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Minimizers and Quasiminimizers

14.1 Quasiminimizers

In addition to currents and varifolds, there are several other ways to model
minimal surfaces and related objects, see [139,161]. Quasiminimizers provide
a very natural and general setting for many variational problems. Let E ⊂ Rn

be closed and unbounded such that for a fixed positive integer m, 0 < Hm(E ∩
B(x, r)) < ∞ for x ∈ E, r > 0. We say that E is an m-quasiminimizer if for
some M < ∞,

Hm(E ∩W) ≤ MHm( f (E ∩W))

for all Lipschitz mappings f : Rn → R
n such that W = {x : f (x) � x} is

bounded. If this holds with M = 1, then E minimizes m-dimensional Hausdorff
measure. The setting in the papers quoted below is more general. In particular,
there is also a local, often very useful, version, but we skip it here. The quasi-
minimizers were introduced by Almgren in [9] under the name restricted sets.
He proved that they are AD-m-regular and m-rectifiable. David and Semmes
investigated them in [150]. They re-proved Almgren’s results and went further.
The following is a special case of their results:

Theorem 14.1 If E ⊂ Rn is a closed m-quasiminimizer, then E is AD-m-
regular, uniformly m-rectifiable and it contains big pieces of Lipschitz graphs
(recall Section 5.2).

Both Almgren’s and David–Semmes’s proofs use Lipschitz projections into
k-dimensional cubical skeleta like in the Federer–Fleming proof of the defor-
mation theorem of currents. First this gives AD-regularity. Then, by David and
Semmes, via many complicated constructions, the big pieces of the Lipschitz
graphs condition are verified.

The codimension 1 case was studied by different methods in [149] and [264].
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126 Minimizers and Quasiminimizers

All these papers contain many interesting results on and connections with var-
ious geometric variational problems.

There is much later work along these lines, see David’s long paper [139]
for a very general setting, for discussion and references. It seems to give the
most general rectifiability results. In particular, there he used sliding condi-
tions; the deformations were required to preserve given boundary pieces but
were allowed to slide along them.

When minimizing Hausdorff measure the existence of minimizers is often a
difficult question, both for the lack of lower semicontinuity and compactness.
De Lellis, Ghiraldin and Maggi [162] established a general result to deal with
this. For this they used Preiss’s Theorem 4.11.

14.2 Mumford–Shah Functional

Let Ω ⊂ Rn be a domain and g a bounded measurable function in Ω. The
Mumford–Shah functional J is then defined by

J(u,K) =
∫

Ω\K
(u − g)2 +Hn−1(K) +

∫

Ω\K
|∇u|2

for

(u,K) ∈ A(Ω) := {(u,K) : K ⊂ Ω relatively closed and u ∈ W1,2
loc (Ω \ K)}.

We assume that there are (u,K) ∈ A(Ω) with J(u,K) < ∞, which is always
true if Ω ⊂ Rn is bounded. For many aspects of the Mumford–Shah functional,
including applications to image segmentation and conjectures and results on
minimizers, see the books [15] and [138]. Here we restrict the discussion to
things related to rectifiability.

A minimizer for J is a pair (u,K) ∈ A(Ω) which gives the smallest value
for J. Minimizers always exist, although it is far from obvious since Hausdorff
measure is not lower semicontinuous. One way to prove the existence is to first
minimize

∫

Ω

(u − g)2 +Hn−1(S u) +
∫

Ω

|∇u|2

for u ∈ S BV(Ω), recall Section 12.3. Minimizers for this exist by the com-
pactness properties of SBV. To get from this a minimizer for J, the problem
that S u need not be closed has to be dealt with. Here one cannot use the full
BV(Ω), since it would give 0 for the infimum. Anyway, now S u is (n − 1)-
rectifiable by Theorem 12.13. This approach is discussed in [15]. In [138], a
different approach without SBV is explained.
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14.3 Some Free Boundary Problems 127

For a minimizer (u,K), u is in C1(Ω \ K), which follows from the fact that it
solves the PDE Δu = u−g. For K there are conjectures which are only partially
solved. David and Semmes proved the following in [148], see also [138]:

Theorem 14.2 If (u,K) is a minimizer for J and B(x, 2r) ⊂ Ω, then K∩B(x, r)
is contained in an AD-(n − 1)-regular uniformly (n − 1)-rectifiable set.

