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Abstract We introduce the quantum isomeric supercategory and the quantum affine isomeric super-
category. These diagrammatically defined supercategories, which can be viewed as isomeric analogues
of the HOMFLYPT skein category and its affinisation, provide powerful categorical tools for studying
the representation theory of the quantum isomeric superalgebras (commonly known as quantum queer
superalgebras).

1. Introduction

One of the most fundamental facts in representation theory is Schur’s lemma, which
implies that if V is a finite-dimensional simple module over an associative k-algebra A,
where k is an algebraically closed field, then EndA(V )∼= k. On the other hand, if A is an
associative k-superalgebra, then there are two possibilities: we can have EndA(V )∼= k or
we can have that EndA(V ) is a two-dimensional Clifford superalgebra generated by the
parity shift. In the theory of Lie superalgebras, this phenomenon underlies the fact that
the general linear Lie algebra gln has two natural analogues in the super setting: the gen-
eral linear Lie superalgebra glm|n and the isomeric Lie superalgebra qn (following [NSS22],
we use the term isomeric instead of the more traditional term queer). The purpose of the
current paper is to develop diagrammatic tools for studying the representation theory of
the quantum analogue of qn. Our hope is that this is the starting point of the development
of isomeric analogues of much of the rich mathematics that has emerged from connections
between low-dimensional topology, representation theory and categorification.

Before describing our results, we begin with an overview of the situation for the better-
understood case of glm|n. The finite-dimensional complex representation theory of glm|n
is controlled by the oriented Brauer category OB(m− n). More precisely, OB(t) is a
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1078 A. Savage

diagrammatic symmetric monoidal category depending on a dimension parameter t. When
t=m−n, there is a full monoidal functor

OB(m−n)→ glm|n-smod

to the category of glm|n-supermodules, sending the generating object of OB(m−n) to the
natural supermodule of glm|n (see [CW12, Section 8.3]) (throughout this Introduction,
we work with finite-dimensional supermodules). The additive Karoubi envelope (i.e.
the idempotent completion of the additive envelope) of OB(t) is Deligne’s interpolating
category Rep(GLt). Similar statements hold in the orthosymplectic case, where OB(t)

is replaced by the Brauer category (no longer oriented, due to the fact that the natural
supermodule is self-dual) (see [LZ17, Theorem 5.6]).

Any monoidal category acts on itself via the tensor product. In particular, translation
functors, given by tensoring with a given supermodule, are key tools for studying the
representation theory of Lie superalgebras. In the case of glm|n, this action by tensoring
can be enlarged to a monoidal functor

AOB(m−n)→ End (glm|n-smod),

where AOB(t) is the affine oriented Brauer category of [BCNR17] and End (C) denotes
the monoidal category of endofunctors of a category C. The category AOB(t) allows one
to study natural transformations between translation functors, provides tools to study
cyclotomic Hecke algebras and yields natural elements in the centre of U(glm|n). Again, a
similar picture exists for the orthosymplectic Lie superalgebras, where AOB(t) is replaced
by the affine Brauer category of [RS19].

Quantum analogues of the above pictures play a particularly important role in
connections to link invariants and integrable models in statistical mechanics. The
quantum analogue of the oriented Brauer category is the HOMFLYPT skein category
OS(z,t), originally introduced in [Tur89, Section 5.2], where it was called the Hecke
category. The affine version AOS(z,t) was introduced in [Bru17], and there are monoidal
functors

OS(q− q−1,qn)→ Uq(gln)-mod, AOS(q− q−1,qn)→ End (Uq(gln)-mod),

with many of the properties mentioned above for the nonquantum case. We expect that
these functors can be generalised to the super setting of Uq(glm|n). The generalisation of
the first functor should follow from the results [LZZ20], and then the affine case follows
from the general affinisation procedure of [MS21]. Once again, analogues exist in the
orthosymplectic case, where the relevant categories are the Kauffman skein category,
together with its affine analogue introduced in [GRS22].

The isomeric analogues of the oriented Brauer category and its affine version are the
oriented Brauer–Clifford supercategory OBC and the degenerate affine oriented Brauer–
Clifford supercategory AOBC introduced in [BCK19]. In analogy with the above, one has
monoidal superfunctors

OBC → qn-smod, AOBC → SEnd (qn-smod),
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where SEnd (C) denotes the monoidal supercategory of endosuperfunctors of a super-
category C. The need to move to the setting of supercategories here arises from the
super version of Schur’s lemma mentioned earlier. There is an odd endomorphism of the
natural representation of qn that corresponds to an odd morphism in OBC and AOBC
(the category of vector superspaces, with parity preserving linear maps, is a monoidal
category, with no need to introduce the notion of a monoidal supercategory). Note also
the absence of the parameter t that appears for the oriented Brauer category. This is
because the natural representation of qn always has superdimension zero.

In the current paper, we develop analogues of the above results for the quantum isomeric
superalgebra Uq(qn). As we will explain below, this case requires several new techniques.
We begin by defining the quantum isomeric supercategory Q (z) depending on a parameter
z in the ground ring. This is a strict monoidal supercategory generated by two objects, ↑
and ↓ and morphisms

, : ↑ ⊗ ↑ → ↑ ⊗ ↑ , : ↑ ⊗ ↓ → ↓ ⊗ ↑ ,

: ↓ ⊗ ↑ → 1, : 1→ ↑⊗ ↓ , : ↑ → ↑ ,

subject to certain relations (see Definition 2.1). The supercategory Q (z) should be viewed
as a quantisation of OBC . In particular, Q (0) is isomorphic to OBC (see Lemma 2.9).
From the definition of Q (z), we deduce further relations, showing, in particular, that
this supercategory is pivotal. We also prove a basis theorem (Theorem 4.5) showing that
the morphism spaces have bases given by tangle-like diagrams, where strands can carry
the odd Clifford token corresponding to the odd endomorphism appearing in the super
version of Schur’s lemma. We define, in Theorem 4.3, a monoidal superfunctor

Q (q− q−1)→ Uq(qn)-smod, (1.1)

which we call the incarnation superfunctor. This superfunctor is full and asymptotically
faithful, in the sense that the induced map on any morphism space in Q (q− q−1) is an
isomorphism for sufficiently large n (Theorem 4.4). This can be viewed as a categorical
version of the first fundamental theorem for Uq(qn)-invariants.

The endomorphism superalgebras EndQ (z)(↑⊗r) are Hecke–Clifford superalgebras, which
appear in quantum Sergeev duality (the quantum isomeric analogue of Schur–Weyl
duality). More generally, the endomorphism superalgebras in Q (z) are isomorphic to
the quantum walled Brauer–Clifford superalgebras introduced in [BGJ+16] (see Corollary
4.9). However, the category Q (z) contains more information, since it also involves
morphism spaces between different objects. Consideration of the entire monoidal category
Q (z), as opposed to the more traditional approach (e.g. taken in [BGJ+16]) of treating the
endomorphism superalgebras individually, as associative superalgebras, offers significant
advantages. In particular, the added structure of cups and caps, arising from the duality
between V and V ∗, allows us to translate between general morphism spaces and ones of
the form EndQ (z)(↑⊗r). This allows us to recover some of the results of [BGJ+16] with
simplified arguments.

The additive Karoubi envelope of Q (z) should be viewed as an interpolating category
Rep(Uq(q)) for the quantum isomeric superalgebras. However, since the supercategory
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Q (z) does not depend on n, we have an ‘interpolating’ category without a dimension
parameter. The same is true for the additive Karoubi envelope Rep(Q) of OBC , which
is the isomeric ‘interpolating’ category in the nonquantum setting. Of course, the kernel
of the incarnation superfunctor (1.1) does depend on n (see, for example, Theorem 4.4).
The semisimplification of Q (z), which is the quotient by the tensor ideal of negligible
morphisms, is the trivial supercategory with one object, since the identity morphisms of
the generating objects ↑ and ↓ are negligible. Similar phenomena occur for the periplectic
Lie superalgebras. For a discussion of the Deligne interpolating category in that case,
we refer the reader to [Ser14, Section 4.5], [KT17, Section 5], [CE21, Section 3.1] and
[EAS21].

In the second half of the current paper, we define and study the quantum affine
isomeric supercategory AQ (z). One important difference between the quantum isomeric
supercategory and the HOMFLYPT skein category is that the category Q (z) is not
braided. This corresponds to the fact that Uq(qn) is not a quasi-triangular Hopf
superalgebra. Diagrammatically, this is manifested in the fact (see Lemma 2.5) that

= but �= .

That is, Clifford tokens slide over crossings but not under them. Since Q (z) is not braided,
the usual affinisation procedure, which corresponds to considering string diagrams on a
cylinder (see [MS21]) is not appropriate. Instead, we must develop a new approach. To
pass from Q (z) to the affine version AQ (z), we adjoin an odd morphism : ↑ → ↑
satisfying

= ,

among other relations (see Definition 6.1). This procedure of odd affinisation (see
Remark 7.6) makes apparent a symmetry of AQ (z) that interchanges and and
flips all crossings. There does not seem to be any analogous symmetry of the affine
HOMFLYPT skein category. The supercategory Q (z) is naturally a subsupercategory of
AQ (z) (Proposition 7.7).

We define, in Theorem 8.1, a monoidal superfunctor

AQ (q− q−1)→ SEnd (Uq(qn)-smod), (1.2)

which we call the affine action superfunctor. As for the case of the affine HOM-
FLYPT skein category, the superfunctor (1.2) contains information about supernatural
transformations between translation superfunctors acting on Uq(qn-smod). However, in
the HOMFLYPT setting, the affine action comes from the braiding in the category.
Intuitively, it arises from an action of AOS(z,t) on OS(z,t) corresponding to placing
string diagrams representing morphisms of OS(z,t) inside the cylinders representing
morphisms of AOS(z,t). We refer the reader to [MS21, Section 3] for further details of this
interpretation. The fact that Q (z) is not braided means that we cannot simply apply this
general framework, and we must formulate new methods. As a replacement, we develop
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in Section 5 the concept of a chiral braiding, which is similar to a braiding but is only
natural in one argument.

The endomorphism superalgebras EndAQ (z)(↑⊗r) are related to the affine Hecke–
Clifford superalgebras introduced in [JN99], where they are called affine Sergeev algebras
(see Section 7). These have played an important role in representation theory and cate-
gorification (see, for example, [BK01]). However, our presentation of these superalgebras
is different from the original one appearing in [JN99]. There, the affine Hecke–Clifford
superalgebra is obtained from the Hecke–Clifford superalgebra by adding a set of pairwise-
commuting even elements. In our presentation, we add pairwise-supercommuting odd
elements, corresponding to the odd generator appearing on various strands. While the
translation between the two presentations is straightforward, the new approach yields a
simpler description of the affine Hecke–Clifford superalgebras with an obvious symmetry,
corresponding to the symmetry of AQ (z) that interchanges and and flips crossings.
The more general endomorphism superalgebras EndAQ (z)(↑⊗r ⊗ ↓⊗s) are affine versions
of quantum walled Brauer–Clifford superalgebras which do not seem to have appeared in
the literature.

As a final application of our approach to the representation theory of the quantum
isomeric superalgebra, we use the affine action superfunctor (1.2) to compute an infinite
sequence of elements (8.7) in the centre of Uq(qn). These elements arise from ‘bubbles’ in
AQ (z), which are closed diagrams corresponding to endomorphisms of the unit object. We
expect these elements will be useful in a computation of the centre of Uq(qn), which has
yet to appear in the literature. Typically, one uses the Harish–Chandra homomorphism
to compute centres. This homomorphism has recently been studied for basic classical
Lie superalgebras in [LWY22], but the quantum isomeric case remains open. It is often
not difficult to show that the Harish–Chandra homomorphism is injective. The difficulty
lies in showing that its image is as large as expected. By analogy with the Uq(gln) case,
we expect that the central elements (8.7) computed here, together with some obviously
central elements, generate the centre of Uq(qn).

Further directions and open problems
The quantum affine isomeric supercategory AQ (z) should be thought of as an isomeric
analogue of the affine HOMFLYPT skein category from [Bru17, Section 4]. The latter
is the central charge zero special case of the quantum Heisenberg category of [BSW20].
A suitable modification of the approach of [BSW20] should lead to the definition of a
quantum isomeric Heisenberg supercategory depending on a central charge k ∈ Z. Taking
k = 0 would recover AQ (z). On the other hand, for nonzero k, this supercategory should
act on supercategories of supermodules over cyclotomic Hecke–Clifford superalgebras.
Furthermore, we expect that one can adapt the categorical comultiplication technique of
[BSW20] to prove a basis theorem, yielding a proof of Conjecture 6.12 (giving a conjectural
basis for each morphism space in AQ (z)) as a special case.

An even more general quantum Frobenius Heisenberg category was defined in [BSW22].
This is a monoidal supercategory depending on a central charge k ∈ Z and a Frobenius
superalgebra A. Taking A= k recovers the usual quantum Heisenberg category. It should
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be possible to define a quantum isomeric Frobenius Heisenberg supercategory, such that
specialising A= k yields the quantum isomeric Heisenberg category.

The quantum webs of type Q introduced in [BJK20] should be related to a partial
idempotent completion of supercategory Q (z). It would be interesting to work out this
precise connection, and then use it to define affine versions of quantum webs of type Q,
based on the supercategory AQ (z).

Finally, in [BCK19], the authors studied cyclotomic quotients of the degenerate affine
oriented Brauer–Clifford supercategory. It would be natural to investigate the quantum
analogue, namely, cyclotomic quotients of AQ (z). These could also be thought of as
isomeric analogues of the central charge zero case of the cyclotomic quotients considered
in [BSW20, Section 9].

