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Abstract

An important result of Arkhipov–Bezrukavnikov–Ginzburg relates constructible sheaves
on the affine Grassmannian to coherent sheaves on the dual Springer resolution. In
this paper, we prove a positive-characteristic analogue of this statement, using the
framework of ‘mixed modular sheaves’ recently developed by the first author and
Riche. As an application, we deduce a relationship between parity sheaves on the affine
Grassmannian and Bezrukavnikov’s ‘exotic t-structure’ on the Springer resolution.

1. Introduction

1.1 Main result
Let G be a connected reductive complex algebraic group and let G∨ be the Langlands dual group
over an algebraically closed field k. Recall that the geometric Satake equivalence is an equivalence
of tensor abelian categories

S : Rep(G∨)
∼−→ PervGO

(Gr,k), (1)

where Rep(G∨) is the category of finite-dimensional rational representations of G∨ and where
PervGO

(Gr,k) is the category of spherical perverse k-sheaves on the affine Grassmannian Gr.
When k = C, there is an extensive body of work (see [AB09, ABG04, Bez09, BF08], among others)
exhibiting various ways of extending S to an equivalence of derived or triangulated categories.
In particular, an important theorem due to Arkhipov–Bezrukavnikov–Ginzburg [ABG04] relates
Iwahori-constructible sheaves on Gr to coherent sheaves on the Springer resolution Ñ for G∨.

In this paper, we begin the project of studying derived versions of (1) in positive
characteristic. We work in the framework of ‘mixed modular derived categories’ recently
developed by the first author and Riche [AR16, AR14]. The main result of the paper is the
following modular analogue of the result of [ABG04].

Theorem 1.1. Assume that the characteristic of k is a JMW prime for G∨ and that G∨

satisfies (2) below. Then there is an equivalence of triangulated categories

P : Dmix
(I) (Gr,k)

∼−→ DbCohG
∨×Gm(Ñ )

satisfying P (F〈1〉) ∼= P (F)〈−1〉[1]. Moreover, this equivalence is compatible with the geometric
Satake equivalence: for any F ∈ Dmix

(I) (Gr,k) and V ∈ Rep(G∨), there is a natural isomorphism

P (F ? S(V )) ∼= P (F)⊗ V .
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Recall that a JMW prime for G∨ is a good prime such that the main result of [JMW] holds
in that characteristic: that is, S sends tilting G∨-modules to spherical parity sheaves. (Recently,
Mautner and Riche have shown that every good prime is a JMW prime; see § 1.4 below). When
the characteristic of k is a JMW prime, the Mirković–Vilonen conjecture holds [AR15]. The
additional condition we impose on G∨ is this:

The derived group of G∨is simply connected and its Lie

algebra admits a nondegenerate G∨-invariant bilinear form.
(2)

Finally, Dmix
(I) (Gr,k) is the mixed modular derived category of complexes that are constructible

with respect to the stratification of Gr by orbits of an Iwahori subgroup I ⊂ GO. (For full details
on notation and terminology, see § 2.)

1.2 Comparison with the work of Arkhipov–Bezrukavnikov–Ginzburg
Readers who are familiar with [ABG04] will recognize a number of familiar ingredients in
this paper, including Wakimoto sheaves; the ind-perverse sheaf corresponding to the regular
representation; and realizations of the coordinate rings of N and Ñ as Ext-algebras on Gr.
However, the behavior of these objects is often more complicated than in [ABG04], both because
of the nonsemisimplicity of the representation theory of G∨, and because mixed modular sheaves
are harder to work with than mixed Q̄`-sheaves.

One salient difficulty with mixed modular sheaves is that it is not known whether there
is a well-behaved ‘forgetful’ functor Dmix

(I) (Gr,k) → Db
(I)(Gr,k) (see [AR16, § 2.2]), so we

cannot compare mixed and ordinary perverse k-sheaves. As a consequence, a key construction
of [ABG04], giving a dg-model for Dmix

(I) (Gr, Q̄`) in terms of projective pro-perverse sheaves,

cannot be carried out in positive characteristic. Instead, we use a dg-model for Dmix
(I) (Gr,k)

based on parity sheaves. (Indeed, perverse sheaves are almost absent from this paper.) The lack
of a forgetful functor also means that unlike in [ABG04], we do not know how to deduce a
nonmixed analogue of Theorem 1.1, describing the ordinary derived category Db

(I)(Gr,k).

In [ABG04], the result we have been discussing is used as a step in the proof that Perv(I)(Gr,
C) is equivalent to the principal block of the quantum group Uq(g

∨) at a root of unity. We expect
Theorem 1.1 (or its conjectural nonmixed analogue) to likewise play a role in the proof of the
Finkelberg–Mirković conjecture [FM99], which asserts that Perv(I)(Gr,k) is equivalent to the
principal block of Rep(G∨).

1.3 Koszul-type duality and the exotic t-structure
One of the main results of [AR16] gives an equivalence of categories between parity sheaves on a
flag variety and mixed tilting sheaves on the Langlands dual flag variety. Separately, according
to [AR15, Proposition 5.7], there is an equivalence of categories

Parity(GO)(Gr,k)
∼
→ Tilt(PCoh(N )),

where PCoh(N ) is the category of perverse-coherent sheaves on the nilpotent cone for G∨

(see § 2.6). These results raise the question of whether Parity(I)(Gr,k) participates in a ‘parity–
tilting’ equivalence.

When k = C, this question has a positive answer [Bez06]. The other side of the equivalence
involves the exotic t-structure on DbCohG

∨×Gm(Ñ ), and the equivalence itself is understood as
an instance of Koszul duality. (See [Bez06, § 1.2] for the Koszul-duality perspective and [Bez06,
BM13] for applications of the exotic t-structure.)

In this paper, we prove that this holds in positive characteristic as well.
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Theorem 1.2. Under the assumptions of Theorem 1.1, there is an equivalence of additive
categories P : Parity(I)(Gr,k)

∼
→ Tilt(ExCoh(Ñ )).

This result ends up being quite an easy corollary of Theorem 1.1, because the entire proof of
Theorem 1.1 is structured in a way that anticipates this application. As noted earlier, the perverse
t-structure on Dmix

(I) (Gr,k) does not play much of a role in this paper; but a different t-structure,
the adverse t-structure, appears quite prominently. Ultimately, the adverse t-structure turns out
to be the transport of the exotic t-structure across the equivalence of Theorem 1.1.

1.4 Relationship to the work of Mautner–Riche
While this work was underway, the authors learned that Mautner and Riche [MR] were
independently pursuing a rather different approach to Theorem 1.2, not relying on the geometric
Satake equivalence or the Mirković–Vilonen conjecture. Their proof requires the characteristic
of k to be very good for G∨, but a priori not necessarily a JMW prime. In fact, their work
implies that every good prime is a JMW prime, improving on the bounds established [JMW,
Theorem 1.8]. As a consequence, the main result of [AR15] and Theorem 1.1 of the present paper
both hold in good characteristic.

Nevertheless, we maintain the distinction between good primes and JMW primes in the body
of this paper, so as to preserve its logical independence from [MR].

1.5 Contents of the paper
Section 2 introduces notation and recalls basic facts about the various varieties and categories
we will work with. In § 3, we revisit the main results of [AR15] and translate them to the mixed
modular setting. In § 4, we carry out some computations related to the regular representation of
G∨ and the corresponding ind-perverse sheaf. Section 5 develops the theory of mixed modular
Wakimoto sheaves, which serve as constructible counterparts to line bundles on Ñ . They are a
key tool in § 6, which realizes the coordinate ring of Ñ as an Ext-algebra on Gr. Theorem 1.1 is
proved in § 7. Finally, in § 8, we discuss the exotic t-structure and prove Theorem 1.2.

The language of mixed modular derived categories is ubiquitous in this paper. For general
background on these categories, see [AR16, AR14]. Appendix A, written jointly with Riche, is
a companion to those papers. It contains general results on mixed modular derived categories
that were not included in [AR16, AR14], and it can be read independently of the main body of
the paper.

2. Notation and preliminaries

2.1 Graded vector spaces and graded Hom-groups
For a graded k-vector space V =

⊕
Vn or, more generally, a graded module over a graded

k-algebra, we define the shift-of-grading functor V 7→ V 〈m〉 by

(V 〈m〉)n = Vm+n.

If V and W are two graded vector spaces, we define Hom(V,W ) to be the graded vector space
given by

Hom(V,W )n = Hom(V,W 〈n〉).
More generally, if A is any additive category equipped with an automorphism 〈1〉 : A → A ,
we define Hom(A,B) for A,B ∈ A as above. We clearly have Hom(V 〈n〉,W 〈m〉) = Hom(V,
W )〈m − n〉. Note that these conventions are consistent with those of [AR15], but opposite to
those of [Ach12].
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In the setting of mixed modular derived categories, it is often convenient to work with the
automorphism {1} = 〈−1〉[1]. As in §A.1, if F and G are two objects in a mixed modular derived
category, we define a graded vector space Hom(F ,G) by

Hom(F ,G)n = Hom(F ,G{n}).

This satisfies Hom(F{n},G{m}) = Hom(F ,G)〈m− n〉.
Finally, if A and B are objects in some triangulated category, we may write Homi(A,B) for

Hom(A,B[i]), and likewise for Homi(−,−) and Homi(−,−).

2.2 Reductive groups and representations
As in § 1.1, G will always denote a fixed connected complex reductive group, and G∨ will denote
the Langlands dual group to G over an algebraically closed field k. In addition, the following
assumptions will be in effect throughout the paper, except in § 5.

– The characteristic of k is a JMW prime for G.

– The group G∨ satisfies (2).

The latter can be weakened slightly. For instance, if G∨ satisfies (2) and there is a separable
central isogeny G∨ � H∨, then the main results hold for H∨ as well. However, to simplify the
exposition, we assume (2) throughout.

Fix a Borel subgroup B ⊂G and a maximal torus T ⊂ B, along with corresponding subgroups
T∨ ⊂ B̄∨ ⊂ G∨. Let B∨ ⊂ G∨ be the opposite Borel subgroup to B̄∨. We regard B as a ‘positive’
Borel subgroup and B∨ as a ‘negative’ one. That is, we call a character of T∨ dominant if its
pairing with any root of B is nonnegative or, equivalently, if its pairing with any coroot of B∨ is
nonpositive. Let X denote the character lattice of T∨, identified with the cocharacter lattice of
T , and let X+ ⊂X be the set of dominant weights. The set X carries two natural partial orders,
which we denote as follows:

λ � µ if µ− λ is a sum of positive roots,

λ 6 µ if I·λ ⊂ I·µ (see § 2.3 below).

These two orders coincide on X+.
For λ ∈ X+, let L(λ), M(λ), N(λ), and T(λ) denote the irreducible, Weyl, dual Weyl, and

indecomposable tilting G∨-modules, respectively, of highest weight λ.
Let W denote the Weyl group of G or G∨, and let w0 denote the longest element of W . For

any λ ∈ X, we put

δλ = length of the shortest w ∈W such that wλ is dominant.

This is consistent with [Bez06, § 1.4.1]. The notation ‘δλ’ also appears in [Ach12, AR15, Min13]
with a slightly different meaning: in those papers, only dominant weights occur, and the integer
they call ‘δλ’ is called δw0λ in the present paper.

2.3 The affine Grassmannian
Let Gr = GK/GO, where K = C((t)) is the field of Laurent series in an indeterminate t and
O = C[[t]] is its subring of power series. Let I ⊂ GO be the Iwahori subgroup corresponding
to B ⊂ G. Recall that the I-orbits on Gr are naturally parametrized by X. For λ ∈ X, the
corresponding I-orbit is denoted simply by I·λ, and the inclusion map by

iλ : λ : I·λ ↪→ Gr.
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The GO-orbits are parametrized instead by X+. Recall that these are sometimes called spherical
orbits, and that sheaves on Gr smooth along theGO-orbits are sometimes called spherical sheaves.
For λ ∈ X+, the corresponding GO-orbit is denoted by Grλ, and the inclusion map by

isph
λ : Grλ ↪→ Gr.

2.4 Constructible sheaves
All constructible sheaves will be assumed to have coefficients in k. From now on, we will omit
the coefficients from the notation for categories of constructible complexes.

Let PervGO
(Gr) be the category of GO-equivariant perverse k-sheaves on Gr. For λ ∈ X+,

the objects in PervGO
(Gr) arising from various G∨-representations of highest weight λ via the

geometric Satake equivalence (1) are denoted as follows:

IC(λ) = S(L(λ)), I!(λ) = S(M(λ)), I∗(λ) = S(N(λ)), T (λ) = S(T(λ)).

Let Parity(I)(Gr) denote the additive category of parity complexes on Gr that are

constructible with respect to the stratification by I-orbits, and let Dmix
(I) (Gr) denote the

corresponding mixed derived category. More generally, if X ⊂ Gr is any locally closed I-stable
subset, then Dmix

(I) (X) and related notations are defined similarly. If X is smooth, we denote by

kX , or simply k, the constant sheaf on X with value k, regarded as an object of Parity(I)(X) or

Dmix
(I) (X).

Let Pervmix
(I) (Gr) ⊂ Dmix

(I) (Gr) denote the abelian category of mixed perverse sheaves. This is
a graded quasihereditary category. Given λ ∈ X, the corresponding standard and costandard
objects will be denoted by

i!(λ) = iλ!kI·λ{dim I·λ} and i∗(λ) = iλ∗kI·λ{dim I·λ},

respectively. The image of the canonical morphism i!(λ) → i∗(λ) is denoted by IC(λ). (Lemma 2.1
below will resolve the apparent conflict with the notation for S(L(λ)).) Lastly, let E(λ) denote the
unique indecomposable parity sheaf supported on I·λ and whose restriction to I·λ is k{dim I·λ}.
When λ ∈ X+, [JMW] tells us that E(λ) = T (λ).

We will also work with the spherical categories Parity(GO)(Gr), Dmix
(GO)(Gr), and Pervmix

(GO)(Gr),
and occasionally with the equivariant versions Dmix

I (Gr), Dmix
GO

(Gr), etc. The spherical case is not
explicitly covered by the papers [AR16, AR14], which required the variety to be stratified by
affine spaces. See §A.3 for a discussion of this case. For λ ∈ X+, we put

J!(λ) = (isph
λ )!kGrλ{dimGrλ} and J∗(λ) = (isph

λ )∗kGrλ{dimGrλ}.

The following lemma lets us identify PervGO
(Gr) with a full subcategory of Pervmix

GO
(Gr). Via

this identification, we will henceforth regard S as taking values in Pervmix
GO

(Gr). In particular, the

objects I!(λ), T (λ), etc., defined above will henceforth be regarded as objects of Pervmix
GO

(Gr).

Lemma 2.1. There is a t-exact fully faithful functor DbPervGO
(Gr) → Dmix

GO
(Gr), which, for each

λ ∈ X+, sends IC(λ) ∈ PervGO
(Gr) to IC(λ) ∈ Pervmix

GO
(Gr), and sends T (λ) to E(λ).

Note that the domain of this functor is not Db
GO

(Gr); rather, it is the derived category of

the heart. It is equivalent to DbRep(G∨).
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Proof. Note that DbPervGO
(Gr) ∼= KbTilt(PervGO

(Gr)), as usual for a quasihereditary category.
Since chark is a JMW prime for G, we have

Tilt(PervGO
(Gr)) = ParityGO

(Gr) ∩ PervGO
(Gr).

The desired functor is induced by the embedding Tilt(PervGO
(Gr)) ↪→ ParityGO

(Gr). 2

Via Lemma 2.1, we will henceforth identify PervGO
(Gr) with a full subcategory of Dmix

GO
(Gr).

In particular, for any F ∈ Dmix
(I) (Gr) and any V ∈ Rep(G∨), it makes sense to form the convolution

product

F ? S(V ).

2.5 The Springer resolution and the nilpotent cone
Let B∨ = G∨/B∨ be the flag variety for G∨. Let u∨ be the Lie algebra of the unipotent radical
of B∨, and let Ñ = G∨ ×B∨ u∨ be the Springer resolution. Finally, let N be the nilpotent cone
in the Lie algebra of G∨, and let π : Ñ → N be the obvious map.

We equip N with an action of the multiplicative group Gm by setting z · x = z−2x, where
z ∈ Gm and x ∈ N . We likewise make Gm act on Ñ by having z ∈ Gm scale the fibers of
Ñ → G∨/B∨ by z−2. In both cases, this Gm-action commutes with the natural G∨-action.
Moreover, the map π is (G∨×Gm)-equivariant. The induced action of Gm on the coordinate ring
k[N ] has even nonnegative weights. In other words, k[N ] becomes a graded ring concentrated in
even nonnegative degrees.

In this paper, coherent sheaves on N or Ñ will always be (G∨×Gm)-equivariant. For brevity,
we write Coh(N ) instead of CohG

∨×Gm(N ) for the category of (G∨ ×Gm)-equivariant coherent
sheaves on N , and likewise for Coh(Ñ ). The notation π∗ should always be understood as a
derived functor DbCoh(Ñ ) → DbCoh(N ).

Let ON and OÑ denote the structure sheaves of N and Ñ , respectively. Given m ∈ Z,
let ON 〈m〉 denote the coherent sheaf that corresponds to the graded k[N ]-module k[N ]〈m〉,
where the latter is defined as in § 2.1. We also put OÑ 〈m〉 = π∗ON 〈m〉. More generally, for any

F ∈ DbCoh(N ), we let F〈m〉 = F ⊗ON 〈m〉, and likewise in DbCoh(Ñ ).
Any weight λ ∈X determines a line bundle OÑ (λ) on Ñ . The push-forwards π∗OÑ (λ) will be

discussed in § 2.6 below. In the special case where λ = 0, it is known (see [BK05, Theorem 5.3.2])
that

π∗OÑ ∼= ON . (3)

Separately, by [BK05, Lemmas 3.4.2 and 5.1.1], one has

π!ON ∼= OÑ . (4)

It will sometimes be more convenient to work in the language of ‘G∨-equivariant graded
finitely generated k[N ]-modules’ rather than in that of ‘(G∨×Gm)-equivariant coherent sheaves
on N ,’ and we will pass freely between the two. We identify the space of global sections Γ(Ñ ,OÑ )

with the ring k[N ] via (3) and, given F ∈ Coh(Ñ ), we think of Γ(Ñ ,F) as a G∨-equivariant
graded finitely generated k[N ]-module. For instance, the cohomology-vanishing result of [KLT99,
Theorem 2] says that for λ ∈ X+, π∗(OÑ (λ)) is a coherent sheaf, so

π∗OÑ (λ) = Γ(Ñ ,OÑ (λ)) for λ ∈ X+. (5)
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2.6 Perverse-coherent sheaves
The category DbCoh(N ) admits a t-structure whose heart is known as the category of perverse-
coherent sheaves, and is denoted by PCoh(N ). For general background on this category,
see [Bez03, Ach12]. Some key features of this category are as follows.

– It is stable under F 7→ F〈1〉.
– Every object has finite length. Up to grading shift, the isomorphism classes of simple objects

are in bijection with X+.

– It is a properly stratified category.

