mehta and Seshadri [MS80] gave a construction of N, using
geometric invariant theory and showed that it is diffeomorphic to the moduli space of
unitary representations of the fundamental group of the punctured Riemann surface

X~{z,...,zn )
With any pair-of-pants decomposition of the punctured Riemann surface
X ~{z1,...,2,} one can associate a completely integrable system on N, called the

Goldman system [Gol86]. The Goldman system resembles the moment map of a toric
variety [Wei92,JW92,JW94,JW97], although the natural complex structure on Ny, is
not preserved by the action of the Goldmans Hamiltonians. Even worse, the moduli
space Ny as a complex manifold usually does not admit a structure of a toric variety
atall.

A pair-of-pants decomposition of the punctured Riemann surface X\ {z,..., 2, }
is described by a trivalent graph I' with #n leaves in such a way that nodes correspond
to pairs of pants and edges show how they are glued together, as shown in Figure 1. In
this paper, we consider the case when the genus of X is zero, so that I' is a tree. The
corresponding Goldman system will be denoted by ®r: N, — R" 3.

The moduli space N is closely related to the moduli space M,, of ordered n points
on the projective line, which is constructed as the geometric invariant theory quotient
M, = Proj( 53 T((PY", O(kwy, ... kw,)) PGLZ) .

=0
Here, w = (wy,...,w,) € Q" is the parameter for the PGL,-linearization, which
determines the stability condition and the ample line bundle on the quotient.

The moduli space M,, has a natural symplectic structure as a polarized projective
variety. As such, it admits an interpretation as the moduli space of polygons in R?® with
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Figure I: A pair-of-pants decomposition and its dual graph

side lengths (w4, ..., w,). Fix a convex planar n-gon P called the reference polygon.
We identify the set of triangulations of the reference polygon with the set of trivalent
trees with # leaves by assigning the dual graph to a triangulation. For any triangula-
tion I of the reference polygon, Klyachko [Kly94] and Kapovich and Millson [KM96]
introduced a completely integrable system ®r: M,, — R"~> called the bending system.

To relate a completely integrable system with a toric variety, the notion of a toric
degeneration of an integrable system was introduced in [NNUIO0, Definition 1.1]. For
each triangulation I' of the reference polygon P, we have given a toric degeneration of
the corresponding bending system in [NU14, Corollary 1.3]. The toric degeneration
of M,, underlying this toric degeneration of the bending system is the one given in
[HK97,KY02,SS04, FHO5, HMM11].

The main result in this paper is the following theorem.

Theorem 1.1 Leta = (ay,...,a,) € (0,1/2)" be a parabolic weight satisfying |a| :=
o) + -+ a, < 1. Then for any triangulation T of the reference polygon P, there is a
symplectomorphism y: Ny — M, such that y* Or = Or.

Combining with [NU14, Corollary 1.3], we have the following corollary.

Corollary 1.2 Suppose that a € (0,1/2)" satisfies || < 1. Then there exists a con-
tinuous family m:) — [0,1] of symplectic varieties equipped with completely integrable
systems F: Y, = 171 (t) - R" 7 such that (Y1, Fy) = (N, ®Or), and (Y, Fy) is a pair of
a toric variety and a toric moment map whose moment polytope is @r (N, ). Moreover,
there is a continuous family of maps yy: Y1 — Yi_ that are symplectomorphisms on an
open dense subset and satisfy w; F)_; = F; = Or.

As a corollary, we obtain a new proof of the |&| < 1 case of the result of Jeffrey and
Weitsman [JW92] stating that the numbers of lattice points on the moment polytope
of the Goldman system is equal to the number of sections of the natural ample line
bundle on N, provided by GIT construction.

This paper is organized as follows. In Section 2, we recall the description of coher-
ent sheaves on smooth rational orbifold curves due to Geigle and Lenzing [GL87],
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who call such curves weighted projective lines. In Section 3, we recall the relation
between quasi-parabolic bundles and orbifold bundles. In Section 4, we recall the
definition of parabolic weights and stability conditions. In Section 5, we recall the
relation between flat SU(2)-bundles and parabolic bundles of rank two and para-
bolic degree zero. In Section 6, we show that the moduli space N, is the projective
space P"~2 for a suitable choice of a stability parameter. In Section 7, we recall wall-
crossing phenomena in moduli spaces of parabolic bundles following Bauer [Bau91];
the space of stability parameters is divided into finitely many chambers by walls, and
the change in moduli spaces under wall-crossing can be described explicitly as a blow-
down followed by a blow-up. More general results on variation of geometric invariant
theory quotients are obtained by Thaddeus [Tha96] and Dolgachev and Hu [DH98].
In Section 8, we use the wall-crossing phenomena to give an explicit description of
N for general a. The strategy is to start with the stability parameter in Section 6 and
successively cross walls in the space of stability parameters to arrive at any stability
parameter. This strategy was used in Bauer [Bau91], and the main difference between
his work and ours is that we make extensive use of the language of weighted projective
lines developed by Geigle and Lenzing [GL87], and the chamber that we start with is
different from that of Bauer. In Section 9, we give a description of the moduli space
M,, parallel to that of Ny. This immediately shows that M,, and N, are isomorphic
if w = a and |&| < 1. In Section 10, we recall the construction of the bending sys-
tem on M,,. In Section 11, we recall the description of the symplectic structure given
by Guruprasad, Huebschmann, Jeffrey, and Weinstein [GHJW97], and the Goldman
system. In Section 12 we recall extended moduli spaces defined by Jeftrey [Jef94] and
Hurtubise and Jeftrey [H]J00] to construct N, as a finite dimensional symplectic re-
duction, and as a quasi-Hamiltonian reduction [AMMO98]. In Section 13, we see the
walls in Section 7 from the view point of quasi-Hamiltonian reduction. In Section
14, we study the Goldman system via gluing of Riemann surface, following the idea
of [HJ00] and [AMMO98]. In Section 15, we construct a symplectomorphism between
Ng and Nyq (0 < £ < 1) that identifies the Goldman systems in the case where || < 1.
In Section 16, we show that M, and N, are symplectomorphic in such a way that the
Goldman system on N, and the bending system on M,, are identified for sufficiently
small «. Combining with the result in Section 15, Theorem 1.1 is proved.

2 Orbifold Projective Lines

Let X be a smooth Deligne-Mumford stack of dimension one without generic stabi-
lizer. We assume that X is rational, so that the coarse moduli space X of X is isomor-
phic to P'. Such a stack was studied in detail by Geigle and Lenzing [GL87] under
the name weighted projective lines, and we summarize some of their results in this
subsection. One can also see [Lenll] and references therein for more on this subject.
Orbifold points of X will be denoted by wy, ..., w,, and their images in X will be de-
noted by zy, . .., z,,. The absence of generic stabilizer implies that the stabilizer group
I, at w; forany i =1,...,nis a cyclic group, whose order will be denoted by p;.
Locally around the orbifold point w;, we can take an orbifold chart [A/T,,,] = X
where A = Spec C[u] is an affine space and T, acts linearly by a primitive p;-th root
of unity. Following [GL87], we let Ox(X;) for i = 1,..., n, denote the dual of O(-X%;),
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defined as the kernel of the natural morphism Ox — O,, to the skyscraper sheaf
Ow; = [(SpecClu]/(u))/Tw,] -

0— Ox(—)?i) g OX d OW,. - 0.

We also define Ox (<) as the line bundle Ox (x), which does not depend on the choice
of a point x € X \ {wy,...,w,}. One has relations

Ox(pi)z,‘)IOX(E), i=1...,n,
and the Picard group of X is given by

L:PiCX:Z£1€B"'®Z£n @ZE/(plfl—E,...,pnfn—E).

Choose a global coordinate on X = P! so that the points zy, ..., z, on X are given in
this coordinate by A; = 00,1, = 0and A3, ..., A, € A'\ {0}. The total coordinate ring
of X is given by

S=@ H*(0x(k)) = k[Xo, X1, ..., Xn] [ (XP7 = X2> + 0, X))
kel =

27

which is graded by the abelian group L as deg X; = x; for i = 1,..., n. The stack X is
recovered as the quotient stack

X =[(SpecS~{0})/G]

by the affine algebraic group G = Spec C[L]. The graded ring S is Gorenstein with
parameter @ = (n —2) — Y7, ¥;, and Serre duality on X is given by

Ext'(&,F) 2 H(F,€ ® 0x(@)) "

for any coherent sheaves € and J.

3 Quasi-Parabolic Bundles as Orbifold Bundles

In this section, we recall the relation between quasi-parabolic bundles on punctured
curves and orbifold bundles on orbi-curves. Although this is well known to experts
and essentially goes back to [MS80], we provide a sketch of proof here for the reader’s
convenience.

Let U = Spec C[u] be an affine line and let U = [U/T] be the quotient stack of U
with respect to the I' = Z/p jZ-action, which acts on points of U as

uelu, (= exp(2rr\/—_1/pj).

A complex analytic neighborhood of the origin in U is identified with a complex
analytic neighborhood of w; in X. The coarse moduli space of U is given by U =
Spec C[v], where C[v] = C[u]" for v = uPi is the invariant ring.

The action of T on U induces an action on the coordinate ring C[«] in such a way
that an element y € T sends a function f to its pull-back (y™")*f by y™:U - U.
It follows from the definition of sheaves on quotient stacks that a locally-free sheaf

€ on U corresponds to a T-equivariant locally-free sheaf on U. Since U is affine, a
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I'-equivariant locally-free sheaf on U = Spec C[u] is the same as a free C[1]-module
M, equipped with an action of I' satisfying

@ y-(fm)=(y-f)(y-m),

foranyy € T, f € C[u] and m € M. Here, - is the T-action on C[u] and M. The
crossed product algebra C[u] x T consists of elements of the form f ® y for f € C[u]
and y e I, with relations

) (foy)o(g®d)=f(y-g) @ (y9).
It follows from (1) and (2) that a ['-equivariant C[u]-module can be identified with a
C[u] x T-module.