Hidden details
For the interested reader, the tex file of the arXiv version of this paper includes hidden
details of some straightforward computations and arguments that are omitted in the pdf
file. These details can be displayed by switching the details toggle to true in the tex file
and recompiling.

2. The quantum isomeric supercategory

Throughout the paper, we work over a commutative ring k, whose characteristic is not
equal to two, and we fix an element z ∈ k. Statements about abstract categories will
typically be at this level of generality. When making statements involving supermodules
over the quantum isomeric superalgebra, we will specialise to k = C(q) and z = q− q−1.
We let N denote the set of nonnegative integers.

All vector spaces, algebras, categories and functors will be assumed to be linear over
k unless otherwise specified. Almost everything in the paper will be enriched over the
category SVec of vector superspaces with parity-preserving morphisms. We write v̄ for
the parity of a homogeneous vector v in a vector superspace. When we write formulae
involving parities, we assume the elements in question are homogeneous; we then extend
by linearity.

For associative superalgebras A and B, multiplication in the superalgebra A⊗B is
defined by

(a′⊗ b)(a⊗ b′) = (−1)āb̄a′a⊗ bb′ (2.1)

for homogeneous a,a′ ∈ A, b,b′ ∈ B. For A-supermodules M and N, we let HomA(M,N)

denote the k-supermodule of all (i.e. not necessarily parity-preserving) A-linear maps from
M to N. The opposite superalgebra Aop is a copy {aop : a ∈ A} of the vector superspace
A with multiplication defined from

aopbop := (−1)āb̄(ba)op. (2.2)

A superalgebra homomorphism A → Bop is equivalent to an antihomomorphism of
superalgebras A → B. When viewing it in this way, we will often omit the superscript
‘op’ on elements of B.
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Throughout this paper, we will work with strict monoidal supercategories, in the
sense of [BE17]. We summarise here a few crucial properties that play an important
role in the present paper. A supercategory means a category enriched in SVec. Thus,
its morphism spaces are vector superspaces and composition is parity-preserving. A
superfunctor between supercategories induces a parity-preserving linear map between
morphism superspaces. For superfunctors F,G : A → B, a supernatural transformation
α : F ⇒G of parity r ∈Z/2 is the data of morphisms αX ∈HomB(FX,GX) of parity r, for
each X ∈A, such that Gf ◦αX = (−1)rf̄αY ◦Ff for each homogeneous f ∈HomA(X,Y ).
Note when r is odd that α is not a natural transformation in the usual sense due to the
sign. A supernatural transformation α : F ⇒G is of the form α = α0+α1, with each αr

being a supernatural transformation of parity r.
In a strict monoidal supercategory, morphisms satisfy the super interchange law :

(f ′⊗g)◦ (f ⊗g′) = (−1)f̄ ḡ(f ′ ◦f)⊗ (g ◦g′). (2.3)

We denote the unit object by 1 and the identity morphism of an object X by 1X . We
will use the usual calculus of string diagrams, representing the horizontal composition
f⊗g (respectively, vertical composition f ◦g) of morphisms f and g diagrammatically by
drawing f to the left of g (respectively, drawing f above g). Care is needed with horizontal
levels in such diagrams due to the signs arising from the super interchange law:

f
g = f g = (−1)f̄ ḡ

f

g
. (2.4)

If A is a supercategory, the category SEnd (A) of superfunctors A→A and supernatural
transformations is a strict monoidal supercategory. The notation Aop denotes the opposite
supercategory and, if A is also monoidal, Arev denotes the reverse monoidal supercategory
(changing the order of the tensor product); these are defined as for categories but with
appropriate signs.

Definition 2.1. We define the quantum isomeric supercategory Q (z) to be the strict
monoidal supercategory generated by objects ↑ and ↓ and morphisms

, : ↑ ⊗ ↑ → ↑ ⊗ ↑ , : ↑ ⊗ ↓ → ↓ ⊗ ↑ , (2.5)

: ↓ ⊗ ↑ → 1, : 1→ ↑⊗ ↓ , : ↑ → ↑ , (2.6)

subject to the relations

= = , = , = , = , (2.7)

− = z , (2.8)

=− , = , = 0 = , (2.9)

= , = . (2.10)
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In the above, we have used left crossings and a right cap defined by

:= , := . (2.11)

The parity of is odd, and all the other generating morphisms are even. We refer to as
a Clifford token (later, we will refer to this as a closed Clifford token) (see Definition 6.1).

In addition to the left crossing and right cap defined in (2.11), we define

:= , := , := , := . (2.12)

It follows that we have left and down analogues of the skein relation (2.8):

− = z , − = z . (2.13)

We then define the other right crossing so that the right skein relation also holds:

:= + z . (2.14)

We call , , and positive crossings, and we call , , and
negative crossings.

Remark 2.2. Given z,t ∈ k
×, the HOMFLYPT skein category OS(z,t) is the quotient

of the category of framed oriented tangles by the Conway skein relation (2.8) and the
relations

= t , =
t− t−1

z
11 .

This category was first introduced in [Tur89, Section 5.2], where it was called the Hecke
category (not to be confused with the more modern use of this term, which is related to the
category of Soergel bimodules). We borrow the notation OS(z,t), which comes oriented
skein, from [Bru17]. It follows from [Bru17, Theorem 1.1], which gives a presentation
of OS(z,t), that all of the relations in OS(z,1) hold in Q (z). More precisely, reflecting
diagrams in the vertical axis and flipping crossings (i.e. interchanging positive and
negative crossings), we see that (2.7), (2.8), (2.10) and the last equality in (2.9) correspond
to the relations given in [Bru17, Theorem 1.1] with t=1. Thus, by that result, all relations
in OS(z,1) hold in Q (z) after reflecting in the vertical axis and flipping crossings. But
OS(z,1) is invariant under this transformation, and so all its relations hold in Q (z). In
fact, Q (z) is the strict monoidal supercategory obtained from OS(z,1) by adjoining the
Clifford token, subject to the relations (2.9) involving the Clifford token. Note that the
condition t = 1 is essentially forced by the skein relation and the last relation in (2.9),
since

t =
(2.8)
= + z

(2.9)
= = t−1 .

Hence, t=±1. If t=−1, we can rescale the crossings by −1 and replace z by −z to reduce
to the case t = 1. This explains why the category Q (z) depends on only one parameter
z ∈ k.
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Lemma 2.3. The following relations hold in Q (z) for all orientations of the strands:

= , = , = , = , = = , (2.15)

= = , = , (2.16)

= , = , = 0. (2.17)

Proof. This follows from Remark 2.2, since all these relations holds in OS(z,1).

We define

:= . (2.18)

It follows that

=
(2.4)
= − (2.10)

= − (2.9)
=

(2.10)
= . (2.19)

Lemma 2.4. The following relations hold in Q (z) for all orientations of the strands:

= , = , = , = , = 0. (2.20)

Proof. Composing the second relation in (2.9) on the top and bottom with , we see
that the first two relations in (2.20) hold when both strands are oriented up. Attaching
a left cup to the bottom of (2.18) and using (2.10), we see that the third relation in
(2.20) holds for the strand oriented to the left. Similarly, attaching a left cap to the top of
(2.18), we see that the fourth relation in (2.20) also holds for the strand oriented to the
left. Then, using the definitions (2.11) and (2.12) of the left and down crossings, we see
that the first two relations in (2.20) hold for the strands oriented to the left or oriented
down. Next, taking the second relation in (2.20) for the strands oriented to the left, and
composing on the top and bottom with , we see that the first relation in (2.20) holds
for the strands oriented to the right. Similarly, taking the first relation in (2.20) for the
strands oriented to the left, and composing on the top and bottom with , we see that
the second relation in (2.20) holds for the strands oriented to the right.

So we have now proved the first two relations in (2.20) for all orientations of the strands,
and the third and fourth relations for the strands oriented to the left. Next we compute

(2.12)
= =

(2.11)
=

(2.9)
= 0.

So the last equality in (2.20) holds for both orientations of the strand. We also have

(2.12)
=

(2.9)
=

(2.14)
=

(2.9)
= =

(2.14)
=

(2.9)

(2.12)
= .
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An analogous argument shows that the fourth relation in (2.20) holds for the strands
oriented to the right.

It follows from (2.20) that Clifford tokens slide over all crossings. However, they do not
slide under crossings. In fact, we have the following result.

Lemma 2.5. The following relations hold in Q (z):

= + z
(

−
)
, = + z

(
−

)
. (2.21)

Proof. We have
(2.8)
= − z

(2.9)
= − z

(2.8)
= + z

(
−

)
. (2.22)

The proof of the second relation is analogous.

We now describe several symmetries of the category Q (z). First note that we have an
isomorphism of monoidal supercategories

Ω− : Q (z)
∼=−→ Q (−z)

that is the identity objects and, on morphisms, multiplies all crossings by −1.

Proposition 2.6. There is a unique isomorphism of monoidal supercategories

Ω� : Q (z)→ Q (z)op

determined on objects by ↑ �→ ↓, ↓ �→ ↑ and sending

�→ , �→ − , �→ , �→ .

The superfunctor Ω� acts on the other crossings, cups, caps and Clifford tokens as follows:

�→ , �→ − , �→ − , �→ − , �→ − , �→ − ,

�→ − , �→ − , �→ − , �→ − .

Proof. This follows from (2.13), (2.15), (2.16), (2.17), (2.19) and (2.20).

Proposition 2.7. There is a unique isomorphism of monoidal supercategories

Ω↔ : Q (z)→ Q (z)rev

determined on objects by ↑ �→ ↑, ↓ �→ ↓ and sending

�→ , �→ − , �→ , �→ .

The superfunctor Ω↔ acts on the other crossings, cups, caps and Clifford tokens as
follows:

�→ , �→ − , �→ − , �→ − , �→ − , �→ − ,

�→ − , �→ − , �→ − , �→ − .
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Proof. This follows from (2.15), (2.17) and (2.20).

Remark 2.8. In many instances, when we wish to number strands in diagrams, it is most
natural to number them from right to left. For instance, we will do so when discussing
Jucys–Murphy elements in Section 7. However, at other times, when we want to discuss
relationships to superalgebras appearing in the literature, it is useful to number strands
from left to right to better match conventions in other papers. The isomorphism Ω↔
allows us to move back and forth between these two conventions.

It follows from Propositions 2.6 and 2.7 that Q (z) is strictly pivotal, with duality
superfunctor

Ω↔ ◦Ω� : Q (z)
∼=−→ (Q (z)op)rev (2.23)

defined by rotating diagrams through 180° and multiplying by (−1)(
y
2), where y is

the number of Clifford tokens in the diagram. Intuitively, this means that morphisms
are invariant under isotopy fixing the endpoints, multiplying by the appropriate sign
when odd elements change height. Thus, for example, we have rightward, leftward and
downward versions of the relations (2.21).

Lemma 2.9. When z = 0, reversing orientation of strands gives an isomorphism of
monoidal supercategories from Q (0) to the oriented Brauer–Clifford supercategory of
[BCK19, Definition 3.2].

Proof. When z = 0, (2.8) implies that

:= = .

It is then straightforward to verify that the relations of Definition 2.1, without the last
relation in (2.9), become the relations in [BCK19, Definition 3.2] with the orientations
of strands reversed. The last relation in (2.9) also holds in the oriented Brauer–Clifford
supercategory by [BCK19, (3.16)].

Remark 2.10. The reason we need to reverse orientation in Lemma 2.9 is that [BCK19,
Definition 3.2] includes the relation

= ,

which matches the sign in (2.19) but not in the first relation in (2.9). If
√
−1 ∈ k, then

we have an automorphism of Q (z) that reverses orientation of strands and multiplies
Clifford tokens by

√
−1. In this case, there is an isomorphism from Q (0) to the oriented

Brauer–Clifford category that multiplies Clifford tokens by
√
−1, with no need to reverse

orientation.

Let X =X1⊗·· ·⊗Xr and Y = Y1⊗·· ·⊗Ys be objects of Q (z) for Xi,Yj ∈ {↑ , ↓}. An
(X,Y )-matching is a bijection between the sets

{i :Xi =↑}
{j : Yj =↓} and {i :Xi =↓}
{j : Yj =↑}. (2.24)
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A positive reduced lift of an (X,Y )-matching is a string diagram representing a morphism
X → Y , such that

• the endpoints of each string are points that correspond under the given matching;
• there are no Clifford tokens on any string and no closed strings (i.e. strings with

no endpoints);
• there are no self-intersections of strings and no two strings cross each other more

than once;
• all crossings are positive.

It follows from (2.16) that any two positive reduced lifts of a given (X,Y )-matching are
equal as morphisms in Q (z).

For each (X,Y ), fix a set B(X,Y ) consisting of a choice of positive reduced lift for each
(X,Y )-matching. Then let B•(X,Y ) denote the set of all morphisms that can be obtained
from elements of B(X,Y ) by adding at most one (and possibly zero) Clifford token near
the terminus of each string. We require that all Clifford tokens occurring on strands whose
terminus is at the top of the diagram to be at the same height; similarly, we require that
all Clifford tokens occurring on strands whose terminus is at the bottom of the diagram
to be at the same height, and below those Clifford tokens on strands whose terminus is
at the top of the diagram.

Proposition 2.11. For any objects X,Y of Q (z), the set B•(X,Y ) spans the
k-supermodule HomQ (z)(X,Y ) over k.

