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Abstract

Probabilistic Answer Set Programming under the credal semantics extends Answer Set
Programming with probabilistic facts that represent uncertain information. The probabilistic
facts are discrete with Bernoulli distributions. However, several real-world scenarios require a
combination of both discrete and continuous random variables. In this paper, we extend the
PASP framework to support continuous random variables and propose Hybrid Probabilistic
Answer Set Programming. Moreover, we discuss, implement, and assess the performance of two
exact algorithms based on projected answer set enumeration and knowledge compilation and two
approximate algorithms based on sampling. Empirical results, also in line with known theoretical
results, show that exact inference is feasible only for small instances, but knowledge compila-
tion has a huge positive impact on performance. Sampling allows handling larger instances but
sometimes requires an increasing amount of memory.

KEYWORDS: hybrid probabilistic answer set programming, statistical relational artificial
intelligence, credal semantics, algebraic model counting, exact and approximate inference

1 Introduction

Almost 30 years ago (Sato 1995), Probabilistic Logic Programming (PLP) was proposed

for managing uncertain data in Logic Programming. Most of the frameworks, such as

PRISM (Sato 1995) and ProbLog (De Raedt et al . 2007), attach a discrete distribu-

tion, typically Bernoulli or Categorical, to facts in the program and compute the success

probability of a query, that is, a conjunction of ground atoms. Recently, several exten-

sions have been proposed for dealing with continuous distributions as well (Gutmann

et al. 2011a, 2011b; Azzolini et al. 2021), which greatly expand the possible application

scenarios.
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Answer Set Programming (ASP) (Brewka et al. 2011) is a powerful formalism for

representing complex combinatorial domains. Most of the research in this field focuses

on deterministic programs. There are three notable exceptions: LPMLN (Lee and Wang

2016), P -log (Baral et al. 2009), and Probabilistic Answer Set Programming (PASP)

under the credal semantics (CS) (Cozman and Mauá 2016). The first assigns weights

to rules, while the last two attach probability values to atoms. However, all three allow

discrete distributions only.

In this paper, we extend PASP under the CS to Hybrid Probabilistic Answer Set

Programming (HPASP) by adding the possibility of expressing continuous distributions.

Our approach is based on a translation of the hybrid probabilistic answer set program

into a regular probabilistic answer set program (with discrete random variables only)

via a process that we call discretization. In this way, we can adapt and leverage already

existing tools that perform inference in probabilistic answer set programs under the CS

with discrete variables only. We implemented the discretization process on top of two

exact solvers, based on projected answer set enumeration and knowledge compilation,

respectively, and tested them on a set of five benchmarks with different configurations.

Furthermore, we also implemented and tested two approximate algorithms based on

sampling on the original program (with both discrete and continuous facts) and on the

discretized program (with only discrete facts). Our experiments show that knowledge

compilation has a huge impact in reducing the execution time and thus in increasing the

scalability of the inference task. However, larger instances require approximate algorithms

that perform well in almost all the tests but require, in particular, the one based on

sampling the discretized program, a substantial amount of memory.

The paper is structured as follows: Section 2 introduces the needed background knowl-

edge. Section 3 illustrates HPASP, and Section 4 presents the exact and approximate

algorithms for performing inference, whose performance is tested in Section 5. Section 6

compares our proposal with related work, and Section 7 concludes the paper.

2 Background

In this section, we review the main concepts used in the paper.

2.1 Answer set programming

In this paper, we consider ASP (Brewka et al. 2011). An answer set program contains

disjunctive rules of the form h1; . . . ; hm :− b1, . . . , bn., where the disjunction of atoms

his is called head and the conjunction of literals bis is called body . Rules with no atoms in

the head are called constraints , while rules with no literals in the body and a single atom

in the head are called facts . Choice rules are a particular type of rules where a single

head is enclosed in curly braces as in {a} :− b1, . . . , bn, whose meaning is that a may or

may not hold if the body is true. They are syntactic sugar for a; not a :− b1, . . . , bn where

not a is an atom for a new predicate not appearing elsewhere in the program. We allow

aggregates (Alviano and Faber 2018) in the body, one of the key features of ASP that

allows representing expressive relations between the objects of the domain of interest.