Let P be a finitely-generated C[u] x I'-module. As a I-module, it has a direct sum
decomposition P = @, P; into isotypical components, where the generator [1] € T
acts on P; by multiplication by exp(27v/~1(i —1)/p;). The C[u]-module structure is
determined by the action of u, which is just a collection of C-linear maps

u:P; — Py, lEZ/pJZ

Each P; is a C[v]-module, and multiplication by u is a homomorphism of C[v]-mod-
ules, which must satisfy 4™ = v: P; - P;_,,. In terms of sheaves P; of Oy-modules
associated with C[v]-modules P;, this gives a quasi-parabolic sheaf, defined as an in-
finite sequence

3) A Mo S
such that P;, . = P;(~z;) and the composition

uli

(Pi+pj — P
is equal to the multiplication
Pi(-zj) — Pi
by v forany i € Z. A morphism of quasi-parabolic sheaves is a collection of morphisms
firPi = Q; making the diagram

u u

Ti j)i+1
le fiHJ/
— 9 —— Qg —

commutative. Under the correspondence between C[v]-modules with quasi-para-
bolic structures and C[u] » T-modules, a morphism of quasi-parabolic sheaves can
be identified with a morphism of C[u] x I'-modules. By using this correspondence
around each orbifold points, one obtains the following proposition.

Proposition 3.1  The category of quasi-parabolic sheaves on X is equivalent to the
category of coherent sheaves on X.

If P is locally-free, then multiplication by v is an injection, so that (3) gives a filtra-

tion
9)1(—2]') = prjH > g)Pj > e > 9)2 > fP]
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of sheaves, which in turn gives a filtration
0=Fy(P;;)cFp(P;;) - c Fi(P,;) =P,

of the fiber P, = P, /v - Py of Py at z;. A pair consisting of a locally-free sheaf and a
filtration at each z; is called a quasi-parabolic bundle. A morphism of quasi-parabolic
bundles P and Q can be described, in terms of a filtration at each z;, as a morphism
¢ of the underlying vector bundle such that ¢(F;(P;;)) c Fi(Q;;). The equivalence
in Proposition 3.1 restricts to an equivalence between the category of vector bundles
on X and the category of quasi-parabolic bundles on X.

4 Parabolic Weights and Stability Conditions

Assume that the stabilizer groups at all orbifold points are cyclic groups of order two:
I, = Z/2Z for j = 1,...,n. A vector bundle on X corresponds to a quasi-parabolic
bundle consisting vector bundle P on X and 2-step flags

0= F3(:sz) c FZ(:sz) c F]((sz) = :sz
foreach j=1,..., n. The Picard group of X is given by
L=PicX=Zx%® - ®ZX, ®Zc[(2% - C,..., 2%, — C).

The structure sheaf Ox corresponds to the trivial bundle P = Ox equipped with the
filtration F,(P;;) = 0 for any z;. The line bundle Ox(X;) corresponds to the trivial
bundle P = Ox equipped with the filtration

B (P;) = {(g))zj i

otherwise.

A parabolic bundle is a quasi-parabolic bundle together with a choice of parabolic

weights

(aj)l,aj)2)6Q2, Ogaj,1<aj,2<1
for each j =1,..., n. In this paper, we always assume that a parabolic weight satisfies
aj1+ajy =1for j=1,...,n. Any subbundle € of a parabolic bundle P has a natural

parabolic structure whose quasi-parabolic structure is given by
Fi(gzj) = Fi(fpz}.) n Ezj
with the same parabolic weight as P. The parabolic degree of P is defined by

pardegP = deg P + i[aj,l(dimFl(szj) —dim F(P;;)) + aj,» dim Fz(szj)] .
j=1
For example, if rank P = 2 and

dim Fi(P;;) - dim F,(P;;) = dim F,(P;;) = 1, j=1...,m,
then the parabolic degree of P is given by

pardegP = deg P + i(aj,l +ajy) =degP +n.
j=1
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A parabolic bundle is semi-stable if one has
@ pardeg & par deg P
rank € rank P
for any subbundle £ c P. It is stable if the strict inequality holds in (4) for any non-

trivial subbundle 0 # & ¢ P.
The Picard group L of X acts on Q" by

xi(a)=a', o= {aj l P

-aj Q=]
Note that this action factors through L/(2¢) = (Z/27Z)". Any element of L can be
written uniquely as k = k;jX; + -+ + k, X, + koC, where k; € {0,1} fori =1,...,nand

ko € Z, and the parabolic degree of the line bundle O (k) is given by
pardeg, O(k) = k| + [k(&)] = ko + ky + -+ + k + (1) Moy + -+ + (-1)*ra,,.

5 Moduli Spaces of Parabolic Bundles

Mehta and Seshadri [MS80] constructed the moduli space N, of semistable parabolic
bundles, which is a normal projective variety parametrizing S-equivalence classes of
semistable parabolic bundles. They have also shown that the open subvariety N, ¢ Ny
parametrizing stable parabolic bundles of parabolic degree zero is diffeomorphic to
the moduli space of irreducible unitary representations of the fundamental group of
X° =X {z1,...,zn }:

) Ng 2 {p e Hom(m1(X°), SU(2))irrea | P(7)) € Cay } [~

Here y; € m(X°) is a loop around z;j, and C,; c SU(2) is the conjugacy class con-
taining exp [271\/—_1 diag(aj, a j,Z)]- The equivalence relation ~ is defined by conju-
gation; two representations p and p’ are equivalent if there is some g € SU(2) such
that p’(y) = gp(y)g " forany y € m;(X°). A parabolic weight is generic if semistabil-
ity implies stability. If the parabolic weight « is generic, then the moduli space Ny, is
smooth.

The diffeomorphism (5) is given as follows. For any irreducible unitary representa-
tion p of 71(X°), one has the flat C>-bundle E, on X° associated with p. By tensoring
E, with the structure sheaf Ox. over the constant sheaf Cx-, one obtains a coherent
sheaf €° := E, ®c,., Oxo on X°. Around each puncture z; € X, we take a coordinate
v centered at z;, and consider following the universal cover of a small disk centered
atzj:

{x+\/—_1ye(C‘y>>l}—>X°,x+\/—_1yr—>v:exp[2ﬂ\/—_1(x+\/—_1y)].

Let ¢ = p(yj) € SU(2) be the holonomy of the flat bundle E, around z;. Then a
holomorphic section of €° near z; is a holomorphic function f:{x + /=1y € C |
y > 1} - C? satisfying f((x +1) + v/=1y) = g- f(x +/~1y), and one defines
the locally-free extension € of £° by saying that f gives a holomorphic section of £
near z; if f is bounded. By a suitable choice of a coordinate of C?, one can assume

that g is diagonal; g = exp [271\/—_1 diag(aj,, a j,z)] . Then the space of holomorphic
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sections of & is spanned by v > (v%*K,v(1=¢)+1) for non-negative integers k and I.
The quasi-parabolic structure of € at z; is defined as the one-dimensional subspace
C-(1,0)in

é C. (Va,-+k,v(1faj)+l)/v' @ C. (Vaj+k)v(1fa,-)+l) ~ 2,
k,1=0 k,1=0

6 The Moduli Space for a Distinguished Stability Parameter

Let N, be the moduli space of semistable parabolic bundles of rank two and par-
abolic degree zero on X = P! with n marked points (z,...,z,). Here, the stabil-
ity parameter « = (ay,...,a,) € (0,1/2)" is related to the parabolic weight a =
((aig,ain)s-. (a1, an,2)) € ((0,1)x(0,1))" by (ai1,ai2) = (a;,1-a;). The vec-
tor bundle P on X corresponding to a parabolic bundle in N, has the same class as
O @ O(-5) in the Grothendieck group K(X) where s = X; +- - -+ X,,. Consider the line
bundle £ = O(-5 + X,,). Since

H°(O(-%,)) =0,
H'(O(=%,)) 2 H*(O(& + %,))" = H(O((n-2)¢ -5+ %,)" =0,
H°(O(G-%,)) 2C,
HY(OG-%,)) 2 H(O(& -5+ %,))Y = H(O((n-2)¢ =5 -5+ %,))"
=H(O((n-2)¢-né+%,))" = H(O(%, - 28))¥ =0,
where O(@) = O((n —2)¢ =) is the dualizing sheaf, one has
X(EP) = x(£,08 OG- 1)) = 1O %)) + x(O(=5)) =1,

so that Hom(£, P) # 0. By taking the saturation of the image of a non-zero morphism

¢ € Hom(£L, P), one obtains a subbundle of P of the form £ (k), where k € N%; +- -+
NX,,. Note that

pardegaL(l;) >pardeg, £ = —a; — - — &1 + Ay,

so that £ (12) destabilizes P if a; +- -+ + a1 < ;. This defines a chamber in the space
of stability parameters, where every bundle is unstable and N, = @&. The quotient
bundle is ; 3
Q=P/L(k) = O(-%, - k),
and the destabilizing sequence is
0> O(=5+%, + k) > P > O(=%, — k) - 0.
Consider vector bundles obtained as extensions
0->O0(-s+%,) >P—>0(-%,) >0,
which are classified by
ep € Ext'(O(=%,),0(-5+%,))
=H'(O(-5+%,+%,)) = H'(0(¢-53))
=H(O((n-2)é-5-¢+3)) =H(O((n-3)¢)) .
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Given a morphism

0 —— O(=5+%) P O(=Fp) — 0
00— O(=5+%) P/ O(~Fp) — 0

between two such bundles P and P’, one obtains a diagram

0 —— O(=5+%) P O(~Fp) — 0
| | |
0 — > O(=5+%) P/ O(~Fp) — 0

since
Hom( O(=5+%,),0(-%,)) = H*(O(s - 2%,)) =0.
It follows that the isomorphism classes of such P are classified by

PExt'( O(=%,), O(=5 + %,)) 2 PH(O((n -3)¢) " 2 Sym" > P' = P2,

Proposition 6.1 One has Ny = P" 3 if 2a, < |a| < 1 and || - 2a; — 2a, < O for any
i=1...,n-1L