Proof. Let X and Y be two objects of Q (z). Using (2.20) and (2.21), Clifford tokens
can be moved near the termini of strings. Next, using (2.9) and (2.19), we can reduce the
number of Clifford tokens to at most one on each string. Then, since all the relations in
the HOMFLYPT skein category hold (see Remark 2.2), we have a straightening algorithm
to rewrite any diagram representing a morphism X → Y as a k-linear combination of the
ones in B•(X,Y ). Here, we also use (2.17) and (2.20) to see that any string diagram with
a closed component is equal to zero.

We will prove later, in Theorem 4.5, that the sets B•(X,Y ) are actually bases of the
morphism spaces.

Definition 2.12 [BGJ+16, Definition 3.4]. For r,s ∈ Z>0 and z ∈ k, the quantum walled
Brauer–Clifford superalgebra BCr,s(z) is the associative superalgebra generated by

even elements t1, . . . ,tr−1,t
∗
1, . . . ,t

∗
s−1,e and odd elements π1, . . . ,πr,π

∗
1, . . . π

∗
s

satisfying the following relations (for i,j in the allowable range)

t2i = zti+1, (t∗i )
2 = zt∗i +1,

titi+1ti = ti+1titi+1, t∗i t
∗
i+1t

∗
i = t∗i+1t

∗
i t

∗
i+1,

titj = tjti for |i− j|> 1, t∗i t
∗
j = t∗j t

∗
i for |i− j|> 1,

π2
i =−1, πiπj =−πjπi for i �= j, (π∗

i )
2 = 1, π∗

i π
∗
j =−π∗

jπ
∗
i for i �= j,

tiπi = πi+1ti, t∗i π
∗
i = π∗

i+1t
∗
i ,
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tiπj = πjti for j �= i,i+1, t∗i π
∗
j = π∗

j t
∗
i for j �= i,i+1,

e2 = 0, etr−1e= e, etj = tje for j �= r−1, et∗1e= e, et∗j = t∗je for j �= 1,

tiπ
∗
j = π∗

j ti, πre= π∗
1e, t∗i πj = πjt

∗
i , eπr = eπ∗

1,

πje= eπj for j �= r, π∗
j e= eπ∗

j for j �= 1,

et−1
r−1t

∗
1et

∗
1t

−1
r−1 = t−1

r−1t
∗
1et

∗
1t

−1
r−1e, eπre= 0.

We define BCr,0(z) to be the associative superalgebra generated by even elements
t1, . . . ,tr−1 and odd elements π1, . . . ,πr subject to the above relations involving only these
elements. We define BC0,s(z) similarly. Finally, we define BC0,0(z) = k.

The relations in the first line in Definition 2.12 imply that ti and t∗i are invertible, with
t−1
i = ti−z and (t∗i )

−1 = t∗i −z. Then, multiplying both sides of the relation tiπi = πi+1ti
on the left and right by t−1

i gives the relation

πiti = tiπi+1+ z(πi−πi+1). (2.25)

A straightforward computation shows that we have an isomorphism of superalgebras

BCr,s(z)
∼=−→ BCs,r(z)

op, ti �→ t∗r−i, t
∗
i �→ ts−i, πi �→ πr+1−i, π

∗
i �→ π∗

s+1−i, e �→ e.

(2.26)

We will soon see a diagrammatic interpretation of this isomorphism.
The superalgebra

HCr(z) := BCr,0(z)

is the Hecke–Clifford superalgebra, which first appeared in [Ols92, Definition 5.1]. It follows
from (2.26) that we have an isomorphism of superalgebras BC0,s(z)∼=HCs(z)

op.

Proposition 2.13. For r,s ∈ N, we have a surjective homomorphism of associative
superalgebras

BCr,s(z) � EndQ (z)(↑⊗r ⊗ ↓⊗s)

given by

ti �→↑⊗(i−1) ⊗ ⊗ ↑⊗(r−i−1) ⊗ ↓⊗s , 1≤ i≤ r−1,

t∗i �→↑⊗r ⊗ ↓⊗(i−1) ⊗ ⊗ ↓⊗(s−i−1) , 1≤ i≤ s−1,

e �→↑⊗(r−1) ⊗ ⊗ ↓⊗(s−1) , if r,s > 0,

πi �→↑⊗(i−1) ⊗ ⊗ ↑⊗(r−i) ⊗ ↓⊗s , 1≤ i≤ r,

π∗
i �→↑⊗r ⊗ ↓⊗(i−1) ⊗ ⊗ ↓⊗(s−i) , 1≤ i≤ s.

Proof. It is a straightforward computation to verify that the given map is well-defined,
that is that it respects the relations in Definition 2.12. Since all elements of B•(↑⊗r ⊗↓⊗s ,

↑⊗r ⊗ ↓⊗s) can clearly be written as compositions of the given images of the generators
of BCr,s(z), it follows from Proposition 2.11 that the map is also surjective.
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We will show in Corollary 4.8 that the homomorphism of Proposition 2.13 is actually
an isomorphism.

3. The quantum isomeric superalgebra

In this section, we recall the definition of the quantum isomeric superalgebra and
prove some results about it that will be used in the sequel (recall, as mentioned
in the Introduction, that this superalgebra is traditionally called the quantum queer
superalgebra). Throughout this section, we work over the field k = C(q) and we set
z := q− q−1. To simplify the expressions to follow, we first introduce some notation and
conventions. Fix an index set

I := {1,2, . . . ,n,−1,−2, . . . ,−n}.

We will use a,b,c,d to denote elements of {1,2, . . . ,n} and i,j,k,l to denote elements of I.
For i,j ∈ I, we define

p(i) :=

{
0 if i > 0,

1 if i < 0,
p(i,j) := p(i)+p(j), (3.1)

sgn(i) := (−1)p(i) = 1−2p(i), ϕ(i,j) := δ|i|,|j| sgn(j). (3.2)

If C is some condition, we define δC = 1 if the condition is satisfied, and δC = 0 otherwise.
Then, for i,j ∈ I, δij := δi=j is the usual Kronecker delta.

Let V denote the k-supermodule with basis vi, i ∈ I, where the parity of vi is given by

vi = p(i).

Using this basis, we will identify V with k
n|n as k-supermodules and Endk(V ) with

Matn|n(k) as associative superalgebras. Let Eij ∈ Matn|n(k) denote the matrix with a
1 in the (i,j)-position and a 0 in all other positions. Then the parity of Eij is p(i,j).
The general linear Lie superalgebra gln|n is equal to Endk(V ) as a k-supermodule, with
bracket given by the supercommutator

[X,Y ] =XY − (−1)X̄Ȳ Y X.

Let

J :=
∑
i∈I

(−1)p(i)E−i,i =

(
0 −In
In 0

)
∈Matn|n(k),

where In is the n×n identity matrix. Multiplication by J is an odd linear automorphism
of V, and J2 =−1. The isomeric Lie superalgebra qn is the Lie superalgebra equal to the
centraliser of J in gln|n:

qn :=
{
X ∈ gln|n : JX = (−1)X̄XJ

}
.

The elements

e0ab := Eab+E−a,−b, e1ab := Ea,−b+E−a,b, a,b ∈ {1,2, . . . ,n},

give a k-basis of qn. The parities of these elements are indicated by their superscripts.
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Define

Θ=
∑
i,j∈I

Θij ⊗Eij ∈ Endk(V )⊗2 =Matn|n(k)
⊗2, (3.3)

by

Θ=
∑
a,j

qδa,j−δa,−je0aa⊗Ejj + z
∑
a<b

e0ba⊗Eab− z
∑
a>b

e0ba⊗E−a,−b− z
∑
a,b

e1ba⊗E−a,b

=
∑
i,j

qϕ(i,j)Eii⊗Ejj + z
∑
i<j

(−1)p(i)(Eji+E−j,−i)⊗Eij .

(3.4)

The definition of Θ first appeared in [Ols92, Section 4], where it is denoted S. We use the
notation Θ to reserve the notation S for the antipode, which will play an important role
in the current paper. It follows immediately from the definition that

Θ(J ⊗1) = (J ⊗1)Θ. (3.5)

One can also verify that Θ satisfies the Yang–Baxter equation:

Θ12Θ13Θ23 =Θ23Θ13Θ12, (3.6)

where

Θ12 =Θ⊗1, Θ23 = 1⊗Θ, Θ13 =
∑
i,j∈I

Θij ⊗1⊗Eij .

It follows from (3.4) that

Θii =
∑
a

qδa,i−δa,−ie0aa for all i ∈ I, (3.7)

and so

ΘiiΘ−i,−i = 1 =Θ−i,−iΘi,i for all i ∈ I. (3.8)

When q = 1, we have Θ= 1⊗1, and so Θij = δij1V .
Note that all the second tensor factors appearing in (3.4) are upper triangular elements

of Matn|n(k). In addition, Θ is invertible with

Θ−1 =
∑
a,j

qδa,−j−δa,je0aa⊗Ejj − z
∑
a<b

e0ba⊗Eab+ z
∑
a>b

e0ba⊗E−a,−b+ z
∑
a,b

e1ba⊗E−a,b

=
∑
i,j

q−ϕ(i,j)Eii⊗Ejj − z
∑
i<j

(−1)p(i)(Eji+E−j,−i)⊗Eij . (3.9)

Note that Θ−1 is obtained from Θ by replacing q by q−1.

Definition 3.1. The quantum isomeric superalgebra Uq =Uq(qn) is the unital associative
superalgebra over k generated by elements uij , i,j ∈ I, i≤ j, subject to the relations

uiiu−i,−i = 1 = u−i,−iuii, L12L13Θ23 =Θ23L13L12, (3.10)
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where

L :=
∑
i,j∈I
i≤j

uij ⊗Eij, L12 = L⊗1, L13 =
∑
i,j∈I
i≤j

uij ⊗1⊗Eij, (3.11)

and the last equality in (3.10) takes place in Uq⊗Endk(V )⊗2. The parity of uij is p(i,j).

The quantum isomeric Lie superalgebra was first defined in [Ols92, Definition 4.2]. It
is a Hopf superalgebra with comultiplication determined by

Δ(L) :=
∑
i,j∈I
i≤j

Δ(uij)⊗Eij = L13L23, or, more explicitly, (3.12)

Δ(uij) =
∑
k∈I

i≤k≤j

(−1)p(i,k)p(k,j)uik⊗ukj =
∑
k∈I

i≤k≤j

uik⊗ukj (3.13)

(where the final equality holds since, for i≤ k≤ j, we must have p(k)= p(i) or p(k)= p(j)),
counit determined by

ε(L) :=
∑
i,j∈I
i≤j

ε(uij)Eij = 1 or, more explicitly, ε(uij) = δij, (3.14)

and antipode S determined by ∑
i,j∈I
i≤j

S(uij)⊗Eij = L−1. (3.15)

Note that, viewing L as an element of Matn|n(Uq), it follows from its definition and (3.10)
that it is triangular with invertible diagonal entries. Thus, L is indeed invertible. Since Uq

is a Hopf superalgebra, the supercategory Uq-smod of finite-dimensional Uq-supermodules
is naturally a rigid monoidal supercategory.

For k-supermodules U and W, define

flipU,W : U ⊗W →W ⊗U, flipU,W (u⊗w) = (−1)ūw̄w⊗u.

When U and W are clear from the context, we will sometimes write flip instead of flipU,W .
Note that

flipV ,V =
∑
i,j

(−1)p(j)Eij ⊗Eji.

Consider the opposite comultiplication

Δop = flip◦Δ.

Lemma 3.2. We have

Δop(L) :=
∑
i,j∈I
i≤j

Δop(uij)⊗Eij = L23L13. (3.16)
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Proof. We have

Δop(uij) = flip
∑
k∈I

i≤k≤j

(−1)p(i,k)p(k,j)uik⊗ukj =
∑
k∈I

i≤k≤j

ukj ⊗uik.

Since

L23L13 =

⎛⎝∑
i≤k

1⊗uik⊗Eik

⎞⎠⎛⎝∑
l≤j

ulj ⊗1⊗Elj

⎞⎠=
∑
k∈I

i≤k≤j

ukj ⊗uik⊗Eij,

the result follows.

The following result is stated in [Ols92, Theorem 6.1] without proof.

Proposition 3.3. The quantum isomeric superalgebra Uq is isomorphic is the unital
associative superalgebra over k generated by the elements uij, i,j ∈ I, i≤ j, subject to the
relations

uiiu−i,−i = 1 = u−i,−iuii, i ∈ I, (3.17)

and

(−1)p(i,j)p(k,l)qϕ(j,l)uijukl+zδi≤lδk≤j<lθ(i,j,k)uilukj +zδi≤−l<j≤−kθ(−i,− j,k)ui,−luk,−j

= qϕ(i,k)ukluij +zδk<i≤lδk≤jθ(i,j,k)uilukj +zδ−l≤i<−k≤jθ(−i,− j,k)u−i,lu−k,j, (3.18)

for all i,j,k,l ∈ I, i≤ j, k ≤ l, where θ(i,j,k) = (−1)p(i)p(j)+p(j)p(k)+p(i)p(k).

