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Abstract
We show that for every η > 0 every sufficiently large n-vertex oriented graph D of minimum semidegree
exceeding (1+ η) k

2 contains every balanced antidirected tree with k edges and bounded maximum degree,
if k≥ ηn. In particular, this asymptotically confirms a conjecture of the first author for long antidirected
paths and dense digraphs.
Further, we show that in the same setting,D contains every k-edge antidirected subdivision of a sufficiently
small complete graph, if the paths of the subdivision that have length 1 or 2 span a forest. As a special case,
we can find all antidirected cycles of length at most k.
Finally, we address a conjecture of Addario-Berry, Havet, Linhares Sales, Reed, and Thomassé for antidi-
rected trees in digraphs. We show that this conjecture is asymptotically true in n-vertex oriented graphs
for all balanced antidirected trees of bounded maximum degree and of size linear in n.
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1. Introduction
A typical question in extremal graph theory is whether information on the degree sequence of a
graphG can be used to find some specific subgraph inG. A famous example is Dirac’s theorem [9],
which states that any n-vertex graph G of minimum degree δ(G)≥ n

2 contains a spanning cycle. A
minimum degree of at least n−1

2 guarantees a spanning path. Such a result also holds for shorter
paths: Already Dirac, as well as Erdős and Gallai, observed that if a graph G has a connected
component with at least k+ 1 vertices and δ(G)≥ k

2 , then G contains a k-edge path (see [10]).
Note that we need to require that G has a sufficiently large component as otherwise G could be the
disjoint union of complete graphs of order k.

Considering the same question for oriented graphs D, we replace the minimum degree with
the minimum semidegree δ0(D), which is defined as the minimum over all the in- and all the out-
degrees of the vertices. Note that any oriented graph of minimum semidegree δ0(D)> k

2 has an
underlying connected graph on more than k vertices (and therefore, no extra condition on large
components will be necessary). Jackson [15] showed that every oriented graph D with δ0(D)> k

2
contains the directed path on k edges, which is best possible. The first author conjectured that this
result extends to any orientation of the path.

Conjecture 1.1. [29] Every oriented graph D with δ0(D)> k
2 contains every oriented path on k

edges.
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2 M. Stein and C. Zárate-Guerén

This conjecture is best possible for odd k, as a regular tournament on k vertices does not contain
any oriented path with k edges. A different example works for antidirected paths, that is, oriented
paths whose edges alternate directions (more generally, an antidirected graph is an oriented graph
having no 2-edge directed path). Note that in an �-blow-up of the directed triangle (where each
vertex is replaced with � independent vertices), any longest antidirected path can only cover 2�
vertices.

It is known [22] that if δ0(D)> 3k−2
4 , then the oriented graph D contains each antipath with k

edges. Further, if we replace the bound with δ0(D)≥ k, Conjecture 1.1 becomes very easy (a greedy
embedding strategy suffices). This strategy also works if we wish to find a k-edge oriented tree
instead of an k-edge oriented path. Moreover, in this case we cannot do any better: In the (k− 1)-
blow-up of a directed triangle, each vertex has semidegree k− 1, but no antidirected star with k
edges is present. However, the antidirected star is very unbalanced. The situation might be dif-
ferent for balanced antidirected trees T, that is, those that have as many vertices of in-degree 0
as of out-degree 0. We suspect that these trees appear whenever the host oriented graph D has
minimum semidegree greater than k

2 .
We show that this is asymptotically true ifD is dense and T is large and has boundedmaximum

degree, where themaximum degree �(T) of an oriented tree T is defined as the maximum degree
of the underlying undirected tree.

Theorem 1.2. For all η ∈ (0, 1) and c ∈N there is n0 such that for all n≥ n0 and k≥ ηn, every
oriented graph D on n vertices with δ0(D)> (1+ η) k2 contains every balanced antidirected tree T
with k edges and with �(T)≤ (log (n))c.

Instead of Theorem 1.2 we will prove a slightly stronger version, namely Theorem 5.2. This is
necessary for a later application of the result in the proof of Theorem 1.9 below. Theorem 5.2
allows us to specify a subset of V(D) where the root of T will be mapped, a feature that might be
of independent interest.

Theorem 1.2 can be interpreted as a version for smaller trees of a recent result by Kathapurkar
and Montgomery [17] (and the preceding result in [27]). In [17] it is shown that for each η >

0, there is some c> 0 such that every sufficiently large n-vertex directed graph with minimum
semidegree at least ( 12 + η)n contains a copy of every n-vertex oriented tree whose underlying
maximum degree is at most c n

log n . This generalises a well-known theorem of Komlós, Sárközy,
and Szemerédi [23] for graphs. The result from [17] cannot hold for smaller trees and accordingly
smaller semidegree without adding further conditions, because of the example of the antidirected
star from above.

Turning back to our original question for oriented paths, note that Theorem 1.2 immediately
implies that Conjecture 1.1 holds asymptotically for large antidirected paths in large graphs. (If
the path is not balanced, we can extend it by one vertex and apply Theorem 1.2 with a sufficiently
smaller η.)

Corollary 1.3. For all η ∈ (0, 1) there is n0 such that for all n≥ n0 and k≥ ηn every oriented graph
D on n vertices with δ0(D)> (1+ η) k2 contains every antidirected path with k edges.

How about asking for oriented cycles instead of oriented paths or trees? Keevash, Kühn, and
Osthus [18] showed that every sufficiently large n-vertex oriented graph G of minimum semide-
gree δ0(G)≥ 3n

8 contains a directed Hamilton cycle, and Kelly [19] showed that asymptotically,
the same bound guarantees any orientation of a Hamilton cycle. Kelly, Kühn, and Osthus [20]
extended this to a pancyclicity result, proving that every oriented graph D of minimum semide-
gree δ0(D)≥ 3n

8 + o(n) contains every orientation of every cycle (of any length between 3 and
n). These authors also show that for cycles of constant length the bounds can be improved, but
the improvement depends on the cycle type: the number of forward edges minus the number of
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backwards edges of the cycle. For some cycle types and lengths, a semidegree exceeding n
3 is neces-

sary: for instance, if 3 does not divide k, a blowup of the directed triangle hasminimum semidegree
n
3 but does not contain a directed Ck. For cycle type 0 the bound on the minimum semidegree can
be much lower: For each k≥ 3 and η > 0 every large enough n-vertex oriented graph of minimum
semidegree at least ηn contains all oriented cycles of length at most k and cycle type 0 [20].

As antidirected cycles have cycle type 0, the discussion from the previous paragraph implies
that we can find short antidirected cycles with a minimum semidegree of ηn and antidirected
cycles of any length with a minimum semidegree exceeding δ0(D)≥ 3n

8 + o(n). In light of
Theorem 1.2 it seems natural to suspect that an intermediate bound on the minimum semide-
gree could suffice for antidirected cycles of medium length. This is indeed possible, as our next
result shows.

Theorem 1.4. For all η ∈ (0, 1) there is n0 such that for all n≥ n0 and k≥ ηn, every oriented graph
D on n vertices with δ0(D)> (1+ η) k2 contains any antidirected cycle of length at most k.

Wewill in fact prove amore general result, Theorem 1.7 below. Theorem 1.7 focuses on embed-
ding antidirected subdivisions of complete graphs. Before stating Theorem 1.7, let us review the
history of (oriented) subdivisions in (oriented) graphs of high minimum (semi)degree.

For undirected graphs, Mader [26] proved that there is a function g(h) such that every graph
with minimum degree at least g(h) contains a subdivision of the complete graph Kh. Thomassen
[32] showed that a direct translation of this result to digraphs is not true: For every function g(h)
there is a digraph of minimum outdegree g(h) that does not contain a subdivision of the complete
digraph on h≥ 3 vertices. (A subdivision of a digraphD substitutes each edge ofD with a directed
path.) Mader [25] modified Thomassen’s construction showing that the same is true if we replace
the minimum outdegree with the minimum semidegree. Crucially, the constructed digraphs have
no even directed cycles (which appear in subdivisions of K3). Following these discoveries, Mader
suggested to replace the subdivision of the complete digraph with the transitive tournament, that
is, the tournament without directed cycles. He conjectured the following.

Conjecture 1.5 (Mader [25]). There is a function f (h) such that every digraph of minimum
outdegree at least f (h) contains a subdivision of the transitive tournament of order h.