An example of a rule r0 containing an aggregate is v(A) :−#count{X : b(X)}=A. Here,
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variable A is unified with the integer resulting from the evaluation of the aggregate

#count{X : b(X)}, which counts the elements X such that b(X) is true.

The semantics of ASP is based on the concept of a stable model (Gelfond and Lifschitz

1988). Every answer set program has zero or more stable models, also called answer

sets . An interpretation I for a program P is a subset of its Herbrand base. The reduct

of a program P with respect to an interpretation I is the set of rules of the grounding

of P with the body true in I. An interpretation I is a stable model or, equivalently,

an answer set, of P if it is a minimal model (under set inclusion) of the reduct of P

w.r.t. I. We denote with AS(P ) the set of answer sets of an answer set program P and

with |AS(P )| its cardinality. If AS(P ) = ∅ we say that P is unsatisfiable. If we consider

rule r0 and two additional rules, {b(0)} and b(1), the resulting program has 2 answer

sets: {{b(1), b(0), v(2)}, {b(1), v(1)}}. Finally, we will also use the concept of projective

solutions of an answer set program P onto a set of atoms B (defined as in (Gebser et al.

2009)): ASB(P ) = {A∩B |A∈AS(P )}.

2.2 Probabilistic answer set programming

Uncertainty in Logic Programming can be represented with discrete Boolean probabilis-

tic facts of the form Π :: a where Π∈ [0, 1] and a is an atom that does not appear in

the head of rules. These are considered independent: this assumption may seem restric-

tive, but, in practice, the same expressivity of Bayesian networks can be achieved by

means of rules and extra atoms (Riguzzi 2022). Every probabilistic fact corresponds to

a Boolean random variable. With probabilistic facts, a normal logic program becomes a

probabilistic logic program. One of the most widely adopted semantics in this context is

the Distribution Semantics (DS) (Sato 1995). Under the DS, each of the n probabilistic

facts can be included or not in a world w, generating 2n worlds. Every world is a normal

logic program. The DS requires that every world has a unique model. The probability of

a world w is defined as P (w) =
∏

fi∈w Πi ·
∏

fi �∈w(1−Πi).

If we extend an answer set program with probabilistic facts, we obtain a probabilistic

answer set program that we interpret under the CS (Cozman and Mauá 2016, 2020).

In the following, when we write “probabilistic answer set program,” we assume that the

program follows the CS. Similarly to the DS, the CS defines a probability distribution

over the worlds. However, every world (which is an answer set program in this case)

may have 0 or more stable models. A query q is a conjunction of ground literals. The

probability P (q) of a query q lies in the range [P (q), P (q)] where

P (q) =
∑

wi such that ∀m∈AS(wi), m|=q

P (wi),

P (q) =
∑

wi such that ∃m∈AS(wi), m|=q

P (wi). (1)

That is, the lower probability is given by the sum of the probabilities of the worlds where

the query is true in every answer, while the upper probability is given by the sum of the

probabilities of the worlds where the query is true in at least one answer set. Here, as

usual, we assume that all the probabilistic facts are independent and that they cannot
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Table 1. Worlds, probabilities, and answer sets for
Example 1

id a b P (w) AS(w)

w0 0 0 0.7 · 0.6 = 0.42 {{}}
w1 0 1 0.7 · 0.4 = 0.28 {{q0, b}}
w2 1 0 0.3 · 0.6 = 0.18 {{a, q0}, {a, q1}}
w3 1 1 0.3 · 0.4 = 0.12 {{a, b, q0}}

appear as heads of rules. In other words, the lower (upper) probability is the sum of

the probabilities of the worlds from which the query is a cautious (brave) consequence.

Conditional inference means computing upper and lower bounds for the probability of a

query q given evidence e, which is usually given as a conjunction of ground literals. The

formulas are by Cozman and Mauá (2017):

P (q | e) = P (q, e)

P (q, e) + P (¬q, e)

P (q | e) = P (q, e)

P (q, e) + P (¬q, e) (2)

Conditional probabilities are undefined if the denominator is 0.

Example 1.

The following probabilistic answer set program has two probabilistic facts, 0.3 :: a and

0.4 :: b:

0.3::a. 0.4::b.

q0 ; q1:- a. q0:- b.