Proof Let P bearank 2 bundle on X obtained as an extension
(6) 0->0(-s+X%,) > P—->0(-%,) > 0.
Note that
pardeg, O(=5+%,) = —a1 — -+ — ap_1 + @y = — || + 20,

so that O(-s + X,,) does not destabilize P if 2a,, < |a|. If a line bundle £ other than
O(-s + %, ) has a non-trivial morphism to P, then £ has a non-trivial morphism to
O(-X,), so that it can be written as O(-%,, — k) for some k = kjX; + -+ + kX, + koC

where k; € {0,1} fori =1,...,n and ko € N. Its parabolic degree is given by
7 -k -2, ) k, = 0,

pardeg, O(-x, — k) = ot el 2% i — 20,  ky
~ko —1+|af -2 % a; k, =1,

whereI = {i € {1,...,n-1} | k; = 1}. Note that if the extension (6) does not split, then
one has k # 0. For k # 0, the conditions |&| — 2a; — 2a, < O forany i € {1,...,n -1}
and |e| < 1 imply that

pardeg, O(-x, - k) <0,
so that the line bundle O(-X, — 12) does not destabilize P. The same condition also

implies that the line bundle O(-s+ X, + 12) destabilizes any vector bundle P obtained
as an extension

0> O(-5+ %, +k) > P > O(=%, —k) > 0

for any non-zero k € N& + -+ + N, and Proposition 6.1 is proved. ]
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7 Wall-crossings in Moduli Spaces of Parabolic Bundles

The space A = [0,1/2)" of stability parameters is divided into chambers by walls
Hl,k:{(xeA’ Z(xj—Zoci:k},
jeJ iel

whereI c {1,...,n},J ={1,...,n}~Iand k is a non-negative integer. Let C, and C_
be two chambers separated by the wall W; ;. and take stability parameters &, € C,,
a_ € C_and &g € Wy . There is a diagram

No. No.
% oA
Na,

where ¢.: N, = Ny, are natural projective morphisms sending a . -stable bundle
to the S-equivalence class of the same bundle considered as an &-semistable bundle.
Let X4, c Ng, be the subscheme parametrizing a+-unstable bundles.

Proposition 7.1 (Bauer [Bau9l, Proposition 2.7])  The following hold.

(i) IfwesetZg, = ¢, (Zq,), then onehasZy, = ¢_(Zq_).

(i) Any point in Zq, can be written as [S®Q], where par deg, (8) = —pardeg, (Q)
<0 and pardeg, (8)=—pardeg, (Q) >0.

(i) ¢ ([S®Q]) 2 PExt'(Q,8)".

(iv) ¢ ([S®Q]) 2 PExt'(S,Q)".

Proof For any bundle P in X, , let
(8) 0-8->P->0-0

be the a_-destabilizing sequence. Since P is of rank two, both the destabilizing sub-
bundle 8 and the quotient bundle Q are line bundles. Any point in the fiber of ¢,
above the point [8 ® Q] € Ny, is given by the extension of the form (8), and any such
extension is & -stable, so that one has ¢ ([$ ® Q]) = PExt'(Q,8)". The fiber of ¢_
is obtained by exchanging the roles of § and Q, and Proposition 7.1 is proved. ]

If a does not lie on any other wall, then X, consists of one point, and the diagram
(7) is a blow-down followed by a blow-up. It may also happen that ¢, or ¢_ is an
isomorphism.

8 Detailed Description of the Wall-crossing

Recall that X is the coarse moduli space of X, and one has a natural isomorphism
H°(0x((n-3)¢)) 2 H°(Ox(n - 3)). Since X is a projective line, one has

PH’(Ox(n-3)) = Sym" > X = P"~>.

The Veronese embedding is the diagonal map X < Sym”~* X sending a point x € X to
[X,...,x] €Sym" > X. For k = ¥, %; + koC € L, where I = {iy,...,i,} c {1,...,n}
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and kg € Z, the k-th secant variety V (k) c Sym"~> X is defined by

Zil *"'*Zi,*secko(X) kOZO)
%] ko <0,

V(k) = {

where X and the marked points zj € X are considered as subvarieties of Sym”™ > X by
the Veronese embedding. Here, the join A * B of two subvarieties of a projective space
is the union Ugega, pep €a,b Of lines €, ;, passing through points a € A and b € B, and
the ko-th secant variety Secg, (X) = X = --- » X is the join of k¢ copies of X.
LetI={i,...,i,} beasubsetof {1,...,n} and let
J={j - rjnrt={L...,n} 1
be its complement. Assume that one has

-Yayit+tya,;i—k<0 and -Ya ;+Xa j-k>0.
iel jeJ iel jeJ

If a vector bundle P admits a non-trivial homomorphism from the line bundle

L :O(—§+ Z)?j—kf), pardeg, L=~ a; + X aj—k,
jeJ iel jeJ

then its saturation destabilizes the bundle P with respect to the stability parameter
a_. Assume that P is given as an extension

0> 0(-s+%,) >P—>0(-%,) >0
classified by an element
ep € Ext'(O(=%,), 0(=5 + %,)) 2 H*(O((n - 3)¢))",

and O(-5+X, ) does not destabilize P with respect to the stability parameter a_. Then
one has Hom (£, O(-s + ¥,)) = 0 and the a_-destabilizing morphism £ — P must
come from a non-trivial morphism £ — O(-%, ). Conversely, a non-trivial morphism
¢ € Hom (L, O(-%,)) lifts to a non-trivial morphism ¢ € Hom(£, P) if and only if
ep o ¢ € Ext' (L, O(~5 + ¥,)) vanishes. Under the isomorphisms

Hom(L,0(-%,)) = HO( O( glxi —Xn + kc) ),
Ext'(O(=%,),0(=5 + %,)) = H(O((n-3)¢)) ",
Ext!(£,0(-8+ %)) = H(0( (n-3)e - (D& - 2 + k8 ) )
iel
the Yoneda product
Hom( £, 0(-%,)) ® Ext'(O(-%,),0(-5+%,)) — Ext'(£,0(-5+%,))
corresponds to the composition
HO(O((n—S»)E—(iGZI)?,-—)?,,+kE))) ®H°(O(i6219?,-—fc,,+k6))
- H°(O((n-3)7)),
so that there is a non-trivial morphism £ — P if and only if

[ep] € IPHO( Ox(n - 3)) ~ Sym" > X = P
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belongs to the secant variety V( YierXi—Xn+ kE) .

Remark 8.1 Bauer uses a different parametrization of the space of stability param-
eters, and the stability parameter that he has chosen as the starting point is written
as

1 n-2 n-2 . .
. (2n—2’ 2n—2""’2n—2) if n is even,
(£2,...,22) if n is odd

2n-2" > 2n-2

in the notation here, which does not satisfy |a| < 1. The advantage of this stability
parameter is that the underlying bundle of a stable parabolic bundle is always given
by

_0(=n/2) ® O(-n/2) if n is even,

T O(-(n+1)/2)® O(-(n-1)/2) ifnisodd.
For example, if 7 is even and the underlying bundle is O(-n/2 - k) ® O(-n/2 + k)
for some k > 0, then the parabolic degree of the subbundle O(-n/2 + k) satisfies

pardeg O(-n/2+ k) > degO(-n/2+ k) + i «;
j=1

1

=-nf2+k+
2n-2

+(n-1)

n-2
2n -2

1
=k-1+
2

>0
n-—2

The discussion so far can be summarized as Theorem 8.2, which is a variation of
[Bau9l, Theorem 2.9]. For the sake of simplicity of the exposition, we restrict ourselves
to the case |&| < 1, which is the case of interest for the purpose of this paper; this allows
us to deal only with walls Hy ; with k = 0.

Theorem 8.2  The moduli space N for any parameter & = (ay, ..., a,) satisfying
|| = ay + -+ + &y < 1is described as follows.

(i) Assume a; < ay < --- < ay by reordering the points if necessary. Set p, =
(reu,...,ran-1, &y) for a sufficiently small positive number r, so that B, belongs to the
chamber described in Proposition 6.1 and one has Ng = Sym" > X 2 P73,

(ii) We first cross walls of the form Hy; ) ¢ for 1 <i < n —1satisfying

9) || — 2a; — 2ax,, > 0.
When we cross the wall H; 0, the moduli space is blown-up at the point z; € X c
Sym" > X = P"~3. After crossing all these walls, we arrive at the stability parameter B,

such that Ny is obtained from Ng by blowing up the points z; for 1 < i < n—1satisfying

9).
(iii) We then cross walls of the form Hy;, i, w10 for 1 < iy < iy < n —1satisfying

lee| = 205, — 2005, — 200, > 0.

When we cross the wall Hy;, i, ny,0, the moduli space is blown-down along the strict
transform of the line passing through z;, and z;,, and then blown-up in the other direc-
tion so that the exceptional divisor is isomorphic to P"~>. In other words, we blow-up
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the moduli space along the strict transform of the line passing through z; and z;,, and
contract it down in the other direction.
(iv) In the r-th step, we cross the walls Hy; | i ny,0 for1 < iy <. <i, <n-1
satisfying
lee| - 205, — -+ = 2a;, — 2, > 0.

Note that this condition can be written as

O+t A, oy < aj +"'+0(jn7r71
where {j1, ..., ju-r-1} is the complement of {iy,...,i,,n} in{1,...,n}. When we cross
the wall Hyj,, . i, ny,00 the moduli space is blown-up along the strict transform of the
(r — 1)-dimensional linear subspace spanned by z;,, . .., z;,, and then contracted in the

other direction. This is a birational transformation that replaces P™ with P"~"4,
(V) By successively crossing the walls as above, we arrive at the chamber containing «.