This conjecture is open even for h= 5. Recently, there has been much activity on variants of
Conjecture 1.5, see for instance [1, 8, 11, 12, 13, 16, 24, 28, 30]. Aboulker, Cohen, Havet, Lochet,
Moura, and Thomassé [1] observed that Conjecture 1.5 is equivalent to the following conjecture.

Conjecture 1.6. [1] There is a function f (h) such that every digraph of minimum semidegree at least
f (h) contains a subdivision of a transitive tournament of order h.

We will show a result along the lines of Conjectures 1.5 and 1.6 for oriented graphs. Namely,
we will prove that any oriented graph of large minimum semidegree contains an antidirected
orientation of a subdivision of a complete graph Kh, where h cannot be too large. We can even
choose the lengths of the antidirected paths in the subdivision, as long as the very short paths do
not span a cycle. To make this more precise, we need some notation.

For h, k ∈N, consider a subdivision of Kh where each edge e ∈ E(Kh) is substituted by a path
of length g(e), with

∑
e∈E(Kh) g(e)= k. Call any antidirected orientation of this graph a k-edge

antisubdivision of Kh. If furthermore the edges of Kh with g(e)< 3 induce a forest in Kh, we say
the k-edge antisubdivision is long. Note that in particular, if all edges of Kh are substituted with
paths of length at least 3, the resulting antisubdivision is long.

Theorem 1.7. For all η ∈ (0, 1) there are n0 ∈N and γ > 0 such that for each n≥ n0, each h≤ γ
√
n

and each k≥ ηn the following holds. Every oriented graph D on n vertices with δ0(D)> (1+ η) k2
contains each long k-edge antisubdivision of Kh.
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As indicated above, Theorem 1.7 quickly implies Theorem 1.4.1
Let us now turn back to oriented trees. Looking for parameters related to the appearance of

certain oriented trees in a digraph, a natural alternative to the minimum semidegree is the edge
density. In 1970, Graham [14] confirmed a conjecture he attributes to Erdős: for every antidirected
tree T there is a constant cT such that every sufficiently large directed graph D on n vertices and
with at least cTn edges contains T. A similar statement does not hold for other oriented trees:
A bipartite graph on sets A and B, with every edge oriented from A to B, has |A||B| edges, and only
has antidirected subgraphs [2, 7].

In 1982, Burr [7] gave an improvement of Graham’s result: Every n-vertex digraph D with
more than 4kn edges contains each antidirected tree T on k edges. He obtains this result by greed-
ily embedding T into a suitable bipartite subgraph of D. Burr states that the bound 4kn on the
number of edges can ‘almost certainly be made rather smaller’ and provides an example where
(k− 1)n edges are not sufficient: The k-edge star with all edges directed outwards, and the com-
plete bipartite graph Kk−2,k−2 with half of the edges oriented in either direction in an appropriate
way (one can also take the (k− 1)-blow-up of the directed triangle). In 2013, Addario-Berry,
Havet, Linhares Sales, Reed, and Thomassé [2] formulated a conjecture which states that (k− 1)n
is the correct bound.

Conjecture 1.8. [2] Every n-vertex digraph D with more than (k− 1)n edges contains each
antidirected tree on k edges.

The authors of [2] prove this conjecture for antidirected trees of diameter at most 3 and
point out that it implies the well-known Erdős–Sós conjecture for graphs. If the digraph D from
Conjecture 1.8 is an oriented graph, it is known [22] that about 3

2 (k− 1)n edges are sufficient to
find all antidirected paths on k edges.

We show that Conjecture 1.8 is approximately true in oriented graphs for all balanced
antidirected trees of bounded maximum degree.

Theorem 1.9. For all η ∈ (0, 1) and c ∈N, there is n0 ∈N such that for every n≥ n0 and every
k≥ ηn, every n-vertex oriented graph D with more than (1+ η)(k− 1)n edges contains each
balanced antidirected tree T with k edges and �(T)≤ (log (n))c.

In particular, Conjecture 1.8 holds asymptotically for long antidirected paths in oriented
graphs. Moreover, Theorem 1.9 implies the asymptotic bound 2(k− 1)n for digraphs (as any
digraph can be turned into an oriented graph by deleting at most half the edges).

The paper is organised as follows. We start with a sketch of the proofs of Theorems 1.4, 1.7
and 1.9 in Section 2. We then go through some preliminaries in Section 3. We give the proof of
Theorem 1.4 in Section 5. We prove Theorem 1.7 in Section 6, and Theorem 1.9 in Section 7. In
Section 8, we discuss some open questions.

2. Proof sketches
2.1. Connected antimatchings
Fundamental to our proofs is the concept of a connected antimatching: this is a set M of disjoint
edges in an oriented graph D such that every pair of edges in M is connected by an antidirected
walk in D (see Definition 4.5). Section 4 is dedicated to connected antimatchings. First, we will

1Indeed, it suffices to note that any antidirected cycle with more than 4 edges can be interpreted as a long antisubdivision
of K3, and so, Theorem 1.4 follows directly from Theorem 1.7 if the antidirected cycle we are looking for is larger than the
minimum semidegree of D. If we are looking for a shorter antidirected cycle C of length at least 6, we can complete C to a
long k-edge antisubdivision of K4, which we can find with the help of Theorem 1.7. Finally, an antidirected C4 exists by the
results of [21].
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Figure 1. Regularise D to obtain R, with a connected antimatching marked in bold.

Figure 2. Embedding a small antidirected tree S in D.

prove that any oriented graph of large minimum semidegree contains a large connected anti-
matchingM. Second, we will show that we can choose such an antimatchingM in a way that the
edges ofM lie at bounded distance d from each other.

2.2. Sketch of the proof of Theorem 1.4
Given an oriented graph D and an antidirected tree T fulfilling the conditions of the theorem, we
apply the digraph regularity lemma to D to find a partition into a bounded number of clusters.
The reduced oriented graph R maintains the condition on the minimum semidegree and thus
has a large connected antimatching whose edges lie at bounded distance from each other. (In
particular, the clusters covered byM can accommodate all of T.)

Now we turn to our antidirected tree T. We decompose T into a family T of small subtrees (for
details see Section 3.2). As we prove in Section 3.3, it is possible to assign the trees in T to edges
ofM in a way that they will fit comfortably into the corresponding clusters.

We now embed T as follows.We go through the decomposition of T, embedding one small tree
at a time, always keeping the embedded part connected in (the underlying tree of) T. We embed
the first d levels of each small tree S into the clusters of an antiwalk in the reduced oriented graph
that starts at the already embedded parent of the root of S and leads to the edge CD of M that
was assigned to S. All later levels of S are embedded into clusters C and D. Since T has bounded
maximum degree, the union of first d levels of the trees in T is very small, and therefore it is not a
problem if the first d levels of S are embedded outside the edge CD. After going through all S, we
have finished the embedding of T. See Figures 1 and 2 for an illustration.

2.3. Sketch of the proof of Theorem 1.7
Let a long k-antisubdivision of Kh be given, together with an oriented graph D satisfying the con-
ditions of the theorem. Since the antisubdivision is long, we can choose a setP of long antidirected
paths of the antisubdivision such that deleting two inner vertices of each of the antidirected paths
in P leaves us with an antidirected tree T.

As in the proof of Theorem 1.2, we find a connected antimatching M in the reduced oriented
graph of D (see Section 4 for details). We embed T with the help ofM as follows. Fixing one edge
e of M, we embed the branch vertices of the antisubdivision into the clusters corresponding to

https://doi.org/10.1017/S0963548324000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000038
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e. We embed the long antipaths into clusters corresponding to e and to other edges of M, with
the first and last vertices on these antipaths going to clusters on antidirected paths in the reduced
oriented graph that connect the edges ofM.

We finish the embedding by adding the two deleted vertices on the paths from P . Their
neighbours were embedded into the clusters corresponding to the edge e and regularity allows
us to connect them by a 3-edge path on unused vertices. This finishes the embedding of the
antisubdivision.

2.4. Sketch of the proof of Theorem 1.9
Given the antidirected tree T and the oriented graph D as in the theorem, we start by finding an
oriented subgraph D′ of D where each vertex has either out-degree at least k

2 or out-degree 0, and
either in-degree at least k

2 or in-degree 0. Moreover, D′ has at least one edge.
We then transform D′ into an oriented graph D′′ which has minimum semidegree exceeding

k
2 . More precisely, D′′ consists of four copies of D′, two of them with all edges reversed, glued
together appropriately.

