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Abstract

We investigate uniform upper bounds for the number of powerful numbers in short intervals (x, x + y].
We obtain unconditional upper bounds O(y/log y) and O( y11/12) for all powerful numbers and y1/2-smooth
powerful numbers, respectively. Conditional on the abc-conjecture, we prove the bound O(y/log1+ε y) for
squarefull numbers and the bound O( y(2+ε)/k) for k-full numbers when k ≥ 3. These bounds are related
to Roth’s theorem on arithmetic progressions and the conjecture on the nonexistence of three consecutive
squarefull numbers.
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1. Introduction and main result

A number n is squarefull if its prime factorisation n = pa1
1 pa2

2 · · · p
ar
r satisfies ai ≥ 2

for all 1 ≤ i ≤ r. Similarly, a number n is k-full if ai ≥ k for 1 ≤ i ≤ r. For example,
72 = 23 · 32 is squarefull and 243 = 35 is 5-full. Let Qk(x) denote the number of k-full
numbers which are less than or equal to x. It is known that

Qk(x) =
∏

p

(
1 +

2k−1∑
m=k+1

1
pm/h

)
x1/k + O(x1/(k+1)), (1.1)

where the product is over all primes (see, for example, [1, 4]). There are also estimates
for the number of k-full numbers in short intervals (x, x + y] with y = o(x). For
moderate size y, there are some asymptotic results. For example, Trifonov [8] and
Liu [6] respectively obtained

Q2(x + x1/2+θ) − Q2(x) ∼ ζ(3/2)
2ζ(3)

xθ for
19

154
= 0.12337 . . . < θ <

1
2

,

and

Q3(x + x2/3+θ) − Q3(x) ∼ ζ(4/3)
3ζ(4)

xθ for
5
42
= 0.11904 . . . < θ <

1
3

.
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What happens when y is very small, say y � x1/2 or even y � log x? For such short
intervals, one can only expect suitable upper bounds rather than asymptotic formulae.
Thus, in this note, we are interested in finding uniform upper bounds for Qk(x + y) −
Qk(x) with 1 ≤ y ≤ x that are independent of x. By comparing k-full numbers with
perfect kth powers, we suspect the following conjecture to be true.

CONJECTURE 1.1. Given an integer k ≥ 2 and a real number x ≥ 1, there exists some
constant Ck ≥ 1 such that

Qk(x + y) − Qk(x) ≤ Cky1/k

uniformly over 1 ≤ y ≤ x.

We are far from proving this at the moment. The current best upper bound,

Qk(x + y) − Qk(x) � y log log(y + 2)
log(y + 2)

, (1.2)

was obtained by De Koninck et al. [3]. We improve (1.2) slightly.

THEOREM 1.2. Given an integer k ≥ 2 and a real number x ≥ 1, we have

Qk(x + y) − Qk(x) � y
log(y + 1)

(1.3)

uniformly over 1 ≤ y ≤ x.

In fact, we shall prove the following more general result concerning squarefull
numbers in arithmetic progression over short intervals which gives Theorem 1.2
immediately, as k-full numbers are included in squarefull numbers.

THEOREM 1.3. Given real numbers x ≥ 1 and 0 < α < 1 and integers q > 0 and r with
gcd(r, q) = 1, we have ∑

x<n≤x+y
n squarefull
n≡r (mod q)

1 �α
y

φ(q) log(y + 1)

uniformly over 1 ≤ y ≤ x and 1 ≤ q ≤ y1−α.

Using a similar technique, we can obtain some power savings over (1.3) for smooth
k-full numbers in short intervals.

THEOREM 1.4. Given an integer k ≥ 2 and a real number x ≥ 1, we have∑
x<n≤x+y
n k-full

p+(n)≤y1/2

1 ≤
∑

x<n≤x+y
n squarefull
p+(n)≤y1/2

1 � y11/12 (1.4)

uniformly over 1 ≤ y ≤ x. Here p+(n) stands for the largest prime factor of n.
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One may increase the exponent 1/2 up to 1 and obtain a similar power saving upper
bound.

The bound (1.4) lends evidence towards Conjecture 1.1 and shows that the difficulty
lies with nonsmooth k-full numbers. Another piece of evidence comes from the famous
abc-conjecture. It was proved in [3] that, given any δ > 0, the interval

(x, x + x1−(2+δ)/k] (1.5)

contains at most one k-full number for sufficiently large x under the abc-conjecture.
From this, one has the following result.