9 Wall Crossing in M,

Letw = (wy,...,w,) € Q" be a stability parameter for the moduli space of ordered
n-points on P!, which can be taken from

W={W=(W1,...,Wn)€Qn| |w|:w1+~--+wn=2}

by rescaling w if necessary; unlike the moduli space Ny, the overall rescaling of w
only changes the ample Q-line bundle on M,, and does not affect the moduli space
M,,. A configuration (xi, ..., x,) of ordered n points on P! is w-semistable if for any
point x € P!, one has

M=

(Sx,x,vwi <1
1

The moduli space M,, contains the configuration space
X(2,n) = ((P")"\ A)/PGL,
of n points on P! as an open subscheme if and only if w € (0,1)", where
A={(x1,...,x,) € (P")" | x; = x; for some i # j}

is the big diagonal. Normalizing the last three points as (x,-2, Xn-1,%,) = (0,1, c0)
by the PGL,-action, one can realize X (2, n) as an open subscheme

X(2,n) = {[xlz--~:xn_3:1] eP" | x; #0,1,x; fori%j},

which is the complement of a hyperplane arrangement in P2,
Walls in the space W of stability parameters are given by

Zwizl}

iel

HI:{WEW

for a proper subset I = {ij,...,i,} of {I,...,n}. Note that };;w; = 1 implies
Yjgwj = 1forJ = {ji>-+sjn-r} = {L,...,n} N I. Let C; and C_ be two cham-
bers separated by the wall Wy, and take stability conditions w, € C,, w_ € C_, and
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wo € Wr. Assume that Y ;. ;wi > 1, Yy wi— < 1, and wy is not on any other walls.
Then one has a diagram

M, M,
w oA
My,

where ¢, blows-down the subvariety
Sw, ={xj, = =xj,_}=2P?
of M, to the subvariety
Swo = {xil ==y, X == xjH}
of M,,, consisting of just one point, and ¢_ blows-down the subvariety
Sw_={x; =--=x;, y =P

of M,,_ to the same point in M,,, .

The diagram (10) for the special case I = {n} gives a wall-crossing from the empty
space M,,, = S,, 2 P! = & to the projective space M,,_ = S,,_ = P"~> through one
point My, = Sy,. The chamber C_ containing w_ in this case is defined by

(11) C_={weW|w,<landw; +w, >1foranyl1<i<n-1}.

The moduli space M,, for w € C_ is described explicitly as follows. One can set x,, =
oo € P! by the PGL;-action. Since one has x; # x,, for any 1 < i < n —1by the stability
condition, one must have (x;,...,x,-1) € A""!. One can set x,,_; = 0 by the residual
PGL,-action, and then one is left with the G, -action on A"~2. The stability condition
prohibits x; = --- = x,,_;, so that one cannot have x; = --- = x,,_, = 0. This shows that
one has

M, = (A"~ {0}) /G,

which is nothing but the projective space P"~>.

Theorem 9.1 The moduli space M, for any stability parameter w = (wy,...,wy)
can be obtained from P"~3 by the following birational transformations: Assume w, <
wy < -+ < w, by reordering the points if necessary. We start from the chamber (11) and
gradually increase wy, ..., w,_y and decrease wy,. Set p; = [8ip :+++: 8i n_a] € P"> for
1<i<n-2andp,=[1:---:1] eP"3,

(i) We first cross the walls Hy; ,\ for 1< i < n — 1 satisfying w; + w, <1. When we
cross the wall Hy; ., the moduli space is blown-up at the point p;.

(i) We then cross the walls H; i, ny for 1 < iy < iy < n — 1satisfying wi, + wj, +
wy < 1. When we cross the wall Hy; ;, . the moduli space is blown-down along the
strict transform of the line passing through p; and p;,, and then blown-up in the other
direction, so that the exceptional divisor is isomorphic to P"~>. In other words, we blow-
up the moduli space along the strict transform of the line passing through p;, and p;,,
and contract it down in the other direction.
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(iii) In the r-th step, we cross the walls Hy; | qy for1 < iy < -+ <i, <n—1
satisfying w;, +--- + w;, + w, < 1. Note that this condition is equivalent to w;, +--- +
Wi, + Wy <Wj +---+wj,__, where {ji,..., ju_r_1} is the complement of {i\,...,ir,n}
in{1,...,n}. When we cross the wall Hy;, __; n\, the moduli space is blown-up along
the strict transform of the (r — 1)-dimensional linear subspace spanned by p;,, ..., pi,,
and then contracted down in the other direction. This is a birational transformation
which replaces " with P"~"~*,

(iv) By successively crossing the walls as above, we arrive at the chamber containing
w.

Example 9.2 Setn =5and

1:(22222)

We consider the straight line segment w, = (1 - ¢)w + tw; starting from the stability
parameter
woo(25,553)
16 16 16 16 4
in the chamber (11) satisfying M,,, = P2. The wall-crossing takes place at t =
11112
wi=(33333)
where the points x; = x; = x; for 1 <i < j < k < 4are stable for t < 2- and unstable for
t > 2. These points are blown-up by the wall-crossing, so that the point x; = x; = xx
is replaced by the exceptional divisor x, = xs where {i, j, k, €} = {1,2,3,4}. With
respect to the normalization

5

21 and

(21, X2, X3, X4, x5) = (x, ¥,1,0, 00),

four points at the center of the blow-up are given by

X1 =% = X3 [xiy:l] = [1:1:1] e P2,

X1 =% = x4 [x:y:1] =[0:0:1] e P2,

x1=x3= x4 [x:y:1] =[0:1:0] € P2,

Xy = X3 =xq: [x:y:1] = [1:0:0] € P2,
These points are in general position, so that M,,, is P? blown-up at four points in
general position.

We are now ready to prove the following theorem.

Theorem 9.3  Let & be a stability parameter for the moduli space of parabolic bundles
satisfying || < 1, and let w = 2a/|a| be the corresponding normalized stability parame-
ter for the moduli space ordered n points on P'. Then one has an isomorphism Ny = M,,
of algebraic varieties.

Proof Since the wall-crossing in N, and M,, described in Theorems 8.2 and 9.1 are
identical, it suffices to show the existence of an isomorphism N, = M,, for a stability
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parameter « satisfying the condition in Proposition 6.1, such that the points z; € Ny

are mapped to p; € M,, for i = 1,...,n — L. This is clear, since both moduli spaces
are (n — 3)-dimensional projective spaces, and the points are n — 1 points in general
position. |

A more general result, which gives an isomorphism between the moduli space of
parabolic G-bundles for a simply-connected simple algebraic group G and a GIT quo-
tient of a product of flag varieties, is shown in [Man, Proposition 4.8].

10 Bending Systems on M,

Let G = SU(2), and identify the Lie algebra g = su(2) with its dual by the Killing form
(-, ):gxg— R.Let T c G be the maximal torus consisting of diagonal matrices,

and take a base
o = (Zn\/—_l 0 )
0 -2m/-1
of the Lie algebra t of T. For a € R, the adjoint orbit O, c g of ax, has a natural
symplectic form called the Kostant-Kirillov form, as follows. Recall that a tangent
vector of O, at x can be written as ad¢(x) = [, &] for £ € g. The Kostant-Kirillov
form wg, is given by

wo, (adg(x),ad,(x)) = (x,[&74]).

Fora = (ay,...,a,) € (Ryo)", we define O = []; Oy, c g" with the i-th projec-
tion pr;: Oq — O, i = 1,...,n. The diagonal G-action on O, is Hamiltonian with
respect to the symplectic form }; prj o, , and its moment map is given by

POy — g, x=(X1,...,%Xp) —> X1+ + Xp.
From the Kirwan-Kempf-Ness Theorem, the symplectic reduction
(12) u0)/G={xeO4|x;++x,=0}/G

is diffeomorphic to M,, for w = 2&/|«|, and the induced symplectic form is compatible
with the complex structure (on the smooth locus of M,,). In what follows we write
this space as M, to emphasize its symplectic structure wyg,. Note that (Mg, war,, )
is symplectomorphic to (Mg, kwyr, ) for k > 0. The expression (12) shows that M,

parametrizes n-gons in g & R? with fixed side lengths ay, . . ., «, modulo Euclidean
motions.
Letey,...,e, € R? denote side edge vectors of a reference n-gon P c R?, satisfying

e1+---+e, =0. Foradiagonal d = e; + ej41 +--- + €;+x of P, we define ¢: M, - R
as the length function
ba(x) = |xi + Xip1 + -+ Xi

of the corresponding diagonal in x. This function is called a bending Hamiltonian,
since the Hamiltonian flow of ¢, bends #n-gons around the diagonal corresponding
to d (see [KM96] or [Kly94]).

We fix a triangulation of P given by n—3 diagonals d;, . . . , d,_3 that do not intersect
in the interior of P, and let I denote its dual graph. Note that I' is a trivalent tree with
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n leaves. The bending system associated with I is defined by
Or = (¢d1> cey ¢dn—3):M4x L R"3

Theorem 10.1 (Kapovich & Millson [KM96], Klyachko [Kly94]) The (n — 3)-tuple
of functions Oy is a completely integrable system on M. The functions ¢4, are action
variables, and hence define a Hamiltonian torus action on an open dense subset where
¢4, are smooth. The image

Ar((x) = (DF(Ma) (@ ]Rn73
is a convex polytope defined by triangle inequalities.

11  Goldman Systems on N,

Let (X, (z1,...,2n)) beaprojective line with n marked points. For each marked point
z; € X, we take a small open disk D; c X around z; such that Din ﬁ] =gfori#j,
and set X = X \ (D;U---U Dy,). Then the fundamental group of X is given by
m(Z) = (Yo Yulyieyn =1)

where y; is the homotopy class representing the i-th boundary component oD;.