We now need Theorem 5.2, a variation of Theorem 1.2 which allows us to embed T into D′′,
guaranteeing that the root of T is embedded in a small set of V(D) which we can choose before
the embedding. We choose to have the root v of T embedded in a vertex w of one of the original
copies of D (i.e. a copy with edges in the original orientation). We can further ensure that one of
the edges at v is embedded into an edge having the original orientation ofD. Then it is not hard to
deduce that all of T was embedded into an original copy of D, and therefore, T is contained in D.

3. Preliminaries
3.1. Basic digraph notation
A digraph is a pair of sets (V , E), where the elements ofV are called vertices and E is a set of ordered
pairs of distinct vertices in V , called edges. An oriented graph is a digraph that allows at most one
edge between a pair of vertices.

The edges of a digraph D are directed, and we will write uv for an edge that is directed from u
to v. While a digraph may have both edges uv, vu for any pair of vertices u, v, an oriented graph has
at most one of these edges. The out-degree δ+(v) of a vertex v is the number of edges coming out
of v, and the in-degree δ−(v) is defined analogously. The minimum semidegree δ0(D) of a digraph
is the minimum over the out-degrees and the in-degrees of all vertices in D.

We denote by Vin(D) the set of all vertices of D that have no outgoing edges, while Vout(D)
is the set of all vertices of D that have no incoming edges. A digraph D is antidirected if V(D)=
Vin(D)∪Vout(D). If the underlying undirected graph of D is a tree, we also call D an antitree.
Antipaths and anticycles are defined analogously. Note that anticycles are even. The length of an
antipath or anticycle is the number of edges in it.

An antiwalk (or antidirected walk) is a sequence of edges that alternate directions, but we usu-
ally denote it by writing the sequence of the corresponding vertices. Note that an antiwalk may
repeat vertices and edges, and a repeated vertex vmay have both outgoing and incoming edges in
the antiwalk. The length of an antiwalk is the length of the corresponding sequence of edges. For
instance, the antiwalk abab has length 3, while having only one edge.

Finally, an antitree T is balanced if |Vin(T)| = |Vout(T)|. Note that antipaths of odd length are
balanced.

3.2. Tree decompositions
In our proof of the main theorem, we will have to partition the given antitree into smaller trees.
It will be enough to define this decomposition for undirected trees, as we can apply it later to the
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underlying graph of our antitree. This type of decomposition appeared in the literature already in
the 1990’s, for instance in [3]. Here we use a version from [6]:

Definition 3.1 (β-decomposition). Let β ∈ (0, 1), and let T be a tree on k+ 1 vertices, rooted at r.
If there are a set W ⊆V(T) and a family T of disjoint rooted trees such that

(i) r ∈W;
(ii) T consists of the components of T −W, and each S ∈ T is rooted at the vertex closest to the

root of T;
(iii) |S| ≤ βk for each S ∈ T ; and
(iv) |W| ≤ 1

β
+ 2,

then the pair (W, T ) is called a β-decomposition of T.

Lemma 3.2.[6] Let β ∈ (0, 1), and let T be a tree on k+ 1 vertices, rooted at r. Then there is a
β-decomposition (W, T ) of T.

Let us see what happens to a balanced tree T if we remove some vertices from the upper levels
of the trees S ∈ T of the tree-decomposition of T. We first define what exactly we wish to remove.
As usual, the jth level of a tree S contains every vertex in S that has distance j to the root of S.

Definition 3.3 (Levm(S), Lm(T)). Given j ∈N and a β-decomposition (W, T ) of a tree T, define
Levj(S) as the union of the first j levels of S ∈ T . Set Lj(T;(W, T ))= ⋃

S∈T Levj(S), and write
shorthand Lj(T) if (W, T ) is clear from the context.

We show now that after removing Lj(T) from T for some bounded j, the remainder of T is still
relatively well balanced.

Lemma 3.4. Let k, j ∈N
+, α, β ∈ (0, 12 ). Let T be a balanced rooted antitree with k edges such

that �(T)≤ (αβk
8 )

1
j+1 . Let (W, T ) be a β-decomposition of T. Then, (1− α)pT ≤ qT ≤ (1+ α)pT,

where

pT := |Vin(T)− Lj(T)| and qT := |Vout(T)− Lj(T)|.
Proof. Note that Lj(T) is contained in the union of the balls of radius j centred at the vertices
ofW. Thus

|Lj(T)| ≤ |W| · �j+1 ≤ 2�j+1

β
≤ αk

4
.

As T is balanced, we easily deduce the desired inequalities. �

3.3. Packing trees into edges
Once the given antitree is cut into small pieces S, and we shaved off their first levels Lj, the details
of which are described in Section 3.2, we will have to decide how to pack the remainder of the
small pieces into the edges of the connected antimatching of the reduced oriented graph. The
following lemma shows how to allocate all of the S \ Lj(T).
Lemma 3.5. Let m, t ∈N, α > 0 and let (pi, qi)i∈I ⊆N

2 be a family such that:

(a) (1− α)
∑

i∈I pi ≤
∑

i∈I qi ≤ (1+ α)
∑

i∈I pi,
(b) pi + qi ≤ αm, for all i ∈ I, and
(c) max{∑i∈I pi,

∑
i∈I qi} < (1− 10α)mt.
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Then there is a partition J of I of size t such that for every J ∈J ,∑
j∈J

pj ≤ (1− 7α)m and
∑
j∈J

qj ≤ (1− 7α)m.

Proof. For every i ∈ I, set δi := pi − qi and for every S⊆ I, define δS:= ∑
i∈S δi. LetA1, . . . ,At ⊆ I

be disjoint sets such that for every j ∈ [t],∑
i∈Aj pi ≤ (1− 9α)m and δAj ∈ [−αm, αm], (1)

and such that, under these conditions, R := I \ (A1 ∪ . . . ∪At) is minimised. Note that for each
j ∈ R there is an index k(j) ∈ [t] such that

pj + ∑
i∈Akp(j)

pi ≤ (1− 9α)m, (2)

since otherwise, using the fact that pj ≤ αm by (b), we have∑
i∈I

pi ≥
∑
k∈[t]

∑
i∈Ak

pi > t · ((1− 9α)m− pj)≥ t · (1− 10α)m,

a contradiction to (c). Next, we claim that
δiδj ≥ 0 for every i, j ∈ R. (3)

To see (3), suppose there are a, b ∈ R with δaδb < 0. Say pa ≥ pb. Then there is an index k(a)
such that (2) holds with j= a, and since pa ≥ pb, the inequality also holds when substituting
pa with pb. Moreover, since a ∈ R, we know that neither a nor b can be added to Ak(a) without
violating (1), and thus

δAk(a) + δa, δAk(a) + δb /∈ [−αm, αm].
However, δAk(a) ∈ [−αm, αm] by (ii). So, since we assumed that δaδb < 0, it must be that |δa| +
|δb| > 2αm. But this contradicts (b). We proved (3), which enables us to split the rest of the proof
into two cases.

Case 1: δi ≥ 0 for all i ∈ R. For k ∈ [t], we let A′
k ⊇Ak be disjoint sets such that

∑
i∈A′

k
pi ≤

(1− 9α)m for every k ∈ [t], and thus also,∑
i∈A′

k

qj =
∑
i∈A′

k

(pj − δA′
k
)≤

∑
i∈A′

k

(pj − δAk)≤ (1− 9α)m+ αm< (1− 7α)m. (4)

Similarly as for (2), we can show that for each j ∈ R′ := I \ (A′
1 ∪ . . . ∪A′

t) there is an index k′(j) ∈
[t] with pj + ∑

i∈A′
kp(j)

pi ≤ (1− 9α)m, and thus, by (4), qj + ∑
i∈A′

kp(j)
qi ≤ (1− 9α)m. So R′ = ∅,

and we are done, taking J = {A′
1, . . . ,A

′
t}.