THEOREM 1.5. Assume the abc-conjecture. Given an integer k ≥ 2 and real numbers
δ > 0 and x ≥ 1, we have

Qk(x + y) − Qk(x) �ε,k y(2+δ)/k (1.6)

uniformly over 1 ≤ y ≤ x.

We shall modify the proof in [3] concerning (1.5) slightly to correct an inaccuracy
(since the a, b, c in the application of the abc-conjecture might not be relatively prime).
Then we apply it to obtain Theorem 1.5. Observe that (1.5) or (1.6) give us nothing
nontrivial when k = 2. To remedy this, we shall prove the following conditional result
which improves (1.3) slightly by a small power of a logarithm.

THEOREM 1.6. The abc-conjecture implies that for some absolute constant c > 0,

Q2(x + y) − Q2(x) � y

log1+c(y + 1)

uniformly over 1 ≤ y ≤ x.

The proof relies on the following recent breakthrough result of Bloom and Sisask
on the density of integer sequences without three-term arithmetic progressions.

THEOREM 1.7 (Bloom–Sisask, [2]). Let N ≥ 2 and A ⊂ {1, 2, . . . , N} be a set with no
nontrivial three-term arithmetic progressions, that is, solutions to x + y = 2z with x� y.
Then

|A| � N
(log N)1+c ,

where c > 0 is an absolute constant.

This paper is organised as follows. First, we will prove Theorems 1.3 and 1.4 using
the Brun–Titchmarsh inequality and ideas from Shiu’s generalisation [7]. Then we
will prove Theorem 1.5 using the abc-conjecture. Finally, we will prove Theorem 1.6
by establishing the nonexistence of three-term arithmetic progressions for squarefull
numbers in short intervals.

Notation. We use |A| to denote the number of elements in a finite set A and �x	
to denote the greatest integer less than or equal to x. We let p−(n) and p+(n) be the
smallest and the largest prime factor of n, respectively. The symbols f (x) = O(g(x))
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and f (x) � g(x) are equivalent to | f (x)| ≤ Cg(x) for some constant C > 0. Also, f (x) =
Oλ1,...,λr (g(x)) and f (x) �λ1,...,λr g(x) mean that the implicit constant may depend on
λ1, . . . , λr. Furthermore, f (x) = o(g(x)) means limx→∞ f (x)/g(x) = 0 and f (x) ∼ g(x)
means limx→∞ f (x)/g(x) = 1. Finally, the summation symbol

∑′ signifies that a sum is
over squarefull numbers only.

2. Some preparations

LEMMA 2.1. For any X ≥ 1,
∑′

X<n≤X2

1
n
� X−1/2.

PROOF. From (1.1), Q2(X) � X1/2. By partial summation, the above sum is
∫ X2

X

1
u

dQ(u) =
Q(X2)

X2 − Q(X)
X
+

∫ X2

X

Q(u)
u2 du � 1

X1/2 +

∫ X2

X

1
u3/2 du � 1

X1/2 . �

LEMMA 2.2 (Brun–Titchmarsh inequality). Let q ≥ 1 and r be integers satisfying
gcd(r, q) = 1. Suppose q < y ≤ x and z ≥ 2. Then,∑

x<n≤x+y
n≡r (mod q)

p−(n)>z

1 � y
φ(q) log z

+ z2.

The above bound is still true when y ≤ q or y < 1 since there is at most one term
in the sum. The estimate follows from the Selberg upper bound sieve method (see, for
example, [5, page 104]).

Finally, let us recall the abc-conjecture. For any nonzero integer m, the kernel of m is

κ(m) :=
∏
p|m

p.

CONJECTURE 2.3 (abc-conjecture). For any ε > 0, there exists a constant Cε > 0 such
that, for any integers a, b, c with a + b = c and gcd(a, b) = 1, we have

max{|a|, |b|, |c|} ≤ Cεκ(abc)1+ε .

3. Proof of Theorem 1.3

Our proof is inspired by Shiu [7] on the Brun–Titchmarsh theorem for multiplicative
functions. We may assume that y ≥ 22/α for the theorem is clearly true when 1 ≤ y <
22/α by choosing a large enough implicit constant. Recall that 1 ≤ q ≤ y1−α for some
α > 0. Let z = yα/2 ≥ 2. Any squarefull number n in [x, x + y] can be factored as

n = pa1
1 · · · p

aj

j︸�����︷︷�����︸
bn

p
aj+1

j+1 · · · p
as
s︸�������︷︷�������︸

dn

with p1 < p2 < · · · < ps,
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where j is the greatest index such that pa1
1 · · · p

aj

j ≤ z. Hence, bn ≤ z < bn p
aj+1

j+1 . Note that
j may be 0 (the product is an empty product) if pa1

1 > z. In this case, bn = 1 and dn = n.
Also, since n ≡ r (mod q) with gcd(r, q) = 1, we must have gcd(bn, q) = 1 = gcd(dn, q).