There are 22 = 4 worlds: w0 = {not a, not b}, w1 = {not a, b}, w2 = {a, not b}, and w3 =

{a, b} (with not f we mean that the fact f is absent, not selected), whose probability

and answer sets are shown in Table 1. For example, the answer sets for w2 are computed

from the following program: a. q0; q1 :− a. q0 :− b. If we consider the query q0, it is true

in all the answer sets of w1 and w3 and in one of those of w2; thus, we get [P (w1) +

P (w3), P (w1) + P (w2) + P (w3)] = [0.4, 0.58] as probability bounds. �

DS and CS can be given an alternative but equivalent definition based on sampling

in the following way. We repeatedly sample worlds by sampling every probabilistic fact

obtaining a normal logic program or an answer set program. Then, we compute its

model(s), and we verify whether the query is true in it (them). The probability of the

query under DS is the fraction of worlds in whose model the query is true as the number

of sampled worlds tends to infinity. For CS, the lower probability is the fraction of worlds

where the query is true in all models, and the upper probability is the fraction of worlds

where the query is true in at least one model. We call this the sampling semantics, and

it is equivalent to the DS and CS definitions by the law of large numbers.
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Table 2. Tight complexity bounds of the CR problem
in PASP from Mauá and Cozman (2020). Not

stratified denotes programs with stratified negations
and ∨ disjunction in the head

Language Propositional Bounded Arity

{} PP PPNP

{not stratified} PP PPNP

{not} PPNP PPΣ
p
2

{∨} PPNP PPΣ
p
2

{not stratified, ∨} PPΣ
p
2 PPΣ

p
3

{not, ∨} PPΣ
p
2 PPΣ

p
3

The complexity of the CS has been thoroughly studied by Mauá and Cozman (2020). In

particular, they focus on analyzing the cautious reasoning (CR) problem: given a PASP

P , a query q, evidence e, and a value γ ∈R, the result is positive if P (q | e)> γ, negative

otherwise (or if P (e) = 0). A summary of their results is shown in Table 2. For instance,

in PASP with stratified negation and disjunctions in the head, the complexity of the CR

problem is in the class PPΣp
2 , where PP is the class of the problems that can be solved

in polynomial time by a probabilistic Turing machine (Gill 1977). The complexity is even

higher if aggregates are allowed.

2.3 ProbLog and hybrid probLog

A ProbLog (De Raedt et al. 2007) program is composed by a set of Boolean probabilistic

facts as described in Section 2.2 and a set of definite logical rules, and it is interpreted

under the DS. The probability of a query q is computed as the sum of the probabilities

of the worlds where the query is true: every world has a unique model, so it is a sharp

probability value.

Gutmann et al . (2011a) proposed Hybrid ProbLog, an extension of ProbLog with

continuous facts of the form

(X, φ) :: b

where b is an atom, X is a variable appearing in b, and φ is a special atom indi-

cating the continuous distribution followed by X. An example of continuous fact is

(X, gaussian(0, 1)) :: a(X), stating that the variable X in a(X) follows a Gaussian dis-

tribution with mean 0 and variance 1. A Hybrid ProbLog program P is a pair (R, T )

where R is a set of rules and T = T c ∪ T d is a finite set of continuous (T c) and dis-

crete (T d) probabilistic facts. The value of a continuous random variable X can be

compared only with constants through special predicates: below(X, c0) and above(X, c0),

with c0 ∈R, which succeed if the value of X is, respectively, less than or greater than c0,

and between(X, c0, c1), with c0, c1 ∈R, c0 < c1, which succeeds if X ∈ [c0, c1].

The semantics of Hybrid ProbLog is given in Gutmann et al. (2011a) a proof theoretic

way. A vector of samples, one for each continuous variable, defines a so-called continuous
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subprogram, so the joint distribution of the continuous random variables defines a joint

distribution (with joint density f(x)) over continuous subprograms. An interval I ∈R
n,

where n is the number of continuous facts, is defined as the cartesian product of an interval

for each continuous random variable, and the probability P (X∈ I) can be computed by

integrating f(x) over I, that is,

P (X∈ I) =

∫
I

f(x) dx.