Case 2: δi ≤ 0 for all i ∈ R. We proceed as in Case 1, but choose sets A′
k ⊇Ak such that∑

i∈A′
k
qi ≤ (1− 9α)m for every k ∈ [t]. The rest of the argument is similar. �

3.4. Diregularity
We will use the regularity method which goes back to Szemerédi’s work from the 1970’s [31]. We
will need regularity for oriented graphs, but start introducing the concept for undirected graphs.
Let G be a graph, let ε > 0 and let A, B be two disjoint subsets of V(G). The density of the pair
(A, B) is d(A, B)= |E(A,B)|

|A|·|B| , with |E(A, B)| denoting the number of edges between A and B. The
pair (A, B) is ε-regular if |d(X, Y)− d(A, B)| < ε for every X ⊆A and Y ⊆ B satisfying |X| > ε|A|
and |Y| > ε|B|.

Let (A, B) be an ε-regular pair of density d and let Y ⊆ B be such that |Y| > ε|B|. A vertex x ∈A
is called ε-typical (or simply typical) with respect to Y if it has more than (d − ε)|Y| neighbours
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in Y . It is well known and easy to prove that A has at most ε|A| vertices that are not typical with
respect to Y .

A partition {V0, . . . ,Vk} of V(G) is called an ε-regular partition of G if

(i) |V0| ≤ ε|V|,
(ii) |V1| = . . . = |Vk|,
(iii) all but at most εk2 of the pairs (Vi,Vj), with 1≤ i< j≤ k, are ε-regular.

Let D be a digraph and let A, B⊆V(D) disjoint. We denote by (A, B) the oriented subgraph of
Dwith vertex setA∪ B and every edge directed fromA to B inD. In this case, we say the pair (A, B)
is ε-regular if the underlying graph is ε-regular. With these notions and based on the Szemerédi’s
Regularity Lemma for graphs without orientation [31], we show its version for digraphs as stated
by Alon and Shapira in [4]:

Lemma 3.6 (Degree form of the Diregularity Lemma [4]). For all ε ∈ (0, 1), m0 ∈N, there are
M0, n0 ∈N such that for each d ∈ [0, 1] and for each digraph D on n≥ n0 vertices there are a par-
tition of V(D) into sets V0,V1, . . . ,Vk and a spanning subdigraph D′ of D, called the regularised
digraph, such that the following holds:

• m0 ≤ k≤M0,
• |V0| ≤ εn and |V1| = . . . = |Vk| =:m,
• d+

D′(x)> d+
D (x)− (d + ε)n for all vertices x ∈D,

• d−
D′(x)> d−

D (x)− (d + ε)n for all vertices x ∈V(D),

• for all 1≤ i< j≤ k and i �= j, the bipartite graph (Vi,Vj)D′ whose vertex classes are Vi and
Vj and whose edge set consists of all the Vi-Vj edges in D′ is ε-regular and has density either
0 or at least d,

• for all 1≤ i≤ k the digraph D′[Vi] is empty.

Given a regularised digraphD′ with clustersV1, . . . ,Vt , the reduced digraph R is a digraph with
vertices V1, . . . ,Vt such that the edge ViVj exists only if D′ contains a Vi-Vj edge. Observe that,
R need not be an oriented graph, even if D′ is. However, it is possible [21] to discard appropriate
edges from the reduced digraph to find an oriented spanning subgraph R′ of R that preserves the
minimum semidegree of the original oriented graphD (proportionally to the order of the reduced
digraph). The new oriented graph R′ is called the reduced oriented graph. This result is formalised
in the following lemma.

Lemma 3.7 (see [21]). Let ε, d ∈ [0, 1], m0 ∈N, let G be a large enough oriented graph and let R′ be
the reduced digraph obtained by applying the Lemma 3.6 to G with parameters ε,m0 and d. Then,
R′ has a spanning oriented subgraph R with

(i) δ+(R)≥
(

δ+(G)
|G| − (3ε + d)

)
|R|,

(ii) δ−(R)≥
(

δ−(G)
|G| − (3ε + d)

)
|R|.

This oriented graph R is called the (ε, d)-reduced oriented graph.

3.5. Embedding small trees in antiwalks
We now show how to embed a small tree into an antiwalk of the reduced oriented graph. This
will be useful for embedding the first levels of a piece S of the decomposition of our antitree T
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into an antiwalk leading to a suitable edge aibi of the connected antimatching. The edge aibi will
accommodate the rest of S.

We start with a convenient definition, expressing that the orientations of the small tree S and
the antiwalk coincide.

Definition 3.8 (Consistent antiwalk and antitree). Let P be a non-trivial antiwalk and let T be a
rooted antitree. We say P and T are consistent if one of the following holds:

(i) r(T) ∈Vout(T) and P starts with an out-edge, or
(ii) r(T) ∈Vin(T) and P starts with an in-edge.

Nowwe embed an antitree into a consistent antiwalk of a reduced digraph. A very similar result
for undirected graphs was proved in [6].

Lemma 3.9. Let ε ∈ (0, 14 ), m, h ∈N. Let P =Q0 . . .Qh−1Qh be an antiwalk in an (ε, 2
√

ε)-reduced
oriented graph R of an oriented graph D, where clusters have size m. For 0≤ i≤ h, let Zi ⊆Qi be such
that |Zi| ≥ 3

√
εm if i �= 0 and |Z0| ≥ 3εm. For i= h− 1, h, let Xi ⊆Qi \ Zi with |Xi| > 3

√
εm. Let

S be a rooted antitree with |S| < ε
10m such that P and S are consistent. Then there is an embedding

ϕ of S into D such that

(a) for each i≤ h, and for each v from the ith level of S, ϕ(v) ∈ Zi and ϕ(v) is typical with respect
to Zi+1 (or with respect to Zi−1 if i= h), and

(b) for each i> h, and for each v from the ith level of S, ϕ(v) ∈ Xh−1 is typical with respect to Xh
if i− h is odd, and ϕ(v) ∈ Xh is typical with respect to Xh−1 if i− h is even.

Proof. Let r(S) be the root of S and denote the embedding by φ :V(S)−→ ∪h
i=0Qi. Suppose that

Q0Q1 ∈ E(R), and r(S) ∈Vout(S), the other case is analogous.
We embed r(S) in a typical vertex of Z0 with respect to Z1, and then embed successively, for

i< h, the vertices from the ith level into vertices from Zi that are typical to Zi+1. (This is possible
since we embed at most |S| < ε

10m vertices in total, and since |Zi| ≥ 3
√

εm for all i, while there are
less than εm atypical vertices in each Zi.) For the vertices from the hth level we take care that their
images are typical with respect to both Zh−1 andXh−1. The vertices from later levels are embedded
alternatingly into Xh−1 and Xh, and we take care that their images are typical with respect to both
Zh and Xh, or both Zh−1 and Xh−1, respectively. �

4. Connected antimatchings
In this section we introduce the concept of a connected antimatching, which is central to our
proof. We also prove two lemmas (Lemmas 4.6 and 4.8) relating the minimum semidegree of an
oriented graph D to the existence and size of a connected antimatching in D, whose edges are not
too distant from each other.

Before we can introduce the notion of a connected antimatching, we need some preliminary
definitions.

Definition 4.1 (in-vertex and out-vertex of an antiwalk). Let P be an antiwalk, and let v ∈V(P).
We call v an out-vertex of P if P = v or P has one or more edges of the form vx.We call v an in-vertex
of P if P = v or P has one or more edges of the form xv.

Note that also in non-trivial walks a vertex can be both an in- and an out-vertex.

Definition 4.2 (out-walk; out-in-walk; out-out-walk). Let C be an oriented graph with a, z ∈V(C).
A non-trivial antiwalk P starting in a and ending in z whose first edge is directed away from a is
called an out-walk from a to z. Call P an out-in-walk if its last edge is directed towards z, and an
out-out-walk otherwise. Also call a trivial walk an out-out-walk.
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Definition 4.3 (In(C, a); Out(C, a)). Let C be an oriented graph with a ∈V(C). Then In(C, a) is
the set of all z ∈V(C) such that there is an out-in-walk from a to z, and Out(C, a) is the set of all
z ∈V(C) such that there is an out-out-walk from a to z.

Observe that In(C, a) and Out(C, a) are not necessarily disjoint.

Definition 4.4 (anticonnected oriented graph). Let C be an oriented graph with a ∈V(C).We say
(C, a) is anticonnected if V(C)= In(C, a)∪Out(C, a).