For background on properly stratified categories, see [AR15, § 2]. In a properly stratified
category, a notion that generalizes that of a quasihereditary category, there are four important
classes of indecomposable objects, called standard, proper standard, costandard, and proper
costandard objects. In PCoh(N ), we denote these objects by

∆(λ), ∆̄(λ), ∇(λ), ∇̄(λ),

respectively, where λ ∈ X+. The proper ones are given by

∆̄(λ) = π∗OÑ (−w0λ)〈δw0λ〉, ∇̄(λ) = π∗OÑ (λ)〈−δw0λ〉.
Revisiting (5), we find that the proper costandard objects satisfy

∇̄(λ) ∈ Coh(N ) for all λ ∈ X+. (6)

More generally, any object of PCoh(N ) with a proper costandard filtration is actually a coherent
sheaf. (Proper standard objects, in contrast, are generally not coherent sheaves.) For descriptions
of ∆(λ) and ∇(λ), see [Min13, Definition 4.2].

Lastly, let D = RHom(−,ON ) be the Serre–Grothendieck duality functor on DbCoh(N ).
The category PCoh(N ) is stable under D and we have

D(∇̄(λ)) ∼= ∆̄(−w0λ) and D(∇(λ)) ∼= ∆(−w0λ).

3. The Mirković–Vilonen conjecture for mixed sheaves

In this section, we recast the main results of [AR15] in the setting of mixed modular derived
categories, obtaining a mixed version of the Mirković–Vilonen conjecture. The main idea is to
compare spherical parity sheaves on Gr with perverse-coherent sheaves on N . Along the way, we
carry out various auxiliary computations in PCoh(N ) that will be useful in the sequel.

3.1 Derived equivalences for spherical sheaves
Let Γ ⊂ X+ be a finite order ideal, i.e. a finite subset such that if γ ∈ Γ and µ < γ, then µ ∈ Γ.
Let GrΓ =

⋃
γ∈Γ Grγ be the corresponding closed subset of Gr, and let

UΓ = Gr r GrΓ.

This is an open GO-stable subset of Gr. Let jΓ : UΓ ↪→ Gr be the inclusion map.
Recall that PCoh(N ) is equipped with a recollement structure (see [AR15, Proposition 2.2]).

Let PCoh(N )Γ ⊂ PCoh(N ) denote the Serre subcategory generated by ∇̄(γ)〈m〉 with γ ∈ Γ,
and let ΠΓ : PCoh(N ) → PCoh(N )/PCoh(N )Γ be the Serre quotient functor. We will denote
its derived version by the same symbol:

ΠΓ : DbCoh(N ) → Db(PCoh(N )/PCoh(N )Γ).
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Here, we are using the main result of [Ach12] to identify

DbPCoh(N ) ∼= DbCoh(N ). (7)

Next, let
Db

ft(PCoh(N )/PCoh(N )Γ) ⊂ Db(PCoh(N )/PCoh(N )Γ)

be the full triangulated subcategory generated by tilting objects. (The subscript ‘ft’ refers to the
fact that this category consists of ‘finite tilting complexes’.) Note that the natural functor

KbTilt(PCoh(N )/PCoh(N )Γ)
∼
→ Db

ft(PCoh(N )/PCoh(N )Γ) (8)

is an equivalence of categories: both sides are generated by tilting objects, so it suffices to compare
Homi(F ,G) on each side for F ,G ∈ Tilt(PCoh(N )/PCoh(N )Γ). When i = 0, these groups agree
and, when i 6= 0, Homi(F ,G) vanishes on both sides. (See [BBM04, Proposition 1.5] or [Min13,
Theorem 3.17].)

In the special case where Γ = ∅, the equivalence (7) restricts to an equivalence

Db
ftPCoh(N ) ∼= Db

perfCoh(N ),

where the right-hand side is the category of perfect complexes on N , i.e. those with a finite
resolution whose terms are direct sums of objects of the form ON ⊗ V 〈n〉 with V ∈ Rep(G∨).

Proposition 3.1. There is an equivalence of triangulated categories

Psph : Dmix
(GO)(Gr)

∼
→ Db

perfCoh(N )

satisfying Psph(F{1}) ∼= Psph(F)〈1〉. Moreover, this equivalence is compatible with the geometric
Satake equivalence: for any F ∈ Dmix

(GO)(Gr) and V ∈ Rep(G∨), there is a natural isomorphism

Psph(F ? S(V )) ∼= Psph(F)⊗ V .

Proof. The existence of the equivalence is just a restatement of [AR15, Proposition 5.7]. That
result also gives us compatibility with geometric Satake when V is a tilting G∨-module. One can
then extend that to, say, any V with a Weyl filtration, by induction on the ‘tilting dimension’
(see [AR15, Definition 2.10]) of V . Finally, every G∨-module admits a finite resolution by modules
with a Weyl filtration. By induction on the length of such a resolution, one obtains the full
result. 2

Proposition 3.2. Let Γ ⊂ X+ be a finite order ideal. There is an equivalence of triangulated
categories

Psph,Γ : Dmix
(GO)(UΓ)

∼
→ Db

ft(PCoh(N )/PCoh(N )Γ)

such that the following diagram commutes up to isomorphism.

Dmix
(GO)(Gr)

j∗Γ
��

Psph

∼ // Db
perfCoh(N )

ΠΓ

��
Dmix

(GO)(UΓ)
Psph,Γ

∼ // Db
ft(PCoh(N )/PCoh(N )Γ)

Proof. This is an immediate consequence of [AR15, Corollary 5.8], using the equivalence (8). 2
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The functor j∗Γ has left and right adjoints jΓ!, jΓ∗ : Dmix
(GO)(UΓ) → Dmix

(GO)(Gr). On the other

hand, ΠΓ has left and right adjoints ΠL
Γ,Π

R
Γ that are a priori defined as functors

Db(PCoh(N )/PCoh(N )Γ) → DbCoh(N ),

but, according to [Min13, Proposition 5.4], they actually take objects in Db
ft(PCoh(N )/PCoh(N )Γ)

to Db
perfCoh(N ). From these observations, we obtain the following consequence of the preceding

proposition.

Corollary 3.3. Let Γ ⊂ X+ be a finite order ideal. The following diagrams commute up to
isomorphism.

Dmix
(GO)(Gr)

Psph

∼ // Db
perfCoh(N )

Dmix
(GO)(UΓ)

Psph,Γ

∼ //

jΓ!

OO

Db
ft(PCoh(N )/PCoh(N )Γ)

ΠL
Γ

OO
Dmix

(GO)(Gr)
Psph

∼ // Db
perfCoh(N )

Dmix
(GO)(UΓ)

Psph,Γ

∼ //

jΓ∗

OO

Db
ft(PCoh(N )/PCoh(N )Γ)

ΠR
Γ

OO

Corollary 3.4. We have

Psph(J∗(λ)) ∼= ∇(λ)〈−δw0λ〉 and Psph(J!(λ)) ∼= ∆(λ)〈δw0λ〉.

Proof. Let Γ = {µ ∈X+ | µ < λ}. Note that Psph(I!(λ)) ∼=ON⊗M(λ). The corollary follows from
the observations that ∆(λ) = ΠL

ΓΠΓ(ON ⊗M(λ))〈−δw0λ〉 [Min13, Definition 4.2] and J!(λ) ∼=
jΓ!j

∗
ΓI!(λ). 2

3.2 Further study of perverse-coherent sheaves
In this subsection, we collect a number of results about Hom-groups, quotients, and subobjects
in PCoh(N ).

Lemma 3.5. Let λ ∈ X+. There are isomorphisms of graded rings End(∇(λ)) ∼= End(∆(λ)) ∼=
H•(Grλ).

Proof. This is a consequence of [AR15, Theorem 5.9]. Specifically, let Γ = {µ ∈ X+ | µ < λ}.
Consider the tilting module T(λ), which corresponds under the geometric Satake equivalence to
the parity sheaf E(λ). Note that E(λ)|UΓ

is just the shifted constant sheaf k{dimGrλ} on Grλ.
Thus, [AR15, Theorem 5.9] gives us the first isomorphism below:

H•(Grλ) ∼= End(ΠΓ(ON ⊗ T(λ))) ∼= End(ΠR
Γ ΠΓ(ON ⊗ T(λ))).

The second isomorphism holds because ΠR
Γ is fully faithful. Finally, from [Min13, Definition 4.2],

we see that ΠR
Γ ΠΓ(ON ⊗ T(λ)) ∼= ∇(λ)〈−δw0λ〉. 2

The preceding lemma lets us regard the coherent sheaf ∇(λ) as a graded H•(Grλ)-module.
We can of course also regard k (thought of as a graded vector space concentrated in degree 0)
as a H•(Grλ)-module in the obvious way.

Proposition 3.6. There is an isomorphism of G∨-equivariant graded k[N ]-modules

k⊗H•(Grλ) ∇(λ) ∼= ∇̄(λ)〈2δw0λ〉.
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Proof. Let End(∇(λ))+ ⊂ End(∇(λ)) denote the subspace spanned by homogeneous elements of
strictly positive degree. Let {f1, . . . , fn} be a basis of homogeneous elements for End(∇(λ))+, and
let di denote the degree of fi. In other words, we may regard each fi as a map∇(λ)〈−di〉→∇(λ).
Form their sum

n⊕
i=1

∇(λ)〈−di〉
f=

∑
fi−−−−→ ∇(λ).

This is a morphism in both Coh(N ) and PCoh(N ). We will study its kernel and cokernel in both
categories. First, via the isomorphism of Lemma 3.5, we have

k⊗H•(Grλ) ∇(λ) ∼= End(∇(λ))/End(∇(λ))+ ⊗End(∇(λ)) ∇(λ) ∼= cokCoh(N ) f. (9)

We now turn our attention to PCoh(N ). Let Γ = {µ ∈ X+ | µ 6 λ} and let Υ = Γ r {λ}.
Consider the quotient functor

ΠΓ,Υ : PCoh(N )Γ → PCoh(N )Γ/PCoh(N )Υ

and let ΠR
Γ,Υ be its right adjoint. Then PCoh(N )Γ/PCoh(N )Υ is a properly stratified category

with a unique simple object up to Tate twist: namely, the object S = ΠΓ,Υ(∇̄(λ)). This object has
an injective envelope I = ΠΓ,Υ(∇(λ)). We have ∇̄(λ) ∼= ΠR

Γ,Υ(S) and ∇(λ) ∼= ΠR
Γ,Υ(I). Moreover,

as in Lemma 3.5, we have End(I) ∼= H•(Grλ). On the other hand, by [AR15, Lemma 2.7(1) and
Theorem 2.16], the object I is also isomorphic to ΠΓ,Υ(∆(λ)〈2δw0λ〉). Thus, I is the projective
cover of S〈2δw0λ〉.

Let f̃i : I〈−di〉→ I be the map corresponding to fi under the isomorphism ΠR
Γ,Υ : End(I)

∼
→

End(∇(λ)), and define f̃ in the same way as f above. Then the image of f̃ is the radical of the
indecomposable projective object I, and so cok f̃ ∼= S〈2δw0λ〉. Also, trivially, ker f̃ has a filtration
whose subquotients are various S〈k〉. Applying ΠR

Γ,Υ, we obtain an exact sequence in PCoh(N )

0 → kerPCoh(N ) f →

n⊕
i=1

∇(λ)〈−di〉
f
→ ∇(λ) → ∇̄(λ)〈2δw0λ〉→ 0, (10)

where kerPCoh(N ) f has a filtration whose subquotients are various ∇̄(λ)〈k〉.
Let K be the cone of f in DbCoh(N ). Then, considering both the natural and perverse-

coherent t-structures on this category, we have two distinguished triangles

(kerCoh(N ) f)[1] → K → cokCoh(N ) f →,

(kerPCoh(N ) f)[1] → K → cokPCoh(N ) f → .

But we saw in (10) that both kerPCoh(N ) f and cokPCoh(N ) f have proper costandard
filtrations, and hence happen to lie in Coh(N ). So, by [BBD82, Proposition 1.3.3(ii)], the
two distinguished triangles above must be canonically isomorphic. In particular, we have
cokCoh(N ) f ∼= cokPCoh(N ) f . The result then follows by comparing (9) and (10). 2

The next lemma is a related fact involving standard objects rather than costandard ones.

Lemma 3.7. There is an isomorphism End(∆(λ))-modules

Hom(∆̄(λ)〈−2δw0λ〉,∆(λ))
∼
→ k.
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Proof. Let S, I ∈ PCoh(N )Γ/PCoh(N )Υ be as in the preceding proof, and let ΠL
Γ,Υ be the left

adjoint to ΠΓ,Υ. Since I is the injective envelope of S, we have Hom(S〈−2δw0λ〉, I〈−2δw0λ〉) ∼= k.
Applying the fully faithful functor ΠL

Γ,Υ yields the result. 2

Lemma 3.8. Let M ∈ PCoh(N ) be an object with a costandard filtration. Then Hom(∆(λ),M)
is a free End(∆(λ))-module. Moreover, there is a natural isomorphism

k⊗End(∆(λ)) Hom(∆(λ),M) ∼= Hom(∆̄(λ)〈−2δw0λ〉,M).

Proof. The assertion that Hom(∆(λ),M) is a free End(∆(λ))-module is just a restatement of
(the dual of) [AR15, Lemma 2.12]. Next, let us identify k with Hom(∆̄(λ)〈−2δw0λ〉,∆(λ)) by
Lemma 3.7. We wish to show that the natural map

Hom(∆̄(λ)〈−2δw0λ〉,∆(λ)) ⊗
End(∆(λ))

Hom(∆(λ),M) → Hom(∆̄(λ)〈−2δw0λ〉,M) (11)

is an isomorphism. We proceed by induction on the number of steps in a costandard filtration
of M .

Suppose first that M = ∇(µ)〈n〉 for some µ ∈ X+ and some n ∈ Z. If µ 6= λ, then both sides
of (11) vanish, and there is nothing to prove. If µ = λ, then an argument like that in [AR15,
Lemma 2.7(3)] shows that we can replace M on both sides of (11) by the standard object
∆(λ)〈n+ 2δw0λ〉. After this change, (11) is obviously an isomorphism.

For general M , choose a short exact sequence 0 → M ′ → M → M ′′ → 0, where both M ′ and
M ′′ have costandard filtrations with fewer steps than that of M . We claim that both sides of (11)
take this sequence to a short exact sequence. For the right-hand side, this holds simply because
Ext1(∆̄(λ)〈−2δw0λ〉,M ′) = 0. For the left-hand side, we first note that Ext1(∆(λ),M ′) = 0;
then the functor Hom(∆(λ),−) takes our sequence to a short exact sequence of free End(∆(λ))-
modules. The desired exactness follows. As a consequence, if (11) is already known to be an
isomorphism for M ′ and M ′′, then it is for M as well. 2

Lemma 3.9. Let λ ∈ X+. The degree-0 component of Γ(Ñ ,OÑ (λ)), regarded just as a graded
G∨-representation, can be identified with N(λ).

Proof. By the definition of the grading, the (2i)th graded component of Γ(Ñ ,OÑ (λ)) is

isomorphic to the G∨-representation indG
∨

B∨(kλ ⊗ Symi(u∨)∗), where Symi(u∨)∗ is the ith
symmetric power of the dual vector space to u∨. In particular, when i = 0, this reduces to
indG

∨
B∨kλ ∼= N(λ). 2

The preceding lemma and the following one together tell us that Γ(Ñ ,OÑ (λ)) is generated
as a k[N ]-module by its graded component of degree 0.

Lemma 3.10. For any λ ∈ X+, the obvious map ON ⊗N(λ) → Γ(Ñ ,OÑ (λ)) is surjective.

Proof. There is a surjective map of B∨-representations N(λ) → kλ, where kλ denotes the one-
dimensional B∨-representation with weight λ. From this, we obtain a surjective map of vector
bundlesOÑ⊗N(λ) →OÑ (λ) on Ñ . Applying π∗ and using (3), we obtain a map h :ON⊗N(λ) →

π∗OÑ (λ) ∼= ∇̄(λ)〈δw0λ〉. Let K be the cocone of h, so that we have a distinguished triangle

K → ON ⊗N(λ)
h
→ ∇̄(λ)〈δw0λ〉→ .
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To prove that h is surjective, we must show that K lies in Coh(N ). The proof of [Ach12,
Lemma 5.4] yields a slightly different fact: that h is surjective as a morphism in PCoh(N ) and
hence that K ∈ PCoh(N ). (The statement of [Ach12, Lemma 5.4] involves M(λ) instead of
N(λ), but its proof goes through for any G∨-representation with highest weight λ.) On the other
hand, by [AR15, Theorem 2.16(3)], ON ⊗ N(λ) has a costandard filtration and hence a proper
costandard filtration. It follows that K, which is the kernel of h in PCoh(N ), also has a proper
costandard filtration, so it lies in Coh(N ), as desired. 2

3.3 The Mirković–Vilonen conjecture for mixed sheaves
We are now ready to adapt the arguments in [AR15, § 6] to the mixed modular setting.

Lemma 3.11. Let λ ∈X+. The following conditions on an object F ∈ Dmix
(GO)(Grλ) are equivalent.

(i) F is pure of weight 0.

(ii) Hom(F , k) is a free graded H•(Grλ)-module, and Hom(k,F [k]) = 0 if k 6= 0.

Proof. Essentially identical to [AR15, Lemma 6.1]. 2

Theorem 3.12. Let λ ∈ X+. Then I!(λ) is ∗-pure and I∗(λ) is !-pure.

One can also show that the stalks of I!(λ) and the costalks of I∗(λ) obey certain parity-
vanishing conditions, by using the decomposition of Dmix

(I) (Gr) into ‘even’ and ‘odd’ objects as

explained in [AR16, § 2.1],

Proof. Let µ be a dominant weight such that µ � λ. Using adjunction and the equivalence Psph,
we obtain

Hom((isph
µ )∗I!(λ), k[k]) ∼= Hom(I!(λ),J∗(µ){−dimGrµ}[k])

∼= Hom(ON ⊗M(λ),∇(µ)〈−δw0µ − dimGrµ〉[k]).

Recall that ON ⊗M(λ) has a standard filtration as an object of PCoh(N ). It follows that the
last Hom-group above vanishes for k 6= 0. On the other hand, for k = 0, it is a free module over
End(∇(µ)), by [AR15, Lemma 2.12].

By Lemma 3.5, Hom((isph
µ )∗I!(λ),k[k]) obeys the second condition in Lemma 3.11. Using

that lemma, we see that (isph
µ )∗I!(λ) is pure of weight 0, as desired. 2

4. The regular representation and the regular perverse sheaf

In this section, we review a number of basic facts about the regular representation k[G∨] of G∨,
and then we translate them into geometric statements about Gr.

4.1 The regular representation
Regard k[G∨] as a (G∨ × G∨)-module in the usual way: given f ∈ k[G∨] and g, h ∈ G∨, we
put ((g, h) · f)(x) = f(g−1xh). The results below are elementary and very close to those in,
say, [Jan03, § I.3.7]. We include proofs because we will require slightly finer information about
the right G∨-action than is given in [Jan03, § I.3.7].