Proof. It suffices to prove that the relations (3.18) are equivalent to the second relation
in (3.10). Direct computation shows that

L12L13Θ23 =
∑

i≤j, k≤l

(−1)p(i,j)p(k,l)qϕ(j,l)uijukl⊗Eij ⊗Ekl

+ z
∑

i≤l, k≤j<l

θ(i,j,k)uilukj ⊗Eij ⊗Ekl+ z
∑

i≤−l<j≤−k

θ(−i,− j,k)ui,−luk,−j ⊗Eij ⊗Ekl

and

Θ23L13L12 =
∑

i≤j, k≤l

qϕ(i,k)ukluij ⊗Eij ⊗Ekl

+ z
∑

k<i≤l, k≤j

θ(i,j,k)uilukj ⊗Eij ⊗Ekl+ z
∑

−l≤i<−k≤j

θ(−i,− j,k)u−i,lu−k,j ⊗Eij ⊗Ekl.

The result follows.

Corollary 3.4.

a. We have uaaukl = qδa,|l|−δa,|k|ukluaa for all a ∈ {1,2, . . . ,n} and k,l ∈ I, k ≤ l.
b. The element u11u22 · · ·unn lies in the centre of Uq.
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Proof.

a. Setting i= j = a in (3.18) gives

qϕ(a,l)uaaukl+ zδk≤a<lualuka = qϕ(a,k)ukluaa+ zδk<a≤lualuka,

which implies

(qϕ(a,l)− zδk<a=l)uaaukl = (qϕ(a,k)− zδk=a<l)ukluaa.

When k = l, this becomes uaaukl = ukluaa, as desired. When k =−l, it becomes

(qδa,l − zδa,l)uaaukl = q−δa,lukluaa =⇒ uaaukl = ukluaa,

as desired.
Now suppose |k| �= |l|. If a /∈ {k,l}, then

uaaukl = qϕ(a,k)−ϕ(a,l)ukluaa = qδa,|l|−δa,|k|ukluaa.

If a= k, then

uaaukl = (q− z)ukluaa = q−1ukluaa.

Finally, if a= l, then

(q− z)uaaukl = ukluaa =⇒ uaaukl = qukluaa.

b. It follows from (a) that u11u22 · · ·unn commutes with all ukl, k ≤ l.

Lemma 3.5. As a unital associative superalgebra, Uq is generated by

ua,a+1, u−a−1,−a, uii, u−1,1, 1≤ a≤ n−1, i ∈ I. (3.19)

Proof. Let Ũq be the unital associative subsuperalgebra of Uq generated by the elements
(3.19). It is shown in [GJKK10, Theorem 2.1] that Uq is generated by

ua,a+1, u−a−1,−a, uii, u−a−1,a, u−a,a+1, u−b,b, 1≤ a≤ n−1, 1≤ b≤ n, i ∈ I.

Thus, it suffices to show that

u−a−1,a, u−a,a+1, u−b,b ∈ Ũq (3.20)

for 1≤ a≤ n−1 and 1≤ b≤ n. We prove this by induction on a.
First note that, for 1 ≤ a ≤ n− 1, taking i = −a, j = a, k = −a− 1, l = −a in (3.18)

gives

q−1u−a,au−a−1,−a = u−a−1,−au−a,a− zu−a,−au−a−1,a.

Taking i=−a, j = k = a and l = a+1 in (3.18) gives

u−a,aua,a+1+ zu−a,a+1uaa = qua,a+1u−a,a.

Taking i=−a−1, j = k =−a, l = a+1 in (3.18) gives

u−a−1,−au−a,a+1− zu−a−1,a+1u−a,−a+ zu−a−1,−a−1u−a,a = u−a,a+1u−a−1,−a.
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So we have

u−a−1,a = z−1uaau−a−1,−au−a,a− q−1z−1uaau−a,au−a−1,−a, (3.21)

u−a,a+1 = qz−1ua,a+1u−a,au−a,−a− z−1u−a,aua,a+1u−a,−a, (3.22)

u−a−1,a+1 = z−1u−a−1,−au−a,a+1uaa+u−a−1,−a−1u−a,auaa− z−1u−a,a+1u−a−1,−auaa.

(3.23)

Taking a = 1 in (3.21) and (3.22) shows that u−2,1,u−1,2 ∈ Ũq. Thus, (3.20) holds for
a = b = 1. Now suppose that 1 ≤ c ≤ n− 2, and that (3.20) holds for 1 ≤ a,b ≤ c. Then,
replacing a by c in (3.23) shows that u−c−1,c+1 ∈ Ũq. Replacing a by c+1 in (3.21) and
(3.22) then shows that u−c−2,c+1,u−c−1,c+2 ∈ Ũq. Hence, (3.20) holds for 1≤ a,b≤ c+1.
Thus, by induction, (3.20) holds for 1 ≤ a,b ≤ n− 1. Finally, taking a = n− 1 in (3.23)
shows that u−n,n ∈ Uq.

It will be useful for future arguments to compute the square of the antipode.

Proposition 3.6. The square of the antipode of Uq is given by S2(uij) = q2|j|−2|i|uij,
i,j ∈ I.

Proof. It follows from the defining relations that Uq is a Z-graded Hopf superalgebra,
where we define the degree of uij to be 2|j| − 2|i|. Thus, the map uij �→ q2|j|−2|i|uij

is a homomorphism of superalgebras. Since the antipode is an antihomomorphism of
superalgebras, its square is a homomorphism of superalgebras. Thus, by Lemma 3.5, it
suffices to prove that

S2(ua,a+1) = q2ua,a+1, S2(u−a−1,−a) = q−2u−a−1,−a, S2(uii) = uii, S2(u−1,1) = u−1,1,

for 1≤ a≤ n, i ∈ I.
Using the definition (3.15) of the antipode, which involves inverting an upper triangular

matrix, we see that

S(ua,a+1) =−u−a,−aua,a+1u−a−1,−a−1, S(u−a−1,−a) =−ua+1,a+1u−a−1,−auaa,

S(uii) = u−1
ii = u−i,−i, S(u−1,1) =−u11u−1,1u−1,−1.

By Corollary 3.4(a) and (3.17), we have

uaaukl = qδa,|l|−δa,|k|ukluaa and u−a,−aukl = qδa,|k|−δa,|l|uklu−a,−a, (3.24)

for all a ∈ {1,2, . . . ,n} and k,l ∈ I, k ≤ l. In particular,

u−a,−aua,a+1 = qua,a+1u−a,−a, ua+1,a+1ua,a+1 = qua,a+1ua+1,a+1, uiiukk = ukkuii,

for all a ∈ {1,2, . . . ,n} and i,k ∈ I. Thus,

S2(ua,a+1) =−S(u−a−1,−a−1)S(ua,a+1)S(u−a,−a)

= ua+1,a+1u−a,−aua,a+1u−a−1,−a−1uaa = q2ua,a+1.

The proof that S2(u−a−1,−a) = q−2u−a−1,−a is similar.
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Next, we have

S2(uii) = S(u−i,−i) = uii.

Finally, (3.24) implies that

u11u−1,1 = u−1,1u11 and u−1,−1u−1,1 = u−1,1u−1,−1.

Thus

S2(u−1,1) =−S (u11u−1,1u−1,−1) = u2
11u−1,1u

2
−1,−1 = u−1,1.

Corollary 3.7. The antipode S is invertible and

S−1(uij) = q2|i|−2|j|S(uij) i,j ∈ I. (3.25)

It follows from (3.6) and (3.8) that

ρ : Uq → Endk(V ), uij �→Θij, i,j ∈ I, (3.26)

defines a representation of Uq on V. The Uq-supermodule structure on the dual space
V ∗ := Homk(V ,k) is given by

(xf)(v) = (−1)x̄f̄f(S(x)v), x ∈ Uq, f ∈ V ∗, v ∈ V.

We have the natural evaluation map

ev : V ∗⊗V → k, f ⊗v �→ f(v). (3.27)

Let v∗i , i ∈ I, be the basis of V ∗ dual to the basis vi, i ∈ I, of V, so that

v∗i (vj) = δij, i,j ∈ I.

Then we have the coevaluation map

coev : k→ V ⊗V ∗, 1 �→
∑
i∈I

vi⊗v∗i . (3.28)

It is a straightforward exercise, using only the properties of Hopf superalgebras, to verify
that ev and coev are both homomorphisms of Uq-supermodules, where k is the trivial
Uq-supermodule, with action given by the counit ε.

Lemma 3.8. The map J ∈ Endk(V ) is an odd isomorphism of Uq-supermodules.

Proof. It follows from (3.3) and (3.5) that

ΘijJ = (−1)p(i,j)JΘij for all i,j ∈ I.

Since uij acts on V as Θij , it follows that J is an odd endomorphism of Uq-supermodules.
Since J2 =−1, it is an isomorphism.
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4. The incarnation superfunctor

In this section, we prove some of our main results. We describe a full monoidal
superfunctor from Q (z) to the category of Uq-supermodules, give explicit bases for the
morphism spaces in Q (z) and identify the endomorphism superalgebras of Q (z) with
walled Brauer–Clifford superalgebras.

Until further notice later in this section, we assume that k = C(q) and z = q− q−1.
Recalling the definition (3.4) of Θ, define

T := flip◦Θ, so that T−1 =Θ−1 ◦flip . (4.1)

Thus

T =
∑
i,j

(−1)p(i)qϕ(i,j)Eji⊗Eij + z
∑
i<j

Eii⊗Ejj − z
∑
i<j

(−1)p(i,j)Ei,−i⊗E−j,j,

T−1 =
∑
i,j

(−1)p(i)q−ϕ(j,i)Eji⊗Eij − z
∑
i>j

Eii⊗Ejj − z
∑
i<j

(−1)p(i,j)Ei,−i⊗E−j,j .

Therefore, we have

T (vi⊗vj) = (−1)p(i)p(j)qϕ(i,j)vj ⊗vi+ zδi<jvi⊗vj + zδi+j>0(−1)p(j)v−i⊗v−j,

T−1(vi⊗vj) = (−1)p(i)p(j)q−ϕ(j,i)vj ⊗vi− zδi>jvi⊗vj + zδi+j>0(−1)p(j)v−i⊗v−j,

and

T −T−1 = z1V⊗V . (4.2)

Lemma 4.1. The map T is an isomorphism of Uq-supermodules.

Proof. Since it is invertible, it remains to show that it is a homomorphism of Uq-
supermodules. To do this, it suffices to show that, as operators on V ⊗V , we have an
equality

TΔ(uij) = Δ(uij)T for all i,j ∈ I.

Composing on the left with flip, it suffices to show that

ΘΔ(uij) = Δop(uij)Θ for all i,j ∈ I.

This is equivalent to showing that∑
i,j∈I

ΘΔ(uij)⊗Eij =
∑
i,j∈I

Δop(uij)Θ⊗Eij .

Since uij acts on V as Θij , this is equivalent, using (3.12) and (3.16), to

Θ12Θ13Θ23 =Θ23Θ13Θ12.

But this is precisely the Yang–Baxter equation (3.6).

Remark 4.2. The map T is a special case of a map TMV to be introduced in (5.6),
where M = V . Then Lemma 4.1 will be a special case of Proposition 5.4.
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For the computations to follow, it is useful to note that, for i,j ∈ I, i < j, we have

z
∑
k∈I

i<k<j

(−1)p(k)q2|k| = q2|j|−sgn(j)− q2|i|+sgn(i), (4.3)

z
∑
k∈I

i<k<j

(−1)p(k)q−2|k| = q−2|i|−sgn(i)− q−2|j|+sgn(j). (4.4)

Theorem 4.3. For each n∈N, there exists a unique monoidal superfunctor Fn : Q (z)→
Uq-smod, such that

Fn(↑) = V , Fn(↓) = V ∗,

Fn( ) = T, Fn( ) = ev, Fn( ) = J.

Furthermore, Fn( ) = T−1, Fn( ) = coev and

Fn( ) : vi⊗v∗j �→ (−1)p(i)p(j)q−ϕ(i,j)v∗j ⊗vi

− zδij
∑
k>i

(−1)p(i,k)q2|i|−2|k|v∗k⊗vk− zδi,−j

∑
k>j

(−1)p(k)q2|i|−2|k|v∗k⊗v−k. (4.5)

We call Fn the incarnation superfunctor. Before giving the proof of Theorem 4.3, we
compute, using the definitions (2.11) to (2.13), the images under F of the leftward and
downward crossings:

Fn( ) : v∗i ⊗vj �→ (−1)p(i)p(j)qϕ(j,i)vj ⊗v∗i

+ zδij
∑
k>i

vk⊗v∗k+ zδi,−j

∑
k>i

(−1)p(k)v−k⊗v∗k, (4.6)

Fn( ) : v∗i ⊗vj �→ (−1)p(i)p(j)q−ϕ(i,j)vj ⊗v∗i

− zδij
∑
k<i

vk⊗v∗k+ zδi,−j

∑
k>i

(−1)p(k)v−k⊗v∗k, (4.7)

Fn( ) : v∗i ⊗v∗j �→ (−1)p(i)p(j)qϕ(i,j)v∗j ⊗v∗i

+ zδi>jv
∗
i ⊗v∗j − zδi+j<0(−1)p(i)v∗−i⊗v∗−j, (4.8)

Fn( ) : v∗i ⊗v∗j �→ (−1)p(i)p(j)q−ϕ(j,i)v∗j ⊗v∗i

− zδi<jv
∗
i ⊗v∗j − zδi+j<0(−1)p(i)v∗−i⊗v∗−j, (4.9)

the right cup and cap

Fn( ) : vi⊗v∗j �→ δij(−1)p(i)q2|i|−2n−1, Fn( ) : 1 �→
∑
i∈I

(−1)p(i)q2n−2|i|+1v∗i ⊗vi

(4.10)
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and the positive right crossing

Fn( ) : vi⊗v∗j �→ (−1)p(i)p(j)qϕ(j,i)v∗j ⊗vi

+ zδij
∑
k<i

(−1)p(i,k)q2|i|−2|k|v∗k⊗vk− zδi,−j

∑
k>j

(−1)p(k)q2|i|−2|k|v∗k⊗v−k

(see Remark 5.6 for another description of the images under Fn of the various crossings).