Definition 4.5 (connected antimatching). Call M = {aibi}1≤i≤m a connected antimatching of size
m in an oriented graph D if M is a matching in the underlying graph of D and if ai ∈Out(D, a1)
for every 1≤ i≤m.We write V(M) for the set of all vertices covered by M.

Our first lemma of this section links the size of a connected antimatching in an oriented graph
with its minimum semidegree. We can even choose a vertex to be included in the antimatching,
as an outvertex of a matching edge (of course, by inverting all direction we could also choose it as
an invertex).

Lemma 4.6. Let t ∈N
+, let D be an oriented graph with δ0(D)≥ t, and let w ∈V(D). Then D has a

connected antimatching M = {aibi}1≤i≤t of size t, with w= a1.

Proof. LetM = {aibi}1≤i≤m be a connected antimatching of maximum size inDwith the property
that w= a1. Note that m≥ 1, because any single edge constitutes a connected antimatching. For
contradiction, we assume thatm< t. Let C be the largest induced subdigraph of D such that

(a) M ⊆ E(C)
(b) ai ∈Out(C, a1) for every 1≤ i≤m and
(c) (C, a1) is anticonnected.

We claim that

if v ∈ In(C, a1) then N−(v)⊆V(C), and if v ∈Out(C, a1) then N+(v)⊆V(C). (5)

Indeed, let v ∈ In(C, a1) and suppose that there is a vertex x ∈N−(v) \V(C). By definition of
In(C, a1), the digraph C contains an out-in-walk Pv from a1 to v. Then Pv and the edge xv form an
out-out-walk from a1 to x. Thus, adding the vertex x and the edge xv to C, we obtain a subdigraph
C′ of D that is larger than C and fulfils (i)-(iii), a contradiction. The proof for v ∈Out(C, a1) is
analogous. This proves (5).

Now, we show that

if v ∈ In(C, a1) \V(M) then N−(v)⊆V(M), and if v ∈Out(C, a1) \V(M) then N+(v)⊆V(M).
(6)

In order to see (6), let v ∈ In(C, a1) \V(M), and let x ∈N−(v). By (5), we know that x ∈V(C).
For contradiction, assume x /∈V(M). Define am+1 := x, bm+1 := v and set M′ := {aibi}1≤i≤m+1.
Consider an out-in-walk from a1 to v and add the edge xv at the end to see that x ∈Out(C, a1). So
M′ is a connected antimatching of sizem+ 1, with w= a1, a contradiction to the choice ofM. We
can proceed similarly for v ∈Out(C, a1) \V(M). This proves (6).

Next, we claim that

|V(C) \V(M)| ≤ 1. (7)

To prove (7) by contradiction, we start by considering a vertex u in V(C) \V(M). Since δ0(D)≥ t
and because of (6), we know that if u ∈ In(C, a1), then u has at least t in-neighbours in V(M), and
if u ∈Out(C, a1), then u at least t out-neighbours in V(M). Now suppose there are two distinct
vertices in V(C) \V(M). Since we assume that |M| < t, there are distinct u1, u2 ∈V(C) \V(M),
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edges e1, e2 ∈ E(C), an index j≤ t − 1 and an edge v1v2 := ajbj ∈M such that for each i= 1, 2 one
of the following holds:

• ui ∈ In(C, a1) and ei = viui, or
• ui ∈Out(C, a1) and ei = uivi, or

If possible, choose j �= 1, and if that is not possible try to choose u1 in a way that e1 = a1u1.
Obtain M′ from M by adding e1 and e2 to M and removing e3. Note that for i= 1, 2, if ei =

uivi then ui ∈Out(C, a1), and furthermore, if ei = viui then ui ∈ In(C, a1), which means that ui is
reachable by an out-in-walk from a1, to which we can add the edge viui to obtain an out-out-walk
from a1 to vi, implying that vi ∈Out(C, a1). So, in the case that j �= 1, and in the case that j= 1
and e1 = v1u1, we know thatM′ is a connected antimatching which is larger thanM, with w being
the outvertex of a matching edge we can call a1b1. This is a contradiction to the choice ofM. Thus
j= 1 and e1 = u1a1.

Note that the fact that j= 1 implies that both u1 and u2 have only t − 2 out- or in-neighbours in
V(M) \ {a1, b1}, where we count out-neighbours for ui if ui ∈Out(C, a1) and in-neighbours oth-
erwise. Thus both are connected by edges to both of a1, b1. Since we would have chosen e1 = a1u1
if that was possible for a choice of u1, we know that both u1, u2 are in-neighbours of a1, in fact, a1
has no out-neighbours outside V(M). So, because of our bound on the minimum semidegree, a1
has at least t − 1 out-neighbours in V(M) \ {a1, b1}. As the outdegree of u1 into V(M) \ {a1, b1} is
at least t − 2, we find an edge ajbj ∈M, with j �= 1, such that a1aj, u1bj ∈ E(D) or a1bj, u1aj ∈ E(D).
Adding these two edges and e2 to M while deleting a1b1 and ajbj gives a connected antimatch-
ing M′′, which is larger than M, and where a1 =w (choosing the corresponding edge as a1b1).
Therefore, inequality (7) holds.

By (7), and since we assumeM to have at most t − 1 edges, we see that
|V(C)| < 2t. (8)

Now, by (5), the out-neighbourhood of a1 is contained inV(C) and thus is a subset of In(C, a1).
Similarly, the in-neighbourhood of b1 is a subset of Out(C, a1). Considering the minimum
semidegree of D, we deduce that

|In(C, a1)|, |Out(C, a1)| ≥ t.
By (8), we conclude In(C, a1)∩Out(C, a1) �= ∅ and thus contains a vertex v. Because of (5), both
the in-neighbourhood and the out-neighbourhood of v are contained in C. As each of these two
disjoint sets has at least t elements, C has at least 2t vertices, a contradiction to (8). �

For the next lemma, we need another definition.

Definition 4.7 (out-out-distance ood(a, a′); out-in-distance oid(a, a′)). In an oriented graph D,
the out-out-distance ood(a, a′) between two vertices a, a′ ∈V(D) is the length of the shortest out-
out-walk from a to a′, if such a walk exists. Otherwise ood(a, a′)= ∞.

Similarly, the out-in-distance oid(a, a′) between two vertices a, a′ ∈V(D) is the length of the
shortest out-in-walk from a to a′, if such a walk exists, and otherwise oid(a, a′)= ∞.

Observe that ood(a, a)= 0 and for edges ab, a′b′ of a connected antimatching, ood(a, a′) is finite
by definition. For use in the proof of the following lemma, we define ood(M)= ∑d

i=2 ood(a1, ai),
whereM = {aibi}1≤i≤t is a connected antimatching.

Lemma 4.8. Let t ∈N and let D be an oriented graph with δ0(D)≥ t. Let w ∈V(D). Then D con-
tains a connected antimatching M = {aibi}1≤i≤t , with w= a1, and such that for every 1≤ i≤ t,
ood(a1, ai)≤ 8t.

Proof. By Lemma 4.6, we know that D contains a connected antimatchingM′ = {a′
ib′
i}1≤i≤t with

w= a′
1. Among all such antimatchings choose M = {aibi}1≤i≤t such that ood(M) is minimised.
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For the sake of contradiction, suppose there exists k with 2≤ k≤ t such that ood(a1, ak)> 8d. Let
P be a shortest out-out-walk from a1 to ak. We claim that

each v ∈V(D) appears at most once as an in-vertex and at most once as an out-vertex on P. (9)

Indeed, suppose vertex v appears at least twice as an in-vertex on P. Then there are distinct vertices
x, y ∈V(D) such that P = P1xvP2yvP3 (where the each of paths Pi is allowed to be empty). The
antiwalk P1xvP3 is shorter than P, a contradiction to the choice of P. We can argue similarly if v
appears twice on P as an out-vertex. This proves (9).

From (9) it follows that P does not repeat edges. Therefore, and since we assumed that P has
length greater than 8t, we know that

|E(P)| > 8t. (10)

By (9), every ai is incident to at most 4 edges in P. The same holds for every bi. So at most 8t
edges have one of their extremes on M, and hence, by (10), there is an edge xy on P such that
x, y /∈V(M). Replacing akbk with xy in M, we obtain a connected antimatching M′ of size t with
ood(M′)< ood(M), a contradiction to the choice ofM. �

5. Antitrees: The proof of Theorem 1.2
Instead of Theorem 1.2, we will prove a slightly stronger result, namely Theorem 5.2 below. The
additional properties of Theorem 5.2 will be necessary for the proof of Theorem 1.9.