If V and V ′ are two G∨-representations, we write V � V ′ for their tensor product regarded
as a (G∨ × G∨)-representation. In an abuse of notation, we sometimes identify V with V � k,
i.e. we regard a G∨-representation as a (G∨ ×G∨)-representation by making the second copy of
G∨ act trivially. (To make the first copy act trivially instead, we explicitly write k� V .)
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Lemma 4.1. For any G∨-module V , there is a natural isomorphism of (G∨ ×G∨)-modules V ⊗
k[G∨] ∼= (k� V )⊗ k[G∨].

Proof. Identify the underlying vector space of both sides with the space Mor(G∨, V ) of
morphisms G∨ → V . The two (G∨ ×G∨)-actions above correspond to the following two actions
on Mor(G∨, V ):

((g, h) ·1 f)(x) = gf(g−1xh) and ((g, h) ·2 f)(x) = hf(g−1xh).

Let φ : Mor(G∨, V ) → Mor(G∨, V ) be the bijective map given by φ(f)(x) = x−1f(x). Then φ
intertwines the two actions: φ((g, h) ·1 f) = (g, h) ·2 φ(f). 2

In the next few statements, given a (G∨ ×G∨)-module M , we let

MG∨×1 = {m ∈M | (g, 1) ·m = m for all g ∈ G∨}.

Of course, the second copy of G∨ still acts on MG∨×1. That is, we can regard MG∨×1 in a natural
way as a G∨-module.

Lemma 4.2. For any G∨-module V , there is a natural isomorphism of G∨-modules θ : V
∼
→

(V ⊗ k[G∨])G
∨×1.

Proof. Given v ∈ V , let θ(v) ∈Mor(G∨, V ) be given by θ(v)(x) = xv. Then, in the notation from
the proof of Lemma 4.1, we have

((g, 1) ·1 θ(v))(x) = gθ(v)(g−1x) = gg−1xv = xv = θ(v)(x).

That is, θ(v) ∈ Mor(G∨, V )G
∨×1. To see that θ is an isomorphism, we observe that the map

sending f ∈ Mor(G∨, V )G
∨×1 to f(1) ∈ V is its inverse. 2

Lemma 4.3. Let M be a G∨-equivariant graded k[N ]-module. Let a : M ⊗ k[N ] → M be the
action map, and let m : (M ⊗ k[G∨])G

∨×1 ⊗ (k[N ] ⊗ k[G∨])G
∨×1

→ (M ⊗ k[G∨])G
∨×1 be the

map induced by a and by the multiplication map k[G∨] ⊗ k[G∨] → k[G∨]. Then the following
diagram commutes.

M ⊗ k[N ]

a

��

θ⊗θ
∼ // (M ⊗ k[G∨])G

∨×1 ⊗ (k[N ]⊗ k[G∨])G
∨×1

m
��

M
θ
∼ // (M ⊗ k[G∨])G

∨×1

Proof. This is easily seen by tracing through the definition of θ. 2

In the special case where M = k[N ], the map m on the right-hand side of the diagram above
makes (k[N ]⊗k[G∨])G

∨×1 into a commutative ring, equipped with a grading inherited from that
on k[N ]. Then, for any G∨-equivariant graded k[N ]-module N , the space (N ⊗ k[G∨])G

∨×1 is
naturally a G∨-equivariant graded (k[N ]⊗ k[G∨])G

∨×1-module. The following proposition is an
immediate consequence of Lemma 4.3.

Proposition 4.4. There is an isomorphism of G∨-equivariant graded rings k[N ] ∼= (k[N ] ⊗
k[G∨])G

∨×1. If we identify these rings, then, for any G∨-equivariant graded k[N ]-module M ,
there is a natural isomorphism M ∼= (M ⊗ k[G∨])G

∨×1.

2639

https://doi.org/10.1112/S0010437X16007661 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007661


P. N. Achar and L. Rider

Proposition 4.5. For any finitely generated G∨-equivariant graded k[N ]-module M , there is a
natural isomorphism of G∨-equivariant graded k[N ]-modules

M ∼= HomG∨,k[N ](D(M),k[N ]⊗ k[G∨]).

Proof. Recall that the functor D(−) is defined as RHomk[N ](−, k[N ]). That is, we compute
RHom in the category of graded k[N ]-modules, ignoring the G∨-action; the resulting complex of
k[N ]-modules is still acted on by G∨. Since M ∼= D(D(M)), the complex RHomk[N ](D(M), k[N ])
is concentrated in degree 0. In other words, we have a natural isomorphism M ∼= Homk[N ](D(M),
k[N ]). Using Lemma 4.2, we obtain

M ∼= Homk[N ](D(M), k[N ]) ∼=
(
Homk[N ](D(M),k[N ])⊗ k[G∨]

)G∨×1

∼= Homk[N ](D(M), k[N ]⊗ k[G∨])G
∨×1 ∼= HomG∨,k[N ](D(M),k[N ]⊗ k[G∨]),

as desired. 2

4.2 The regular perverse sheaf
Let R denote the ind-object of PervGO

(Gr) corresponding to the (left) regular representation
k[G∨]. The right action of G∨ on k[G∨] gives rise to a G∨-action on R. The multiplication
map m : k[G∨] ⊗ k[G∨] → k[G∨] is equivariant for the right G∨-action, so it corresponds to a
G∨-equivariant morphism S(m) : R ?R→ R. Consider the graded vector space

Hom(1Gr,R).

We make this into a ring as follows: given g ∈ Hom(1Gr,R{n}) and f ∈ Hom(1Gr,R{m}), we
define gf ∈ Hom(1Gr,R{n+m}) to be the composition

1Gr
f−→ R{m} ∼→ 1Gr ?R{m}

g?id−−→ R{n} ?R{m} S(m){n+m}−−−−−−−−→ R{n+m}.

Because S(m) is G∨-equivariant, G∨ acts on the ring Hom(1Gr,R).
Given F ∈ Dmix

(I) (Gr), a similar construction makes the graded vector space

Hom(1Gr,F ?R)

into a G∨-equivariant graded right Hom(1Gr,R)-module. Specifically, given m ∈ Hom(1Gr,
(F ? R){n}) and f ∈ Hom(1Gr,R{m}), we define mf ∈ Hom(1Gr, (F ? R){n + m}) to be the
composition

1Gr
f−→ R{m} ∼→ 1Gr ?R{m} m?id−−−→ (F ?R){n} ?R{m}

∼
→ (F ?R ?R){n+m} (id?S(m)){n+m}−−−−−−−−−−→ (F ?R){n+m}.

Theorem 4.6. There is an isomorphism of G∨-equivariant graded rings

Hom(1Gr,R) ∼= k[N ].

If we identify these rings, then, for any F ∈ Dmix
(GO)(Gr) such that Psph(F) ∈ Coh(N ), there is a

natural isomorphism
Hom(1Gr,F ?R) ∼= Psph(F)

of (G∨ ×Gm)-equivariant coherent sheaves on N .
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Figure 1. Modules for Hom(1Gr,R).

Proof. We have the following sequence of isomorphisms of graded vector spaces, where the first
step is implied by Proposition 3.1 and the last by Proposition 4.4:

Hom(1Gr,R) ∼= HomCoh(N )(ON ,ON ⊗ k[G∨])

∼= HomG∨(k, k[N ]⊗ k[G∨]) ∼= (k[N ]⊗ k[G∨])G
∨×1 ∼= k[N ].

In fact, this is an isomorphism of G∨-modules, since the G∨-action on R is defined in terms
of the right G∨-action on k[G∨]. Next, for F ∈ Dmix

(GO)(Gr), let M = Psph(F), and assume that

M ∈ Coh(N ). The same reasoning as above gives us isomorphisms of graded G∨-representations

Hom(1Gr,F ?R) ∼= HomG∨(k,M ⊗ k[G∨]) ∼= M.

To study the ring structure on Hom(1Gr,R) as well as the module structure on Hom(1Gr,
F ? R), we refer to Figure 1. The horizontal arrows all arise from natural isomorphisms of
the kind described above. The arrow labeled p is induced by convolution with the morphism
of (ind-)perverse sheaves S(η) : 1Gr → R, where η : k → k[G∨] is the unit. The map p′ is
induced by η itself. Thus, the commutativity of the uppermost square in Figure 1 follows from
the compatibility with S in Proposition 3.1.

Similar reasoning applies to the bottommost square. There, r′ is induced by the multiplication
map m : k[G∨]⊗k[G∨] → k[G∨], and r by S(m) : R ?R→ R. Finally, the arrows labeled q and
q′ are both given by composition of maps, so the commutativity of the middle square is obvious.
We conclude that the entire diagram in Figure 1 commutes.

The composition rqp defines the Hom(1Gr,R)-module structure on Hom(1Gr,F ?R). On the
other hand, we can identify the space HomG∨(k,M⊗k[G∨]) with (M⊗k[G∨])G

∨×1, and likewise
for the other Hom-groups in the right-hand column of Figure 1. Under these identifications,
the composition r′q′p′ coincides with the map that was denoted by m in Lemma 4.3. Thus, by
combining Figure 1 with Lemma 4.3, we obtain the following commutative diagram.

Hom(1Gr,F ?R)⊗Hom(1Gr,R)

��

oo ∼ //M ⊗ k[N ]

��
Hom(1Gr,F ?R) oo

∼ //M

In the special case where F = 1Gr and M = k[N ], this diagram shows that the isomorphism of
graded G∨-modules Hom(1Gr,R) ∼= k[N ] is actually a ring isomorphism. Then, for general F , it
identifies the Hom(1Gr,R)- and k[N ]-module structures on Hom(1Gr,F ?R) ∼= M , as desired. 2
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4.3 Standard sheaves and the regular perverse sheaf

We conclude this section with a study of certain Hom-groups involving standard sheaves.

Lemma 4.7. Suppose that F ∈ Dmix
(GO)(Gr) has the property that (isph

λ )!F is pure of weight 0.

Then Hom(J!(λ),F) is a free H•(Grλ)-module. Moreover, there is a natural isomorphism

k⊗H•(Grλ) Hom(J!(λ),F) ∼= Hom(i!(w0λ){−δw0λ},F).

Proof. By adjunction, we see that Hom(J!(λ),F) ∼= Hom(J!(λ), (isph
λ )∗(i

sph
λ )!F), and similarly

that Hom(i!(w0λ),F) ∼= Hom(i!(w0λ), (isph
λ )∗(i

sph
λ )!F). Thus, we may as well assume that F ∼=

(isph
λ )∗(i

sph
λ )!F . Since (isph

λ )!F is assumed to be pure, it is a direct sum of objects of the form

k{n}. It suffices, then, to prove the lemma in the special case where (isph
λ )!F ∼= k{dimGrλ} and

F ∼= J∗(λ).
In that case, we have Hom(J!(λ),F) ∼= Hom(kGrλ , kGrλ) ∼= H•(Grλ). On the other hand, by

adjunction, we have

Hom(i!(w0λ){−δw0λ},F) ∼= Hom(kI·w0λ{dimGrλ − 2δw0λ}, i!w0λF)
∼= Hom(kI·w0λ{dimGrλ − 2δw0λ},kI·w0λ{dimGrλ − 2δw0λ}) ∼= k.

The adjunction map i!(w0λ){−δw0λ}→ J!(λ) induces a natural map

Hom(J!(λ),F) → Hom(i!(w0λ){−δw0λ},F)

that can clearly be identified with the natural quotient map H•(Grλ) → k of H•(Grλ)-modules.

The result follows. 2

Corollary 4.8. Suppose that F ∈ Pervmix
(GO)(Gr) has the property that (isph

λ )!F is pure of

weight 0. Then the natural map Hom(J!(λ),F) → Hom(i!(w0λ){−δw0λ},F) induced by the

adjunction i!(w0λ){−δw0λ}→ J!(λ) is an isomorphism.

Proof. Note that the Hom-groups in this statement are the degree-0 components of the graded

Hom-groups in the preceding lemma. Since J!(λ) lies in pDmix
(GO)(Gr)60, the assumption that F

is perverse implies that Hom(J!(λ),F{n}) = 0 for n < 0 or, in other words, that Hom(J!(λ),F)

is concentrated in nonnegative degrees. The result then follows from Lemma 4.7. 2

Proposition 4.9. We have the following isomorphisms in Coh(N ):

Hom(J!(−w0λ),R) ∼= ∇(λ)〈−δw0λ〉 and Hom(i!(−λ),R) ∼= ∇̄(λ).

Proof. Via Psph and Corollary 3.4, we have

Hom(J!(−w0λ),R) ∼= Hom(∆(−w0λ)〈δw0λ〉,ON ⊗ k[G∨]).

By Proposition 4.5, the latter is naturally isomorphic to ∇(λ)〈−δw0λ〉.
Next, by Theorem 3.12, the ind-perverse sheaf R is !-pure of weight 0, so Lemma 4.7 tells

us that Hom(i!(−λ){−δw0λ},R) ∼= k ⊗H•(Grλ) Hom(J!(−w0λ),R). Proposition 3.6 then implies

that Hom(i!(−λ){−δw0λ},R) ∼= ∇̄(λ)〈δw0λ〉, as desired. 2
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5. Mixed modular Wakimoto sheaves

Wakimoto sheaves, introduced by Mirković, are certain sheaves on the affine flag variety or
the affine Grassmannian that have favorable convolution and Ext-vanishing properties. In this
section, we study the basic properties of Wakimoto sheaves in the mixed modular setting. The
results are closely modeled on those of [AB09, § 3.2] and [ABG04, § 8].

5.1 Preliminaries on the affine flag variety
Let F` = GK/I denote the affine flag variety for G. Recall that I-orbits on F` are labeled by the
extended affine Weyl group Waff . Given w ∈ Waff , let F`w denote the corresponding orbit, and
let jw : F`w ↪→ F` be the inclusion map. For w ∈Waff , let Ew denote the unique indecomposable
parity sheaf supported on F`w and whose restriction to F`w is k{dimF`w}. We denote the
standard and costandard perverse sheaves in Pervmix

I (F`) by

sw := jw!k{dimF`w} and cw := jw∗k{dimF`w}.
The category Dmix

I (F`) is equipped with a convolution product, and there is a convolution
action of Dmix

I (F`) on Dmix
I (Gr). For basic results on convolution in the mixed modular setting,

see [AR16, § 4]. We will need the following slight refinement of [AR16, Proposition 4.4].

Lemma 5.1. For w1, w2 ∈ Waff such that `(w1w2) = `(w1) + `(w2), there is a canonical
isomorphism

cw1w2
∼= cw1 ? cw2 . (12)

Moreover, for w1, w2, w3 ∈Waff with `(w1w2w3) = `(w1) + `(w2) + `(w3), the two isomorphisms
cw1w2w3

∼= cw1 ? cw2 ? cw3 induced by (12) coincide.
In addition, each cw is invertible: we have cw ? sw−1

∼= sw−1 ? cw ∼= ce.

For Q̄`-sheaves (see [AB09, Lemma 8]), a shorter proof is possible: one can prove a property
like (13) below for standard sheaves directly. The definition of convolution in the mixed modular
setting always involves parity sheaves as an intermediary; for this reason, the argument below
must consider parity sheaves first.

Proof. We begin with the observation that if `(w1w2) = `(w1) + `(w2), then there is a canonical
isomorphism

(Ew1 ? Ew2)|F`w1w2

∼= k{`(w1w2)}. (13)

Indeed, this follows from a study of the convolution diagram (see [JMW14, § 4.1]). Now Ew1w2 is
a direct summand of the parity complex Ew1 ? Ew2 . Choose maps

Ew1w2

i−→ Ew1 ? Ew2

p−→ Ew1w2

such that p◦ i = idEw1w2
, i◦p is an idempotent, and both i and p are compatible with (13). That

is, the restriction to F`w1w2 of each of i and p should coincide with the isomorphism (13). The
fact that the last condition can be satisfied follows from [JMW14, Corollary 2.9].

Next, consider the canonical maps Ewi → cwi and Ew1w2 → cw1w2 . It is easy to see that there
are unique maps i0, p0 making the following diagram commute.

Ew1w2

��

i // Ew1 ? Ew2

��

p // Ew1w2

��
cw1w2

i0 // cw1 ? cw2

p0 // cw1w2
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In fact, the maps i0 and p0 are determined by the restrictions i|F`w1w2
and p|F`w1w2

. In other
words, they are determined by the canonical isomorphism (13), and are independent of the choice
of i and p.

We already know by [AR16, Proposition 4.6] that cw1 ?cw2 is abstractly isomorphic to cw1w2 .
Since End(cw1w2) ∼= k, the maps i0 and p0 must both be isomorphisms, inverse to one another.
These maps constitute the canonical isomorphism (12).

The associativity assertion follows from the fact that the two isomorphisms

(Ew1 ? Ew2 ? Ew3)|F`w1w2w3

∼= k{`(w1w2w3)}

induced by (13) coincide. Finally, the invertibility assertion is just a restatement of [AR16,
Proposition 4.4(2)]. 2

Lemma 5.2 (cf. [ABG04, Proposition 8.2.4]). For any y, w ∈Waff , the object cy?sw is a perverse
sheaf. It is supported on F`yw, and (cy ? sw)|F`yw ∼= k{dimF`yw}. The same results hold for
sy ? cw.

Proof. The fact that cy ? sw is perverse is contained in [AR16, Proposition 4.6].
Let H be the Grothendieck group of Dmix

I (F`). For an object F ∈ Dmix
I (F`), we denote its

class in H by [F ]. Of course, the convolution product on Dmix
I (F`) makes H into a ring. We also

make it into a Z[q1/2, q−1/2]-algebra (where q1/2 is an indeterminate) by setting q1/2[F ] = [F〈1〉].
It is well known that H is none other than the extended affine Hecke algebra associated to Waff .
Indeed, one can use [AR16, Proposition 4.4] to check that the elements Tw := [sw{−`(w)}] satisfy
the defining relations for the Hecke algebra.

Now consider the ring H̄ := H/(q1/2 − 1), which can be identified with the group ring
Z[Waff ]. Let {T̄w | w ∈Waff} be the standard basis for Z[Waff ]. For F ∈ Dmix

I (F`), let [F ] denote

its image in H̄. We then have [sw] = (−1)`(w)T̄w. On the other hand, we have [cw] = [sw−1 ]−1 =
(−1)`(w)q`(w)/2T−1

w−1 . It follows that

[sw] = [cw] = (−1)`(w)T̄w for all w ∈Waff .

Since `(y) + `(w) ≡ `(yw)(mod 2), we have

[cy ? sw] = (−1)`(y)+`(w)T̄yT̄w = (−1)`(yw)T̄yw = [cyw]. (14)

Recall that for two objects F ,G ∈ Pervmix
I (F`), we have [F ] = [G] in H if and only if F and G

have the same composition factors (with multiplicities). Similarly, we have [F ] = [G] if and only
if F and G have the same composition factors up to Tate twist. Thus, (14) lets us compare the
composition factors of cy ? sw with those of cyw. Specifically, cy ? sw must contain some ICyw〈n〉
as a composition factor with multiplicity 1, and all other composition factors must be supported
on F`ywrF`yw. In particular, cy?sw is supported on F`yw, and (cy?sw)|F`yw ∼= k{dimF`yw}〈n〉
for some n.