Case 1: bn > z1/2. As q ≤ y1−α and z = yα/2, the number of such squarefull numbers is
bounded by∑′

z1/2<b≤z
gcd(b,q)=1

∑
x<n≤x+y

b|n
n≡r (mod q)

1 ≤
∑′

z1/2<b≤z

(y/b
q
+ 1
)
� y

qz1/4 + z1/2 �α
y

φ(q) log y
(3.1)

by (1.1) and Lemma 2.1.

Case 2: bn ≤ z1/2 and p−(dn) ≤ z1/2. Then pj+1 ≤ z1/2 and p
aj+1

j+1 > z1/2 which implies
p
−aj+1

j+1 ≤ min(z−1/2, p−2
j+1) as aj+1 ≥ 2. Hence, the sum

∑
pj+1≤z1/2

1
p

aj+1

j+1

≤
∑

pj+1≤z1/4

z−1/2 +
∑

z1/4<pj+1≤z1/2

1
p2

j+1

� 1
z1/4 .

Therefore, by replacing p
aj+1

j+1 with a generic pa, the number of squarefull numbers in
this case is bounded by∑

p≤z1/2

gcd(p,q)=1

∑
x<n≤x+y

pa |n
n≡r (mod q)

1 ≤
∑

p≤z1/2

(y/pa

q
+ 1
)
� y

qz1/4 + z1/2 �α
y

φ(q) log y
, (3.2)

since q ≤ y1−α and z = yα/2.

Case 3: bn ≤ z1/2 and p−(dn) > z1/2. As q ≤ y1−α and z = yα/2, the number of such
squarefull numbers is bounded by∑′

b≤z1/2

gcd(b,q)=1

∑
x/b<n/b≤(x+y)/b

p−(n/b)>z1/2

(n/b)≡rb (mod q)

1 �
∑′

b≤z

( y/b
φ(q) log z

+ z
)
� y
φ(q) log z

+ z3/2 �α
y

φ(q) log y

(3.3)

by (1.1), Lemma 2.2 and the convergence of the sum of reciprocals of squarefull num-
bers (which follows from Lemma 2.1 for instance). Here b denotes the multiplicative
inverse of b (modq), that is, bb ≡ 1 (mod q).

Combining (3.1), (3.2) and (3.3), we have Theorem 1.3.

4. Proof of Theorem 1.4

This is very similar to the proof of Theorem 1.3, so we just highlight the necessary
adjustments. We set q = 1 and z = y1/3. The arguments for Case 1 and Case 2 are
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exactly the same as (3.1) and (3.2), and we get the bound
y

z1/4 + z1/2 � y11/12.

It remains to deal with Case 3, where bn ≤ z1/2 and z1/2 < p−(dn) ≤ y1/2 as the
squarefull numbers are assumed to be y1/2-smooth. Thus, with p := p−(dn) and dn :=
p2d, the number of squarefull numbers in this case is bounded by∑′

b≤z1/2

∑
z1/2<p≤y1/2

∑
x/b<p2d≤(x+y)/b

p−(d)>z1/2

1 =
∑′

b≤z1/2

∑
z1/2<p≤y1/2

∑
x/bp2<d≤(x+y)/bp2

p−(d)>z1/2

1

�
∑′

b≤z1/2

∑
z1/2<p≤y1/2

(y/(bp2)
log z

+ z
)
� y

z1/2 log z
+

z5/4y1/2

log y
� y11/12

by (1.1), Lemma 2.2 and the convergence of the sum of reciprocals of squarefull
numbers. The above bounds together yield Theorem 1.4.

5. Proof of (1.5) and Theorem 1.5

Given an integer k ≥ 2 and a small real number δ > 0, we claim that the interval
from (1.5), namely

(x, x + x1−(2+δ)/k],

contains at most one k-full number for all sufficiently large x > C (in terms of δ and k)
under the abc-conjecture.