Fora = (ay,...,a,) € (0,1/2)", let €4, c G denote the conjugacy class of e** =
diag(e2™/ 1, ¢2mV=1ai) “and set €4 = [17, Ca, © G". As recalled in Section 5,
the moduli space of parabolic SU(2)-bundles on X with parabolic weight & can be
identified with the moduli space

Ng(Z):={p e Hom(m(Z),G) |p(y;) € Cy,, i=1,...,n}/G
~{g=(g1,--,8n)€Cu|gn---g0=1}/G
of G-representations of 7;(X). Since C,, is a geodesic sphere around the identity,
Ng(Z) is regarded as a moduli space of n-gons in G = S* with fixed side lengths
(f. e.g., [MPO1]).
We recall the description of the symplectic structure on Ny (2) from [GHJW97].
Fix a representation p in

Ny = {p e Hom(m,(2),G) | p(yi) € Cu,» i =1,..., 1}

and let g, denote the representation of 77;(X) on g given by

m(2) 25 G 2% Aut(g).

Take a curve p, in N, with py = p and set u = %|t:0 pi:m(Z) — g. Then p; can be
written as

pi(y) = exp(tu(y) + O(1))) p(y)-
The homomorphism condition p¢(yy’) = p¢(y)p¢(y") implies that
(13) u(yy") = u(y) + Adyyy u(y").-

From the boundary condition p;(y;) € Cq,, we have p,(y;) = g;1p(yi)gi, for some
gi,¢ € G. This implies that

(14) u(yi) = Ady(y & — &
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for each i, where &; = %|t= 0 &it €0 Namely, TPNW is identified with the space of
parabolic 1-cocycles
Tpﬂ“ = Z;ar(ﬂl(z);gp)
={u:m(X) — g | u satisfies (13) and (14) }.
Similarly, the tangent space to the G-orbit of p is spanned by parabolic 1-coboundaries
u(y) =Ad,,n&-§ Eeg.

Let By, (m(2); g,) denote the vector space of parabolic 1-coboundaries. Then the
tangent space T, Ny, at p is identified with the first parabolic cohomology

Hllaar( ﬂ](Z);gp) = leaar( nl(z);gp) /B:Jar( ﬂl(z);gp) .

The space of 2-chains C,(7;(X); Z) is generated by symbols [y|y’] for y,y" € m(Z),
and the cup product

U Hy (m(2);8,) % Hy(m1(2)38,) — H(m(Z), 0m(Z);R)
is given by
(wuv)([y 1Y) = (u(y), Ady(yy v(¥)

for 1-cocycles u, v. In what follows we write Ad, = Ad,,) for short. The relative
fundamental class in H,(71(X), 9m1(Z); Z) is represented by

[m(2),0m(2)] = S yi | it

i=1

Theorem 11.1 (Guruprasad et al. [GHJW97, Key Lemma 8.4]) Let u, v be para-
bolic I-cocycles such that u(y;) = Ad,, & — & and v(y;) = Ady, i —ni, i = 1,...,n,
respectively. Then the symplectic form on Ny(X) is given by

15  wx () = (wov)([m,am]) + % 5 (€ Ady, 1) — (75, Ady, £1)).

i=1

For a later use, we write the first term of (15) more explicitly. By using (13) induc-
tively, we have

bl()/l cee yl) = kX—JI AdY1-~-Vk—1 Ll()/k) = kz_:lAdYINJ’k—l (Adyk fk - fk)
Hence, we obtain

(wuv)([m,om]) =

1
(u(yl s Yi)’ Ad}’l-n)’i V(Vi+1)>

n

™

Il
—

S -
|
—

( Ady,. ye, u(yr)s Ad,y,...4, V(Yi+1))

I
Il
O\
bl
RANeRS

X -
|
—

( u(yk),Adyk.__y,. V()’Hl))

1l
™M~

I
—
=~

Il
—_

S
L

(Adyk §k = &k Ady,.y, (Ady,, 7701 — ’7i+1))-

Il
MN

Il
—
b
I
—
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Next we recall a completely integrable system on Ny (X) introduced by Goldman
[Gol86]. For a simple closed curve C c X, we write [C] = y;¥it1. .. Yisk in m(Z),
and define a function 9¢ = 04,c: Ny (Z) - R by

1
9c(g) = cos 1( ztr(gigm .. .g,-+k)).

Take a set Cy, ..., Cy_3 of simple closed curves defining a pair-of-pants decomposi-
tion of X. Note that the set of such choices is in one-to-one correspondence with the
set of trivalent trees I' with n-leaves. We then obtain a set of n — 3 functions

@a,r = @r = (Scl,...,\()cn%)!j\fa —> Rn_3.

Theorem 11.2 (Goldman [Gol86], Jeffrey & Weitsman [JW92]) For each pair-of-
pants decomposition of = with dual graph T, the set of functions O@r: N, - R" 2 isa
completely integrable system. The functions ¢, are action variables, and hence define a
Hamiltonian torus action on an open dense subset of N. The image Or(N) c R"™?
is a convex polytope given by the inequalities

[uk, — uk,| < uk, < min{ug, +ug,,2 — (ug, + g, }

for each pair-of-pants. In particular, if || < 1, then the image is given by triangle in-
equalities, i.e., Or(Ny) = Ar(a).

12 Extended Moduli Spaces

Fix base points of 0D; fori = 1,...,n. Let B; for i =1,..., n be the loop around 9D;
starting and ending at the base point on 0D;, and A; for i = 2, ..., n be the path from
the base point on dD; to the base point on dD;. Then the generators of 7;(X) are
given by y; = [B1], y2 = [A2B2A3' ], ..., yn = [A4B, A} Let

Ag={axget|aec[0,1/2]} ct
denote the fundamental alcove.

Definition 12.1 (Jeffrey [Jef94], Hurtubise & Jeftrey [HJ0O, Section 2]) The G-ex-
tended moduli space N© () is the space of G-representations of the groupoid gener-
atedby A,,..., A, and By, ..., B,, or equivalently,

Ne(z) = {(a,b) €G" ' x G" | by(azbya3") ... (anbpa') = 1},
where (a,b) = (az,...,an,b1,...,by,). The T-extended moduli space is defined by
NT(Z) = {(a,b) e N°(Z) | b; eexp(Ay),i=1,...,n} c G" ' x T".
The g- and t-extended moduli spaces are defined by
N9(2)={(a,x) e G" "' x g" | e (azea;")...(ane™a,') =1},
NY(Z) ={(a,x) e G" " xt" | e (aze™a}") ... (ane*a,') =1},

respectively, where (a,x) = (az,...,au, X1, ..., %,).
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Each a; and b; are regarded as holonomies of a flat parabolic connection along A;
and B;, respectively. Note that we have a natural surjection N®(Z) — N(Z) given

by
(a2, s @n, X150 o5 X)) —> (A2, .5 ap, €™, €™).
On the other hand, N7 (%) is canonically embedded into N*(Z) by
(a2s..san, e,y — (a2, ..oy Qps X1y e s X ).

Proposition 12.2 ([HJ00, Propositions 2.11and 2.12])  The space N° (X) is diffeomor-
phic to G*("™V) by

NO(2) » G*" ™D, (ay,... a0, b1,b2s ... by) — (a2, .»anbas ... by),
and hence it is smooth. On the other hand, N9 (X)) is smooth outside the subset consisting

of (a, x) satisfying e*' = —1 for all i.

The group G" acts on N¢(Z) and N9(X) by

o-(a,b) = (a1a205",...,;a,0, ,o1byo; ..., 0,b,0,"),
o-(a,x)=(0ay0,",...,00a,0,',Ad,, x1,...,Adg, x,),
foro = (01,...,0,) € G". These actions induce T"-actions
o-(a,b)= (alazaz_l,...,alana,;l,bl,...,bn),
o-(a,x) = (01a,05",...,010,0,", x1,...,%,)

on NT(Z) and N*(Z), respectively.

Proposition 12.3 ([Jet94], [H]0O, Proposition 2.14])  There exists a closed two-form
on N8(X) that is non-degenerate on an open dense subset, and for which the map

PN (Z) —g", (a,x)— —x=(-x1,...,—%y,)

is the moment map of the G"-action. The symplectic reduction ( /49) _I(O‘, )/G" is sym-
plectomorphic to Ny (X).

On the other hand, N¢ () admits a structure of quasi-Hamiltonian G"-space. We
briefly recall the notion of quasi-Hamiltonian spaces introduced by Alekseev, Malkin
and Meinrenken [AMM98].

Given a compact connected Lie group K with an invariant inner product (-, - ) on
the Lie algebra €, let 8 (resp. 6) be the left-invariant (resp. right-invariant) Maurer—
Cartan form, and let

1 1,=- ==
X= 12(9, [6,6]) = 12(6, [6,6])

be the canonical bi-invariant 3-form on K.

Definition 12.4 (Alekseev, Malkin, and Meinrenken [AMM98, Definition 2.2]) A
quasi-Hamiltonian K-space M = (M, w, ) is a K-manifold M equipped with a
K-invariant 2-form w and K-equivariant map y: M — K such that

(i) dw=-p*y
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(ii) t(ve)w=(1/2)p* (6 + 0) for each £ € &, where v; is the vector field on M given
by the infinitesimal action of &, and
(iil) ker wy = {vg(x)|& e ker(Ad,(xy +1)} for each x € M.

We call y: M — K the K-valued moment map, or simply the moment map.

Example 12.5 (The double [AMMO98, Remark 3.2]) Let D(G) = G x G, and define
a G*-action on D(G) by

(01,07) - (a,b) := (0ya05", Ad,, b)

for (a,b) € D(G) and (01,0,) € G*. Then D(G) is a quasi-Hamiltonian G2-space
with the 2-form

1 1 _
wp = E(Adb a*0,a"0) + §< a*0,b*(6+06))
and the moment map
4= (1, 42): D(G) — G*,  (a,b) —> (Ad, b,b7").

Theorem 12.6 (Fusion product [AMM98, Theorem 6.1]) Let (M, w, u) be a quasi-
Hamiltonian K x K x H-space, with yu = (p1, Y, 4z ), and consider the diagonal em-
bedding K x H - K x K x H, (k,h) — (k,k,h). Then M is a quasi-Hamiltonian
K x H-space with the 2-form

~ 1 * * N
w=w+ E(Vl 6, u30)
and the moment map
b= (- pop3):M — Kx H.