It remains to show that n = 0. For this, we proceed by induction on the length of w. If
`(w) = 0, then sw = cw, so we have cy ? sw ∼= cy ? cw ∼= cyw, and the statement is clear.
Otherwise, write w = w′s, where s is a simple reflection, and `(w′) = `(w)− 1. By induction, we
have (cy ? sw′)|F`yw′ ∼= k{dimF`yw′}.

Suppose first that yw′ < yw. This implies that syw′ ? ss ∼= syw. There is a natural (nonzero)
map syw′ → cy ? sw′ . Since ss is an invertible object, applying (−) ? ss gives a nonzero map
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syw → cy?sw. By adjunction, we obtain a nonzero map k{dimF`yw}→ (cy?sw)|F`yw . Therefore,
n = 0.

Similarly, if yw′ > yw, we consider the natural (nonzero) map cy ? sw′ → cyw′ . This time,
we have cyw′ ? ss ∼= cyw, so applying (−) ? ss gives a nonzero map cy ? sw → cyw. Again, by
adjunction, we obtain a nonzero map (cy ? sw)|F`yw → k{dimF`yw}, and the result follows. 2

5.2 Projection to the affine Grassmannian
Let $ : F` → Gr be the obvious projection map. This is a smooth, proper, stratified morphism.
The following elementary lemmas relating convolution and $ are well known (at least in the
nonmixed case), but we give their proofs for completeness.

Lemma 5.3. Let F ∈ Dmix
(I) (F`).

(i) For G ∈ Dmix
I (F`), there is a natural isomorphism F ? $∗G ∼= $∗(F ? G).

(ii) For G ∈ Dmix
I (Gr), there is a natural isomorphism F ? $∗G ∼= $∗(F ? G).

Proof. For both statements, it suffices to consider the case where F and G are both parity sheaves.
In this case, we can compute the convolution product in the ordinary (nonmixed) derived category
instead. Note that in the following diagram, every square is cartesian.

F`×F`
id×$

��

GK ×F`oo //

id×$
��

GK ×I F`

��

// F`
$

��
F`× Gr GK × Groo // GK ×I Gr // Gr

The results follow by tracing through the definition of convolution. 2

Lemma 5.4. Let F ∈ Dmix
(I) (F`) and G ∈ PervGO

(Gr). There is a natural isomorphism F ? G ∼=
$∗F ? G.

Proof. As above, assume that F and G are both parity sheaves. We will give an alternative
description of the object F �̃G on GK ×I Gr, using the following commutative diagram.

GK × Gr
p

vv

q

((
i
��

F`× Gr (GK ×I GO)× Grp̃oo q̃ // GK ×I Gr
The maps are defined as follows:

p(g, xGO) = (gI, xGO), q(g, xGO) = (g, xGO), i(g, xGO) = (g, 1, xGO),

p̃(g, h, xGO) = (gI, xGO), q̃(g, h, xGO) = (g, hxGO).

Recall that F �̃G is defined to be the unique object on GK×IGr such that q∗(F �̃G)∼= p∗(F�G).
We claim that it is also the unique object satisfying

q̃∗(F �̃G) ∼= p̃∗(F � G).

To see this, observe first that because G is GO-equivariant, the object p̃∗(F�G) is GO-equivariant
for the ‘diagonal’ GO-action on (GK ×I GO) × Gr, in which m ∈ GO acts by m · (g, h, xGO) =
(g, hm−1,mxGO). This action is free, and q̃ is the quotient by this action, so there exists a unique
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object on GK ×I Gr, say F �̃′ G, such that q̃∗(F �̃′ G) ∼= p̃∗(F � G). Applying i∗, we find that
q∗(F �̃′ G) ∼= p∗(F � G), so we must have F �̃′ G = F �̃G.

Now form the following commutative diagram, where r(g, h, xGO) = (gh, xGO).

F`× Gr

��

(GK ×I GO)× Gr
r

��

p̃oo q̃ // GK ×I Gr
s
�� %%

Gr × Gr GK × Groo // GK ×GO Gr // Gr
It is easy to check that both squares are cartesian. Then the base-change theorem implies that
s∗(F �̃G) ∼= $∗F �̃G, and the result follows. 2

5.3 Wakimoto sheaves
Identify X with a subset of Waff as usual. Also, for λ ∈ X, let kλ denote the T∨-representation
of weight λ.

Lemma 5.5 (cf. [AB09, Corollary 1(a)]). The assignment kλ 7→ cλ for λ ∈ X+ extends to a
monoidal functor W : Rep(T∨) → Dmix

I (F`).

Proof. Recall [AR16, Proposition 4.4(2)] that each cw is an invertible object of Dmix
I (F`). With

this observation in hand, the proof of [AB09, Corollary 1(a)] can be repeated verbatim. 2

As in [ABG04], we will writeWλ instead ofW(kλ). Objects of this form are called Wakimoto
sheaves. The construction implies that for any λ ∈ X, we have

Wλ
∼= cµ ? s−ν if λ = µ− ν and µ, ν ∈ X+. (15)

In particular, for λ ∈ X+, we have Wλ = cλ and W−λ ∼= s−λ. By [AR16, Proposition 4.6] and
Proposition A.16, Wλ is both perverse and adverse. We also put

Wλ :=Wλ ? 1Gr ∼= $∗Wλ.

By Lemma A.5, the Wλ are again adverse. (They are not perverse in general.) The following
fact about these objects is a consequence of Lemma 5.2.

Lemma 5.6. For any λ ∈ X, Wλ is supported on I·λ, and there is a canonical isomorphism
Wλ|I·λ ∼= k{dim I·λ− δλ}. In the special case where λ ∈ X+, we have

Wλ
∼= i∗(λ) and W−λ ∼= i!(−λ){−δ−λ}. (16)

Proof. Identical to [ABG04, Corollary 8.3.2]. 2

The next lemma is a variation on Proposition A.17.

Lemma 5.7. Let λ ∈ X, and let F ,G ∈ Dmix
I (Gr). The natural map

Hom(F ,G) → Hom(Wλ ? F ,Wλ ? G)

is an isomorphism of H•I(pt)-modules.
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Proof sketch. This map is, of course, at least an isomorphism of graded vector spaces, since
Wλ ? (−) is an equivalence of categories. If we prove the statement for dominant weights, then
it follows for antidominant weights (since s−λ ? (−) is the inverse functor to cλ ? (−)), and then
for all weights by (15).

For dominant weights, the proof is very close that of Proposition A.17. We will review the
main points. Recall that Waff acts naturally on the maximal torus T , and that this action factors
through Waff �W (see [Kum02, § 13.2.2]). This induces an action of Waff on H•T (pt) ∼= H•I(pt).
Now the equivariant cohomology H•I(F`w) is equipped with two actions of H•I(pt). These actions
do not coincide in general; rather, they differ by the action of w on H•I(pt). As a consequence,
the natural map

Hom(F ,G) → Hom(cw ? F , cw ? G)

is a w-twisted homomorphism of H•I(pt)-modules. When w is a dominant weight, it acts trivially
on T and on H•I(pt), so the map above is indeed a homomorphism of H•I(pt)-modules, as desired.

2

5.4 Convolution with monodromic objects
For Q̄`-sheaves, it is explained in [ABG04, § 8.9] that by considering lifts of the cw and sw to the

‘thick affine flag variety’ F̃`, one can define a functor

Wλ ? (−) : Dmix
(I) (Gr, Q̄`) → Dmix

(I) (Gr, Q̄`). (17)

That is, one can drop the I-equivariance condition for objects on Gr. Unfortunately, we cannot
imitate this in the mixed modular setting, because there is currently no suitable theory of ‘mixed
modular sheaves’ on F̃`.

We will not attempt to define convolution in the generality of (17). Instead, we will see in
the next few statements that for certain special classes of morphisms and objects in Dmix

(I) (Gr),
we can recover a ‘shadow’ of the undefined functor (17), by lifting to Dmix

I (Gr).

Proposition 5.8. Let F ,G ∈ Dmix
I (Gr) be objects such that Homi(F ,G) is a free H•I(pt)-module

for all i ∈ Z. Then there is a unique isomorphism ωλ making the following diagram commute.

HomDmix
I (Gr)(F ,G)

∼
Wλ?−

//

��

HomDmix
I (Gr)(Wλ ? F ,Wλ ? G)

��
HomDmix

(I)
(Gr)(For(F),For(G))

∼
ωλ
// HomDmix

(I)
(Gr)(For(Wλ ? F),For(Wλ ? G))

This proposition applies, for instance, when F is ∗-pure and G is !-pure. In particular, when
µ ∈ X+ and G is !-pure, this proposition gives us a map

ωλ : Hom(W−µ,For(G))
∼
→ Hom(Wλ−µ,For(Wλ ? G)).

This is the most common circumstance in which Proposition 5.8 will be invoked.

Proof. Proposition A.13 gives rise to a spectral sequence

Tor
H•I (pt)
−p (Homq(F ,G), k) =⇒ Homp+q(For(F),For(G)).
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But the assumption that all the Homq(F ,G) are free means that the Tor-groups vanish except

when p = 0. Setting q = 0, we obtain an isomorphism

Hom(F ,G)⊗H•I (pt) k ∼= Hom(For(F),For(G)). (18)

In particular, the map Hom(F ,G) → Hom(For(F),For(G)) is surjective. It follows immediately

that if ωλ exists, it is unique.

Next, Lemma 5.7 implies that all Homi(Wλ ?F ,Wλ ?G) are also free H•I(pt)-modules, so the

considerations above apply here as well. In particular, we have

Hom(Wλ ? F ,Wλ ? G)⊗H•I (pt) k ∼= Hom(For(Wλ ? F),For(λ ? G)). (19)

Via (18) and (19), we define ωλ to be the map (Wλ ? (−))⊗H•I (pt) k. 2

Next, we show that the maps ωλ enjoy a kind of compatibility with composition.

Lemma 5.9. Let V ∈ Rep(G∨) be a representation with a good filtration. Let F ∈ Dmix
(I) (Gr) be

an object such that both F and F ? S(V ) are !-pure of weight 0. Let σ ∈ X and let λ, µ ∈ X+.

Given f :W−λ → S(V ){n} and g :W−µ → F , consider the composition

W−λ−µ
ω−µ(f)−−−−→W−µ ? S(V ){n} g?id−−→ F ? S(V ){n}.

The following diagram commutes.

Wσ−λ−µ
ωσ−µ(f) //

ωσ((g?id)◦ω−µ(f)) **

Wσ−µ ? S(V ){n}
ωσ(g)?id

��
Wσ ? F ? S(V ){n}

Proof. As we observed in the proof of Proposition 5.8, the maps

HomDmix
I (Gr)(W−λ,S(V ){n}) → HomDmix

(I)
(Gr)(W−λ,S(V ){n}),

HomDmix
I (Gr)(W−µ,F) → HomDmix

(I)
(Gr)(W−µF)

are surjective. Choose maps f̃ :W−λ → S(V ){n} and g̃ :W−µ → F in Dmix
I (Gr) that lift f and

g, respectively. The commutative diagram in Proposition 5.8 says that

ωσ−µ(f) = For(Wσ−µ ? f̃) and ωσ(g) = For(Wσ ? g̃).

The following calculation completes the proof:

(ωσ(g) ? id) ◦ ωσ−µ(f) = For((Wσ ? g̃ ? id) ◦ (Wσ−µ ? f̃))

= For(Wσ ? ((g̃ ? id) ◦ (W−µ ? f̃))) = ωσ(For(g̃ ? id) ◦ For(W−µ ? f̃))

= ωσ((g ? id) ◦ ω−µ(f)). 2

At the moment, the closest we can get to (17) is the following statement.
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Proposition 5.10. For any λ ∈ X, there is a functor

Wλ‘?’(−) : Parity(I)(Gr) → Dmix
(I) (Gr)

such that the following diagram commutes.

ParityI(Gr)
Wλ?(−) //

For

��

Dmix
I (Gr)

For
��

Parity(I)(Gr)
Wλ‘?’(−) // Dmix

(I) (Gr)

Proof. It is known that For : ParityI(Gr) → Parity(I)(Gr) is essentially surjective. Given F ∈
Parity(I)(Gr), choose an object F̃ ∈ ParityI(Gr) together with an isomorphism u : For(F̃)

∼
→ F .

We define Wλ‘?’F to be For(Wλ ? F̃). Suppose now that G is another object, for which we
have chosen v : For(G̃)

∼
→ G. Given a morphism f : F → G, we define Wλ‘?’f to be the map

ωλ(v−1 ◦ f ◦ u). It is easy to see that different choices would lead to a canonically isomorphic
functor. The fact that the diagram in the proposition commutes is obvious by construction. 2

5.5 Subcategories generated by Wakimoto sheaves
We end this section with a few results about subcategories of Dmix

(I) (Gr) that can be generated
by various collections of Wakimoto and spherical sheaves. These facts will be used in § 7.

Lemma 5.11. Let Z ⊂ Gr be a closed union of I-orbits. Then Dmix
(I) (Z) is generated as a

triangulated category by {Wµ{n} | I·µ ⊂ Z, n ∈ Z}.

Proof. This is an immediate consequence of Lemma 5.6. 2

Lemma 5.12. Let λ, µ ∈ X.

(i) If λ 6� µ, then Hom•(Wµ,Wλ) = 0.

(ii) We have End(Wλ) ∼= k, and Homi(Wλ,Wλ) = 0 for i 6= 0.

Proof. For part (i), the statement involves Dmix
(I) (Gr), but, by Proposition A.13, it suffices to

prove the corresponding vanishing in Dmix
I (Gr). For the remainder of the proof, we work in

the latter category. For any ν ∈ X, applying Wν ? (−) gives us an isomorphism Hom•(Wµ,
Wλ) ∼= Hom•(Wµ+ν ,Wλ+ν). Now choose ν to be dominant and large enough so that µ+ ν and
λ+ ν are both dominant. By (16) and adjunction, we have

Hom•(Wµ,Wλ) ∼= Hom•(i∗λ+νi∗(µ+ ν),k{dim I·(λ+ ν)}).

This is nonzero if and only if i∗λ+νi∗(µ + ν) 6= 0. The latter implies that I·(λ + ν) ⊂ I·(µ+ ν).
Since µ+ ν and λ+ ν are both dominant, this holds only when λ � µ.

Next, Proposition 5.8 implies that it is enough to prove part (ii) in the case where λ = 0
and, in this case, the result is clear. 2

Let λ ∈ X+, and recall that Ww0λ
∼= i!(w0λ){−δw0λ}. Suppose now that F is an object of

Dmix
(GO)(Gr) such that (isph

λ )!F ∼= k{dimGrλ}. (This applies, for instance, to I!(λ) and I∗(λ).)
Then

i!w0λF ∼= k{dimGrλ − 2(dimGrλ − dim I·(w0λ))} = k{dim I·(w0λ)− δw0λ}.
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By adjunction, we obtain a map Ww0λ → F . In particular, we have canonical maps

Ww0λ → I!(λ) and Ww0λ → I∗(λ). (20)

Lemma 5.13. Let λ ∈ X+. Extend the natural adjunction maps Ww0λ → I!(λ) and Ww0λ →

I∗(λ) to distinguished triangles

Ww0λ → I!(λ) → K→, Ww0λ → I∗(λ) → K′ → .

Then both K and K′ lie in the full triangulated subcategory of Dmix
(I) (Gr) generated by the set of

objects

{Wµ{n} | n ∈ Z, µ � w0λ and µ 6 λ}.

Proof. Let D′ ⊂ Dmix
(I) (Gr) be the category generated by the objects above. On the other hand,

let

D′′ = {F ∈ Dmix
(I) (Gr) | the support of F is contained in Grλ, and i!w0λF = 0}.

We will show that D′ = D′′.
We first claim that if µ 6 λ and µ � w0λ, then i!w0λ

Wµ = 0. Indeed, by adjunction

and (16), this claim is equivalent to the assertion that Hom•(Ww0λ,Wµ) = 0. The latter holds

by Lemma 5.12. We have shown that D′ ⊂ D′′.
Next, note that among the weights 6 λ, the weight w0λ is the unique minimal weight with

respect to �. Thus, if I·µ ⊂ Grλ r Grλ, then Wµ ∈ D′. More generally, for any F ∈ Dmix
(I) (Gr)

supported on Grλ r Grλ, Lemma 5.11 implies that F ∈ D′.
We will now show that every object F ∈ D′′ lies in D′ by induction on the number of I-orbits

in (suppF) ∩ Grλ. If that intersection is empty, the previous paragraph tells us that F ∈ D′.
Otherwise, choose a µ ∈ W · λ such that I·µ is open in the support of F . Then there is a

distinguished triangle

F ′ → F → iµ∗i∗µF → .

Note that µ 6= w0λ, because i∗µF ∼= i!µF is nonzero. Since i!w0λ
F ∼= i!w0λ

iµ∗i∗µF = 0, we find that

i!w0λ
F ′ = 0 as well. Thus, F ′ lies in D′′, and its support meets fewer I-orbits in Grλ than that of

F , so F ′ ∈ D′. On the other hand, iµ∗i∗µF is a direct sum of various i∗(µ){n}[k]. By Lemma 5.6,

there is a distinguished triangle

G →Wµ → i∗(µ){−δµ}→ .

The same reasoning as above shows that G lies in D′′ and, hence, by induction, in D′. Therefore,

iµ∗i∗µF lies in D′, and hence F lies in D′ as well. We have now shown that D′ = D′′.
Finally, because Ww0λ → I!(λ) and Ww0λ → I∗(λ) were defined by adjunction, the maps

i!w0λ
Ww0λ → i!w0λ

I!(λ) and i!w0λ
Ww0λ → i!w0λ

I∗(λ) are isomorphisms. It follows that i!w0λ
K =

i!w0λ
K′ = 0. In other words, K and K′ lie in D′′, and hence in D′, as desired. 2

Lemma 5.14. Let λ ∈ X+. The category Dmix
(I) (Grλ) is generated as a triangulated category by

the set of objects

{Wµ{n} | n ∈ Z, µ � w0λ and µ 6 λ} ∪ {I∗(λ){n} | n ∈ Z}.

2650

https://doi.org/10.1112/S0010437X16007661 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007661


The affine Grassmannian and the Springer resolution

Proof. Let D ⊂ Dmix
(I) (Grλ) be the triangulated subcategory generated by the objects indicated

above. The second distinguished triangle in Lemma 5.13 shows that D containsWw0λ. Of course,
every weight µ 6 λ satisfies µ � w0λ, so we see that D contains all Wµ with µ 6 λ. The lemma
follows by Lemma 5.11. 2

Proposition 5.15. The category Dmix
(I) (Gr) is generated as a triangulated category by the set

{Wλ{n} | n ∈ Z, λ 6� 0} ∪ {Wλ ? I∗(µ){n} | n ∈ Z, λ, µ ∈ X+}.