Following De Koninck et al. [3], we suppose that the interval (x, x + x1−(2+δ)/k]
contains two k-full numbers, b < c. Then c = a + b for some integer a with 0 < a ≤
x1−(2+δ)/k. With d = gcd(a, b), the integers a/d, b/d and c/d are pairwise relatively
prime. Note that κ(n) ≤ n1/k for any k-full number. Applying the abc-conjecture with
ε = δ/k to the equation a/d + b/d = c/d, we get

x
d
<

c
d
≤ Cδ/k

(
κ
(a
d

)
κ
(b
d

)
κ
( c
d

))1+δ/k
≤ Cδ/k

(a
d
· κ(b)κ(c)

)1+δ/k

≤ Cδ/k
(x1−(2+δ)/k

d
(2x)2/k

)1+δ/k
= 2(2/k)(1+δ/k)Cδ/k

x1−δ2/k2

d1+δ/k

≤ 2(2/k)(1+δ/k)Cδ/k
x1−δ2/k2

d
.

This implies

xδ
2/k2 ≤ 2(2/k)(1+δ/k)Cδ/k or x ≤ (2(2/k)(1+δ/k)Cδ/k)k2/δ2 =: C

and the claim follows.
Clearly, Theorem 1.5 is true for 1 ≤ y ≤ C by picking the implicit constant to be C.

Now, for C < y ≤ x, the above claim implies that the interval

(x, x + y1−(2+δ)/k]
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contains at most one k-full number. By dividing the interval (x, x + y] into subintervals
of length y1−(2+δ)/k, we obtain

Qk(x + y) − Qk(x) � y

y1−(2+δ)/k · 1 = y(2+δ)/k,

which gives Theorem 1.5.

6. Proof of Theorem 1.6

First, we suppose y ≤ x0.2. We claim that there is no nontrivial three-term arith-
metic progression among the squarefull numbers in the interval (x, x + y] under the
abc-conjecture. Suppose the contrary. Then we have three squarefull numbers x <
a2

1b3
1 < a2

2b3
2 < a2

3b3
3 ≤ x + y such that

a2
1b3

1 = a2
2b3

2 − d and a2
3b3

3 = a2
2b3

2 + d

for some positive integer d with 2d ≤ y. Multiplying the above two equations, we get

a2
1a2

3b3
1b3

3 = a4
2b6

2 − d2 or a2
1a2

3b3
1b3

3 + d2 = a4
2b6

2.

Say D2 = gcd(a4
2b6

2, d2) as the numbers are perfect squares. Then, the three integers

a2
1a2

3b3
1b3

3

D2 ,
d2

D2 ,
a4

2b6
2

D2

are pairwise relatively prime and we have the equation

a2
1a2

3b3
1b3

3

D2 +
d2

D2 =
a4

2b6
2

D2 .

Now, by the abc-conjecture,

x2

D2 ≤
a4

2b6
2

D2 �ε κ
(a2

1a2
3b3

1b3
3

D2

d2

D2

a4
2b6

2

D2

)1+ε

�ε κ(a2
1a2

3b3
1b3

3)1+εκ
( d2

D2

)1+ε
κ(a4

2b6
2)1+ε

�ε (a1b1a2b2a3b3)1+ε
( d
D

)1+ε
�ε x3/2+3ε/2 y1+ε

D1+ε .

Since 1 ≤ D ≤ d ≤ y, this implies x1/2−3ε/2 �ε D1−εy1+ε � y2 ≤ x0.4, which is a con-
tradiction for small enough ε, say ε = 0.01, and sufficiently large x > C (in terms of
the implicit constant).

Clearly, the theorem is true for 1 ≤ y ≤ C by picking an appropriate implicit
constant. So, we may assume y > C. Since arithmetic progressions are invariant under
translation, we may shift the interval (x, x + y] to (0, y]. Therefore, by Theorem 1.7, we
have

Q2(x + y) − Q2(x) � y

log1+c y
,

which gives the theorem.
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Now, if y > x0.2, one can simply divide the interval (x, x + y] into subintervals of
length x0.2:

(x, x + x0.2] ∪ (x + x0.2, x + 2x0.2] ∪ · · · ∪
(
x +
⌊ y

x0.2

⌋
x0.2, x +

(⌊ y

x0.2

⌋
+ 1
)
x0.2
]
.

Then, over each interval (x + ix0.2, x + (i + 1)x0.2], we have the bound

Q2(x + (i + 1)x0.2) − Q2(x + ix0.2) � x0.2

log1+c x
.

Summing over � y/x0.2	 + 1 of these intervals, we have

Q2(x + y) − Q2(x) � y

x0.2 ·
x0.2

log1+c x
� y

log1+c y
,

which gives the theorem as well.

References
[1] P. T. Bateman and E. Grosswald, ‘On a theorem of Erdős and Szekeres’, Illinois J. Math. 2 (1958),
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