The product M; x M, of quasi-Hamiltonian K x Hj-spaces M; (j = 1,2) is a
quasi-Hamiltonian K x H; x K x H,-space. The fusion product M; & M, is a quasi-
Hamiltonian K x H; x H,-space obtained from M; x M, by fusing K-factors. Note
that the fusion product is associative:

(M;® M) @ M3 = M; @ (M, ® Ms).

We consider n — 1 copies of double D; = (D(G), wp,, ¢;) (i =2,...,n) with mo-
ment map

i = (i pi2):D(G) — G*, (a;,b;) —> (Ad,, by, b;).

Then the fusion product D(G)®"™) = D, @ --- ® D,, given by fusing first G-factors
is isomorphic to N¢(X) as a G"-manifold, and hence it defines a structure of quasi-
Hamiltonian G"-space on N¢(X). Since

(16) bl_l = (Ada2 bz) e (Adan bn) =HU2,1 U310 Bn,l

is a component of the moment map on D(G)®(")) = NY(X), we have the following
theorem.
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Theorem 12.7 ([AMMO98, Section 9])  There exists a structure of quasi-Hamiltonian
G"-space on N° () such that

uNé(Z) —G", (a,b)— b= (b'...,b;")

n

is the moment map. The quasi-Hamiltonian reduction (u)™(Cq)/G" is symplecto-
morphic to Ny (Z).

Remark 12.8 Treloar [Tre02] also shows this fact, and describes the Goldman sys-
tem as bending Hamiltonians on the moduli space of n-gons in > = SU(2).

Set pej = pai1 - W31 .. iy for simplicity. Then the 2-form wae(x) on N¢(Z) is
given by

n 1 n o
(17) wNe(z) = % wp, * 5 Z:((!’lsi—l)*e»([/li,l) 6)

i i=3

1 n % *7
@p; + 5 <Adl4?,}(/"5"‘1) G’Adl‘ii(ui’l) 0>

i=3

Il
o

|
5]

= o+ 5 £ ()"0, (wi)"0)
i=2 i=3
n 1

= Ez( wp, + 5( (4<i)*0, (4i1)"0) )

Here, we have used
Ady[ (pein)*0] = (i) 0~ (in) ",
Ady (pi1) 0 = (uin)"6,
((pin)*0, (pin)0) =0,
which follow from
g '(h'dh)g = (hg) 'd(hg) - g 'dg,
¢ ((dg)g g =g"dg

and the fact that pairing (-, - ) is symmetric and 0 is a one-form.

13 Walls and Quasi-Hamiltonian Reductions

Recall that walls in the space of parabolic weights are given by

Hie={@c[0,1/2)"| £ oj- T = k|

jeJ iel
forIc{l,...,n},J={L,...,n} N I,and k € Z. We define € = (¢y, ...,€,) as
1 ie],
18 ¢ =
18) {—1 iel,

sothat 37 e;a; = k.
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Lemma 13.1 A parabolic weight « € [0,1)" lies on a wall if and only if C,, contains g =
(g1,.-->8n) suchthat g1, ..., g, lie on a common maximal torus and satisfy g ... gn =
L.

Proof IfC, containsg = (g1,...,gs) suchthatgi,..., g, lie ona common maximal
torus and satisfy g1 --- g, = 1, then one can simultaneously diagonalize gi,. .., gn SO
that g; = exp(e;a;xo) for some € = (€1, ...,€6,) € {£1}". Then g;--- g, = exp[ (€111 +
o+ €50y )Xo = limplies 101 + -+ + €, € Z, so that & is on the wall defined by e.
Conversely, if « satisfies ejot; + -+ + €,a, € Z for some € € {£1}", then (g; =
exp(€;aixo))?, gives an element of C, contained in the same maximal torus satisfy-

inggi---gn =1 |

Since N, (X) is described as the quasi-Hamiltonian reduction (‘uG )_1 (Ca)/G" by
Theorem 12.7, there are two ways for Ny (Z) to be singular. One way is for 4€ to have
a critical point.

Proposition 13.2  The critical point set of u© consists of (a,b) € N(Z) such that
by, azbyay’, ..., ayb,a, lie on a common maximal torus.

Proof Suppose that u©(a,b) = b~ € C,. Under the identifications TanNC(Z) =
T(a,p)G*" ™V = g2("™D and T, G" = g" by right translations, d‘u(Ga’b):gz(”’l) - g"
is given by

d‘lxl?u’b)(fz, ey fn, Haseoos 77n) = (_Adbl'l Hiseeo ,_Adb;l ’771)
with

n
—Adymy = ‘_ZzAd(uzbzaz")..‘(a;,lb;,la;‘l)( §i = Adg,p,q1 € — Adg, i)

Hence, (&, 1) € ker dy(Ga)b) ifand only if # = 0 and

n
(19) __ZzAd(azbz“{l)-n(ai—lbiqaﬁll)( Ei - Adaibia;l El) =0.
Since b; € C,,, there exists g; € G such that b; = g;e* g7 Setting

hi = (azbzagl) e (a,-,lb,»,la;,ll)a,-g,», 5: = Adgi_la,-_l f,‘,
the equation (19) is written as
;zAdhi( Ei - Adexp(a,-xo) E:) =0.
Since
0 (1-etnTo)g,
(1= e m/ e, 0
for &' = (§};) € g, the dimension of the image of the map

2;—/ - Adexp(a,-xo) 5/ = (

97171 -0 (E;a cees Eln) — ) Adh,- ( f: - Adexp(oc,»xo) a)

i=2
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is at least two, and is exactly two if and only if there exists some g € G such that
gha, ..., gh, are diagonal matrices. Note that

(ghi)e ™ (ghi)™ =
g( (azbzagl) e (ai_lbi_lai__ll)) (aibjai_l)( (a2b2a;1) v (ai—lbi—lai__ll)) _lg_l'

If gh, is a diagonal matrix, then so is ga,bya;'g™". If hs is also a diagonal matrix,
then so is g(azb,a;") (asbzaz")(azbya;") g™}, and hence gasbsaz'g™" is also a di-
agonal matrix. By continuing the same discussion, one shows that if gh,, ..., gh, are
diagonal matrices, then so are gaibialfl g ' for n =2,...,n. Then (16) implies that
gbig™" is also a diagonal matrix. This means that by, a;b,a5, ..., a,b,a;" are in the
same maximal torus, and Proposition 13.2 is proved. ]

The other way for N, (Z) to be singular is for the G"-action on the level set
NE(Z5a) = (4°)7'(C4) to have larger stabilizer than the generic orbit. Note that
the generic stabilizer is given by {£1} = {£(L,...,1)} c G".

Proposition 13.3  The non-free locus of the G" [{+1}-action on N (Z; &) consists of
(a,b) € N°(2) such that by, azbya5", ..., a,b,a, lie on a common maximal torus.

Proof Suppose that ¢ = (0y,...,0,) € G" fixes (a,b) e N°(Z; ), ie.,
(20) oaro;" = ay, 1=2,...,n,
(21) UibiUi_lzbi, i=1,...,n.

Condition (20) is written as 0; = al’lalal, which means that gy, . . ., 0, are in the same
conjugacy class. By the G"-action

-1 -1 -1
ar— giaig; > bi-gibigi, 0ivgioig;,

we may assume that b; = e**® are diagonal matrices for i = 1, ..., n. Then (21) implies
that o; is a diagonal matrix if b; # 1. We may assume that o; is diagonal also in the case
b; = 1by the G"-action. Since 0y, . .., 0, are diagonal matrices in the same conjugacy
class, one has o; = af ! for some diagonal matrix ¢, and €; € {+1}. Now we assume
that ¢ # +1. This implies 0; # +1foralli = 1,..., n, since (+1)”! = +1. From (20), a;

has the form
~ 0 1 (1-e1)/2 eZﬂ\/lel 0
a=\y o 0 e~2nVn |

b O eZﬂ\/—leux, 0
@018, = 0 6727'[\/7161011 :

and hence

The condition b;(asb,a3") ... (a,bna,') = 1implies that ¥, ¢;a; = k € Z, which
means that & € Hyy for I = {i | ¢; =1}.

Conversely, if & € Hp, then the above argument shows that there exists a set of
diagonal matrices (a, b) € N°(Z; &) that has a non-trivial stabilizer. [ |
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The proof of Proposition 13.3 shows that any element of the stabilizer of (a, b) €
N¢(Z; &) has the form

o=(01,...,0,) = (01,0, 01as,...,a, 01a,).

Note that b; = +1if and only if a; € {0,1/2}. If b; # +1 for some i, then (21) implies
that g; = ai’lala,- must be in a maximal torus, and hence the stabilizer is isomorphic to
T. On the other hand, if b; = +1for all i, then the stabilizer is isomorphic to G, since ¢
can be arbitrary. When a € {0,1/2}", b € {+1}" carries no degree of freedom and the
a-projection induces an isomorphism of N (2; &) with G"~!. The G" action on G"~!
indeed has a stabilizer isomorphic to G, and the quotient N, (2) = N¢(Z;a)/G"
consists of one point.

Propositions 13.2 and 13.3 show that if « lies on some Hj x, then the singular lo-
cus of Ny(X) is given by [g1,...,gn] € Cqo/G such that g,..., g, lie on a com-
mon maximal torus. Then one can diagonalize g, ..., g, simultaneously, so that
gi = exp(€;a;xg), where € are given in (18). If & lies on k walls, then N, (2) has
k isolated singularities, each of which is given by [exp(e;a1x), . . ., exp(€,anx0)]-

Corollary 13.4  Suppose that « is a weight lying on some H y. Let (a, b) € N¢(Z; a)
be a critical point of u©, and g € Ny (2) be the corresponding singular point. Then there
exists an open neighborhood U c Ny (X) of g such that N (Z; &) is locally homeomor-
phicto (g"/t) x ( (Ux T)/ ({g} = T)) . In particular, N° (2; &) admits a G"-invariant
Whitney stratification.