Proof. Let D ⊂ Dmix
(I) (Gr) be the triangulated category generated by the set of objects indicated

above. We will show that all Wλ{n} belong to D. Of course, we need only consider the case
where λ � 0. We proceed by downward induction with respect to �: given λ � 0, let us assume
that for all µ � λ, Wµ is already known to lie in D. (Note that only finitely many such µ also
satisfy µ � 0, so it does make sense to argue by induction here.) Write λ = σ+w0ν, where σ and
ν are both dominant. Lemma 5.14 tells us that Ww0ν lies in the triangulated category generated
by

{Wµ{n} | n ∈ Z, µ � w0ν} ∪ {I∗(ν){n} | n ∈ Z}.
It follows that Wλ

∼=Wσ ?Ww0ν lies in the triangulated subcategory generated by

{Wσ ?Wµ{n} | n ∈ Z, µ � w0ν} ∪ {Wσ ? I∗(ν){n} | n ∈ Z}. (21)

The objects Wσ ?Wµ
∼=Wσ+µ lie in D by assumption, since σ+µ � λ. Thus, all objects in (21)

lie in D, so Wλ lies in D as well, as desired. 2

We end with a result relating the adjunction map ε : Ww0λ → I!(λ) of (20) to convolution
of spherical sheaves.

Lemma 5.16. For λ, µ ∈ X+, there is a unique map of G∨-representations

pλ,µ : M(λ+ µ) → M(λ)⊗M(µ) (22)

such that the following diagram commutes.

Ww0(λ+µ)

o
��

ε // I!(λ+ µ)

S(pλ,µ)

��
Ww0λ ?Ww0µ

id?ε //Ww0λ ? I!(µ)
∼ //Ww0λ ? I!(µ)

ε?id // I!(λ) ? I!(µ)

Each map pλ,µ is nonzero. Moreover, for λ, µ, ν ∈ X+, the two morphisms M(λ + µ + ν) →

M(λ)⊗M(µ)⊗M(ν) coincide.

Proof. It is easy to see that Hom(M(λ + µ),M(λ) ⊗ M(µ)) and Hom(Ww0(λ+µ), I!(λ) ? I!(µ))
are both one dimensional, so the existence and uniqueness of pλ,µ are clear. The associativity
property can be deduced from the analogous property for Wakimoto sheaves. It remains only to
show that pλ,µ is nonzero.

To rephrase this problem, form distinguished trianglesWw0λ → I!(λ) → Kλ → andWw0µ →

I!(µ) → Kµ → as in Lemma 5.13. From these, we can build the octahedral diagram shown in
Figure 2. In that figure, G is a new object; it occurs in a distinguished triangle

Ww0(λ+µ) → I!(λ) ? I!(µ) → G → . (23)
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Figure 2. Octahedral diagram for Lemma 5.16.

We want to show that the first morphism in this triangle is not zero.
For any weight ν, let D�ν be the full triangulated subcategory of Dmix

(I) (Gr) generated by

{Wσ{n} | σ � ν, n ∈ Z}. We define D�ν similarly. Lemma 5.13 tells us that Kµ ∈ D�w0µ, and
likewise for Kλ. Since I!(µ) ∈D�w0µ, we see that bothWw0λ?Kµ and Kλ?I!(µ) lie in D�w0(λ+µ).
Therefore, G lies in D�w0(λ+µ).

Lemma 5.12 implies that Ww0(λ+µ) does not lie in D�w0(λ+µ), so it cannot be a direct
summand of G[−1]. We deduce that the first morphism in (23) is nonzero, as desired. 2

6. Multihomogeneous coordinate rings and Ext-algebras

6.1 The multihomogeneous coordinate ring of the flag variety
Consider the duals of the maps introduced in Lemma 5.16:

p∗λ,µ : N(λ)⊗N(µ) → N(λ+ µ). (24)

That lemma implies that these maps satisfy a certain associativity property, so we can use them
to make

⊕
λ∈X+ N(λ) into a ring. We introduce the notation

Γ[B∨] :=
⊕
λ∈X+

N(λ),

and we regard it as a G∨-equivariant X-graded ring. Let Γ[B∨]-mod denote the category of
finitely generated G∨-equivariant X-graded Γ[B∨]-modules. A module M =

⊕
λ∈XMλ in this

category is said to be thin if there is some λ ∈ X such that Mµ = 0 for all µ ∈ λ+ X+.
This notation reflects the fact that this ring can be thought of as a multihomogeneous

coordinate ring for B∨. To make this precise, consider the line bundle OB∨(λ) on B∨. We have
a canonical identification Γ(B∨,OB∨(λ)) ∼= N(λ). By adjunction and the projection formula, one
sees that there is a canonical bijection Hom(OB∨(λ)⊗OB∨(µ),OB∨(λ+µ)) ∼= Hom(N(λ)⊗N(µ),
N(λ+ µ)). Let

tλ,µ : OB∨(λ)⊗OB∨(µ)
∼
→ OB∨(λ+ µ) (25)

be the map corresponding to p∗λ,µ under this bijection. Again, these maps enjoy an associativity
property like that in Lemma 5.16.

Let us assume temporarily that G∨ is semisimple and simply connected, and let $1, . . . , $r

be the fundamental weights of G∨. From (25), we obtain for each λ ∈X+ a canonical isomorphism

OB∨(λ) ∼= OB∨($1)⊗a1 ⊗ · · · ⊗ OB∨($r)
⊗ar if λ = a1$1 + · · ·+ ar$r
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and hence a canonical isomorphism of rings

Γ[B∨] ∼=
⊕

(a1,...,ar)∈Nr
Γ(B∨,OB∨($1)⊗a1 ⊗ · · · ⊗ OB∨($r)

⊗ar).

The right-hand side agrees with the multihomogeneous coordinate ring of B∨ as discussed in,
say, [GLS08, § 10] or [LG01, p. 123]. A straightforward generalization of the Proj-construction
(see, e.g., the discussion following [Mum77, Proposition 4.8]) recovers the variety B∨ from this
ring, and provides an exact functor

F0 : Γ[B∨]-mod → Coh(B∨),

where Coh(B∨) is the category of G∨-equivariant coherent sheaves on B∨. (In a slight abuse
of notation, we will also write F0 for the operation that takes possibly infinitely generated
Γ[B∨]-modules to quasicoherent sheaves on B∨.) Moreover, this functor induces an equivalence
of categories

Γ[B∨]-mod/(Serre subcategory of thin modules)
∼
→ Coh(B∨).

In fact, the functor F0 and the above equivalence are available for arbitrary reductive G∨

satisfying (2). The flag variety of G∨ can be identified with that of its derived subgroup (G∨)′,
and routine reduction arguments let us build F0 for G∨ in terms of that for (G∨)′.

We now describe another way to construct the ring Γ[B∨] in terms of the geometric Satake
equivalence. Consider the X-graded G∨-representation⊕

λ∈X+

HomDmix
(I)

(Gr)(I!(−w0λ),R). (26)

We make this into a ring as follows: given g ∈ Hom(I!(−w0λ),R) and f ∈ Hom(I!(−w0µ),R),
let gf ∈ Hom(I!(−w0(λ+ µ)),R) be the composition

I!(−w0(λ+ µ))
S(p−w0λ,−w0µ

)
−−−−−−−−−→ I!(−w0λ) ? I!(−w0µ)

g?f−−→ R ?R S(m)−−−→ R.
Here, we have used the fact that f is a morphism in Perv(GO)(Gr) = PervGO

(Gr), so that it
makes sense to form the convolution product g ? f . For later reference, we rewrite this product
in a slightly different form:

I!(−w0(λ+ µ))
S(p−w0λ,−w0µ

)
−−−−−−−−−→ I!(−w0λ) ? I!(−w0µ)

id?f−−→ I!(−w0λ) ?R
g?id−−→ R ?R S(m)−−−→ R. (27)

Proposition 6.1. There is an isomorphism of G∨-equivariant X-graded rings

Γ[B∨] ∼=
⊕
λ∈X+

Hom(I!(−w0λ),R).

Proof. The maps below give an isomorphism of X-graded G∨-representations. It is easily checked
that they also constitute a ring isomorphism, as desired.

Hom(I!(−w0λ),R)
S−→
∼

Hom(M(−w0λ), k[G∨]) ∼= Hom(k,N(λ)⊗ k[G∨])

∼= (N(λ)⊗ k[G∨])G
∨×1 Lemma 4.2−−−−−−→

∼
N(λ). 2
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6.2 The multihomogeneous coordinate ring of the Springer resolution

We will now upgrade these considerations from B∨ to Ñ . The isomorphisms in (25) determine
a corresponding collection of isomorphisms

t̃λ,µ : OÑ (λ)⊗OÑ (µ) → OÑ (λ+ µ).

These, in turn, give rise to a collection of maps

p̃∗λ,µ : Γ(Ñ ,OÑ (λ))⊗ Γ(Ñ ,OÑ (µ)) → Γ(Ñ ,OÑ (λ+ µ)) (28)

that we then use to make the following space into a ring:

Γ[Ñ ] :=
⊕
λ∈X+

Γ(Ñ ,OÑ (λ)).

This ring carries a (Z × X)-grading. Its degree-(Z × {0}) subring (i.e. the subring spanned
by homogeneous elements whose degrees lie in Z × {0} ⊂ Z × X) is the Z-graded ring Γ(Ñ ,
OÑ ) ∼= k[N ]. On the other hand, Lemma 3.9 gives us an injective homomorphism

Γ[B∨] ↪→ Γ[Ñ ] (29)

that identifies the former with the degree-({0} × X) subring of the latter. (To be precise,
Lemma 3.9 just gives us an injective map of G∨-representations. Because both (25) and (28)
are induced by (24), this map is actually a ring homomorphism.)

Regard Γ[Ñ ] as a Γ[B∨]-algebra via (29). Applying F0, we obtain a Z-graded sheaf of
algebras S on B∨. This sheaf of algebras can be identified with p∗OÑ , where p : Ñ → B∨ is

the projection map. In other words, we have Ñ = SpecS , where Spec is the relative version of
the Spec construction.

Let Γ[Ñ ]-mod denote the category of finitely generated G∨-equivariant (Z×X)-graded Γ[Ñ ]-
modules. Given a module M ∈ Γ[Ñ ]-mod, we can regard it as a Γ[B∨]-module via (29), and
then form the sheaf F0(M). This is a quasicoherent sheaf on B∨ that is also a Z-graded sheaf of
S -modules. The Spec construction then associates to F0(M) a (G∨×Gm)-equivariant coherent
sheaf on Ñ . In this way, we obtain a functor

F : Γ[Ñ ]-mod → Coh(Ñ ).

As above, a module M =
⊕

λ∈XMλ is called thin if there is some λ ∈ X such that Mµ = 0
for all µ ∈ λ + X+. (The Z-grading is irrelevant to this condition.) The functor F induces an
equivalence of categories

Γ[Ñ ]-mod/(Serre subcategory of thin modules)
∼
→ Coh(Ñ ).

6.3 An Ext-algebra of Wakimoto sheaves
Building on the construction of § 4.2, we now make⊕

λ∈X+

Hom(W−λ,R)

into a G∨-equivariant (Z × X)-graded Hom(1Gr,R)-algebra in the following way: given f ∈
Hom(W−λ,R{n}) and g ∈ Hom(W−µ,R{m}), we define gf ∈ Hom(W−λ−µ,R{n + m}) to be
the composition

W−λ−µ
ω−µ(f)−−−−→W−µ ?R{n} ∼→W−µ ?R{n}

g?id−−→ R{m} ?R{n} S(m){m+n}−−−−−−−−→ R{m+ n}. (30)

A short calculation with Lemma 5.9 shows that this operation is associative, so we do indeed
get a ring. The main result of this section is the following theorem.
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Theorem 6.2. There is an isomorphism of G∨-equivariant Z×X-graded rings

Γ[Ñ ] ∼=
⊕
λ∈X+

Hom(W−λ,R).

Proof. Using (16), Proposition 4.9, and (5), we have the following chain of isomorphisms in

Coh(N ):

Hom(W−λ,R) ∼= Hom(i!(−λ){−δλ},R) ∼= ∇̄(λ)〈δλ〉 ∼= Γ(Ñ ,OÑ (λ)).

Thus, our two rings are at least isomorphic as (Z × X)-graded G∨-equivariant k[N ]-modules.

Recall from Lemmas 3.9 and 3.10 that Γ(Ñ ,OÑ (λ)) is generated as a k[N ]-module by its degree-0

graded component. Therefore, the same holds for Hom(W−λ,R). To prove that the two rings in

the statement of the theorem are isomorphic, then, it suffices to show that their degree-({0}×X)

subrings are isomorphic.

We first study the right-hand side. Recall that we have an adjunction map ε : W−λ ∼=
i!(−λ){−δ−λ}→ I!(−w0λ). This gives rise to a map

Hom(I!(−w0λ),R) → Hom(W−λ,R). (31)

We claim that this map is an isomorphism. Note first that the truncation map J!(−w0λ) →

pH0(J!(−w0λ)) = I!(−w0λ) induces an isomorphism

Hom(I!(−w0λ),R)
∼
→ Hom(J!(−w0λ),R),

since R is perverse. The claim then follows from Corollary 4.8.

From the preceding paragraph, we obtain an injective map of G∨-modules⊕
λ∈X+

Hom(I!(−w0λ),R) ↪→
⊕
λ∈X+

Hom(W−λ,R) (32)

that identifies the former with the degree-({0} ×X) subspace of the latter.

We will show that this is also a ring homomorphism. Let g ∈ Hom(I!(−w0λ),R) and f ∈
Hom(I!(−w0µ),R). Let g̃ ∈ Hom(W−λ,R) and f̃ ∈ Hom(W−µ,R) be the maps corresponding

to g and f via (31). (Thus, g̃ = g ◦ ε and f̃ = f ◦ ε.)
Recall that f can be regarded as a morphism in PervGO

(Gr) ⊂ Dmix
GO

(Gr). (Indeed, this

observation is essential to the definition of the ring structure in (26).) We can then forget from the

GO-equivariant derived category to the I-equivariant derived category. Of course, the adjunction

map ε : W−µ → I!(−w0µ) can also naturally be lifted to Dmix
I (Gr), so we may regard f̃ as a

morphism in Dmix
I (Gr). In particular, it makes sense to form the convolution product id ? f̃ :

W−λ ?W−µ →W−λ ?R.

That observation is needed for a portion of the large diagram in Figure 3, which compares

the products on either side of (32). The large square labeled (∗) is the commutative diagram

from Lemma 5.16. Each of the remaining small squares obviously commutes.

Thus, the whole of Figure 3 commutes and hence (32) is a ring homomorphism. From (32),

(29), and Proposition 6.1, we obtain an isomorphism of the degree-({0} ×X) subrings of Γ[Ñ ]

and
⊕

λ∈X+ Hom(W−λ,R), as desired. 2
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Figure 3. Comparing ring structures in Theorem 6.2.

7. The main result

We are now ready to prove the following theorem, which is the main result of the paper. Its
proof will occupy the entire section.

Theorem 7.1. There is an equivalence of triangulated categories

P : Dmix
(I) (Gr) ∼→ DbCohG

∨×Gm(Ñ )

satisfying P (F{1}) ∼= P (F)〈1〉 and P (Wλ) ∼= OÑ (λ). Moreover, this equivalence is compatible
with the geometric Satake equivalence: for F ∈ Dmix

(I) (Gr) and V ∈ Rep(G∨), there is a natural

isomorphism P (F ? S(V )) ∼= P (F)⊗ V .

We begin by constructing the functor P . As a first step, given F ∈ Dmix
(I) (Gr), form the

(Z×X)-graded vector space

Qnaive(F) :=
⊕
λ∈X+

Hom(W−λ,F ?R).

We make this into a right module over
⊕

λ∈X+ Hom(W−λ,R) by a formula similar to (30):
given f ∈ Hom(W−λ,R{n}) and m ∈ Hom(W−µ,F ? R{m}), we define mf ∈ Hom(W−λ−µ,
F ?R{n+m}) to be the composition

W−λ−µ
ω−µ(f)−−−−→W−µ ?R{n} ∼→W−µ ? R{n}

m?id−−−→ F ?R{m} ?R{n} id?S(m){m+n}−−−−−−−−−→ F ?R{m+ n}.

Using the isomorphism of Theorem 6.2, we henceforth regard Qnaive as a functor Qnaive :
Dmix

(I) (Gr) → Γ[Ñ ]-mod. We also let Pnaive := F ◦Qnaive : Dmix
(I) (Gr) → Coh(Ñ ), and then we put

P 0 = Pnaive|Parity(I)(Gr) : Parity(I)(Gr) → Coh(Ñ ).
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Finally, we define P to be the composition

Dmix
(I) (Gr) = KbParity(I)(Gr)

Kb(P 0)−−−−→ KbCoh(Ñ ) → DbCoh(Ñ ).

We begin with the last assertion in the theorem.

Proposition 7.2. For F ∈ Dmix
(I) (Gr) and V ∈ Rep(G∨), there is a natural isomorphism P (F ?

S(V )) ∼= P (F)⊗ V .

Proof. Observe first that by applying S to the isomorphism of Lemma 4.1, we obtain a natural
isomorphism of G∨-equivariant ind-perverse sheaves

S(V ) ?R ∼= R⊗ V. (33)

(Here, R ⊗ V is isomorphic as an ind-perverse sheaf, but not as a G∨-equivariant ind-perverse
sheaf, to

⊕dimV R.) From the definitions of the convolution product and the functor P , one
sees that it is enough to prove the following statement: for F ∈ Parity(I)(Gr) and V a tilting

G∨-module, there is a natural isomorphism P 0(F ? S(V )) ∼= P 0(F) ⊗ V . For the latter claim,
using (33), we find that

P 0(F ? S(V )) = F
(⊕

Hom(W−λ,F ? S(V ) ?R)
)

= F
(⊕

Hom(W−λ,F ?R)⊗ V
)
∼= P 0(F)⊗ V,

as desired. 2

The next several statements are somewhat technical lemmas aimed at making it possible to
compute some values of P .

Lemma 7.3. Let F ∈ Parity(I)(Gr), and let V ∈ Rep(G∨) have a good filtration. Then F ?S(V )
is !-pure of weight 0.

Proof. Every indecomposable parity sheaf on Gr occurs as a direct summand of the direct image
along $ : F` → Gr of some parity sheaf on F`. Thus, without loss of generality, we may assume
that F = $∗F̃ for some F̃ ∈ Parity(I)(F`). By Lemma 5.4, we have $∗F̃ ?S(V ) ∼= F̃ ?S(V ). Via
Lemma A.4, it is enough to show that F ?S(V ) is an adverse sheaf with a costandard filtration.

Let us first show that$∗(F?S(V ))∼= F̃?$∗S(V ) is adverse. (Here, we have used Lemma 5.3.)
By Lemmas A.4 and A.6, $∗S(V ) is an adverse sheaf with a costandard filtration. On the other
hand, the parity sheaf F̃ is a tilting object in Adv(I)(F`); in particular, it has a standard

filtration. Proposition A.16 then implies that F̃ ? $∗S(V ) is adverse.
Since $∗ is adverse-exact and kills no nonzero adverse sheaf (see Lemma A.5), it follows that

F ? S(V ) is adverse. To show that it has a costandard filtration, we must check that

Ext1(i!(µ){n},F ? S(V )) = 0

for all µ ∈X and all n ∈ Z. Since S(V ) has weights > 0 (see [AR14, Lemma 3.5]) and F is parity,
the object (F ? S(V ))[1] has weights > 1. On the other hand, i!(µ){n} has weights 6 0, so the
Ext1-group above vanishes by (A.1). 2
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Lemma 7.4. Let λ, µ ∈X be such that λ+µ ∈X+. Let F ∈ Parity(I)(Gr), and let V ∈ Rep(G∨)
have a good filtration. Then

Homi(W−µ,Wλ ? F ? S(V )) = 0 for all i 6= 0.