Proof of Theorem 4.3. We first show existence, taking Fn( ) = T−1, Fn( ) = coev

and Fn( ) as in (4.5). We must show that Fn respects the relations in Definition 2.1.
The first two relations in (2.7) are clear. To verify the third relation in (2.7), we compute

vi⊗v∗i

Fn

( )
�−−−−−−−→ (−1)p(i)q−sgn(i)v∗i ⊗vi− z

∑
k>i

(−1)p(i,k)q2|i|−2|k|v∗k⊗vk

Fn

( )
�−−−−−−−→ vi⊗v∗i + z

∑
l>i

q−sgn(i)(−1)p(i)vl⊗v∗l

− z
∑
l>i

(−1)p(i)q2|i|−2|l|+sgn(l)vl⊗v∗l − z2
∑

l>k>i

(−1)p(i,k)q2|i|−2|k|vl⊗v∗l

= vi⊗v∗i +(−1)p(i)zq2|i|
∑
l>i

(
q−2|i|−sgn(i)− q−2|l|+sgn(l)− z

∑
k:i<k<l

(−1)p(k)q−2|k|

)
vl⊗v∗l

(4.4)
= vi⊗v∗i ,

and

vi⊗v∗−i

Fn

( )
�−−−−−−−→ qsgn(i)v∗−i⊗vi−z

∑
k>−i

(−1)p(k)q2|i|−2|k|v∗k ⊗v−k

Fn

( )
�−−−−−−−→ vi⊗v∗−i+z

∑
l>−i

qsgn(i)(−1)p(l)v−l⊗v∗l

−z
∑
l>−i

(−1)p(l)q2|i|−2|l|+sgn(l)v−l⊗v∗l −z2
∑

l>k>−i

q2|i|−2|k|(−1)p(k,l)v−l⊗v∗l

= vi⊗v∗−i+zq2|i|
∑
l>−i

(−1)p(l)
(
q−2|i|+sgn(i)− q−2|l|+sgn(l)−z

∑
k:−i<k<l

(−1)p(k)q−2|k|

)
v−l⊗v∗l

(4.4)
= vi⊗v∗−i,

and, for i �=±j,

vi⊗v∗j

Fn

( )
�−−−−−−−→ (−1)p(i)p(j)vj ⊗v∗i

Fn

( )
�−−−−−−−→ vi⊗v∗j .
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Thus

Fn

( )
= Fn

( )
◦
( )

= Fn

( )
.

So Fn respects the third relation in (2.7). Since V ⊗V ∗ is finite dimensional, it follows
that we also have

Fn

( )
= Fn

( )
◦
( )

= Fn

( )
.

Hence, Fn also respects the fourth relation in (2.7).
Next we verify the braid relation (the last relation in (2.7)). The left-hand side is

mapped by Fn to the composite

(T ⊗1V )(1V ◦T )(T ⊗1V ) = flip12Θ12flip23Θ23flip12Θ12 = flip12flip23flip12Θ23Θ13Θ12.

Similarly, the right-hand side is mapped by Fn to the composite

(1V ⊗T )(T ⊗1V )(1V ⊗T ) = flip23Θ23flip12Θ12flip23Θ23 = flip23flip12flip23Θ12Θ13Θ23.

Since

flip12flip23flip12 = flip23flip12flip23 : u⊗v⊗w �→ (−1)ūv̄+ūw̄+v̄w̄w⊗v⊗u,

and Θ23Θ13Θ12 =Θ12Θ13Θ23 by (3.6), we see that Fn respects the braid relation.
Since

Fn

( )
−Fn

( )
= T −T−1 (4.2)

= z1V⊗V ,

the superfunctor Fn respects the skein relation (2.8). We also have

Fn

( )
= J2 =−1V ,

and so Fn respects the first relation in (2.9). Next, we compute

Fn

( )
= flip◦Θ◦ (J ⊗1)

(3.5)
= flip◦(J ⊗1)◦Θ= (1⊗J)◦flip◦Θ= Fn

( )
.

Thus, Fn preserves the second relation in (2.9). For the third equality in (2.9), we compute

Fn

( )
: 1

Fn( )�−−−−−→
∑
k∈I

vk⊗v∗k
J⊗1�−−−→

∑
k∈I

(−1)p(k)v−k⊗v∗k
Fn( )�−−−−−→ 0.

For the last equality in (2.9), we compute

Fn

( )
: 1

Fn( )�−−−−−→
∑
k∈I

vk⊗v∗k
Fn( )�−−−−−→

∑
k∈I

(−1)p(k)q2|k|−2n−1 = 0.

Finally, the relations (2.10) are straightforward to verify.
It remains to prove uniqueness. Suppose Fn is a monoidal superfunctor as described

in the first sentence of the statement of the theorem. Then Fn( ) and Fn( ) are
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uniquely determined by the fact that they must be inverse to Fn( ) and Fn( ),
respectively. Next, suppose that

Fn( ) : 1 �→
∑
i,j

aijvi⊗v∗j , aij ∈ C(q).

Then, for all k ∈ I,

vk = Fn

( )
(vk) = Fn

( )
(vk)

Fn

(
⊗

)
�−−−−−−−−→

∑
i,j∈I

aijvi⊗v∗j ⊗vk
Fn

(
⊗

)
�−−−−−−−−→

∑
i∈I

aikvi.

It follows that aij = δij for all i,j ∈ I, and so Fn( ) = coev.

To simplify notation, we will start writing objects of Q (z) as sequences of ↑’s and ↓’s,
omitting the ⊗ symbol. For such an object X, we define V X := Fn(X), and we let #X

denote the length of the sequence.

Theorem 4.4. The superfunctor Fn is full for all n ∈N. Furthermore, the induced map

Fn : HomQ (z)(X,Y )→HomUq
(V X,V Y ) (4.11)

is an isomorphism when #X+#Y ≤ 2n.

Proof. Our proof is similar to that of [BCK19, Theorem 4.1], which treats the case z = 0.
We need to show that, for all objects X and Y in Q (z), the map (4.11) is surjective, and
that it is also injective when #X+#Y ≤ 2n. Suppose that X (respectively, Y ) is a tensor
product of rX (respectively, rY ) copies of ↑ and sX (respectively, sY ) copies of ↓. Consider
the following commutative diagram:

HomQ (z)(X,Y ) HomQ (z)(↓sX↑rX , ↑rY ↓sY ) HomQ (z)(↑rX+sY , ↑rY +sX )

HomUq

(
V X,V Y

)
HomUq

(
V ↓sX ↑rX

,V ↑rY ↓sY
)

HomUq

(
V ⊗(rX+sY ),V ⊗(rY +sX)

)
.

∼=

Fn Fn

∼=

Fn

∼= ∼=

The top-left horizontal map is given by composing on the top and bottom of diagrams
with to move ↑’s on the top to the left and ↑’s on the bottom to the right. The bottom-

left horizontal map is given analogously, using Fn( ). The right horizontal maps are
the usual isomorphisms that hold in any rigid monoidal supercategory. In particular, the
top-right horizontal map is the C(q)-linear isomorphism given on diagrams by

· · · · · ·

· · · · · ·
�→

· · ·
...· · ·

... · · · · · ·
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with inverse

· · · · · ·

· · · · · ·
�→

... · · ·

· · ·· · · ...

· · ·
,

where the rectangle denotes some diagram.
Since all the horizontal maps are isomorphisms, it suffices to show that the rightmost

vertical map has the desired properties. Thus, we must show that the map

Fn : HomQ (z)(↑r , ↑s)→HomUq
(V ⊗r,V ⊗s) (4.12)

is surjective for all r,s ∈N, and that it is injective when r+s≤ 2n. We first consider the
case where r �= s. Let x= u11u22 · · ·unn be the central element of Corollary 3.4(b). Since
uii acts on V by Θii, it follows from (3.7) that x acts on V as multiplication by q. By
(3.13), we have Δ(x) = x⊗x. Thus, x acts on V ⊗r as multiplication by qr. Since x is
central, this implies that HomUq

(V ⊗r,V ⊗s) = 0. Since we also have HomQ (z)(↑r , ↑s) = 0
in this case, by Proposition 2.11, the map (4.12) is an isomorphism when r �= s.

Now suppose r = s, and consider the composite

HCr(z)
ϕ−→→ EndQ (z)(↑r)

Fn−−→ EndUq
(V ⊗r), (4.13)

where ϕ is the surjective homomorphism of Proposition 2.13 with s= 0. This composite
is precisely the map of [Ols92, Theorem 5.2]. Surjectivity is asserted, without proof, in
[Ols92, Theorem 5.3]. For the more precise statement, with proof, that this map is also
an isomorphism when #X+#Y = 2r ≤ 2n, see [BGJ+16, Theorem 3.28]. It follows that
Fn : EndQ (z)(↑r)→EndUq

(V ⊗r) is always surjective, and that it is an isomorphism when
r ≤ n, as desired.

Note that #X+#Y is twice the number of strands in any string diagram representing
a morphism in Q (z) from X to Y. Thus, Theorem 4.4 asserts that Fn induces an
isomorphism on morphism spaces whenever the number of strands is less than or equal
to n.

We now loosen our assumption on the ground field. For the remainder of this section

k isanarbitrary commutativering of characteristicnotequal totwo, and z ∈ k.

We can now improve Proposition 2.11.

Theorem 4.5. For any objects X,Y of Q (z), the k-supermodule HomQ (z)(X,Y ) is free
with basis B•(X,Y ).

Proof. In light of Proposition 2.11, it remains to prove that the elements of B•(X,Y )

are linearly independent. We first prove this when k = C(z). Consider the superalgebra
homomorphisms (4.13). By [BGJ+16, Theorem 3.28], the composite Fn ◦ϕ, which is the
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map denoted ρr,0n,q there, is an isomorphism for n≥ r. Since the map ϕ is independent of
n, it follows that ϕ is injective, and hence an isomorphism. Thus,

dimkEndQ (z)(↑r) = dimkHCr(z) = r!2r,

where the last equality is [JN99, Proposition 2.1] (the statement in [JN99, Proposition
2.1] is over the field C(q), with z = q− q−1, but the proof is the same over C(z)). Now
suppose that X (respectively, Y ) is a tensor product of rX (respectively, rY ) copies of ↑
and sX (respectively, sY ) copies of ↓. As in the proof of Theorem 4.4, we have a linear
isomorphism

HomQ (z)(X,Y )∼=HomQ (z)(↑rX+sY , ↑rY +sX ).

Thus

dimkEndQ (z)(X,Y ) =

{
k!2k if k := rX +sY = rY +sX,

0 otherwise.

This dimension is equal to the number of elements of B•(X,Y ). Indeed, there are k!(X,Y )-
matchings and 2k ways of adding Clifford tokens to the strings in a positive reduced lift.
It follows that B•(X,Y ) is a basis for EndQ (z)(↑r). This completes the proof of Theorem
4.5 for k= C(z).

To complete the proof over more general base rings, note that C(q) is a free Z[z]-module,
with z acting as q− q−1. Thus, any linear dependence relation over Z[z] yields a linear
dependence relation over C(q) after extending scalars. Therefore, it follows from the above
that the elements of B•(↑r , ↑r) are a basis over Z[z] and hence, by extension of scalars,
over any commutative ring k of characteristic not equal to two and z ∈ k.

Remark 4.6. Taking z=0 in Theorem 4.5 recovers the basis theorem [BCK19, Theorem
3.4] for the oriented Brauer–Clifford supercategory (see Lemma 2.9 and Remark 2.10).

Corollary 4.7. Let X =X1⊗·· ·⊗Xr and Y = Y1⊗·· ·⊗Ys be objects of Q (z) for Xi,Yj ∈
{↑ , ↓}. Then HomQ (z)(X,Y ) = 0 if the cardinalities of the sets (2.24) are not equal. If they
are equal (which implies that r+s is even), then HomQ (z)(X,Y ) is a free k-supermodule
with even and odd parts each of rank k!2k−1, where k = r+s

2 is the number of strings in
the elements of B(X,Y ).

Proof. This follows immediately from Theorem 4.5. If the sets (2.24) have the same
cardinality, then the number of (X,Y )-matchings is k! and there are 2k ways of adding
Clifford tokens to the strings, half of which yield even string diagrams.

Corollary 4.8. The homomorphism of Proposition 2.13 is an isomorphism of associative
superalgebras

BCr,s(z)
∼=−→ EndQ (z)(↑r↓s).

Proof. By Proposition 2.13, the map is surjective. When k=C(q), one can then conclude
that it is an isomorphism by comparing dimensions. Indeed, by Corollary 4.7 and
[BGJ+16, Corollary 3.25], we have
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dimC(q)BCr,s(z) = (r+s)!2r+s = dimC(q)EndQ (z)(↑r↓s).

More generally, one can argue as in Step 1 of the proof of [JK14, Theorem 5.1] to show
that BCr,s(z) has a spanning set that maps to the basis B•(↑r↓s , ↑r↓s) of EndQ (z)(↑r↓s).
It follows that this spanning set is linearly independent, hence a basis of BCr,s(z).

Corollary 4.9. Let X =X1⊗·· ·⊗Xm be an object of Q (z) for Xi ∈ {↑ , ↓}. If r is the
number of i ∈ {1, . . . ,m}, such that Xi =↑, then EndQ (z)(X)∼=BCr,m−r(z) as associative
superalgebras.