Here, (U x T)/ ({g} x T) is the topological space obtained from U x T by con-
tracting the subset {g} x T c U x T to a point, and g" /t is the quotient vector space.
Propositions 13.2 and 13.3 imply the following corollary.

Corollary 13.5 Ifa and o' are in the same chamber, then N (X) is diffeomorphic to
Nor(Z).

Let
u' = Uy NT(2) — 1", (a,b) — b

be the restriction of the group-valued moment map. Then
(UE)(Co) ANT(Z) = (uT) (e @™, ..., e,

Corollary 13.6  Ifa ¢ {0,1/2}", then the diffeomorphism (u°)™(C4)/G" = Ny (2)
induces
(UT) (e, L, e ™) [T 2 Ny (2).

14 Gluing and Goldman Systems

In this section, we see the Goldman’s functions via gluing of Riemann surfaces, fol-
lowing the idea of Hurtubise and Jeffrey [HJ00].

Fix a simple closed curve C in X and consider a decomposition £ = ¥ U¢ £~ into
two surfaces by cutting ¥ along C. We may assume that the boundary components
of * (resp. £7) are Bf = By,..., B}, = Bu41, and B}, C (resp. By = C,B; =

m+2 =

https://doi.org/10.4153/CJM-2015-004-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-004-2

1134 Y. Nohara and K. Ueda

Bpi2s...»B,_,, = B,). Then N¢(Z*) (resp. NY(X7)) has the action of G"*? =
Gy x -+ x G, (resp. G"™™ = G x--- x G,,_,,) corresponding to the boundary
components. We write the moment maps xS on N6 (Z*) as

S = (gt ) = (Whmis 30 Hi22)s
U8 = (Ugs ot )= (Bonom B2 > Hnemp2)-

For the diagonal subgroup G¢ c G},,, x Gy, the moment map of the G¢-action on
the fusion product N®(X* 1 27) := N9(Z*) @ N¢(Z7) is given by

VS, S NO(S R Gy (@%b, (a b)) o (B be)
We define the “gluing map” 7&: (v§ ) 71(1) - N¢(2) by
nc((a*,b"),(a",b7)) =
(SN S MY SRS MY I Y SUUIN  MAPIY U S

(See Figure 2.)

Figure 2: The dual graph of 2* 1 X7

Then we have the following proposition.
Proposition 14.1 ~ The map nc: (vE) _1(1) — NC(X) induces an isomorphism

(v$) " (1)/Ge = N9 (%)

of quasi-Hamiltonian G" -space.

Proof It is easy to see that mr¢ is well defined and surjective. To see that the induced
map is injective, suppose that

re((a,6), (a7,67)) = mc( (¢, d"), (c".d"))
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for ((a*,b%),(a",b7)),((c",d"),(c",d")) € (v&)'(1). Then we have

(22) aj =cf, i=2,...,m+1,
Apis20] = CpinCis j=2,...,n—-m,

b =d, i=1,....,m+1,

b; =d;, j=2,...,n—m.

Note that b} .,, by, d; 5, d] are determined by

bf(aibi(ai)‘l) '--(a:wz +2(am+2) ) L,
by (a305(a3)7") oo (anmbrom(an_)™)
df(C:TdZ(CJ)‘I) ...(c;’1+2 maa( m+2 ) L
dr (e3d5()™) (el (eno) ™)

g} ., € G = G, condition (22) is written as

nm) ’

Setting 0 = (c},,,)

c. =o0a:

i i» J=2..n-m.

This implies that ((¢*,d"), (¢",d")) =0 ((a*,b"),(a",b")). Hence the induced
map (v&)™(1)/G - NY(Z) is injective.
It remains to check that 1" w6 (z+yz-) = T WG (), Where

E(vE) (1) > NO(EF )

is the inclusion. From (17), the 2-form wye (z+yz-y on NG (Z* ux7) is given by

WNG(z+uz-) = WNG(z+) T WNG(z-) T = <(Vm+2 2) 0, (A“<n m) 9)

m+2

= ig(a)D++ ((.”q) 0, (/4;1)*9))
+n;g2(“’D + <(”<J) 0, (uj1)" 0>)
" %( (#me2.2)" 0, (t‘”;n—m)*m'

Since (.um+2 2) 1= m+2 - (b )_ - ‘u<n m and Aum+11 - Ad + H;n—m on (Vg)_l(l)’
we have

:<( m+2) (Au<n m) (9+6) Ady<,, m(a:rH-Z)*e)

I wp+

m+2

and

<(M<m+2) 6 Mm+21) 6 ( ; +l) 6 Ad + Au;n—m)*g)
((Hm+2 2) 6 (#<n m) 9) 0.
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Then the restriction 1* wye (g+y3-) is given by

m+1

Conear = 3 (0ng 45 (120, (u7)0))
<5 (@ + 3005)°0.(6)"9))
1 —_
+ E( (["zmﬂ)*g’ (Ada;+2 /”;n—m)*0>

1 . _ " - *
+ ‘( (Ams2) 05 (Uepm) (0 +0) — Ady;n,m(“:nu) 9)-

\S}

On the other hand, the pull-back of wy 5y is given by

m+1

meane(s) =t 2 (@, + 3 ((hei)" 0. (wi2)"6))

n—m

475 % (@b, + 5((#gm+j)*9>(ﬂm+j,l)*9))

j=2
with
03 we(@p,+ 3 {(nei) 0, (usa)"0)) = @ps + S {(u2,)" 0. (1) 6)
fori=2,...,m+1 Byusing
ncam+J0 (am+2a )"0 = Ad(a y1(a m+2)*9+(a]7)*0

for j=2,...,n— m and formulae

(24) (Ad, b)*0 = Ad,y1a*0 + Ad, b*0 — a* 0,
(25) (Ad,b)*0=0a"0+Ad, b*0 - Ad,y a™6,
we have

(26)  m¢wp,,, = wp; + <(am+2) 0, (u51)"(0+6) - Ad,- (a;,,,)"0).
Similarly,
((l"s +]) 0, (.“mﬂl) 0)
(( Hemst Ada+ [’l<]) 6, (Ada" l‘;l) 9)
(A (Ad+ }4< 1(f(’t<m+l) 0+(Ad + lbl<]) 9 (Adu+ 21"[]1) 6)
< .“<m+1) 0, AdAd H;j(Ad“er Hj,l) 6)
+((Adgy, e j) 6 (Adgs , #71)70),
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and formulae (24) and (25) imply
27) mwe{(p<mej) 05 (pmsjn)*0)
= (420, (u7.2)"0) + ((a742) "0, Ady- (a7,,5)"60 = (u7,)" (6 + 0))
((@02)" 0, Ad, (a52)70 - Ad,. (a}1.)"0)
+((ah12) 70, (u2;)* (0 +0) = (u;1)* (6 +6))
+ ( (.u;mﬂ)*e’ (Ada+ /";j)*g - (Adu+ /";j—l)*§> >

m+2 m+2
where we assume that y_; = 1is a constant map. Combining (23), (26), and (27), we
have g wne(5) = 17 ONe (3 uz-)- [ |

We consider the action of G}, = G, ,, x {1} € G}, x G{ with moment map

u¢ =g NO(Z'urT) — G, p(a*b*) = (by.)7"

Since G"* acts on the b}, , ,-component by conjugation, the function

1
9¢ = cos_l(ztryg):j\fc;(Z+ ux’) —R

descends to N¢(X), and induces a Goldman’s function 9¢: Ny (Z) — R. Let v% =
vE|nr(s+uz-) be the restriction of the moment map to NT(£* 1 £7) = NT(2%) x
NT(Z7). Then (v2)™(1) ¢ (v&)7!(1) is preserved under the action of the maximal
torus T,,,, x T; ¢ G,,,, x Gy . The Hamiltonian torus action of 9¢ is induced from
the action of T},,, x {1} ¢ T}, x T on (v&)7'(1) (see [HJ0O]).

Now we fix a pair-of-pants decomposition = = (- Z; given by n — 3 simple
closed curves Ci,...,C,_3 with dual graph T, and let C}, C; denote the copies of
C; in the disjoint union []; X;. Then the fusion product N¢([]; Z;) := N¢(Z;) ®
- ®N%(Z,_,) has the actions of diagonal subgroups G"~* = []; G¢, in G*("=3) =
[1; Ger x Gc, with moment map vE:NE(11; ;) - G"*. We can define the gluing
map 7r: (vE)71(1) » NY(Z) in a similar manner.

Corollary 14.2  The map mr: ( v?) _1(1) - NC(Z) induces an isomorphism
-1 n-3 .
(+0) " ()/6" = N6 (3)

of quasi-Hamiltonian G"-spaces. The functions 9¢,,...,9¢, , induces the Goldman
system

Our =95 9c,.,) Ng(Z) — R".
The Hamiltonian torus action of @1 is given by the action of the maximal torus
_ _ -1
M5 Ter < T3 (Gep x {1}) on (v) (1) € NT(LL, 20)
Remark 14.3 The reduction (vI)™'(1)/T""® of the T-extended moduli space

NT(11,%;) is not homeomorphic to N7(Z) on the locus where holonomies along
any components of 0X; are central for some i.
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15 Isomorphisms of Goldman Systems

Fix a generic parabolic weight & € (0,1/2)" such that || < 1. Then ta = (tay, ..., ta,)
and « are in the same chamber for ¢ € (0,1], and hence N, (Z) is diffeomorphic to
Ng(Z) for t € (0,1]. Note that the images Ar(ta) = O, r(Nio(Z)) of the Gold-
man systems are related by scalings Ar(ta) = tAr(e). In this section we prove the
following theorem.

Theorem 15.1  Suppose that « satisfies the above condition. Then for each T, there
exists a family of symplectomorphism
v (Na(2), 0x,) — (New(2), (1/ )0y,
such that (1/t)y; @4 = O4,r. Namely,
(28) NE)= U Nia(X) — (0.1]

te(0,1

is trivial as a family of symplectic manifolds equipped with completely integrable systems.

We first consider a decomposition £ = £* uc £~ given by a single simple closed
curve as in Section 14.