Proof. Lemma 7.3 tells us that F ? S(V ) is !-pure of weight 0, so we can invoke Proposition 5.8
to obtain an isomorphism

Homi(W−µ,Wλ ? F ? S(V )) ∼= Homi(W−λ−µ,F ? S(V )).

By Lemmas 7.3 and A.4, F?S(V ) is an adverse sheaf with a costandard filtration. SinceW−λ−σ ∼=
i!(−λ−σ){−δ−λ−σ} is a standard adverse sheaf, we have Exti(W−λ−σ,F ?S(V ){n}) = 0 for all
n ∈ Z and all i 6= 0. By the equivalence at the end of Proposition A.1, these Ext-groups can be
identified with Hom-groups in Dmix

(I) (Gr), and the lemma follows. 2

The next statement involves the functor introduced in Proposition 5.10.

Lemma 7.5. Let λ ∈ X, and let F ∈ Parity(I)(Gr). For all i 6= 0, we have Pnaive(Wλ‘?’F [i]) = 0.

Proof. In view of Proposition 5.10, we may as well instead take F ∈ ParityI(Gr), and work
with For(Wλ ? F). Choose a weight ν ∈ X+ such that λ + ν ∈ X+. Since k[G∨] is an inductive
limit of finite-dimensional G∨-representations with good filtrations, Lemma 7.4 implies that
Hom(W−σ,Wλ ?F [i]?R) = 0 for all i 6= 0 and all σ ∈ ν+X+. This means that Qnaive(Wλ ?F [i])
is thin, so Pnaive(Wλ ? F [i]) = 0. 2

Lemma 7.6. For any F ∈ Dmix
(I) (Gr) and any i ∈ Z, there is a natural isomorphism H i(P (F)) ∼=

Pnaive(F [i]).

Proof. It certainly suffices to prove this for i = 0. Let Dmix
(I) (Gr)>0 and Dmix

(I) (Gr)60 denote the
full subcategories of objects with weights > 0 and 6 0, respectively. We proceed in several steps.

Step 1. For F ∈ Dmix
(I) (Gr)>0, there is a natural transformation H0(P (F)) → Pnaive(F). Since

F has weights > 0, it can be written as a chain complex E• in KbParity(I)(Gr) with E i = 0

for i > 0. Consider the obvious map E0
→ F in Dmix

(I) (Gr). The composition E−1
→ E0

→ F
vanishes. Applying Pnaive, we obtain a sequence of maps

P 0(E−1) → P 0(E0) → Pnaive(F)

whose composition vanishes. Therefore, the map P 0(E0) → Pnaive(F) determines a map P (F) →

Pnaive(F) in DbCoh(Ñ ). Taking cohomology, we obtain the desired natural transformation
H0(P (F)) → Pnaive(F).

Step 2. For F ∈ Dmix
(I) (Gr)60, there is a natural transformation Pnaive(F) → H0(P (F)). Similar

to Step 1.

Step 3. Let F1 ∈ Dmix
(I) (Gr)>0 and F2 ∈ Dmix

(I) (Gr)60. For any morphism f : F1 → F2, the following
diagram commutes.

H0(P (F1))
H0(P (f)) //

**

H0(P (F2))

Pnaive(F1)
Pnaive(f) // Pnaive(F2)

44 (34)
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Write the objects as complexes F1 = E•1 and F2 = E•2 with E i1 = 0 for i > 0 and E i2 = 0 for

i < 0. The morphism f : F1 → F2 corresponds to some map of chain complexes f• : E•1 → E•2 ,

where, of course, only f0 can be nonzero. Because the diagram below commutes, we see from

the construction of the natural transformations in Steps 1 and 2 that (34) commutes.

E−1
1

// E0
1

%%

f0
// E0

2
// E1

2

F1
f // F2

99

Step 4. The natural transformations of Steps 1 and 2 are isomorphisms. We will prove this for

Step 1; the other case is similar. Suppose that F has weights > 0 and 6 n. We proceed by

induction on n. When n = 0, F is pure of weight 0, and it is clear from the definitions that

P (F) → Pnaive(F) is an isomorphism. Otherwise, write F as a complex E• with E i = 0 for i > 0,

and let F ′ be the cone of E0
→ F . Then F ′ has weights > 1 and 6 n. The distinguished triangle

E0
→ F → F ′ → gives rise to the following commutative diagram.

H0(P (F ′[−1])) //

o
��

H0(P (E0)) //

o
��

H0(P (F)) //

��

H0(P (F ′))

��
Pnaive(F ′[−1]) // Pnaive(E0) // Pnaive(F) // Pnaive(F ′)

The first two vertical arrows are isomorphisms by induction. In the last column, we clearly have

H0(P (F ′)) = 0, while Lemma 7.5 implies that Pnaive(F ′) = 0. We conclude that the third vertical

arrow is an isomorphism, as desired.

Step 5. The general case. Given F ∈ Dmix
(I) (Gr), say F = E• ∈ KbParity(I)(Gr), let F1 be the

complex obtained by omitting the E i with i > 0, and let F2[−1] be the complex obtained by

omitting the E i with i 6 0. Thus, there is a distinguished triangle F2[−1] → F → F1 →. Note

that F1 has weights > 0 and F2 has weights 6 0. Consider the following diagram, in which the

rows are long exact sequences.

H−1(P (F2)) // H0(P (F)) // H0(P (F1)) //

o
��

H0(P (F2))

Pnaive(F2[−1]) // Pnaive(F) // Pnaive(F1) //// Pnaive(F2)

o
OO

We clearly have H−1(P (F2)) = 0, while Lemma 7.5 implies that Pnaive(F2[−1]) = 0. It follows

that there is a unique isomorphism H0(P (F))
∼
→ Pnaive(F) that would make the diagram

commute. It is a routine exercise in homological algebra that this morphism is independent

of the choice of F1 and F2 and natural in F . 2

Corollary 7.7. For F ∈ Dmix
(I) (Gr), we have that P (F) ∈ Coh(Ñ ) if and only if Pnaive(F [i]) = 0

for all i 6= 0. When these conditions hold, there is a natural isomorphism P (F) ∼= Pnaive(F).

Proposition 7.8. Let λ ∈ X. For F ∈ Parity(I)(Gr), there is a natural isomorphism

P (Wλ‘?’F) ∼= OÑ (λ)⊗ P (F). In particular, we have P (Wλ) ∼= OÑ (λ).
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Proof. By Lemma 7.5 and Corollary 7.7, we have P (Wλ‘?’F) ∼= Pnaive(Wλ‘?’F) and P (F) ∼=
Pnaive(F). We will prove that there is a natural isomorphism Pnaive(Wλ‘?’F)∼=OÑ (λ)⊗Pnaive(F).
As in the proof of Lemma 7.5, we will replace F by an object of ParityI(Gr), and work with
Wλ ? F throughout.

For a module M ∈ Γ[Ñ ]-mod and a weight χ ∈ X, let M〈〈χ〉〉 denote the module obtained
by shifting the X-grading by χ. That is,

(M〈〈χ〉〉)σ = Mχ+σ.

From the definitions, we have a natural isomorphism

F (M〈〈χ〉〉) ∼= OÑ (χ)⊗F (M). (35)

Now choose a dominant weight ν such that λ + ν is dominant. There is an obvious surjective
map of Γ[Ñ ]-modules

Qnaive(Wλ ? F [i])�
⊕

σ∈ν+X+

Hom(W−σ,Wλ[i] ? F ?R).

On the other hand, according to Proposition 5.8, we have an isomorphism Hom(W−λ−σ,F ?
R[i]) → Hom(W−σ,Wλ ? F [i] ?R) for σ ∈ ν + X+. Using this, we form a surjective map

Qnaive(F [i])〈〈λ〉〉 =
⊕

σ∈−λ+X+

Hom(W−σ−λ,F [i] ?R)�
⊕

σ∈ν+X+

Hom(W−σ,Wλ[i] ? F ?R).

Both of these maps have thin kernels and hence become isomorphisms after applying F .
Using (35), we conclude that Pnaive(Wλ ? F [i]) ∼= OÑ (λ)⊗ Pnaive(F), as desired. 2

Lemma 7.9. For any λ, µ ∈ X+ and i ∈ Z, the functor P induces an isomorphism

Homi(1Gr,Wλ ? I∗(µ))
∼
→ Homi(P (1Gr), P (Wλ ? I∗(µ))). (36)

Moreover, both sides vanish for i 6= 0.

Proof. Suppose first that i 6= 0. Lemma 7.4 tells us that the left-hand side vanishes. For the right-
hand side, by Propositions 7.2 and 7.8, we have P (1Gr) =OÑ and P (Wλ?I∗(µ)) =OÑ (λ)⊗N(µ).
Using (3) and adjunction, we have

Homi(OÑ ,OÑ ⊗N(µ)) ∼= Homi(ON , π∗(OÑ ⊗N(µ))) ∼= Homi(ON ,ON ⊗N(µ)).

This vanishes when i 6= 0 because ON is a standard object of PCoh(N ), while ON ⊗N(µ) has a
costandard filtration.

For later reference, we record the details of the adjunction isomorphism used above: it is
the composition of the following sequence of maps, where the last one is induced by the unit
η : ON → π∗π∗ON :

Hom(OÑ ,OÑ (λ)⊗N(µ))
π∗−→ Hom(π∗OÑ , π∗(OÑ (λ)⊗N(µ)))
∼= Hom(π∗π∗ON , π∗(OÑ (λ)⊗N(µ)))
η−→ Hom(ON , π∗(OÑ (λ)⊗N(µ))). (37)

But, since η : ON → π∗π∗ON is itself an isomorphism (see (3)), the map induced by π∗ must
also be an isomorphism.

We now study (36) for i = 0. Corollary 7.7 tells us that we may replace it by

Hom(1Gr,Wλ ? I∗(µ)) → Hom(Pnaive(1Gr), Pnaive(Wλ ? I∗(µ))). (38)
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We begin by showing that this map is injective. Recall that for any M ∈ Γ[Ñ ]-mod, there is a
natural map

M →

⊕
σ∈X+

Γ(Ñ ,OÑ (σ)⊗F (M)).

Write M =
⊕

σ∈XMσ, and let U : M 7→ M0 be the functor that picks out the degree-(Z× {0})
subspace of M . The map above gives rise to a natural map

U(M) → Γ(Ñ ,F (M)). (39)

Of course, this is not an isomorphism in general, but it may be for specific classes of objects.
In particular, for M = Qnaive(1Gr) or Qnaive(Wλ ? I∗(µ)), it is easy to check that (39) is
an isomorphism. Replacing Γ(Ñ ,F (Qnaive(−))) by π∗Pnaive(−), we construct the following
commutative diagram.

Hom(1Gr,Wλ ? I∗(µ))

��
Hom(Qnaive(1Gr), Qnaive(Wλ ? I∗(µ))) //

��

Hom(U(Qnaive(1Gr)), U(Qnaive(Wλ ? I∗(µ))))

o (39)
��

Hom(Pnaive(1Gr), Pnaive(Wλ ? I∗(µ)))
π∗
∼ // Hom(π∗Pnaive(1Gr), π∗Pnaive(Wλ ? I∗(µ)))

As noted above, the rightmost vertical arrow is an isomorphism. We saw in (37) that the
bottommost horizontal arrow (which is induced by π∗) is an isomorphism. So, to prove that (38)
is injective, it suffices to prove that

Hom(1Gr,Wλ ? I∗(µ)) → Hom(U(Qnaive(1Gr)), U(Qnaive(Wλ ? I∗(µ)))) (40)

is injective. Let f : 1Gr →Wλ ?I∗(µ){n} be a nonzero map. Unwinding the definitions, one finds
that

U(Qnaive(f)) : Hom(1Gr,R) → Hom(1Gr,Wλ ? I∗(µ){n} ?R)

is just given by U(Qnaive(f))(g) = f ? g. Let η : 1Gr → R be the unit morphism. Then f ? η
is nonzero, because (f ? ε) ◦ (f ? η) = f , where ε : R → 1Gr is the counit coming from the
Hopf algebra structure on k[G∨]. Thus, U(Qnaive(f)) is nonzero, and so (40) and (38) are both
injective.

To finish the proof, we must show that (38) is actually an isomorphism. It suffices to check
that both sides have the same dimension in each degree of the grading. This is achieved by the
following calculation:

Hom(1Gr,Wλ ? I∗(µ))
∼= Hom(i!(−λ){−δ−λ}, I∗(µ)) by Proposition 5.8
∼= k⊗H•(Gr−w0λ

) Hom(J!(−w0λ), I∗(µ)) by Lemma 4.7
∼= k⊗H•(Gr−w0λ

) Hom(∆(−w0λ)〈δw0λ〉,ON ⊗N(µ)) by Proposition 3.1 and Corollary 3.4
∼= Hom(∆̄(−w0λ)〈−δw0λ〉,ON ⊗N(µ)) by Lemma 3.8
∼= Hom(OÑ (−λ),OÑ ⊗N(µ)) by (4)
∼= Hom(OÑ ,OÑ (λ)⊗N(µ))
∼= Hom(Pnaive(1Gr), Pnaive(Wλ ? I∗(µ))). 2
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Lemma 7.10 (cf. [Bez06, Lemma 5]). Let λ, µ ∈ X.

(i) If λ 6� µ, then Hom•(OÑ (µ),OÑ (λ)) = 0.

(ii) We have End(OÑ (λ)) ∼= k, and Homi(OÑ (λ),OÑ (λ)) = 0 for i 6= 0.

Proof. By applying the equivalence of categories OÑ (−λ)⊗ (−), we may assume without loss of
generality that λ = 0. Using (4), we find that

Hom•(OÑ (µ),OÑ ) ∼= Hom•(OÑ (µ), π!ON ) ∼= Hom•DbCoh(N )(π∗OÑ (µ),ON ).

By [Ach12, Proposition 5.6], the latter vanishes unless µ � 0. In the special case where µ = 0,
we use (3) and [Ach12, Lemma 5.5(2)] to see that Hom(π∗OÑ ,ON ) ∼= k, and that Homi(π∗OÑ ,
ON ) = 0 for i 6= 0. 2

Conclusion of the proof of Theorem 7.1. We begin by showing that for all F ∈ Dmix
(I) (Gr), the

map

Homi(1Gr,F) → Homi(P (1Gr), P (F)) (41)

is an isomorphism. By Proposition 5.15, it suffices to consider the cases where F = Wλ with
λ 6� 0, or else F =Wλ ? I∗(µ) with λ, µ ∈ X+. In the former case, both sides of (41) vanish, by
Lemmas 5.12 and 7.10. The latter case is covered by Lemma 7.9. Thus, (41) is an isomorphism
in all cases.

Next, let F ∈ Parity(I)(Gr) and let λ ∈X+. Consider the following diagram of natural maps.

Homi(1Gr,F)
∼ //

oωλ

��

Homi(P (1Gr), P (F))

o
��

Homi(OÑ (λ)⊗ P (1Gr),OÑ (λ)⊗ P (F))

Homi(Wλ,Wλ‘?’F) // Homi(P (Wλ), P (Wλ‘?’F))

o
OO

(42)

All the vertical maps are isomorphisms, and the top horizontal map is an isomorphism by (41).
When i = 0, the natural isomorphism of Proposition 7.8 tells us that this diagram commutes,

and so the bottom horizontal map is an isomorphism as well. When i 6= 0, that naturality is not
a priori available; but both Hom-groups in the top row vanish, and so every Hom-group in the
diagram vanishes.

Thus, the bottom arrow in (42) is an isomorphism in all cases. Note that the equivariant
derived category Dmix

I (Gr) is generated by objects of the form Wλ ? F with F ∈ ParityI(Gr),
because Wλ ? (−) is an autoequivalence of that category. Since the image of For : Dmix

I (Gr) →

Dmix
(I) (Gr) generates Dmix

(I) (Gr), we deduce that objects of the formWλ‘?’F with F ∈ Parity(I)(Gr)
generate Dmix

(I) (Gr). Therefore, the bottom isomorphism in (42) implies that

Homi(Wλ,G) → Homi(P (Wλ), P (G))

is an isomorphism for all G ∈ Dmix
(I) (Gr). Finally, the Wλ also generate Dmix

(I) (Gr), so P is fully

faithful. The line bundles OÑ (λ) generate DbCoh(Ñ ) as a triangulated category, so P is also
essentially surjective and hence an equivalence. 2
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8. The exotic t-structure

The exotic t-structure on DbCoh(Ñ ) was defined in [Bez06, § 2.3], at least for k = C. We

will briefly review the steps of the construction, and check that they go through in positive

characteristic as well.

8.1 Exceptional sets and mutation

This subsection contains a very cursory review of the definitions and facts we will need

from [Bez06, § 2.1]. For details, the reader should consult [Bez06] and the references indicated

therein, especially [BK89, BGS96].

Let D be a k-linear triangulated category equipped with an autoequivalence 〈1〉 : D → D.

Let Ω be a partially ordered set, with partial order �. A collection of objects {Xγ | γ ∈ Ω} is

called a full graded �-exceptional set if D is generated by the set {Xγ〈n〉 | γ ∈ Ω, n ∈ Z}, and

if the following three additional conditions hold:

Hom•(Xγ , Xξ) = 0 if ξ 6� γ, Homi(Xγ , Xγ) = 0 if i 6= 0, End(Xγ) ∼= k.

Now suppose that � is another partial order on Ω, and that {Yγ | γ ∈ Ω} is a full graded

�-exceptional set. We say that {Yγ} is a �-mutation of {Xγ} if the following two conditions

hold.

(i) For each γ, the triangulated category generated by {Xξ〈n〉 | ξ�γ, n ∈ Z} coincides with

that generated by {Yξ〈n〉 | ξ � γ, n ∈ Z}.
(ii) For each γ, there is a distinguished triangle Xγ → Yγ → Uγ → such that Uγ lies in the

triangulated subcategory generated by {Xξ〈n〉 | ξ � γ, n ∈ Z}.
Suppose that (Ω,�) is isomorphic as a partially ordered set to a subset of N. Then, according

to [Bez06, Lemma 1], there exists a unique �-mutation of any full graded �-exceptional set.

On the other hand, if (Ω,�) is isomorphic to a subset of N, then, by [Bez06, Proposition 2],

any full graded �-exceptional set {Yγ} determines a t-structure on D. Specifically, the categories

D60 = {A ∈ D | Hom(A, Yγ [i]) = 0 for all i < 0},
D>0 = the smallest strictly full subcategory of D that is stable under

extensions and contains Yγ〈n〉[i]for all γ ∈ Ω, n ∈ Z and i 6 0

(43)

constitute a t-structure on D.