Given a query q, an interval I is called admissible if, for any x and y in I and for any

truth value of the probabilistic facts, the truth value of the q evaluated in the program

obtained by assuming X takes value x and y is the same. In other words, inside an

admissible interval, the truth value of a query is not influenced by the values of the

continuous random variables; that is, it is always true or false once the value of the discrete

facts is fixed. For instance, if we have the continuous fact (X, gaussian(0, 1)) :: a(X) and

a rule q :− a(X), between(X, 0, 2), the interval [0, 3] is not admissible for the query q,

while [0.5, 1.5] is (since for any value of X ∈ [0.5, 1.5], between(X, 0, 2) is always true). A

partition is a set of intervals, and it is called admissible if every interval is admissible. The

probability of a query is defined by extracting its proofs together with the probabilistic

facts, continuous facts, and comparison predicates used in the proofs. These proofs are

finitely many since the programs do not include function symbols and generalize the

infinitely many proofs of a hybrid program (since there can be infinitely many values

for continuous variables). Gutmann et al . (2011a) proved that an admissible partition

exists for each query having a finite number of proofs and the probability of a query does

not depend on the admissible partition chosen. They also propose an inference algorithm

that first computes all the proofs for a query. Then, according to the continuous facts

and comparison predicates involved, it identifies the needed partitions. To avoid counting

multiple times the same contribution, the proofs are made disjoint. Lastly, the disjoint

proofs are converted into a binary decision diagram (BDD) from which the probability

can be computed by traversing it bottom up (i.e., with the algorithm adopted in ProbLog

(De Raedt et al. 2007)).

Let us clarify it with a simple example.

Example 2.

The following Hybrid ProbLog program has one discrete fact and one continuous fact.

0.4::a.

(X,gaussian (0,1))::b(X).

q:- a.

q:- b(X), above(X,0.3).

Consider the query q. It has two proofs: a and b(X), above(X, 0.3). The probability

of q is computed as P (a) · P (X > 0) + P (a) · (1− P (X > 0)) + (1− P (a)) · P (X > 0) =

0.4 · 0.5 + 0.4 · 0.5 + 0.6 · 0.5 = 0.7. �

The Hybrid ProbLog framework imposes some restrictions on the continuous random

variables and how they can be used in programs, namely: (i) comparison predicates
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must compare variables with numeric constants, (ii) arithmetic expressions involving

continuous random variables are not allowed, and (iii) terms inside random variables

definitions can be used only inside comparison predicates. These restrictions allow the

algorithm for the computation of the probability to be relatively simple.

3 Hybrid probabilistic answer set programming

Probabilistic logic programs that combine both discrete and continuous random variables

are usually named hybrid .1 In this paper, we adopt the same adjective to describe prob-

abilistic answer set programs with both discrete and continuous random variables, thus

introducing hybrid probabilistic answer set programs. We use the acronym (H)PASP to

indicate both (Hybrid) Probabilistic Answer Set Programming and (hybrid) probabilistic

answer set program; the meaning will be clear from the context.

Without loss of generality, we consider only ground discrete and continuous probabilis-

tic facts. With the syntax

f : distribution.

where f is ground, we indicate a continuous random variable f that follows the distri-

bution specified by distribution. For example, to state that a is a continuous random

variable that follows a Gaussian distribution with mean 2 and variance 1, we write

a : gaussian (2,1).

Definition 1.

A hybrid probabilistic answer set program is a triple (D, C, R), where D is a finite set of

ground independent probabilistic facts, C is a finite set of continuous random variables

definitions, and R is a set of rules with none of the atoms in D or C in the head. �

As in Hybrid ProbLog, we reserve some special predicates (that we call comparison

predicates) to compare the value of the random variables with numeric (∈R) constants:

above(Var , value), which is true if the value for the variable Var is greater than the

numeric value value (Var > value); below(Var , value), which is true if the value for the

variable Var is less than the numeric value value (Var < value); between(Var , l, u), which

is true if the value for the variable Var is between the range defined by the numeric

values l and u (i.e., Var > l and Var <u); and outside(Var , l, u), which is true if the

value for the variable Var is outside the range defined by the numeric values l and u (i.e.,

Var < l or Var >u). Given a value for a random variable, we can evaluate the atoms

for the comparison predicates. For example, if variable a has value 1.2, below(a, 1.8) is

true, above(a, 1.8) is false, between(a, 1.1, 1.8) is true, and outside(a, 1.1, 1.8) is false. In

our framework, we consider the same restrictions of Gutmann et al. (2011a). Note that

outside/3 literals are not allowed by Hybrid ProbLog.