Let us define the following shorthand notation.

Definition 5.1. For digraphs A and D, we write A⊆γ D if for each set V∗ ⊆V(D) of size at least
γ |V(D)| and for each x ∈V(A), there is an embedding of A in D with x mapped to V∗.

Here is the result that immediately implies Theorem 1.2.

Theorem 5.2. For all η ∈ (0, 1), c ∈N there is n0 such that for all n≥ n0 and k≥ ηn the following
holds for every oriented graph D on n vertices and every balanced antidirected tree T with k edges.
If δ0(D)> (1+ η) k2 and �(T)≤ (log (n))c, then T ⊆η D.

In the remainder of this section, we prove Theorem 5.2.

Proof of Theorem 5.2. We will first define our constants, then prepare the given digraph D and
the antitree T and finally proceed to embed T in D.

Setting the constants. We define our constants ε, β and n0 so that
1
n0

� β � ε � η < 1.

More precisely, given η and c, we set ε := η2

105 . Lemma 3.6 with input ε and m0 := � 1
ε
� gives

constants n′
0 and M0 such that we can apply the lemma to digraphs on n≥ n′

0 vertices. Set β :=
ε

100M0
, and choose n0 ≥ n′

0 such that

(log n0)18M0c ≤ β3

10
n0. (11)

Finally, let n≥ n0 and let k≥ ηn.

Objective. Let D be an oriented graph D on n vertices, with δ0(D)> (1+ η) k2 . Let T be a balanced
antidirected tree T with k edges, with �(T)≤ (log (n))c. We need to show that for every V∗ ⊆
V(D) with |V∗| ≥ ηn, the antitree T can be embedded in D, with x embedded in V∗.
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So let such V∗ ⊆V(D) and x ∈V(T) be given. Note that we can assume that x ∈Vout(T), as
otherwise we could switch the orientations of D and of T, which would move x to Out(T). Once
T is embedded, we switch all orientations back to normal.

Preparing the oriented graphD. We apply Lemma 3.6 with d = 2
√

ε to obtainD′, a digraph with
r ≤M0 clusters C1, . . . , Cr of the same sizem, and with δ0(D′)> (1+ η

2 )
k
2 . We divide each cluster

of D′ into two slices, C1
i and C2

i of sizes

|C1
i | = �10√ε|Ci|� and |C2

i | =
⌈
(1− 10

√
ε)|Ci|

⌉
. (12)

Note that at least one of the clusters Ci contains at least η|Ci| vertices from V∗. Let C∗ be such
a cluster.

Let R be the reduced oriented graph of D′ given by Lemma 3.7, on vertices C1, . . . , Cr , of
minimum semidegree greater than

t :=
⌈(

1+ η

2

) kr
2n

⌉
.

By Lemma 4.8, R has a connected antimatchingM = {aibi}ti=1 such that
ood(a1, aj)≤ 8t for each j ∈ [t], (13)

and such that C∗ = Ca1 , where here and later we write Cai (resp. Cbi) for the cluster corresponding
to ai (resp. bi) in our reduced oriented graph R, for every antimatching edge aibi ∈M.

Preparing the antitree T. Note that because of (11), and since we assume that �(T)≤ log n,

k≥ ηn≥ 10β−2(�(T))18M0 . (14)

We root T at the x. By Lemma 3.2, there is a β-decomposition (W, T ′) of the underlying
undirected tree of T, with |W| < 1

β
+ 2≤ 2

β
. Let T denote the set of oriented subtrees of T

corresponding to T ′. For each S ∈ T , we define
(pS, qS) :=

(|Vin(S)− Lev16t+2(S)|, |Vout(S)− Lev16t+2(S)|
)
.

We claim that the family (pS, qS)S∈T satisfies the conditions of Lemma 3.5 with
√

ε playing
the role of α. Indeed, Lemma 3.5(a) holds by Lemma 3.4, because of (14), and since t ≥M0. As
(W, T ′) is a β-decomposition, and by our choice of β , we know that

pS + qS ≤ |S| ≤ βk≤ βn≤
√

ε

2
m≤ √

ε|C2
a1 |

for each S ∈ T , and thus, Lemma 3.5(b) holds. Finally Lemma 3.5(c) is true because T is balanced,
and thus, by our choice of t, and since |W| ≥ 1,

max

{∑
S∈T

pS,
∑
S∈T

qS

}
≤ k

2
≤ (1− 10

√
ε)2(1− ε)(1+ η

2
)
k
2

≤ (1− 10
√

ε)2(1− ε)
n
r
t ≤ (1− 10

√
ε)|C2

a1 |t.
So Lemma 3.5, gives a partition {Pj}tj=1 of T , such that for every j ∈ [t],

max

⎧⎨
⎩

∑
i∈Pj

pi,
∑
i∈Pj

qi

⎫⎬
⎭ ≤ (1− 7

√
ε)|C2

a1 |. (15)

For convenience, let us also define, for each S ∈ T , the set WS. This set contains all vertices
from W whose path to r(T)= x passes through S before passing through any other S′ ∈ T . That
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is,WS contains all children of S inW, as well as their children inW, etcetera. Similarly, we define
Wr(T) as the set of all vertices fromW whose path to r(T) does not meet any tree from T .

Idea of the embedding procedure. The process starts with embedding r(T)= x into C∗. Then we
embed the vertices fromWr(T) into C1

a1 ∪ C1
b1 .

After that, in every step of the process, we will embed some S ∈ T , say with S ∈ Pj, together with
the set WS. We choose S such that the parent of its root r(S) is already embedded, say in cluster
C. As C itself or a neighbouring cluster C′ lies at out-out-distance at most 8t to Ca1 in R, there is a
short antiwalk P from C or from CC′ to Caj . We embed the first 16t + 2 levels of T[S∪WS] into
the Q1-slices of clusters Q of P, and the rest into C2

aj , C
2
bj .

The bound on the maximum degree of T ensures that only few vertices in total go to clusters
from connecting antiwalks P. Therefore, T will be mainly embedded into the edges fromM, where
we have control on how space is allocated.

The embedding. Let us make this sketch more precise. Let V1 = ⋃r
i=1 C1

i and V2 = ⋃r
i=1 C2

i .
Embed r(T)= x in a vertex of C∗ ∩W = Ca1 ∩W that is typical to C1

b1 . We next embed all of
Wr(T) into C1

a1 ∪ C1
b1 . This can be done levelwise, in each step choosing vertices that are typical

with respect to C1
a1 or C

1
b1 , respectively. AsWr(T) has at most 2

β
vertices, we can embed all ofWr(T)

without a problem.
We now go through the antitrees S ∈ T and embed S together withWS inW. We do this in an

ordered way, so that when starting to work with S, the parent of r(S) is already embedded. We will
show that at every step of the process, that is, for each S ∈ T , the following conditions are met:

(a) Lev16t+2(T[S∪WS]) is embedded into V1, and the rest of T[S∪WS] is embedded into V2,
(b) if S ∈ Pj, then Vout(T[S∪WS]) \ Lev16t+2(T[S∪WS]) is embedded into C2

aj and Vin(T[S∪
WS]) \ Lev16t+2(T[S∪WS]) is embedded into C2

bj ,

(c) every vertex in Vout(T[S∪WS]) is embedded in a cluster Cv corresponding to a vertex v
with ood(a1, v)≤ 8t,

(d) every vertex in Vin(T[S∪WS]) is embedded in a cluster Cv corresponding to a vertex v
with oid(a1, v)≤ 8t, and

(e) for every w ∈W, if the image of w lies in cluster C then it is typical with respect to (C′)1 for
some neighbour C′ of C.

Assume now we are in a step of the process and about to embed T[S∪WS] for some S ∈ T . Let
j ∈ [t] be such that S ∈ Pj. Observe that the parent of r(S) is already embedded in a vertex w of a
cluster C so that w is typical to (C′)1 for some neighbour C′ of cluster C, by (e).