The heart A = D60 ∩D>0 is clearly stable under 〈1〉. According to [Bez06, Proposition 2],

every object in A has finite length, and the isomorphism classes of simple objects, up to 〈1〉, are

in bijection with Ω.

In fact, A is very close to being a graded quasihereditary category: it satisfies the axioms (1)–

(5) of [BGS96, § 3.2], but axiom (6) may fail. The costandard objects are of the form tH0(Yγ〈n〉),
where tH denotes cohomology with respect to our t-structure. The standard objects are of the

form tH0(8Yγ〈n〉), where {8Yγ} is the dual exceptional set in the sense of [Bez06, § 2.1.2].

8.2 Exotic sheaves

By Lemma 7.10, the collection {OÑ (λ) | λ ∈X} is a full graded �-exceptional set. Now consider

the partial order 6 on X. Certainly, 6 can be refined to a total order 6′ such that (X,6′)
is isomorphic to N, and then we can form the 6′-mutation of {OÑ (λ)}. It will be convenient

to name the objects of the new exceptional set with a built-in shift: let {V(λ)〈−δλ〉} be the
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6′-mutation of {OÑ (λ)}. Thus, for each λ, there is a distinguished triangle

OÑ (λ) → V(λ)〈−δλ〉→ G →

in DbCoh(Ñ ), where G lies in the subcategory generated by {OÑ (µ)〈n〉 | µ <′ λ}.
As in (43), the objects {V(λ)} determine a t-structure on DbCoh(Ñ ). We call this the exotic

t-structure, and we denote its heart by ExCoh(Ñ ). This definition appears to depend on the
choice of refinement 6′ of 6, but we will see below that it is actually independent of that choice.

8.3 Adverse sheaves and exotic sheaves
We can also apply the notions of § 8.1 to Dmix

(I) (Gr) with the autoequivalence {1} : Dmix
(I) (Gr) →

Dmix
(I) (Gr).

Lemma 8.1.

(i) The set {Wλ | λ ∈ X} is a full graded �-exceptional set.

(ii) If 6′ is any total order on X that refines 6 and such that (X,6′) is isomorphic to N, then
the 6′-mutation of {Wλ} is isomorphic to {i∗(λ){−δλ}}.

Proof. The assertion that {Wλ} is a �-exceptional set is just a restatement of Lemma 5.12.
A routine adjunction argument shows that {i∗(λ){−δλ}} is a 6-exceptional set, so it is also
6′-exceptional for any choice of 6′.

Lemmas 5.6 and 5.11 imply that for each λ, there is a distinguished triangle

Wλ → i∗(λ){−δλ}→ Kλ →,

where Kλ lies in the subcategory generated by {Wµ{n} | µ < λ}. Finally, those same lemmas
also tell us that {Wµ{n} | µ 6′ λ} and {i∗(µ){n} | µ 6′ λ} generate the same subcategory of
Dmix

(I) (Gr). 2

Lemma 8.2. Let 6′ be a total order on X that refines 6 and such that (X,6′) is isomorphic to
N. Then the t-structure on Dmix

(I) (Gr) determined by the 6′-exceptional set {i∗(λ){−δλ}} is the
adverse t-structure.

In particular, this lemma tells us that the t-structure obtained by mutation of the exceptional
set {Wλ} is independent of the choice of 6′.

Proof. It is obvious that the category D>0 as described in (43) coincides with aDmix
(I) (Gr)>0 as

described in (A.3). An easy adjunction argument shows that D60 in (43) agrees with aDmix
(I) (Gr)60

as in (A.2). 2

The following statement is the main result of this section.

Theorem 8.3. The equivalence P of Theorem 7.1 induces an equivalence of abelian categories

P : Adv(I)(Gr)
∼
→ ExCoh(Ñ ).

Proof. Recall from Proposition 7.8 that P takes the exceptional set {Wλ} to the exceptional
set {OÑ (λ)}. It must therefore take the 6′-mutation of the former to the 6′-mutation of the
latter: P (i∗(λ)) ∼= V(λ). Lastly, P must also take the t-structure determined by {i∗(λ)} to that
determined by {V(λ)}. In view of Lemma 8.2, we are done. 2
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Let { V

(λ) | λ ∈ X} be the dual exceptional set to {V(λ)}. The reasoning above shows that
we must also have P (i!(λ)) ∼= V

(λ).
Since Theorem 8.3 gives an equivalence of quasihereditary categories, it certainly restricts to

an equivalence between their respective subcategories of tilting objects. We obtain the following
statement, which appeared earlier as Theorem 1.2.

Proposition 8.4. The equivalence P of Theorem 7.1 induces an equivalence of additive
categories

P : Parity(I)(Gr)
∼
→ Tilt(ExCoh(Ñ )).

We also obtain a slew of nontrivial facts about ExCoh(Ñ ) just by transferring facts about
Adv(I)(Gr) from §A.2 across this equivalence. Some of these are recorded in the following
proposition.

Proposition 8.5.

(i) The objects V(λ) and

V

(λ) and the category ExCoh(Ñ ) are all independent of the choice
of 6′.

(ii) ExCoh(Ñ ) is a graded quasihereditary category.

(iii) The V(λ) (respectively

V

(λ)) lie in ExCoh(Ñ ) and are the costandard (respectively
standard) objects therein.

(iv) There is a derived equivalence

DbExCoh(Ñ )
∼
→ DbCoh(Ñ ).

Proposition 8.6.

(i) Every line bundle on Ñ (and, more generally, every vector bundle) belongs to ExCoh(Ñ ).

(ii) For all V ∈ Rep(G∨), the perverse sheaf S(V ) is also an adverse sheaf. As an object of
Adv(I)(Gr), S(V ) admits a filtration whose subquotients are Wakimoto sheaves.

Part (ii) of this proposition should be compared to [AB09, Theorem 4].

Proof. Part (i) follows from the fact that Wakimoto sheaves on Gr are adverse (see § 5.3). In
particular, part (i) tells us that trivial vector bundles of the form OÑ ⊗ V , where V ∈ Rep(G∨),

lie in ExCoh(Ñ ). Since P−1(OÑ ⊗ V ) ∼= S(V ), part (ii) follows. 2

We finish with a fact that may be useful for computations. It should be compared with the
corresponding fact (see (6)) for PCoh(N ).

Proposition 8.7. The costandard objects in ExCoh(Ñ ) also belong to Coh(Ñ ).

Proof. Recall that i∗(λ) has weights > 0, and thus can be written as a complex of parity sheaves
E• ∈ KbParity(I)(Gr) with nonzero terms only in nonpositive degrees. From the definition of

P , we see immediately that H i(P (i∗(λ))) ∼= H i(V(λ)) vanishes when i > 0. Now let k be the
smallest integer such that Hk(V(λ)) 6= 0. It is easy to see that every nonzero coherent sheaf on
Ñ admits a nonzero map from (and, indeed, is a quotient of) some vector bundle. Let F be a
vector bundle such there is a nonzero map F → Hk(V(λ)). This gives rise to a nonzero map
F [−k] → V(λ). Since F and V(λ) both lie in ExCoh(Ñ ), we must have k > 0. But we already
knew that k 6 0, so k = 0, and V(λ) is a coherent sheaf. 2
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Appendix. Complements on mixed modular derived categories

Pramod N. Achar, Laura Rider and Simon Riche1

A.1 Overview
Let X be a variety or an ind-variety equipped with a stratification S by affine spaces, and let k
be a field or a complete discrete valuation ring. Assume that X and S satisfy assumptions (A1)
and (A2) of [AR16] with respect to k. Let ParityS (X) be the additive category of parity
complexes on X with coefficients in k. For each s ∈ S , let is : Xs ↪→ X be the inclusion of
the corresponding stratum, and let Es denote the unique indecomposable parity sheaf supported
on Xs and whose restriction to Xs is k{dimXs}. Following [AR16], we define the category

Dmix
S (X) := KbParityS (X).

Below is a summary of the main features of this category from [AR16, AR14]. Later subsections
give a handful of new results that were not needed in those sources.

Shift and Tate twist. In addition to the usual shift functor [1] : Dmix
S (X) → Dmix

S (X), there is
another automorphism {1} : Dmix

S (X) → Dmix
S (X), induced by an automorphism of ParityS (X).

We also set 〈1〉 := {−1}[1]. This last automorphism is called the Tate twist.

Sheaf functors. If h : Y ↪→ X is the inclusion of a locally closed union of strata, then there
are functors h∗, h!, h

∗, and h! between Dmix
S (X) and Dmix

S (Y ) that enjoy all the usual adjunction
properties.

Mixed perverse sheaves. There is a perverse t-structure whose heart is denoted by
Pervmix

S (X). This category is stable under 〈1〉, and it contains the objects ∆mix
s := is!k{dimXs}

and ∇mix
s := is∗k{dimXs}. When k is a field, Pervmix

S (X) is a graded quasihereditary category.

Weights. There are notions of weights and purity that share some formal properties with
the corresponding notions in [Del80, BBD82]. The functor {1} preserves weights, while [1] and
〈1〉 increase weights by 1. The definitions imply that

Hom(F ,G) = 0 if F has weights < n and G has weights > n. (A.1)

An object F ∈ Dmix
S (X) is said to be ∗-pure (respectively !-pure) of weight n if i∗sF (respectively

i!sF) is pure of weight n for all s ∈ S . The notion of ∗-purity corresponds roughly to pointwise
purity in the sense of [BBD82]. By [AR14, Lemma 3.5], an object that is ∗- and !-pure of weight
n is pure of weight n.

Hom functors. One can associate to any F ,G ∈ Dmix
S (X) a certain object in the derived

category of k-modules denoted by RHom(F ,G). This construction is functorial in both variables,
and it satisfies H i(RHom(F ,G)) ∼= Homi(F ,G).

The following variation on this construction will be useful: for F ,G ∈ Dmix
S (X), let Hom(F ,G)

be the graded vector space given by

Hom(F ,G)n := Hom(F ,G{n}).
1 S.R. was partially supported by ANR Grant No. ANR-13-BS01-0001-01.
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One can then define a derived version RHom(F ,G) as in [AR16, § 2.7], which has the property
that H i(RHom(F ,G)) ∼= Homi(F ,G).

A.2 The adverse t-structure
In this subsection, we assume for simplicity that k is a field. Consider the following full
subcategories of Dmix

S (X):

aDmix
S (X)60 = {F | for all s ∈ S , i∗sF has weights > 0},

aDmix
S (X)>0 = {F | for all s ∈ S , i!sF has weights 6 0}. (A.2)

It is easy to check that these categories admit the following alternative descriptions:

aDmix
S (X)60 =

the smallest strictly full subcategory that is stable under

extensions and contains ∆mix
s {n}[k] for all n ∈ Z and k > 0,

aDmix
S (X)>0 =

the smallest strictly full subcategory that is stable under

extensions and contains ∇mix
s {n}[k] for all n ∈ Z and k 6 0.

(A.3)

We put
AdvS (X) := aDmix

S (X)60 ∩ aDmix
S (X)>0,

and we call objects of AdvS (X) adverse sheaves.

Proposition A.1. The pair (aDmix
S (X)60, aDmix

S (X)>0) constitutes a bounded t-structure on
Dmix

S (X). Its heart AdvS (X) is a graded quasihereditary category in which the standard
(respectively costandard) objects are those of the form

∆mix
s {n}, respectively ∇mix

s {n},

and the category Tilt(AdvS (X)) of tilting objects in AdvS (X) is identified with ParityS (X).
Lastly, there is an equivalence of categories DbAdvS (X)

∼
→ Dmix

S (X).

Remark A.2. The definitions above also make sense in the setting of an equivariant mixed derived
category Dmix

H,S (X) as in [AR16, § 3.5] or §A.4. However, aDmix
H,S (X)60 and aDmix

H,S (X)>0 do not
constitute a t-structure in general. Specifically, truncation distinguished triangles as in [BBD82,
Définition 1.3.1(iii)] can fail to exist. This can be seen already in the case where X is a single
stratum.

Remark A.3. When k is not a field, there is a unique t-structure with aDmix
S (X)60 as in (A.2)

or (A.3), but the descriptions of aDmix
S (X)>0 must be modified in this case (cf. [AR16,

Proposition 3.4]). The heart of this t-structure behaves in many ways like a quasihereditary
category. In particular, it has properties like those discussed in [AR16, § 3.3].

Proof sketch. This statement is very similar to [AR13, Lemma 10.8].
Suppose first that X consists of a single stratum. Then Dmix

S (X) is a semisimple category. The
description given in [AR16, Lemma 3.1] can be used to check that (aDmix

S (X)60, aDmix
S (X)>0) is

indeed a t-structure. For general X, the claim that this is a t-structure follows by the machinery
of recollement.

Next, we claim that all the ∆mix
s {n} lie in the heart of this t-structure. It suffices to show

that Homk(∆mix
s {n},∆mix

t {m}) = 0 for k < 0. By adjunction, we have

Homk(∆mix
s {n},∆mix

t {m}) ∼= Hom(k{dimXs + n}, i!s∆mix
t {m}[k]).
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By [AR14, Lemmas 3.3 and 3.4], i!s∆
mix
t {m}[k] has weights 6 k, while k{dimXs+n} is, of course,

pure of weight 0. When k < 0, the semisimplicity of Dmix
S (Xs) (together with, say, the description

in [AR14, Example 3.2]) implies that the Hom-group above vanishes. A similar argument shows
that the ∇mix

s {n} lie in AdvS (X) as well.
General principles from the theory of quasihereditary categories then imply that AdvS (X)

is quasihereditary, that it has the claimed standard and costandard objects, and that we have
DbAdvS (X)

∼
→ Dmix

S (X).
Finally, let us check that Tilt(AdvS (X)) = ParityS (X). By considering weights, we see

that Homk(∆mix
t {m}, Es{n}) = Homk(Es{n},∇mix

t {m}) = 0 for all k > 0. According to the
criterion in [Bez06, Lemma 4], each Es{n} is an indecomposable tilting object in AdvS (X). On
the other hand, we have produced ‘enough’ tilting objects: by the classification in, say, [AR16,
Proposition A.4], every indecomposable tilting object in AdvS (X) must be isomorphic to some
Es{n}. 2

When X is a (finite-dimensional) flag variety, the adverse t-structure is the transport of the
perverse t-structure across the ‘self-duality’ equivalence of [AR16].

Lemma A.4. Let F ∈ Dmix
S (X). The following conditions are equivalent.

(i) F is ∗-pure of weight 0.

(ii) F lies in AdvS (X) and has a standard filtration.

Likewise, the following conditions are equivalent.

(i) F is !-pure of weight 0.

(ii) F lies in AdvS (X) and has a costandard filtration.

Proof. We will just prove the first equivalence. It is clear that every standard object satisfies
condition (i), so (ii) implies (i). For the other implication, we proceed by induction on the number
of strata in the support of F . Let Xs be a stratum that is open in the support of F . Let Z be the
union of the closures of all strata other than Xs in the support of F , and let h : Z ↪→ X be the
inclusion map. Then there is a distinguished triangle is!i

∗
sF → F → h∗h∗F →. By induction,

h∗h∗F is adverse and has a standard filtration. (Note that the recollement setup implies that h∗
is t-exact for the adverse t-structure.) On the other hand, i∗sF is a direct sum of various k{n},
so is!i

∗
sF is a direct sum of various ∆mix

s {n}. The result follows. 2

Below, we will study the exactness of various functors related to stratified morphisms in the
sense of [AR16, § 2.6]. These statements will sometimes be invoked in the equivariant setting,
but since there is no t-structure in that case, some caution is required. Let us spell out what
‘exactness’ means. Let Y =

⋃
t∈T Yt be another variety equipped with a stratification by affine

spaces and satisfying (A1) and (A2). Suppose that H and K are connected algebraic groups
acting on X and Y , respectively, and that these actions preserve the strata. A functor F :
Dmix
H,S (X) → Dmix

K,T (Y ) is said to be left adverse-exact, respectively right adverse-exact, if

F (aDmix
H,S (X)>0) ⊂ aDmix

K,T (Y )>0, respectively F (aDmix
H,S (X)60) ⊂ aDmix

K,T (Y )60.

If F is both left and right adverse-exact, we say simply that it is adverse-exact. Of course, in
the nonequivariant case, these notions coincide with the usual (left or right) t-exactness for the
adverse t-structure.
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Lemma A.5. Suppose that f : X → Y is a proper, smooth stratified morphism. Then f∗, f∗,
and f ! are all adverse-exact.

Proof. The adverse-exactness of f∗ is immediate from [AR16, Lemma 3.7]. Next, let t ∈ T and
s ∈ S , and observe that

i∗s(f
∗∆mix

t {n}) ∼=
{

0 if Xs 6⊂ f−1(Xt),

k{dimXt + n} if Xs ⊂ f−1(Xt).

In particular, i∗s(f
∗∆mix

t {n}) has weights > 0, so f∗∆mix
t {n} lies in aDmix

S (X)60. Similar reasoning
with ∇mix

t {n} shows that f∗ is adverse-exact. Since f ! ∼= f∗{−2d}, where d is the relative
dimension of f , the functor f ! is adverse-exact as well. 2

Lemma A.6. Suppose that f : X → Y is a proper, smooth, surjective stratified morphism.
Then f∗ kills no nonzero adverse sheaf. Moreover, if F ∈ AdvT (Y ) has a standard (respectively
costandard) filtration, then f∗F does as well. The same statements also hold for f !.

(Note that, in contrast with [AR16, Corollary 3.9], f∗ and f ! do not, in general, take simple
adverse sheaves to simple adverse sheaves.)

Proof. For the first assertion, it suffices to show that f∗ sends any simple adverse sheaf to a
nonzero adverse sheaf. Let F be a simple adverse sheaf on Y . Then F is supported on the
closure of some stratum Yt, and F|Yt ∼= k{n} for some n. The object f∗F clearly has nonzero
restriction to any stratum Xs ⊂ f−1(Yt), so it is nonzero.

If all i∗tF are pure of weight 0, it is easy to see that all i∗s(f
∗F) are pure of weight 0, so,

by Lemma A.4, f∗ preserves the property of having a standard filtration. Using the fact that
f∗ ∼= f !{2d}, we obtain the corresponding statement for costandard filtrations, or for f ! in place
of f∗. 2

A.3 Nonaffine stratifications
The general theory developed in [AR16, AR14] involves the assumption throughout that we have
a stratification by affine spaces, but occasionally we will want to weaken this requirement. Let
X and S be as above, but suppose that we also have another, coarser stratification T of X. To
distinguish between the two stratifications, the stratum corresponding to t ∈ T will be denoted
with a superscript: Xt. Let it : Xt ↪→ X be the inclusion map.

By assumption, each Xt is a locally closed smooth subvariety that is a (finite) union of strata
Xs for s ∈ S . We further assume that all the Xt are connected and simply connected, and we
impose a version of condition (A1):

(A1)T for each t ∈ T , there is an indecomposable parity complex E t ∈ Db
T (X) that is

supported on Xt and satisfies it∗E t ∼= kXt{dimXt}.

Note that each T -stratum Xt must contain a unique dense S -stratum Xs, so the parity
complex E t above must coincide with the parity complex Es. Thus, since (A1) is already assumed
to hold, the new condition (A1)T can be rephrased as follows: for any s ∈ S such that Xs is
dense in some T -stratum, the parity sheaf Es is constructible with respect to T .