Lemma 15.2  Fort € (0,1], there exists a diffeomorphism y;: Ny () = Ny (Z) such
that (1/£)y 9ta,c = 9u,c-

Proof Let € = Uie(o,1] Cra © G" be the family of conjugacy classes with projection
7e: € — (0,1]. Then the total space 91(2) of the family (28) is given by

N(T) = (1) (O)/G",

where 4% : N¢(Z) — G" is the moment map. Since |a| < 1, the family € is trivialized

by
(29) Co—Crar €c=(ctroorcn)—c = ((c)'.. s (en)'),
where ¢! = ge'* g™ for ¢ = ge*g ™! € €, with x € Aq.

Let

Uoz = (Ugrre- o g W5 tge ) NC(EZ 02T) — G”
be the moment map corresponding to the boundary components of X, and set
N ux7) = (uy) Q)
= U (U NOEhtat) x N5 ta0)),
1V a

te(0,1] " ) oo a7
where a® = (of ,...,a},.,), & =(af,...,a,_,) with
(af oo vapi) =(an o amen)s (@5, ) = (Cms2s e s y).

This space has an action of G"*2 = [T71* G x [1/5" G; and a G"*2-invariant strat-
ification induced from those on N¢ (Z*; a*). Note that the lower dimensional strata

https://doi.org/10.4153/CJM-2015-004-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2015-004-2

Goldman Systems and Bending Systems 1139

of N(Z* 11 £7) has the form

U NO(Z*;ta’) x SingN®(Z7;ta”)
te(0,1]

with oy = Y75  €;a;7 , or

U SingN®(Z*;tat) x NO(Z7;ta”)
te(0,1]
with af,,, = Y7 e;af for some ¢; € {+1}. From Proposition 13.2 and |a*| < 1,
trivialization (29) lifts to that on Uye(o,1) SingN® (£*; ta*) given by
SingN®(Z%; a*) — SingN®(2*;ta*), (a,b) —> (a,b").

From Corollary 13.4, the space 9(Z* 1 27) is locally homeomorphic to V x C(L)
for some open set V in a strata and a cone C(L) = ([0,00) x L)/({0} x L) over a
submanifold L. We fix a G"*?-invariant Riemannian metric on 9(2* 1 %") such that
it has the form gy + dr? + r2g; on each neighborhood V x C(L) of the singular locus,
where gy and g; are G"**-invariant Riemannian metrics on V and L, respectively,
and r € [0, 00).

Let v&:NC(Z* 1 =7) - G¢ be the moment map of the action of the diagonal
subgroup G¢ ¢ G;,,, x Gy, and define

NE(2* 1 27) = (ugy, vE) (€ x {1}) = (@) () NN 1 E7)
so that the family 91(2) — (0,1] is given by
e o pss :M(T) 2N (T uz™)/(G" x Ge) — € —> (0,1].

Then the horizontal lift of the trivialization (29) of € — (0,1] gives a G"*'-equivariant
trivialization

(30) yeNC(EZ uzT), — N EZtuz),
((a, ), (a, e*)) — ((c"(a,x,1), e*"), (¢ (a %, 1), e )
of the family M(Z* 1 2~) - (0,1] preserving the stratification, where
NO(ZT 02 = (pgevE) " (Cra x {1})

is the fiber over t € (0,1]. Since v, is G"*'-equivariant, it descends to a diffeomor-
phism y: Ny (Z) = Nty (Z). From the construction of v, we have

1 .~ 1, /1 + 1 /1 +
;I//t Vtac = ;V/t cos 1( > tre"mﬂ) = cos I(Etr e“‘m“) =9%,c»
which completes the proof. ]
Remark 15.3 From (30), the flow y; preserves the subfamily
NI uET) = U (uhyv) (%, e, )
te(0,1]
=N uz)nNT(Ztuz)

of NC(2* uX7). The flow y, restricted to T (=¥ u =7) is also equivariant under the
action of T}},, x {1} ¢ G},,, x Gy, and hence y;: Ny (2) — Ny (Z) is equivariant
under the action of the Hamiltonian S'-action of 9¢.
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Proof of Theorem 15.1 Let X = U??Z; be the pair-of-pants decomposition given
by I'. For the group valued moment map

U= (uss,ves . vE ) N (S 2, 5) — G x G
of the G" x G">-action, we define
MO(LZi) = () (€x{1}) and NT(LIZ;) =N(LZ:) nNT(LIZ:).
By applying the above argument, we obtain a trivialization v,: 0 (11, Z;); —
N (LI, 2:): of MO (11, Z;) that induces trivializations of NT(I1]; 2;) and N(Z) and
satisfies

1 *
;Wt ®t¢x,F = ®a,1“-

In particular, y; preserves the action variables on Ny (X).

The Hamiltonian torus action of the Goldman system, which is defined on an
open dense subset U c Ny (Z), is induced from the action of a maximal torus
H?:?(Tc;f x {1}) in [1;(Gcr x {1}) © I1;(Gcr x Gc:). Since the trivialization
ve NI 201 = NE(L; 20 is [1;(Tcr x Tc; )-equivariant, the Hamiltonian torus
action of the Goldman systems are preserved by y,. This means that y,;: Ny (Z) —
N« (Z) preserves angle variables. Hence, (1/t)y; wy,, coincides with wx, on U.
Since v, is a diffecomorphism and U is dense, we have (1/t)y;wn, = wn, on
Ne(Z). [ |

16 Goldman Systems and Bending Systems

We see in Theorem 9.3 that Ny, is isomorphic to M, as complex manifolds if |a| < 1.
On the other hand, Jeffrey [Jef94] proved the following by using the g-extended mod-
uli space.

Proposition 16.1 (Jeffrey [Jef94, Theorem 6.6])  For sufficiently small a € (0,1/2)",
the moduli space Ny (2) is symplectomorphic to M.

Outline of the proof The proposition is proved by using a canonical local model
of Hamiltonian spaces called the Marle-Guillemin-Sternberg form [GS84, Mar85].
Recall that the moment map of the G"-action on the g-extended moduli space N¥(X)
is given by
N (2) —g", (a,x) — —x.
Since the stabilizer of (1,0) € (49)7'(0) is the diagonal subgroup G c G", the fiber
(4%)71(0) is identified with G" /G by
G"|G — (u®)71(0), [01,025...,0,] — (q105",...,010,").

Then the Marle-Guillemin-Sternberg form of a neighborhood of (4%)7'(0) is a
neighborhood of the zero section of the vector bundle G x¢ (g"/g)* — G"/G
equipped with the moment map

tvcs:G" %6 (8"/9)" — 9", [0,y] — (Ad(0i)yi)i.
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This implies that

(49)7(04)/G" = (4macs) ™ (0a) /G”
={[0,y] € G" xg (g"/9)" | Ad(0;)yi € O4,,i=1,...,n}/G"
2 (0gn{(x,...,x)eg" |xeg}")/G
={(x1,...,%n) €Oy | X1+ +x, =0}/G = M,. ]

Fix & such that |&| < 1, and consider the family

fNE) = U (Nw(®), /Do, ) — (0,1]
t(0,1]

of symplectic manifolds. From Proposition 16.1, a fiber (N4, wy,, ) over sufficiently

small ¢ € (0,1] is symplectomorphic to (M;q, Wi, ). Since (Mg, wi,) is sym-

plectomorphic to (Mg, (1/t)war,,) by scaling x — tx, we can extend the family

F:N(Z) - (0,1] to a family over [0, 1] by setting f71(0) = (M, wnr, ).

Proposition 16.2  The symplectic trivialization {y;} of M(X) — (0,1] given in The-
orem 15.1 extends to the family over [0,1]. Moreover, this trivialization identifies Gold-
man systems (1/t)®q,1: N1 — R"® and the bending system ®r: M, — R" 3,

Proof Fix g € N, and let

1) = (@) rgu()) = (21, e M) = yy(g) € Nig
be the trajectory of y; starting from g. Then x(t) = (x1(¢),...,x,(t)) is a smooth
curve in U; Oq of the form x; (t) = tx; + O(¢). Since g1 (t) ... gn () =1+ t(xy +--+
x,) + O(t?), the point x = (x1,...,x,) lies in M. We also take smooth families of
tangent vectors u(t),v(t) € Ty(syNiq such that dy,(u(1)) = u(t) and dy(v(1)) =
v(t). Then

S, (0, v(1)) = @, (), (1))
forall t € (0,1]. Let &£(¢) = &+ O(t), n(t) = n + O(t) be smooth curves in g" such

that

u(t)(yi) = Adg,(r) &i (1) = &i (1), v(£)(yi) = Adg, () 1: () — 1 (1)
Since
31) Adg, ) &i(1) = &(1) = t[xi, &] + O(1),

E=(&,....8),1=(n1,...., M) € g" give tangent vectors of M, at x. Note that (31)
also implies that (u(t) Uv(t))[m(Z),0m(Z)]) = O(?). On the other hand, the
second term of wy,, in (15) has the form

> 5 ({00 Adg o mi(0) = (110, Adg o &1(0) ) = £ 5 (x5 [E6m2]) + O(22)

i=1 i=1

=

Thus we have
S, ((1).v(0)) = @xe, (E:0) +O(1).
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Since the left-hand side is independent of #, we have 1w, (u(t),v(t)) = wn, (& 1),
or equivalently ygwa, = wn,.

Next we show that the integrable systems are identified. Suppose that the k-th
boundary component Cy, is given by [Ci] = yi, .. . Viytn,. If we write

gik(t) .. 'gik+"k(t) = eyk(t)

for yi(t) € g, then y,(t) has eigenvalues £9,q,¢c, (g(#)). Since yi(t) = t(x;, +--- +
Xi+n, ) + O(#?) and the eigenvalues of x;, + -+« + X, 15, are +¢4, (x), we have

S (8(1) = 4, () + O(1)

Theorem 15.1 implies that the left-hand side is also independent of ¢, and hence %9 ta,Cy
is identified with ¢4, by the trivialization. ]
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