The key to the proof is that the failure of the Poincaré inequality in the
complement of an AD-(n−1)-regular set E at most scales implies uniform rec-
tifiability of E. This is understandable because the validity of the Poincaré in-
equality requires that E does not separate the space too much. More precisely:
E is uniformly (n − 1)-rectifiable if there exists a positive number c such that
for all M ≥ 1 the set F(E, c,M) of pairs (x, r), x ∈ E, 0 < r < d(E), satisfying
the following condition, is a Carleson set: for all balls B(xi, ri) ⊂ B(x, r)\E, i =
1, 2, with ri > cr and for all f ∈ W1,1(B(x,Mr) \ E),

∣
∣
∣
∣
∣
∣
r−n

1

∫

B(x1,r1)
f − r−n

2

∫

B(x2,r2)
f

∣
∣
∣
∣
∣
∣
≤ Mr1−n

∫

B(Mx,r)\E
|∇ f |. (14.1)

David and Semmes proved this by showing that this condition implies the local
symmetry of Theorem 5.9. Another proof is described in [138]. The converse
is false; an example is a coordinate hyperplane with the balls of radius 1/10
centred in the integer lattice removed.

For slight simplicity, assume Ω = Rn. To prove that for a minimizer (u,K)
the set F(K, c,M) is a Carleson set, one applies (14.1) with u = f and con-
structs a competitor to get for some p < 2,

ωp(x,Mr) = rp/2−n
∫

B(x,Mr)\K
|∇u|p > ε(M) > 0.

As r1−n
∫

B(x,r)\K |∇u|2 is bounded, it is not very difficult to prove that the set
of (x, r) such that ωp(x, r) > ε satisfies a Carleson condition, from which it
follows that F(K, c,M) is a Carleson set.

Theorem 14.2 holds for a much larger class of quasiminimizers.

14.3 Some Free Boundary Problems

In [141], David, Engelstein and Toro studied the following two-phase free
boundary problem. Let Ω ⊂ Rn be a bounded domain and q+ and q− bounded
continuous functions on Ω. Let

J(u) =
∫

Ω

(

|∇u(x)|2 + q+(x)2χ{u>0}(x) + q−(x)2χ{u<0}(x)
)

dx.
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128 Minimizers and Quasiminimizers

Among other things they proved that if u is an almost minimizer (we omit the
definition) for J, then, under slight extra conditions, the sets Ω ∩ ∂{x ∈ Ω:
u(x) > 0} and Ω ∩ ∂{x ∈ Ω : u(x) < 0} are locally AD-(n − 1)-regular and
uniformly (n − 1)-rectifiable. The proof is a complicated mixture of potential
theory and geometric measure theory. In particular, proving the AD-regularity
is quite demanding and achieved with estimates for the harmonic measure.

We shall return to the corresponding one-phase problem in Section 15.6.
Rigot [390] proved the uniform rectifiability of sets almost minimizing

perimeter, recall Section 12.1. Let g(0,∞)→ (0,∞) with g(x) = o(x(n−1)/n).

Theorem 14.3 Let E ⊂ Rn be Lebesgue measurable. If

P(E) ≤ P(F) + g(Ln((E \ F) ∪ (F \ E))

whenever F ⊂ Rn is Lebesgue measurable and F = E outside some compact
set, then E is equivalent to E′ for which ∂E′ is AD-(n − 1)-regular and uni-
formly (n − 1)-rectifiable.

She proved this by showing that ∂E′ is a Semmes surface, recall Section 8.7.
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