In particular, the additive category ParityT (X) of parity complexes constructible with
respect to T is a full subcategory of ParityS (X). We define the category

Dmix
T (X) := KbParityT (X),
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and identify it with a full subcategory of Dmix
S (X). Great care must be taken in working with

Dmix
T (X), as the results of [AR16, AR14] do not automatically apply. One basic fact we will need

is the following.

Proposition A.7. Let X, S , and T be as above. Let j : U ↪→ X be an open inclusion of
T -strata, and let i : Z ↪→ X be the complementary closed inclusion.

(i) If F ∈ Dmix
T (U), then j!F and j∗F lie in Dmix

T (X).

(ii) If F ∈ Dmix
T (X), then i∗F and i!F lie in Dmix

T (Z).

Note that the analogous statements for Db
T (X) follow from (A1)T .

Proof. We will need to make use of sheaf functors in the nonmixed setting, and we will need to
distinguish them from their mixed analogues. Thus, for the body of this proof only, we adopt the
convention of [AR16, § 2.4] that functors in the mixed setting are decorated with parentheses:
i(∗), i(!), j(∗), j(!). An undecorated symbol such as i∗ denotes a functor Db

S (X) → Db
S (Z) or

Db
T (X) → Db

T (Z). (However, i∗ and j∗ are always undecorated, as in [AR16, § 2.3].)
We proceed by induction on the number of T -strata in Z. Suppose first that Z = Xt is a

single stratum. Recall that for any T -constructible parity sheaf Eu, the object i∗Eu ∈ Db
T (Z) is

a parity complex. Let Eu,+ ∈ KbParityT (X) denote the complex

· · ·→ 0 → E t → i∗i∗E t → 0 → · · · ,

where the nontrivial terms are in degrees 0 and 1, and the morphism is given by adjunction.
Thus, in KbParityT (X), there is a distinguished triangle

E t,+ → E t → i∗i∗E t →, (A.4)

while in Db
T (X) there is a distinguished triangle

j!j
∗E t → E t → i∗i∗E t → . (A.5)

We claim that for any s ∈ S with Xs ⊂ Xt, we have

HomDmix
S (X)(E t,+, Es{m}[n]) = 0 for all m,n ∈ Z. (A.6)

To prove this, we will show that the natural map Hom(i∗i∗E t, Es{m}[n]) → Hom(E t, Es{m}[n])
is always an isomorphism. Both Hom-groups clearly vanish unless n = 0. When n = 0, these
Hom-groups can be computed inside ParityT (X) ⊂ Db

T (X) instead, and then the fact that the
map is an isomorphism follows from (A.5) and the fact that Hom(j!j

∗E t, Es{m}) = 0.
Objects of the form Es{m}[n] generate Dmix

S (Z), so it follows from (A.6) that Hom(E t,+,
i∗G) = 0 for all G ∈ Dmix

S (Z). On the other hand, we clearly have i∗E t ∈ Dmix
S (Z). It follows

from general principles of recollement that the distinguished triangle (A.4) must be canonically
isomorphic to

j(!)j
∗E t → E t → i∗i(∗)E t → .

In particular, (A.4) shows us that j(!)j
∗E t lies in Dmix

T (X), and that i(∗)E t lies in Dmix
T (Z). Now

objects of the form j∗E t〈n〉 generate Dmix
T (U), and those of the form E t〈n〉 generate Dmix

T (X).
We conclude that j(!) takes Dmix

T (U) to Dmix
T (X), and that i(∗) takes Dmix

T (X) to Dmix
T (Z). The

results for j(∗) and i(!) follow by Verdier duality.
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Now suppose that Z contains more than one T -stratum. Choose a T -stratum Xt that is
open in Z. Let V = U ∪Xt and Y = Z rXt, and let k : Y → X be the inclusion map. Given
F ∈ Dmix

T (X), we can form the distinguished triangle

it(!)(i
t)(∗)F → i∗i(∗)F → k∗k(∗)F → .

Since Y contains fewer T -strata than Z, k(∗)F lies in Dmix
T (Y ) by induction. Next, let v : V ↪→X,

a : Xt ↪→ V , and b : Xt ↪→ Z be the inclusion maps. Note that v and b are open inclusions,
and a is a closed inclusion of a single T -stratum. The cases of the result that we have already
established show that it(!)(i

t)(∗) ∼= i∗b(!)a(∗)v∗ takes F to an object of Dmix
T (X). We conclude that

i∗i(∗)F lies in Dmix
T (X) and hence that i(∗)F lies in Dmix

T (Z). Finally, from the distinguished
triangle

j(!)j
∗F → F → i∗i(∗)F →,

we see that j(!)j
∗F lies in Dmix

T (X) as well. Since objects of the form j∗F generate Dmix
T (U), j(!)

takes all objects in Dmix
T (U) to Dmix

T (X). Again, the results for j(∗) and i(!) follow by Verdier
duality. 2

The following two statements are easy consequences of the previous lemma. The proofs are
left to the reader.

Corollary A.8. For an object F ∈ Dmix
S (X), the following are equivalent.

(i) F lies in Dmix
T (X).

(ii) For every T -stratum it : Xt ↪→ X, (it)∗F lies in Dmix
T (Xt).

(iii) For every T -stratum it : Xt ↪→ X, (it)!F lies in Dmix
T (Xt).

Corollary A.9. The perverse t-structure on Dmix
S (X) induces a t-structure on Dmix

T (X).

A.4 Hom-groups in the equivariant derived category
We now return to the setting of a space stratified by affine spaces. Let H be a connected algebraic
group or pro-algebraic group acting on X, such that the strata of our stratification are H-stable.
Assume that the H-equivariant cohomology of a point H•H(pt) vanishes in odd degrees, and is
free over k in even degrees.

Let Db
H(X) be the H-equivariant derived category of X with coefficients in k, in the sense of

Bernstein–Lunts [BL94]. We also consider the full subcategory Db
H,S (X) ⊂ Db

H(X) consisting of
complexes that are constructible with respect to the stratification S . The latter also has a ‘mixed’
version Dmix

H,S (X) := KbParityH,S (X), as explained in [AR16, § 3.5]. Let For : Db
H,S (X) →

Db
S (X) and For : Dmix

H,S (X) → Dmix
S (X) denote the forgetful functors.

Our goal in this subsection is to understand RHom on Dmix
H,S (X) in terms of modules over

the equivariant cohomology ring H•H(pt).

Lemma A.10. Let F ∈ Db
H(pt). If Hom•(k,F) is a free H•H(pt)-module, then there is a natural

isomorphism
Hom•Db(pt)(k,For(F)) ∼= Hom•

Db
H(pt)

(k,F) ⊗
H•H(pt)

k.

Proof. A straightforward adaptation of [AR15, Lemma 6.1] shows that if Hom•(k,F) is a free
H•H(pt)-module, then F must be a direct sum of copies of various k{n}. Thus, it suffices to prove
the lemma in the special case where F = k and, in this case, it is obvious. 2
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Lemma A.11. Let F ,G ∈ Db
H(X). If F is ∗-parity and G is !-parity, then Hom•(F ,G) is a free

H•H(pt)-module, and there is a natural isomorphism

Hom•
Db

S (X)
(For(F),For(G)) ∼= Hom•

Db
H(X)

(F ,G) ⊗
H•H(pt)

k.

Proof. We proceed by induction on the number of strata in X. If X consists of a single stratum,

then F and G are both parity sheaves, i.e. direct sums of objects of the form k{n}. Thus, it suffices

to prove the result when F = G = k. Since X is isomorphic to an affine space, it is clear that

Hom•
Db
H(X)

(k,k) is isomorphic to H•H(pt), and that Hom•
Db

S (X)
(k,k) ∼= Hom•

Db
H(X)

(k,k)⊗H•H(pt)k.

Now suppose that X has more than one stratum. Let us also assume without loss of generality

that F is ∗-even and that G is !-even. Let is : Xs ↪→ X be the inclusion of an open stratum,

and let h : X rXs ↪→ X be the inclusion of the closed complement. By a standard recollement

argument, we have a natural long exact sequence

· · ·→ Homk(h∗F , h!G) → Homk(F ,G) → Homk(i∗sF , i∗sG) → Homk+1(h∗F , h!G) → · · · .

Note that h∗F and i∗sF are both ∗-even, and that h!G and i∗sG are both !-even. By [JMW14,

Corollary 2.8], these Homk-groups vanish when k is odd, so this long exact sequence breaks up

into a collection of short exact sequences. Indeed, we obtain a short exact sequence

0 → Hom•(h∗F , h!G) → Hom•(F ,G) → Hom•(i∗sF , i∗sG) → 0

of graded H•H(pt)-modules. By induction, the first and last terms above are free H•H(pt)-modules,

and hence the middle term is as well.

Now let a : X → pt be the constant map, and recall that there is a natural isomorphism

Hom•(F ,G) ∼= Hom•(k, a∗RHom(F ,G)). Since the functors a∗ and RHom commute with For,
the last assertion of the lemma follows from Lemma A.10. 2

Corollary A.12. For F ,G ∈ ParityH,S (X), the graded k-module Hom(F ,G) naturally has the

structure of a free graded H•H(pt)-module.

Since RHom is defined as a complex whose terms are Hom-groups of parity sheaves, we can

regard it as a functor

RHom : Dmix
H,S (X)op ×Dmix

H,S (X) → Db(H•H(pt)-gmod),

where Db(H•H(pt)-gmod) is the bounded derived category of the category of graded H•H(pt)-

modules. The following result is an immediate consequence of Lemma A.11.

Proposition A.13. For any F ,G ∈ Dmix
H,S (X), there is a natural isomorphism

RHomDmix
S (X)(For(F),For(G)) ∼= RHomDmix

H,S (X)(F ,G)
L

⊗
H•H(pt)

k.

Corollary A.14. On the abelian category of mixed perverse sheaves, the forgetful functor

For : Pervmix
H,S (X) → Pervmix

S (X) is fully faithful.
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Proof. Let us call a graded H•H(pt)-module weakly free if it is of the form P ⊗k H
•
H(pt), where

P is some graded k-module. (If k is a field, this is the same as a free H•H(pt)-module, but, in
general, we do not require P to be free over k.) Weakly free H•H(pt)-modules are acyclic for the
functor (−)⊗H•H(pt) k.

LetM be a graded H•H(pt)-module, and assume that it is concentrated in graded degrees> n0.
It is easy to see that M admits a weakly free resolution · · ·F−1

→ F 0 � M with the property
that F−i is concentrated in graded degrees > n0 + 2i. As a consequence, we see that

Tor
H•H(pt)
i (M, k) is concentrated in graded degrees > n0 + 2i. (A.7)

Now take F ,G ∈ Pervmix
H,S (X). Note that Homi(F ,G) is concentrated in graded degrees > −i:

indeed, for n < −i, we have

Homi(F ,G)n = Hom(F ,G[i]{n}) = Hom(F ,G〈−n〉[i+ n]) = 0.

There is a convergent spectral sequence of graded k-modules

Hp

(
Homq(F ,G)

L

⊗
H•H(pt)

k
)

=⇒ Hp+q

(
RHomDmix

H,S (X)(F ,G)
L

⊗
H•H(pt)

k
)
. (A.8)

(See, for instance, [Wei94, Proposition 5.7.6].) By Proposition A.13, the right-hand side can be
identified with Homp+q(For(F),For(G)). Picking out the graded components of degree 0 on both
sides of (A.8), we obtain a convergent spectral sequence of (ungraded) k-modules

Epq2 = Hp

(
Homq(F ,G)

L

⊗
H•H(pt)

k
)

0

=⇒ Homp+q(For(F),For(G)).

When p > 0, we have Epq2 = 0. On the other hand, (A.7) tells us that Hp(Homq(F ,G)⊗LH•H(pt) k)

is concentrated in degrees > −q − 2p, so Epq2 = 0 if −q − 2p > 0. More generally, we conclude
that for all r > 2, we have

Epqr = 0 if p > 0 or q < −2p. (A.9)

We claim that there are natural isomorphisms

Ep,−p∞ ∼=
{
E00

2 if p = 0,

0 if p 6= 0.
(A.10)

For p 6= 0, this follows from (A.9). For p = 0, we must show that the differentials

dr : E−r,r−1
r → E00

r , dr : E00
r → Er,−r+1

r

vanish for all r > 2. But this follows from (A.9) as well. Next, (A.10) implies that we have a
natural isomorphism

(Hom(F ,G)⊗H•H(pt) k)0
∼= HomDmix

S (X)(For(F),For(G)).

Let H>0
H (pt) ⊂ H•H(pt) be the kernel of the obvious map H•H(pt) → k. Then

Hom(F ,G)⊗H•H(pt) k ∼= Hom(F ,G)/H>0
H (pt)Hom(F ,G).

Since Hom(F ,G) is concentrated in degrees > 0 and H>0
H (pt)Hom(F ,G) in degrees > 0, we

see that (Hom(F ,G) ⊗H•H(pt) k)0
∼= Hom(F ,G)0

∼= Hom(F ,G). We thus obtain the desired
isomorphism HomDmix

H,S (X)(F ,G) ∼= HomDmix
S (X)(For(F),For(G)). 2

Remark A.15. It is possible to carry out a common generalization of §A.3 and the present
section. Suppose that T is a stratification of X, not necessarily by affine spaces, and which
is refined by S . Suppose furthermore that H acts on X and preserves the T -strata, but not
necessarily the S -strata. Then one can study the category Dmix

H,T (X) := KbParityH,T (X).
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A.5 Applications to Kac–Moody groups
We conclude with two results about the flag variety of a Kac–Moody group G. We follow the
notation of [AR16, § 4.1]. Specifically, let B ⊂ G be the standard Borel subgroup, W the Weyl
group, and B = G/B the flag variety. Recall that the equivariant derived category Dmix

B (B) is
equipped with a convolution product ? : Dmix

B (B)×Dmix
B (B) → Dmix

B (B).

Proposition A.16. Let w ∈W .

(i) The functors

(−) ?∇mix
w , ∇mix

w ? (−) : Dmix
B (B) → Dmix

B (B)

are right adverse-exact.

(ii) The functors

(−) ?∆mix
w , ∆mix

w ? (−) : Dmix
B (B) → Dmix

B (B)

are left adverse-exact.

In particular, for any w, y ∈W , the objects ∇mix
y ?∆mix

w and ∆mix
w ?∇mix

y , when regarded as

objects of the nonequivariant derived category Dmix
(B)(B), are adverse.

Proof sketch. The proof is essentially identical to that of [AR16, Proposition 4.6]. A brief outline
for (−) ? ∇mix

w is as follows. Thanks to associativity of the convolution product, it suffices to
prove the right adverse-exactness of (−)?∇mix

s when s is a simple reflection. The proof of [AR16,
Proposition 4.6] exhibits, for any y ∈ W , a distinguished triangle whose middle term is ∆mix

y ?

∇mix
s , and whose first and last terms obviously lie in pDmix

B (B)60. Using Lemma A.5, it is easy to
see that the first and last terms of that triangle also lie in aDmix

B (B)60. It follows that (−)?∇mix
s

is right adverse-exact. 2

Recall that there is a natural action of W on the ring H•B(pt). A linear map f : M1 → M2

of H•B(pt)-modules is called a w-twisted homomorphism if, for all p ∈ H•B(pt) and m ∈ M1, we
have f(pm) = (w · p)f(m).

Proposition A.17. Let w ∈W , and let F ,G ∈ Dmix
B (B). The natural maps

Hom(F ,G) → Hom(∆mix
w ? F ,∆mix

w ? G), Hom(F ,G) → Hom(∇mix
w ? F ,∇mix

w ? G)

are w-twisted H•B(pt)-homomorphisms.

Proof. Let E1, E2 ∈ ParityB(B). Via the equivalence Db
B(B) ∼= Db

B×B(G), we can equip the
graded vector space Hom(E1, E2) with the structure of a module over H•B×B(pt) ∼= H•B(pt) ⊗
H•B(pt). (The general setting of §A.4 gives us an action of only one copy of H•B(pt), which we
identify with the left-hand copy in H•B(pt)⊗ H•B(pt).)

Let E3, E4 ∈ ParityB(B) be two additional parity sheaves. Convolution induces a
homomorphism of (H•B(pt)⊗ H•B(pt))-modules

Hom(E1, E2)⊗H•B(pt) Hom(E3, E4) → Hom(E1 ? E3, E2 ? E4). (A.11)

Here, the ring H•B(pt) under the tensor product symbol acts as the right-hand copy on
Hom(E1, E2) and as the left-hand copy on Hom(E3, E4). Since the latter is always a free
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H•B(pt)-module, maps like (A.11) induce corresponding maps at the derived level. That is, given
F1,F2,F3,F4 ∈ Dmix

B (B), we obtain a natural morphism

RHom(F1,F2)
L

⊗
H•B(pt)

RHom(F3,F4) → RHom(F1 ? F3,F2 ? F4). (A.12)

Let us now study this map in the special case where F1 = F2 = ∆mix
w . In this case, by

adjunction, we have

RHom(∆mix
w ,∆mix

w ) ∼= H•B(Bw) ∼= H•B×B(BẇB/B),

where ẇ is a representative in G of w ∈ W . It is well known that H•B×B(BẇB/B) is a rank-1
free module for both the left and right copies of H•B(pt), and that the action of the right copy
coincides with the w-twist of the action of the left copy.

In particular, because this module is free for the right copy of H•B(pt), we can apply H0

to (A.12) and obtain a homomorphism of (H•B(pt)⊗ H•B(pt))-modules

H•B(Bw)⊗H•B(pt) Hom(F3,F4) → Hom(∆mix
w ? F3,∆

mix
w ? F4).

From this, we deduce that ∆mix
w ? (−) : Hom(F3,F4) → Hom(∆mix

w ?F3,∆
mix
w ?F4) is a w-twisted

homomorphism, as desired. The proof for ∇mix
w is similar. 2
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the Mirković–Vilonen conjecture, Preprint (2015), arXiv:1501.07369.

Min13 M. Minn-Thu-Aye, Multiplicity formulas for perverse coherent sheaves on the nilpotent cone,

PhD thesis, Louisiana State University (2013). Available at

http://etd.lsu.edu/docs/available/etd-07082013-113917/.

Mum77 D. Mumford, Stability of projective varieties, Enseign. Math. (2) 23 (1977), 39–110.

Wei94 C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced

Mathematics, vol. 38 (Cambridge University Press, Cambridge, 1994).

2676

https://doi.org/10.1112/S0010437X16007661 Published online by Cambridge University Press

http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1403.1647
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://www.arxiv.org/abs/1501.07369
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
http://etd.lsu.edu/docs/available/etd-07082013-113917/
https://doi.org/10.1112/S0010437X16007661


The affine Grassmannian and the Springer resolution

Pramod N. Achar pramod@math.lsu.edu

Department of Mathematics, Louisiana State University,
Baton Rouge, LA 70803, USA

Laura Rider laurajoy@mit.edu

Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

Simon Riche simon.riche@math.univ-bpclermont.fr

Université Blaise Pascal, Clermont-Ferrand II,
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