1 In ASP terminology, the word “hybrid” is usually adopted to describe an extension of ASP, such as
the one by Janhunen et al. (2017). Here we use the word hybrid exclusively to denote the presence of
discrete and continuous random variables.
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We can extend the sampling semantics for the CS to hybrid probabilistic answer set

programs: we sample every probabilistic fact and a value for every continuous variable,

obtaining sample s= (d, c), where d is the sample for discrete facts and c is the sample

for continuous random variables. From s, we build a hybrid world w= (P, c) where P is

obtained by adding to R each fact fi for which pi :: fi ∈D and di = 1 in vector d. We

then ground the rules and check the sampled values for the continuous random variables

against every comparison predicate that contains the variable: (i) if the comparison is

false, we remove the grounding of the rule, or (ii) if the comparison is true, we remove

the comparison predicate from the body of the ground rule. We are left with an answer

set program w
′
, and we can compute its stable models. The lower and upper probability

of a query q are given, as in the sampling semantics for CS, as the fraction of worlds

where the query is true in every answer set and in at least answer set, respectively, as

the number of samples goes to infinity. That is,

P (q) = lim
n→∞

∑n
i=1 1(∀m∈AS(w

′
i), m |= q)

n

P (q) = lim
n→∞

∑n
i=1 1(∃m∈AS(w

′
i), m |= q)

n
(3)

where 1 is the indicator function, returning 1 if its argument is true, 0 otherwise, and

AS(w
′
i) is the set of answer sets of the program w

′
i obtained from the i-th sample. We

call this the hybrid sampling semantics .

To better specify the syntax, let us introduce an example.

Example 3.

Consider a medical domain where we are interested in computing the probability of stroke

given the values of the blood pressure of some individuals.

0.4:: pred_d (1..4).

0.6:: pred_s (1..4).

d(1..4):gamma (70,1).

s(1..4):gamma (120 ,1).

prob_d(P):- outside(d(P), 60, 80).

prob_s(P):- outside(s(P), 110, 130).

prob(P):- prob_d(P), pred_d(P).

prob(P):- prob_s(P), pred_s(P).

stroke(P);not_stroke(P):- prob(P).

:- #count{X:prob(X)}=P,

#count{X:stroke(X),prob(X)}=S,

10*S < 4*P.

high_number_strokes:-

#count{X : stroke(X)}=CS, CS > 1.
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For ease of explanation and conciseness, we use the syntax a(l..u) with l, u∈N, l < u,

to denote a set of atoms a(l), a(l+ 1), . . . , a(u). The program considers four people

indexed with 1, 2, 3, and 4. The first two lines introduce eight discrete probabilistic facts,

pred d(i), i∈ {1, . . . , 4} (pred is short for predisposition), which are true with probability

0.4, and pred s(i), i∈ {1, . . . , 4}, which are true with probability 0.6, and eight continu-

ous random variables (d(1), . . . , d(4), s(1), . . . , s(4), where d stands for diastolic and s for

systolic), where the first four follow a gamma distribution with shape 70 and rate 1 and

while the remaining follow a gamma distribution with shape 120 and rate 1. prob d/1

indicates a problem from the diastolic pressure, and it is true if there is a problem coming

from the diastolic pressure if its value is below 60 or above 80. Similarly for prob s/1. In

general, a person has a blood pressure problem (prob/1) if they have either a diastolic or

systolic pressure problem, and there is a predisposition for it (either pred d or pred s). A

person having a blood pressure problem can have a stroke or not. The constraint states

that at least 40% of people that have a pressure problem also have a stroke. Finally, we

may be interested in computing the probability that more than one person has a stroke

(high number strokes/0). �

The comparison predicates subdivide the domain of a random variable into disjoint

and exhaustive intervals I1 ∪ I2 ∪ · · · ∪ Im. The extremes of the disjoint intervals are

obtained by selecting all constants appearing in comparison predicates for continuous

random variables, removing the duplicates, and ordering them in increasing order. In

this way, we obtain a list of values [b1 . . . , bm+1] where b1 =−∞ and bm+1 =+∞ such

that Ik = [bk, bk+1] for k= 1, . . . , m. This process is described in Algorithm 2 of Gutmann

et al. (2011a).