Proof. It follows from the third and fourth equalities in (2.7) that : ↑ ⊗ ↓ → ↓ ⊗ ↑
is an isomorphism with inverse . Hence, X ∼=↑⊗r ⊗ ↓⊗(m−r), and so the result follows
from Corollary 4.8.

As a special case of Corollary 4.9, we have an isomorphism of associative superalgebras
BCr,s(z) ∼= EndQ (z)(↓s↑r). This recovers [BGJ+16, Theorem 4.19], which describes
the walled Brauer–Clifford superalgebras in terms of bead tangle superalgebras. When
converting string diagrams representing endomorphisms in Q (z) to the bead tangle
diagrams of [BGJ+16, Section 4], one should forget the orientations of strings, and then
rotate diagrams by 180°. This transformation is needed since the convention in [BGJ+16,
Section 4] for composing diagrams is the opposite of ours.

Remark 4.10. The full monoidal subsupercategory of Uq-smod generated by V and V ∗

is not semisimple. Indeed, it follows from Theorem 4.4 that, for n≥ 2, EndUq
(V ⊗V ∗) is

isomorphic to EndQ (z)(↑↓), which, by Theorem 4.5, has basis

, , , , , , , .

By the last equalities in (2.17) and (2.20), the span of the last four diagrams above is
a nilpotent ideal. Thus, EndUq

(V ⊗V ∗) is not semisimple. Note, however, that the full
monoidal subsupercategory of Uq-smod generated by V is semisimple (see [GJKK10,
Theorem 6.5]).

5. The chiral braiding

This section is the start of the second part of the current paper. Our goal is to define and
study an affine version of the quantum isomeric supercategory. For braided monoidal
supercategories, there is a general affinisation procedure (see [MS21]). However, the
supercategory Q (z) is not braided since the Clifford dots do not slide through crossings
both ways. This corresponds, under the incarnation superfunctor, to the fact that Uq

is not a quasitriangular Hopf superalgebra. In this section, we discuss a chiral braiding,
which is like a braiding but only natural in one argument. We begin this section with the
assumption that k is an arbitrary commutative ring of characteristic not equal to two,
and z ∈ k.
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Definition 5.1. Let W (z) be the strict monoidal supercategory obtained from Q (z) by
adjoining an additional generating object and two additional even morphisms

: ⊗ ↑ → ↑ ⊗ , : ↑ ⊗ → ⊗ ↑ ,

subject to the relations

= , = , = , = , = ,

(5.1)

where

:= and := . (5.2)

Note that we do not have morphisms corresponding to a red strand passing under a
black strand. We also do not have red cups or caps.

Lemma 5.2. The following relations hold in W (z):

= , = , = , = . (5.3)

Proof. We compute
(5.2)
=

(2.15)
= .

The proofs of the remaining equalities are analogous.

Proposition 5.3. In W (z), we have

f

· · ·

· · · =
f

· · ·

· · · and
f

· · ·

· · ·
=

f

· · ·

· · · , (5.4)

where f is any string diagram in Q (z) not containing Clifford tokens.

Proof. First note that the second equality in (5.4) follows from the first after composing
on the top and bottom with the appropriate red-black crossings and using the first four
relations in (5.1). Therefore, we prove only the first equality. It suffices to prove it for f
equal to each of the generating morphisms , , , , . Since

= ,

it is also enough to show it holds for f ∈ { , , , , , }.
For f = , the first equality in (5.4) follows from the last relation in (5.1). Composing

both sides of the last relation in (5.1) on the top with and on the bottom with

shows that the first equality in (5.4) also holds with f = .
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To prove that the first equality in (5.4) holds with f = and f = , we must show
that

= and = . (5.5)

The first relation in (5.5) follows from the first relation in (5.3) after composing on the
bottom with and using the third relation in (5.1). Similarly, the second relation in

(5.5) follows from the second relation in (5.3) after composing on the top with and
using the fourth relation in (5.1). The proofs for f = and f = are analogous, using
the last two equalities in (5.3).

In the remainder of this section, we will be discussing connections to Uq-smod. Thus,
we now begin supposing that k = C(q) and z = q− q−1. Recall the definition of L from
(3.11). For a finite-dimensional Uq-supermodule M, we let ρM : Uq → Endk(M) denote
the corresponding representation. We then define

LM = (ρM ⊗1V )(L) =
∑
i,j∈I
i≤j

ρM (uij)⊗Eij ∈ Endk(M)⊗Endk(V ).

In particular, we have LV =Θ (see (3.26)).

Proposition 5.4. For any M ∈ Uq-smod, the map

TMV := flip◦LM : M ⊗V → V ⊗M (5.6)

is an isomorphism of Uq-supermodules. Furthermore, for all f ∈HomUq
(M,N), we have

TNV ◦ (f ⊗1V ) = (1V ⊗f)◦TMV . (5.7)

Proof. It is clear that TMV is invertible, with

T−1
MV = (ρM ⊗1V )(L

−1)◦flip (3.15)
=

⎛⎝∑
i≤j

ρM (S(uij))⊗Eij

⎞⎠◦flip . (5.8)

To show that TMV is a homomorphism of Uq-supermodules, it suffices to prove that it
commutes with the action of ukl, k,l ∈ I, k ≤ l. By (3.12), it is enough to show that

flip12L12
ML13

ML23
V = L13

V L23
M flip12L12

M as maps M ⊗V ⊗V → V ⊗M ⊗V. (5.9)

Composing both sides of (5.9) on the left with the invertible map flip12, and using the
fact that LV =Θ, we see that (5.9) is equivalent to

L12
ML13

MΘ23 =Θ23L13
ML12

M as maps M ⊗V ⊗V →M ⊗V ⊗V , (5.10)

which follows from the last equality in (3.10).
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It remains to prove (5.7). For f ∈HomUq
(M,N), m ∈M and v ∈ V , we have

TNV ◦ (f ⊗1V )(m⊗v) = flip◦

⎛⎝∑
i≤j

(−1)(f̄+m̄)p(i,j)uijf(m)⊗Eijv

⎞⎠
= flip◦

⎛⎝∑
i≤j

(−1)m̄p(i,j)f(uijm)⊗Eijv

⎞⎠
= flip◦(f ⊗1V )◦

⎛⎝∑
i≤j

uij ⊗Eij

⎞⎠(m⊗v)

= (1V ⊗f)◦TMV (m⊗v).

Note that TV V = T (see (4.1)), and so Proposition 5.4 is a generalisation of Lemma 4.1.
Now, for i,j ∈ I, define

E∗
ij : V

∗ → V ∗, f �→ (−1)p(i,j)f̄f ◦Eij .

It follows that

E∗
ijv

∗
k = δik(−1)p(i)+p(i)p(j)v∗j and E∗

ijE
∗
kl = δil(−1)p(i,j)p(k,l)E∗

kj, (5.11)

for all i,j,k,l ∈ I.

Theorem 5.5. For each Uq-supermodule M, the superfunctor Fn of Theorem 4.3 extends
to a unique monoidal superfunctor FM

n : W (z)→ Uq-smod, such that

FM
n ( ) =M and FM

n ( ) = TMV .

Furthermore, FM
n ( ) = T−1

MV ,

FM
n ( ) = flip◦

⎛⎝∑
i≤j

S−1(uij)⊗E∗
ij

⎞⎠ and FM
n ( ) =

⎛⎝∑
i≤j

uij ⊗E∗
ij

⎞⎠◦flip .

(5.12)

Proof. By Theorem 4.3, to show that FM
n is well-defined, it suffices to show that FM

n

respects the relations (5.1). First of all, uniqueness of the inverse implies that FM
n ( ) =

T−1
MV , and then the first two relations in (5.1) are satisfied.
Next we show, using (5.2), that the equalities (5.12) must hold. For m ∈M and k ∈ I,

we have

FM
n ( ) :m⊗v∗k

Fn( )⊗1M⊗1V ∗�−−−−−−−−−−−−→
∑
l

(−1)p(l)q2n−2|l|+1v∗l ⊗vl⊗m⊗v∗k

1V ∗⊗T−1
MV ⊗1V ∗�−−−−−−−−−−→

∑
l

∑
i≤j

(−1)m̄(p(i,j)+p(l))+p(l)q2n−2|l|+1v∗l

⊗S(uij)m⊗Eijvl⊗v∗k
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=
∑
i≤j

(−1)m̄p(i)+p(j)q2n−2|j|+1v∗j ⊗S(uij)m⊗vi⊗v∗k

1V ∗⊗1M⊗Fn( )�−−−−−−−−−−−−→
∑
j:j≥k

(−1)m̄p(k)+p(j,k)q2|k|−2|j|v∗j ⊗S(ukj)m

(5.11)
=

(3.25)
flip◦

⎛⎝∑
i≤j

S−1(uij)⊗E∗
ij

⎞⎠(m⊗v∗k).

Next, we compute

FM
n ( ) : v∗k⊗m

1V ∗⊗1M⊗coev�−−−−−−−−−−→
∑
l

v∗k⊗m⊗vl⊗v∗l

1V ∗⊗TMV ⊗1V ∗�−−−−−−−−−−→
∑
l

∑
i≤j

(−1)m̄p(i,j)v∗k⊗flip(uijm⊗Eijvl)⊗v∗l

=
∑
i≤j

(−1)m̄p(i,j)v∗k⊗flip(uijm⊗vi)⊗v∗j

=
∑
i≤j

(−1)m̄p(j)+p(i)+p(i)p(j)v∗k⊗vi⊗uijm⊗v∗j

ev⊗1M⊗1V ∗�−−−−−−−−→
∑
j:j≥k

(−1)m̄p(j)+p(k)+p(k)p(j)ukjm⊗v∗j

(5.11)
=

⎛⎝∑
i≤j

uij ⊗E∗
ij

⎞⎠◦flip(v∗k⊗m).

Now, for the third relation in (5.1), we compute

FM
n

( )
=

∑
i≤j

∑
k≤l

(−1)p(i,j)p(k,l)uijS
−1(ukl)⊗E∗

ijE
∗
kl

(5.11)
=

∑
k≤i≤j

uijS
−1(uki)⊗E∗

kj

=
∑
k≤j

S−1

⎛⎝ ∑
i:k≤i≤j

ukiS(uij)

⎞⎠⊗E∗
kj =

∑
k≤j

S−1(ε(ukj))⊗E∗
kj

(3.14)
=

∑
k≤j

δkj ⊗E∗
kj = 1M ⊗1V .

The proof of the fourth relation in (5.1) is analogous.
For the last relation in (5.1), we compute that FM

n sends the left-hand side to the map
M ⊗V ⊗2 → V ⊗2⊗M given by

T 12
V V T

23
MV T

12
MV = flip12Θ12flip23L23flip12L12 = flip12flip23flip12Θ23L13L12.

On the other hand, FM
n sends the right-hand side to the map

T 23
MV T

12
MV T

23
V V = flip23L23flip12L12flip23Θ23 = flip23flip12flip23L12L13Θ23.

Then the last relation in (5.1) follows from (3.10) and the fact that flip12flip23flip12 =

flip23flip12flip23.
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The quantum isomeric supercategory 1109

Remark 5.6. There are natural superfunctors F↑,F↓ : W (z)→ Q (z) sending to ↑ and
↓, respectively. It is then straightforward to verify that following diagrams commute:

W (z)

Q (z) Uq-smod

F↑
FV

n

Fn

W (z)

Q (z) Uq-smod

F↓
FV ∗

n

Fn

.

In particular, we have

Fn( ) = TV V ∗, Fn( ) = T−1
V V ∗, Fn( ) = TV ∗V , Fn( ) = T−1

V ∗V ,

Fn( ) = TV ∗V ∗, Fn( ) = T−1
V ∗V ∗ .

For M ∈ Uq-smod, we will denote the image of a string diagram in W (z) under FM
n by

labeling the red strands by M. Thus, for example

M

= FM
n ( ) = TMV ,

M

= FM
n ( ) = T−1

MV .

Then (5.7) is equivalent to

M

N

f
=

M

N

f

for all f ∈HomUq
(M,N). (5.13)

Lemma 5.7. For any Uq-supermodules M and N, we have

M⊗N

=

M N

. (5.14)

Proof. We have

TM⊗N,V
(3.12)
= flipM⊗N,V ◦L13L23 = (flipMV ⊗1N )◦ (1M ⊗flipNV )◦L13L23

= (flipMV ⊗1N )◦L12 ◦ (1M ⊗flipNV )◦L23 = (TM ⊗1N )◦ (1M ⊗TN ).

The relations (5.1), (5.4), (5.13) and (5.14) show that , , and , together
with the crossings in Q (z), almost endow W (z) with the structure of a braided monoidal
category. However, we do not truly have a braiding since, for example, we do not have
a morphism corresponding to a red strand passing under a black strand. Furthermore,
closed Clifford tokens do not pass under crossings. In general, we can define a crossing
for any sequence of strands in W (z) passing over any sequence of strands in Q (z). All
morphisms in W (z) pass over such crossings, but only some morphisms in Q (z) pass
under them. In other words, the crossings are only natural in one argument. Because of
this asymmetry, we refer to this structure as a chiral braiding.

We now restrict our attention to diagrams with a single red strand. Let W1(z) denote
the full subsupercategory of W (z) on objects that are tensor products of ↑, ↓ and ,
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with exactly one occurrence of . Thus, objects of W1(z) are of the form X ⊗ ⊗Y for
X,Y ∈ Q (z). Note that W1(z) is not a monoidal supercategory.