First assume that r(S) ∈Vout(S). Then the parent of r(S) is an in-neighbour of r(S). Because of
(c) and (13), there is an out-out-walk P′′ of (even) length at most 16t starting at C and ending
at Caj . We add the cluster Cbj at the end and the cluster C′ at the beginning to obtain an anti-
walk P′ of length at most 16t + 2. We obtain an antiwalk P of length exactly 16t + 2 by repeating
two subsequent vertices of P′ an appropriate number of times. Note that P and T[S∪WS] are
consistent.

Now, if r(S) ∈Vin(S), we proceed analogously, only that here, P′′ is an in-in-walk of length at
most 16t − 1, and when constructing P′, we add the antiwalk CbjCaj at the end. That gives an
in-out-walk P of length exactly 16t + 2 that is consistent with T[S∪WS].

Observe that |S∪W| < ε
10m. Set h := 16t + 2, and letXh−1 andXh be the sets of all unoccupied

vertices of the last two clusters on P. By (a), the only vertices embedded in C2
aj ∪ C2

bj are vertices
fromW and antitrees from Pj without their first 16t + 2 levels. By (12) and (15), we conclude that

|Xh−1|, |Xh| > 3
√

εm. (16)
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16 M. Stein and C. Zárate-Guerén

We will use Lemma 3.9 to embed T[S∪WS] into P. For this, let Z0 be the set of all unused
out-neighbours (if r(S) ∈Vout(S)) or in-neighbours (if r(S) ∈Vout(S)) of w in C′. For 1≤ i≤ h, let
Zi be the set of all unused vertices of Q1, where Q is the (i+ 1)th vertex on P. By (a), any used
vertex in Q1 lies in L16t+2(T)∪W, and this set contains at most

|W| · �(T)18t ≤ 2
β

· (�(T))18r
k
n ≤ 2

β
· (�(T))18M0 ≤ β

5
k≤ ε

500M0
n≤ εm

vertices, where we used (14) for the third inequality. So, since by (12), the neighbourhood of w in
(C′)1 is at least d · |(C′)1| ≥ 2

√
ε · 9√ε|C′| ≥ 18εm, we conclude that |Z1| > 3εm and similarly, we

see that |Zi| > 3
√

εm for 1≤ i≤ h. Thus, we can apply Lemma 3.9 to embed T[S∪WS]. Observe
that conditions (a)–(e) are satisfied after embedding S.

After embedding T[S∪WS] for each S ∈ T in this way, we have embedded all of T, with x
embedded in V∗, which finishes the proof. �

6. Antisubdivisions of Kh: The proof of Theorem 1.7
The proof of Theorem 1.7 is similar to the proof of Theorem 1.2, with the difference that we only
need the connected antimatching in the reduced oriented graph, and then do the embedding ‘by
hand’.

6.1. Preparation
We choose our constants as in the proof of Theorem 1.2, in particular ensuring that n0 ≥
100ε−1M3

0. In addition, we set

γ := ε

10M0
.

We now prepare the oriented graph in the same way as for Theorem 1.2. In the reduced oriented
graph of D, we use Lemma 4.6 to find a connected antimatching M = {aibi}1≤i≤t of convenient
size t. We split each cluster C into two slices C1 and C2, where C1 only contains about a 10

√
ε

portion of the vertices of C.
Let a long k-edge antisubdivision H of Kh be given, that is, a set X = x1, . . . , xh of vertices, and

antipaths Pi,j connecting xi with xj, for each 1≤ i< j≤ h. For each two-edge path Pi,j we add the
middle vertex xi,j to X. Call the obtained set X′. By assumption, X′ induces a forest in Kh. Choose
a subset of

{Pi,j : 1≤ i< j≤ h∧ e(Pi,j)≥ 3}
so that together with X′, they induce a tree in Kh. For all other paths Pi,j we choose a subpath
Qi,j ⊆ Pi,j of length 3. LetQ be the set of all such pathsQi,j, and let Y be the set of their endvertices.
Note that T =Kh − (

⋃
Qi,j∈Q V(Qi,j) \ Y) is an antitree. We root T at x1.

Let Z be the set of all vertices on paths in T between vertices of X ∪ Y that have length at most
M0. Set W = X′ ∪ Y ∪ Z, and note that W naturally partitions into two sets: Win =W ∩Vin(H)
andWout =W ∩Vout(H). Observe that there are atmost h

2

2 paths Pi,j of length at least 3, and thus

|W| ≤ 2h+ h2 +M0h2 ≤ 4M0h2. (17)
Also note that each component of T −W is a long path (longer than M0). Let P be the set of all
these components.

6.2. Embedding of T
We first give quick overview of the embedding of T, the details are given further below. First, we
embed the root x1 into Ca1 ∪ Cb1 . Then at each step, we embed either a vertex from W or a path
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from P whose parent is already embedded. All vertices of W are embedded into C1
a1 ∪ C1

b1 , and
the paths from P are embedded mainly into the C2-slices of clusters corresponding to edges of
M. For this, we use the edges of the antimatching M (including a1b1 although this is not crucial)
in an ordered way, and when one edge is sufficiently used, we go to the next edge of M. For
the connections between Cai ∪ Cbi and Caj ∪ Cbj we use the slices C1. At all times, vertices are
embedded into typical vertices with respect to the unused part of the slice C2 to be used in the
next step, or with respect to the slice C1 to be used in the future for children. The details of the
embedding of W are given in the next paragraph, and the details for the paths from P are given
in the subsequent paragraph.

The vertices ofW are embedded into C1
a1 ∪ C1

b1 , as mentioned above. Namely, each w ∈W (in
particular x1) is embedded into C1

a1 if w ∈Wout and w is embedded into C1
b1 if w ∈Win. Every

time we embed a vertex from W into C1
a1 , we make sure its image is typical with respect to C1

b1 ,
and every time we embed a vertex fromW into C1

b1 , we make sure its image is typical with respect
to C1

a1 . By (17), the setW is small enough to easily fit into C1
a1 ∪ C1

b1 . It is also much smaller than
a typical neighbourhood in C1

a1 or in C1
b1 , and therefore, it is not a problem if a vertex from W is

embedded much earlier than some of its children (as long as we ensure the children are embedded
into C1-slices). For a more precise analysis, see below.

Let us now turn to the paths from P . As mentioned above, these paths are embedded mainly
into the C2-slices of clusters corresponding to edges of the antimatching M. However, the first
vertex s of such a path S goes to either C1

a1 or C
1
b1 (depending on the image of its parent), and we

choose for the image of s a vertex that is typical with respect to C1
0 where C0 is the first cluster

on a path P from Ca1 , or from Cb1 , to the clusters Caj and Cbj we plan to use for S. We embed
the next vertices of S along P, always into C1-slices, always typical to the next slice until we reach
Caj ∪ Cbj (after at most M0 steps). Then we switch to the slices C2

aj and C2
bj . Now, every vertex

is embedded into a typical vertex with respect to the unused part of C2
aj or of C

2
bj . If necessary,

we move from Caj ∪ Cbj to Caj+1 ∪ Cbj+1 (using at mostM0 vertices which are embedded into C1-
slices on a suitable path). We keep moving to subsequent Cai ∪ Cbi ’s if necessary. When we reach
the last vertices on S, we start moving back to Ca1 ∪ Cb1 , through the C1-slices on a path of length
at most M0. We reach Ca1 ∪ Cb1 and embed the last vertex of S into a typical vertex with respect
to C1

a1 or to C
1
b1 . If S has a child inW, this child can be embedded now, or later in the process.

Let us analyse the embedding procedure to see that T can indeed be embedded in this way.
First, we note that the size of M is sufficient, and the C2-slices are large enough so that all the
paths from P can be embedded without a problem. Second, we observe that we used the C1-slices
exclusively for W, for the first ≤M0 and last ≤M0 vertices on a long path, and for moving from
one edge ajbj to the next edge aj+1bj+1. So the number of vertices embedded into the C1-slices is
at most |W| + 2M0 · h2 +M0 · t. Because of (17) and since t ≤M0, this number is bounded from
above by

6M0h2 +M2
0 ≤ ε

n
8M0

≤ ε

2
m.

So, whenever are about to embed a vertex into a C1-slice, it is enough to know that the image
of its parent was chosen typical with respect to the whole slice (as a typical neighbourhood in the
slice has at least 18εm vertices). We can thus embed all of T.