Theorem 5.8. There is a unique superfunctor

F•
n : W1(z)→ SEnd (Uq-smod)

defined as follows: On an object X ∈ W1(z), F•
n(X) is the superfunctor

F•
n(X) : Uq-smod → Uq-smod, M �→ FM

n (X).

On a morphism f ∈ HomW1(z)(X,Y ), F•
n(f) is the natural transformation F•

n(X) →
F•

n(Y ) whose M-component, for M ∈ Uq-smod, is

F•
n(f)M = FM

n (f).

Proof. It follows from (5.13) that the given definition is natural in M.

6. The quantum affine isomeric supercategory

In this section, we introduce an affine version of the quantum isomeric supercategory and
examine some of its properties. Throughout this section, k is an arbitrary commutative
ring of characteristic not equal to two, and z ∈ k.

Definition 6.1. The quantum affine isomeric supercategory AQ (z) is the strict monoidal
supercategory obtained from Q (z) by adjoining an additional odd morphism

: ↑ → ↑

subject to the relations

=− , = , = 0. (6.1)

We refer to as an open Clifford token. To emphasise the difference, we will henceforth
refer to as a closed Clifford token.

It is important to note that we do not impose a relation for sliding open Clifford tokens
past closed ones. It follows immediately from the defining relations that we have the
following symmetry of AQ (z).

Lemma 6.2. There is a unique isomorphism of monoidal supercategories

AQ (z)→ AQ (−z)

determined on objects by ↑ �→ ↑, ↓ �→ ↓ and sending

�→ , �→ , �→ , �→ , �→ , �→ .

On arbitrary diagrams, the isomorphism acts by interchanging open and closed Clifford
tokens and flipping crossings.
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Define

:= . (6.2)

It follows that

= . (6.3)

Lemma 6.3. The following relations hold in AQ (z):

= , = , = , = , = 0, (6.4)

= + z
(

−
)
, = + z

(
−

)
, (6.5)

where, in (6.4), the relations hold for all orientations of the strands.

Proof. This follows immediately from Lemmas 2.4, 2.5 and 6.2.

It follows from the above discussion that the isomorphisms Ω−, Ω� and Ω↔ defined in
Section 2 extend to isomorphisms of monoidal supercategories

Ω− : AQ (z)
∼=−→ AQ (−z), Ω� : AQ (z)

∼=−→ AQ (z)op, Ω↔ : AQ (z)
∼=−→ AQ (z)rev.

These are defined as in Section 2 for the generators of Q (z) and, on the open Clifford
token, are defined by

Ω−( ) = , Ω�( ) = , Ω↔( ) = .

Furthermore, AQ (z) is strictly pivotal, with duality superfunctor

Ω↔ ◦Ω� : AQ (z)
∼=−→ (AQ (z)op)rev.

Remark 6.4. Note that, while Q (0) is isomorphic to the oriented Brauer–Clifford
supercategory of [BCK19, Definition 3.2], as described in Lemma 2.9, the supercategory
AQ (z) does not reduce to the definition [BCK19, Definition 3.2] of the degenerate affine
oriented Brauer–Clifford supercategory when z = 0. This is analogous to the fact that the
degenerate affine Hecke algebra of type A is not simply the q = 1 specialisation of the
affine Hecke algebra of type A.

Define, for k ∈ Z,

k :=

...
}

k tokens if k ≥ 0 and k :=

...
}

-k tokens if k < 0. (6.6)

Note that both morphisms in (6.6) are of parity k(mod 2). We then define, for k ∈ Z,

k :=
k

, := 2 , := 2 . (6.7)

We refer to the decorations as zebras. We have coloured them and their labels mahogany
to help distinguish these labels from coefficients in linear combinations of diagrams. The
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morphism should be thought of as a quantum analogue of the even morphism of
[BCK19].

Recall our convention

k l = k
l .

That is, when zebras appear at the same height, the entire zebra on the left should be
considered as above the entire zebra on the right. Note that composition of zebras is a bit
subtle, since the labels do not add in general. We have a homomorphism of superalgebras

k[x±1]〈y〉/(yx= x−1y, y2 =−1)→ EndQ (z)(↑), xk �→ 2k , yxk �→ (−1)δk<0
2k+1 .

Conjecture 6.12 below would imply that this map is injective.

Lemma 6.5. The following relations hold in AQ (z) for all k ∈ Z:

k = k , k = k , (6.8)

2k+1 = 0 = 2k+1 , 2k =−
(

−2k
)
, 2k =− −2k , (6.9)

where, in (6.8), the relations hold for both orientations of the strands.

Proof. It follows from (2.10), (2.20), (6.4) and (6.7) that

k = (−1)(
k
2) ...

}
k tokens if k ≥ 0 and k = (−1)(

k
2) ...

}
-k tokens if k < 0.

Then relations (6.8) follow from (2.20) and (6.4).
For k ≥ 0, we have

2k+1 = 2k

(6.4)
= 2k = 2k

(6.4)
= 2k =− 1−2k = · · ·=± ±1

(2.9)
=

(6.4)
0.

The case k < 0, as well as the proof of the second equality in (6.9), are analogous.
For the third equality in (6.9), it suffices to consider the case k > 0. In this case, we

have

2k = 2k−1

(6.4)
= 2k−1 =− 2k−1

(6.4)
= − 2k−1 =−

(
−2k

)
.

The proof of the last equality in (6.9) is similar.

Lemma 6.6. The following relations hold in AQ (z):

= − z , = − z . (6.10)

Proof. For the first relation, we have

(2.9)
=

(6.5)
= + z

(
−

)
(2.8)
= − z .

The proof of the second relation is analogous.
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Corollary 6.7. For all k ∈ Z>0, the following relations hold in AQ (z):

2k
= 2k − z

k−1∑
r=1

2k−2r 2r − z

k∑
r=1

2k−2r+1 1−2r , (6.11)

−2k
= −2k + z

k−1∑
r=1

−2r 2r−2k + z

k∑
r=1

1−2r 2k−2r+1 . (6.12)

Proof. We prove (6.11) by induction on k. The case k = 1 is (6.10). Then, for k ≥ 2, we
have

2k
=

2k−2 − z

k−2∑
r=1

2k−2r 2r − z

k−1∑
r=1

2k−2r+1 1−2r

(2.8)
=

2k−2 − z

k−1∑
r=1

2k−2r 2r − z

k−1∑
r=1

2k−2r+1 1−2r

(6.10)
= 2k − z

k−1∑
r=1

2k−2r 2r − z
k∑

r=1

2k−2r+1 1−2r ,

where we used the induction hypothesis in the first equality. Relation (6.12) then follows
by composing (6.11) on the bottom with −2k and on the top with −2k .

Lemma 6.8. For all k > 0, we have

2k − 2k = z

k−1∑
r=1

2r 2k−2r . (6.13)

Proof. We have

2k =
2k

(6.11)
=

2k

− z

k−1∑
r=1

2r 2k−2r − z

k∑
r=1

1−2r 2k−2r+1

(6.9)
= 2k − z

k−1∑
r=1

2r 2k−2r .

Let Sym denote the k-algebra of symmetric functions over k. For r ≥ 0, let er and
hr denote the degree r elementary and complete homogeneous symmetric functions,
respectively, with the convention that e0 = h0 = 1.

Proposition 6.9. We have a homomorphism of rings

β : Sym → EndAQ (z)(1), er �→ (−1)r−1z 2r , hr �→ z 2r , r ≥ 1.

Proof. The k-algebra Sym is generated by er,hr, r > 0, modulo the identities
k∑

r=0

(−1)rek−rhr = 0, k > 0,
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where h0 = e0 = 1. The map β sends the left-hand side of this identity to

(−1)k−1z 2k +(−1)k−1z2
k−1∑
r=1

2r 2k−2r +(−1)kz 2k ,

which is equal to zero by (6.13).

Proposition 6.11 below implies that the map β is surjective, while Conjecture 6.12 would
imply it is an isomorphism. We next deduce a bubble slide relation.

Lemma 6.10. For all k ≥ 0, we have

2k = 2k −kz

(
2k + −2k

)
+ z2

k−1∑
r=1

r 2k−2r

(
2r + −2r

)
.

Proof. The case k = 0 follows immediately from (2.7). Thus, we suppose k > 0. We first
compute

2k
(2.7)
=

2k

(6.11)
= 2k − z

k−1∑
r=1

2k−2r

2r
− z

k∑
r=1

2k−2r+1

1−2r
.

Next, note that, for 1≤ r ≤ k−1,

2k−2r

2r

(2.8)
=

2k−2r

2r
− z 2k−2r 2r

(6.11)
=

(6.9)
2k − z

k−r−1∑
s=0

2k−2r−2s 2r+2s .

Similarly, for 1≤ r ≤ k,

2k−2r+1

1−2r
=

2k−2r

2r−2
= −2k − z

k−r−1∑
s=0

2k−2r−2s −2r−2s ,

where the last sum is zero when r = k. We also have

2k
(2.8)
= 2k − z

2k

= 2k − z 2k .

Therefore,

2k = 2k −kz

(
2k + −2k

)
+ z2

k−1∑
r=1

k−r−1∑
s=0

2k−2r−2s

(
2r+2s + −2r−2s

)

= 2k −kz

(
2k + −2k

)
+ z2

k−1∑
r=1

r 2k−2r

(
2r + −2r

)
.

For any two objects X,Y ∈ AQ (z), the morphism space HomAQ (z)(X,Y ) is a right
Sym-supermodule with action given by

f ·a := f ⊗β(a), f ∈HomAQ (z)(X,Y ), a ∈ Sym.
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As in Section 2, for each (X,Y ), fix a set B(X,Y ) consisting of a choice of positive reduced
lift for each (X,Y )-matching. Then let B (X,Y ) denote the set of all morphisms that can
be obtained from the elements of B(X,Y ) by adding a zebra, labelled by some integer
(possibly zero) near the terminus of each string. We require that all zebras occurring on
strands whose terminus is at the top of the diagram to be at the same height; similarly,
we require that all zebras occurring on strands whose terminus is at the bottom of the
diagram to be at the same height, and below those zebras on strands whose terminus is
at the top of the diagram.

Proposition 6.11. For any objects X,Y of AQ (z), the set B (X,Y ) spans the morphism
space HomAQ (z)(X,Y ) as a right Sym-supermodule.

Proof. Since this type of argument is standard in categorical representation theory, we
only give a sketch of the proof (see also the proof of Proposition 2.11). We have the
Reidemeister relations, a skein relation and bubble and zebra sliding relations. These
allow diagrams for morphisms in AQ (z) to be transformed in a way similar to the way
oriented tangles are simplified in skein categories. Hence, there is a straightening algorithm
to rewrite any diagram representing a morphism X → Y as a linear combination of the
ones in B (X,Y ).

Conjecture 6.12. For any objects X,Y of AQ (z), the morphism space HomAQ (z)(X,Y )
is a free right Sym-supermodule with basis B (X,Y ).

As noted in the Introduction, we expect that Conjecture 6.12 could be proved using
the categorical comultiplication technique of [BSW20], after introducing the more general
quantum isomeric Heisenberg supercategory.

Proposition 6.13. There is a unique monoidal superfunctor

C : AQ (z)→ SEnd (Q (z))

defined as follows. On objects X ∈ AQ (z) and morphisms f ∈ { , , , , , },

C(X) =X⊗− and C(f) = f ⊗−.

In addition, C( ) is the natural transformation ↑ ⊗− → ↑ ⊗− whose X-component,
X ∈ Q (z), is

C( )X :=

X

, (6.14)

where the thick strand labelled X is the identity morphism 1X of X.

Proof. Naturality of C(f) is clear for f ∈ { , , , , , }. For f = , it follows
from the fact that the generating morphisms (2.5) and (2.6) slide over crossings.

All the relations appearing in Definition 2.1 are clearly respected by C. It remains to
verify the relations (6.1). The first relation is straightforward. For the second relation, we
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compute (dropping the label X on the thick strand)

C

( )
=C

⎛⎝ ⎞⎠=C

⎛⎝ ⎞⎠=C

( )
.

Finally, for the last relation in (6.1), we compute

C
( )

=C

⎛⎜⎝
⎞⎟⎠=C

⎛⎜⎝
⎞⎟⎠ (5.3)

= C

⎛⎜⎝
⎞⎟⎠ (5.1)

= C

⎛⎜⎝
⎞⎟⎠ (2.20)

= 0.

The superfunctor C, which we will call the collapsing superfunctor, should be viewed
as an odd analogue of the one appearing in [MS21, Theorem 3.2], which describes actions
of the affinisation of a braided monoidal category. In that setting, the analogue of the
open Clifford token is the affine dot, which acts as

.

See Remark 7.6 for additional discussion.

7. Affine endomorphism superalgebras
In this section, we describe the relationship between the endomorphism superalgebras in
the quantum affine isomeric supercategory and affine Hecke–Clifford superalgebras. We
also use the collapsing superfunctor of Proposition 6.13 to explain how the Jucys–Murphy
elements in the Hecke–Clifford superalgebra arise naturally in this context. Throughout
this section, k is an arbitrary commutative ring of characteristic not equal to two, and
z ∈ k.