6.3. Embedding interior vertices on paths fromQ
It only remains to embed the twomiddle vertices qi,j, q′

i,j of the pathsQi,j, which we do successively,
in any order. Say the neighbour of qi,j was embedded in v ∈ C1

a1 , and the neighbour of q′
i,j was
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embedded in v′ ∈ C1
b1 . We consider the neighbourhood N1 of the image of v in the unused part

of C1
b1 and the neighbourhood N2 of the image of v′ in the unused part of C1

a1 . Since at most
ε
2m+ h2 ≤ ε|C1

a1 | vertices of C1
a1 and C1

b1 have been used so far, we know that N1 and N2 are
sufficiently large to ensure that there is an edge ww′ we can use. We complete the embedding by
mapping v and v′ to w and w′.

7. Edge density: The proof of Theorem 1.9
In order to prove Theorem 1.9 we will need a lemma that allows us to rewrite the condition on
the edge density as a condition on a parameter that is very similar to the semidegree, and which
we will call the minimum pseudo-semidegree. Define theminimum pseudo-semidegree δ̄0(D) of a
digraph D with at least one edge as the minimum d such that for each vertex v ∈V(D) we have
δ+(v), δ−(v) ∈ {0} ∪ [d,∞). The minimum pseudo-semidegree of an empty digraph is 0.

Lemma 7.1. Let k ∈N
+. If a digraph D has more than (k− 1)|V(D)| edges, then it contains a

digraph D′ with δ̄0(D′)≥ k
2 .

Proof. Note that the vertices of D have, on average, in-degree greater than k− 1 and out-degree
greater than k− 1. Consider the following folklore construction of an auxiliary bipartite graph B
associated to the digraphD: first, divide each vertex v ∈V(D) into two vertices vin and vout , letting
vin be adjacent to all edges ending at v, and letting vout be adjacent to all edges starting at v; second,
omit all directions on edges.

Then the average degree of B is greater than k− 1, and a standard argument shows that B has
a non-empty subgraph B′ of minimum degree at least k

2 (for this, it suffices to successively delete
edges of degree at most k−1

2 and to calculate that we have not deleted the entire graph). Translating
B′ back to the digraph setting, we see that D has a subdigraph D′, such that D′ minimum pseudo-
semidegree at least k

2 , which is as desired. �
The next auxiliary result states that the minimum semidegree and the minimum pseudo-

semidegree are practically equivalent for the purposes of finding antidirected subgraphs A in
oriented graphs D, if there is some control over the placement of A in D.

Say an oriented graph is weakly connected if its underlying graph is connected. Recall that the
notation ⊆γ is given Definition 5.1.

Lemma 7.2. For any weakly connected antidirected graph A and for any �, n0 ∈N, the following
holds. If for each oriented graph D on at least n0 vertices with δ0(D)≥ � we have A⊆1/8 D, then
each oriented graph D′ on at least n0 vertices with δ̄0(D′)≥ � contains A.

Proof. Given A, �, and n0, let D′ be an oriented graph on at least n0 vertices with δ̄0(D′)≥ �.
Assume that |Vout(D′)| ≥ |Vin(D′)| (the other case is analogous). Then

|D′ \Vin(D′)| ≥ |D′ \Vout(D′)|.
We will construct an auxiliary oriented graph D to which the hypothesis of the lemma can be

applied. Take four copies D1,D2,D3,D4 of D′. Let Ai =Vout(Di) and Bi =Vin(Di) for i= 1, . . . 4.
For i= 1, 3, identify the vertices of Ai with the vertices of Ai+1, and the vertices of Bi with the
vertices of Bi−1 (addition modulo 4). Finally, reverse all directions on edges in copies D2 and D4.
For an illustration, see Fig. 3.

Note that the obtained digraph D is an oriented graph and has more than n0 vertices. Also
note that δ0(D)≥ �, since all vertices in Di \ (Ai ∪ Bi) maintain their semidegree, the vertices in
Ai =Ai+1 have at least � out-neighbours in Di and at least � in-neighbours in Di+1, for i= 1, 3,
and a similar statement holds for the vertices in the sets Bi.
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Figure 3. Construction of D from D′ in the proof of Lemma 7.2.

We choose V∗ as the set of all vertices in V(D1) \ B1. Note that |V∗| ≥ |V(D1)|
2 and therefore

|V∗| ≥ |V(D)|
8 . We let xx′ be any edge of A (directed from x to x′). By the hypothesis of the lemma,

we find an embedding of A into D, with x embedded into some vertex v∗ ∈V∗.
We claim that

all vertices of A are embedded into V(D1). (18)

Then, as D1 is a copy of D′ (with the original directions on the edges), we can conclude that A
is a subdigraph of D′.

So all that remains is to prove (18). Proceeding by contradiction, we assume otherwise, that
is, we assume there is a vertex z ∈V(A) whose image does not lie in V(D1). Then the underlying
graph of A, which is connected by assumption, contains a path from x to z. So A, which is antidi-
rected, contains an antipath xy1y2 . . . yhz from x to z. Since xx′ is an edge of A, we know that the
edge xy1 is directed from x to y1.

Recall that x is embedded in v∗ ∈V∗ =V(D1) \ B1. This location of v∗ ensures that all out-
neighbours of v∗ are in D1. More specifically, by the definition of A1, all out-neighbours of v∗
are in D1 \A1. In particular, y1 is embedded in a vertex w1 of D1 \A1. This in turn ensures that
all in-neighbours of w1 are in D1 \ B1. In particular, y2 is embedded in a vertex w2 of D1 \ B1.
Continuing to argue in this manner, we see that all yi and also z are embedded in V(D1). This
proves (18), and thus completes the proof of the lemma. �
Remark 7.3. We remark that Lemma 7.2 also holds if both D and D′ are directed graphs instead
of oriented graphs. However, since Theorem 5.2 only holds for oriented graphs of high minimum
semidegree, we need the lemma in the form it is written.

Remark 7.4. Observe that in Lemma 7.2 it is essential to require that a vertex of A can be mapped
to a specific set in D: If we left out this requirement, then we might find a copy of A in D2 instead of
in D1. Thus in D′ we would only get a copy of A with all directions reversed.

We are ready to prove Theorem 1.9.

Proof of Theorem 1.9. Given η and c from Theorem 1.9, we note that we may assume that η ≤
1/8. Let n0 be given by Theorem 5.2 for input η and c.

Now, let n≥ n0 and k≥ ηn, and let D be an oriented graph on n vertices with |E(D)| > (1+
η)(k− 1)|V(D)|. Let T be a balanced antitree with k edges and �(T)≤ (log n)c. We need to show
that T ⊆D.

Apply Lemma 7.1 to D to obtain an oriented graph D′ ⊆D with δ̄0(D)≥ (1+ η) k2 . Use Lemma
7.2 and Theorem 5.2 to see that T can be embedded in D′. As D′ ⊆D, we see that T ⊆D. �
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8. Conclusion
8.1. Oriented trees in digraphs
Any digraph D with a minimum semidegree of at least k contains every orientation of every tree
with k edges, by a greedy embedding argument. This bound cannot be lowered, not even if we
are only looking for oriented paths, as the disjoint union of complete digraphs of order k has
minimum semidegree k− 1 but no k-edge oriented path. Perhaps an additional condition, for
instance on themaximum semidegree ofD, or requiringD to be weakly connected and sufficiently
large, combined with a lower bound on the semidegree of D could give a variant of Corollary 1.3
for digraphs.

8.2. Oriented trees in oriented graphs
In the introduction, we saw the example of a k-edge star with all edges directed outwards, which
is not contained in, for instance, the (k− 1)-blow-up of the directed triangle, although this graph
has minimum semidegree k− 1. We overcame this difficulty in Theorem 1.2 by concentrating on
balanced antitrees. Another possibility, which was suggested in [29], could be to add an extra con-
dition on the oriented graph D, for instance a condition on the maximum semidegree of D, with
the hope of guaranteeing all k-edge antitrees, or even all k-edge oriented trees. Such a condition
has been successfully used in the undirected graph setting (see e.g. [5]).

8.3. Oriented subdivisions
Perhaps Theorem 1.7 extends to other orientations of subdivisions of the complete graph. For
instance, one could ask whether there is a function f (h) such that every oriented graph of min-
imum semidegree at least f (h) contains an orientation of a subdivision of Kh, where each path
changes directions only a bounded number of times. This would be implied by Conjecture 1.6.
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