Definition 7.1. For r ∈ Z>0 and z ∈ k, let AHCr(z) denote the associative superalgebra
generated by

even elements t1, . . . ,tr−1 and odd elements π1, . . . ,πr,
1, . . . ,
r,
satisfying the following relations (for i,j in the allowable range):

t2i = zti+1, (7.1)

titi+1ti = ti+1titi+1, titj = tjti, |i− j|> 1, (7.2)

π2
i =−1, πiπj =−πjπi, i �= j, (7.3)


2
i =−1, 
i
j =−
j
i, i �= j, (7.4)

tiπi = πi+1ti, tiπj = πjti, j �= i,i+1, (7.5)

ti
i+1 =
iti, ti
j =
jti, j �= i,i+1. (7.6)
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Equivalently, AHCr(z) is the associative superalgebra generated by HCr(z), together with
odd elements 
1, . . . ,
r, subject to the relations (7.4) and (7.6).

Multiplying both sides of the first relation in (7.6) on the left and right by t−1
i = ti−z

gives

ti
i =
i+1ti+ z(
i−
i+1). (7.7)

The next result shows that AHCr(z) is isomorphic to the affine Hecke–Clifford superalge-
bra, which was first introduced in [JN99, Section 3], where it was called the affine Sergeev
algebra.

Lemma 7.2. For r ∈ Z>0 and z ∈ k, AHCr(z) is isomorphic to the associative
superalgebra AHC′

r(z) generated by HCr(z), together with pairwise-commuting invertible
even elements x1, . . . ,xr, subject to the following relations (for i,j in the allowable range):

tixi = xi+1ti− z(xi+1−πiπi+1xi),

tixi+1 = xiti+ z(1+πiπi+1)xi+1,

tixj = xjti, j �= i,i+1,

πixi = x−1
i πi,

xixj = xjxi, j �= i.

The isomorphism is given by

AHC′
r(z)

∼=−→AHCr(z), ti �→ ti, πi �→ πi, xi �→ πi
i. (7.8)

Proof. It is a straightforward exercise to verify that (7.8) respects the defining relations
of AHC′

r(z). Thus, the map (7.8) is a well-defined homomorphism of superalgebras. It is
invertible, with inverse

AHCr(z)→AHC′
r(z), ti �→ ti, πi �→ πi, 
i �→ −πixi.

In light of Lemma 7.2, we will simply refer to AHCr(z) as the affine Hecke–Clifford
superalgebra.

Proposition 7.3. For r ∈ N, we have a homomorphism of associative superalgebras

AHCr(z)→ EndAQ (z)(↑⊗r)

given by

ti �→↑⊗(i−1) ⊗ ⊗ ↑⊗(r−i−1) , 1≤ i≤ r−1,

πi �→↑⊗(i−1) ⊗ ⊗ ↑⊗(r−i) , 1≤ i≤ r,


i �→↑⊗(i−1) ⊗ ⊗ ↑⊗(r−i) , 1≤ i≤ r.

Proof. It is a straightforward computation to verify that the given map is well-defined,
that is that it respects the relations in Definition 7.1.

Note that, under the homomorphism of Proposition 7.3, we have

xi �→ ↑⊗(i−1) ⊗ ⊗ ↑⊗(r−i) , 1≤ i≤ r.
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The difference between the new presentation of the affine Hecke–Clifford superalgebra
given in Definition 7.1 and the one in Lemma 7.2 that has appeared previously in the
literature is that the former presentation involves the odd generators 
i, whereas the
latter involves the even generator xi = πiϕi. We prefer the presentation of Definition 7.1
since the relations are simpler and a natural symmetry of AHCr(z) becomes apparent.
In particular, we have an automorphism of AHCr(z) given by

πi �→ ϕi, 
i �→ πi, tj �→ −t−1
j , 1≤ i≤ r, 1≤ j ≤ r−1. (7.9)

For the remainder of this section, we reverse our numbering convention for strands
in diagrams (see Remark 2.8). The composite of the map of Proposition 7.3 with the
automorphism of EndAQ (z)(↑⊗r) induced by the superfunctor Ω↔ yields a homomorphism
of associative superalgebras

ır : AHCr(z)→ EndAQ (z)(↑⊗r)

given by

ti �→ − ↑⊗(r−i−1) ⊗ ⊗ ↑⊗(i−1) , 1≤ i≤ r−1,

πi �→↑⊗(r−i) ⊗ ⊗ ↑⊗(i−1) , 1≤ i≤ r,


i �→↑⊗(r−i) ⊗ ⊗ ↑⊗(i−1) , 1≤ i≤ r.

This is also equal to the automorphism (7.9) followed by the map of Proposition 7.3. We
have

ır(xi) = ↑⊗(r−i) ⊗ ⊗ ↑⊗(i−1) , 1≤ i≤ r.

The Jucys–Murphy elements J1, . . . ,Jr ∈ HCr(z) were defined recursively in [JN99,
(3.10)] by

Ji :=

{
1 for i= 1,

(ti−1− zπi−1πi)Ji−1ti−1 for i= 2, . . . ,n.

For 1≤ i≤ r, define the odd Jucys–Murphy elements

Jodd
i = t−1

i−1 · · · t−1
2 t−1

1 π1t1t2 · · · ti−1 ∈HCr(z), (7.10)

where, by convention, we have Jodd
1 = π1. The following result gives a direct (i.e.

nonrecursive) expression for the even Jucys–Murphy elements.

Lemma 7.4. For all 1≤ i≤ r, we have Ji =−πiJ
odd
i .

Proof. We prove the result by induction on i. Since −π1J
odd
1 =−π2

1 = 1 = J1, the result
holds for i= 1. Now suppose that i > 1, and that Ji−1 =−πi−1J

odd
i−1 . First note that

πit
−1
i−1 = πi(ti−1− z)

(7.5)
= ti−1πi−1− zπi.
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Thus, we have

−πiJ
odd
i =−πit

−1
i−1J

odd
i−1 ti−1=− (ti−1πi−1− zπi)J

odd
i−1 ti−1=(ti−1− zπi−1πi)Ji−1ti−1=Ji.

Evaluation on the unit object 1 yields a superfunctor

Ev1 : SEnd (Q (z))→ Q (z).

Note that this is not a monoidal superfunctor. Recall the collapsing superfunctor C of
Proposition 6.13.

Proposition 7.5. For 1≤ i≤ r, we have

Ev1 ◦C
(
↑⊗(r−i) ⊗ ⊗ ↑⊗(i−1)

)
= ır

(
Jodd
i

)
,

Ev1 ◦C
(
↑⊗(r−i) ⊗ ⊗ ↑⊗(i−1)

)
=−ır (Ji) .

Proof. We have

Ev1 ◦C
(
↑⊗(r−i) ⊗ ⊗ ↑⊗(i−1)

)
(6.14)
= · · ·· · · = ır(J

odd
i ),

where it is the i -th strand from the right that passes under other strands. The proof
of the second equality in the statement of the proposition follows after adding a closed
Clifford token to the top of the i -th strand from the right.

Remark 7.6. Recall that the i -th Jucys–Murphy element in the Iwahori–Hecke algebra
of type A is given, in terms of string diagrams, by

· · ·· · · ,

where it is the i -th strand from the right that loops around other strands. See [MS21,
Section 6] for a discussion of Jucys–Murphy elements in a more general setting, related
to the affinisation of braided monoidal categories. The above discussion suggests there
may be a general notion of odd affinisation, where the above diagram is replaced by the
one appearing in the proof of Proposition 7.5.

The next result shows that we can naturally view Q (z) as a subcategory of AQ (z).

Proposition 7.7. The superfunctor Q (z) → AQ (z) that is the identity on objects and
sends each generating morphism in Q (z) to the morphism in AQ (z) depicted by the same
string diagram is faithful.

Proof. It is straightforward to verify that Ev1 ◦C is left inverse to the superfunctor in
the statement of the proposition.
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8. The affine action superfunctor

In this final section, we define an action of AQ (z) on the category of Uq-supermodules.
We then use this action to define a sequence of elements in the centre of Uq. Throughout
this section, we assume that k= C(q) and z = q− q−1.

The image of ↑ under the superfunctor F•
n of Theorem 5.8 is the superfunctor

F•
n(↑ ) = V ⊗− : Uq-smod → Uq-smod

of tensoring on the left with V. Define the natural transformation

K := F•
n

( )
: V ⊗−→ V ⊗−. (8.1)

Thus, the M -component of K, for M ∈ Uq-smod, is the Uq-supermodule homomorphism

KM =

M

= TMV ◦ (1⊗J)◦T−1
MV : V ⊗M → V ⊗M.

It is straightforward to verify that K2 = − id, where id is the identity natural transfor-
mation.

Theorem 8.1. There is a unique monoidal superfunctor

F̂n : AQ (z)→ SEnd (Uq−smod),

such that

F̂n|Q (z) = F•
n(−⊗ ) and F̂n( ) = F•

n

( )
(8.1)
= K.

Proof. The proof is almost identical to that of Proposition 6.13; one merely replaces
the thick black strand there (representing the identity morphism 1X) with a thick red
strand.

We call the superfunctor F̂n the affine action superfunctor. It endows Uq-smod with
the structure of an AQ (z)-supermodule category. Note that

F̂n(↑) = V ⊗− and F̂n(↓) = V ∗⊗−

are the translation endosuperfunctors of Uq-smod given by tensoring on the left with
V and V ∗, respectively. Thus, combining Proposition 7.3 and Theorem 8.1, we have a
homomorphism of associative superalgebras

AHCr(z)→ EndUq
(V ⊗r⊗M)

for any Uq-supermodule M and r,s∈N. This is a quantum analogue of [HKS11, Theorem
7.4.1].

Let

Zq := {x ∈ Uq : xy = (−1)x̄ȳyx for all y ∈ Uq}

https://doi.org/10.1017/S1474748023000166 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000166


The quantum isomeric supercategory 1121

be the centre of Uq. Evaluation on the identity element of the regular representation
defines a canonical superalgebra isomorphism

End(idUq-smod)
∼=−→ Zq,

where idC denotes the identity endosuperfunctor of a supercategory C. Consider the
composite superalgebra homomorphism

EndAQ (z)(1)
F̂n−−→ End(idUq-smod)

∼=−→ Zq. (8.2)

Our goal is now to compute the image of this homomorphism. By Proposition 6.11, it
suffices to compute the image of the zebra bubbles 2k , k > 0.

We begin with a simplifying computation. Using (5.4) and the relations in Q (z), we
have, for k > 0,

F̂n

(
2k

)
=

... =
... =

... , (8.3)

where there are a total of 2k closed Clifford tokens on alternating sides of the red strand.
For i,j ∈ I, define

yij :=−
n∑

k=max(i,j)

(−1)p(i,k)p(j,k)S(uik)u−k,−j ∈ Uq. (8.4)

Note that yij is of parity p(i,j). Next, for i,j ∈ I, and m> 0, define

y
(m)
ij := (−1)p(i)p(j)

∑
i=i0,i1,...,im−1,im=j

(−1)
∑m−1

k=1 p(ik)+
∑m−1

k=0 p(ik)p(ik+1)yi0,i1 · · ·yim−1,im .

These are isomeric analogues of the elements defined in [BSW20, (5.15)].

Lemma 8.2. We have

F•
n

( )
=

∑
i,j∈I

yij ⊗Eij, (8.5)

where we interpret the right-hand side as a natural transformation whose M-component,
for a Uq-supermodule M with corresponding representation ρM , is

∑
i,k∈I ρM (yij)⊗Eij.
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Proof. We have

F•
n

( )
= L−1 ◦flip◦(J ⊗1)◦flip◦L◦ (1⊗J)

=

⎛⎝∑
i≤k

S(uik)⊗Eik

⎞⎠(1⊗J)

⎛⎝∑
j≤l

ujl⊗Ejl

⎞⎠(1⊗J)

=−

⎛⎝∑
i≤k

S(uik)⊗Eik

⎞⎠⎛⎝∑
j≤l

ujl⊗E−j,−l

⎞⎠
=−

∑
i≤k≥−l

(−1)p(i,k)p(−k,l)S(uik)u−k,l⊗Ei,−l.

Replacing l by −j yields (8.5).

Corollary 8.3. We have

F•
n

⎛⎝( )◦m⎞⎠=
∑
i,j∈I

y
(m)
ij ⊗Eij . (8.6)

Proposition 8.4. For m> 0, the image of 2m under (8.2) is∑
i∈I

(−1)p(i)q2|i|−2n−1y
(m)
ii . (8.7)

Proof. It suffices to compute the action of F̂n( 2k ) on the element 1 of the regular
representation. Using (8.3), this is given by

1
F̂n( )�−−−−−→

∑
k∈I

1⊗vk⊗v∗k
(8.6)�−−−→

∑
i,k∈I

y
(m)
ik ⊗vi⊗v∗k �→ Fn( )

∑
i∈I

(−1)p(i)q2|i|−2n−1y
(m)
ii .

Proposition 8.4 is an isomeric analogue of [BSW20, (5.29)], giving the image of the
analogous diagrams for the affine HOMFLYPT skein category, which is the Uq(gln)-
analogue of Q (z). On the other hand, Proposition 8.4 can also be viewed as a quantum
analogue of [BCK19, Theorem 4.5], which treats the degenerate (i.e. nonquantum) case.
In particular, the elements (8.7) are quantum analogues of central elements in U(qn)

introduced by Sergeev in [Ser83] (see [BCK19, Proposition 4.6]). In the degenerate case,
these elements generate the centre of U(qn) (see [NS06, Proposition 1.1]). It seems likely
that the elements (8.7) do not quite generate the centre of Uq(qn), by analogy with the
case of Uq(gln), where one needs to add one additional generator (see [BSW20, Corollary
5.11] and Corollary 3.4(b)).
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