Example 4.

Consider the following simple program:

0.4::b. a:gaussian (0,1).

q0 ; q1:- below(a ,0.5).

q0:- below(a,0.7), b.

There are 3 intervals to consider: Ia1 =]−∞, 0.5], Ia2 = [0.5, 0.7], and Ia3 = [0.7,+∞[. �

We transform a HPASP Pc into a PASP P d
c via a process that we call discretization.

The probability of a query q in Pc is the same as the probability asked in P d
c . Thus,

using discretization, inference in HPASP is performed using inference in PASP. We now

show how to generate the discretized program, and then we prove the correctness of the

transformation.

We need to make the rules involving comparison predicates considering more than one

interval disjoint, to avoid counting multiple times the same contribution. To do so, we can

first convert all the comparison predicates between/3 and outside/3 into a combination

of below/2 and above/2. That is, every rule,

h :− l1, . . . , between(a, lb, ub), . . . , ln.
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is converted into

h :− l1, . . . , above(a, lb), below(a, ub), . . . , ln.

The conversion of outside(a, lb, ub) requires introducing two rules. That is,

h :− l1, . . . , outside(a, lb, ub), . . . , ln.

requires generating two rules

ha :− l1, . . . , above(a, ub), . . . , ln.

hb :− l1, . . . , below(a, lb), . . . , ln.

If there are multiple comparison predicates in the body of a rule, the conversion is

applied multiple times, until we get rules with only above/2 and below/2 predicates.

After this, for every continuous variable fj with m associated intervals, we introduce a

set of clauses (De Raedt et al. 2008; Gutmann et al. 2011a)

hj
1 :− fj1.

hj
2 :− not fj1, fj2.

. . .

hj
m−1 :− not fj1, not fj2, . . . , fjm−1.

hj
m :− not fj1, not fj2, . . . , not fjm−1. (4)

where each hj
i is a propositional atom that is true if the continuous variable fj takes

value in the interval I
fj
i and each fjk is a fresh probabilistic fact with probability πjk for

k= 1, . . . , m− 1 computed as

πjk =
P (bk ≤ fj ≤ bk+1)

1− P (fj ≤ bk)
=

∫ bk+1

bk
pj(xj) dxj

1− ∫ bk
−∞ pj(xj) dxj

(5)

where pj(xj) is the probability density function of the continuous random variable fj
and bk for k= 1, . . . , m are the bounds of the intervals. After this step, we identify

the comparison atoms that are true in more than one interval. A clause containing a

comparison atom below(fj , bk+1) is replicated k times, once for each of the intervals Il
with l= 1, . . . , k. The comparison atom of the k-th replicated clause is replaced by hj

k.

Similarly for above/2. If a clause contains comparison atoms on multiple variables, this

process is repeated multiple times. That is, if a clause contains nc comparison atoms on

the variables v1, . . . , vn that are true in k1, . . . , kn intervals, we get k1 × · · · × kn clauses.

Note that the complexity of inference is dominated by the number of probabilistic facts,

rather than the number of clauses.

Algorithm 1 depicts the pseudocode for the discretization process applied to a HPASP

with ground rules R, continuous random variable definitions C, and discrete prob-

abilistic facts D. It is composed of three main functions, ConvertBetweenOutside,
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Algorithm 1. Function Discretize: discretization of a hybrid probabilistic answer set
program with rules R, continuous probabilistic facts C and discrete probabilistic factsD.

1: function Discretize(R, C, D)

2: Rd ← ConvertBetweenOutside(R)

3: Rd, D ← HandleIntervals(Rd, C, D)

4: Rd ← HandleComparisonAtoms(Rd)

5: return Rd, D
6: end function
7:
8: function ConvertBetweenOutside(R)

9: Rd ← {}
10: for all r ∈ R do
11: rc ← ConvertBetween(r)

12: Rd ← Rd ∪ rc

13: end for
14: while ∃r ∈ Rd : outside/3 ∈ r do
15: ra, rb ← ConvertOutside(r)

16: Rd ← Rd \ {r} ∪ {ra, rb}
17: end while
18: return Rd

19: end function
20:
21: function HandleIntervals(Rd, C, D)
22: for all c ∈ C do
23: ni ← ComputeIntervals(c) � Computation of the intervals for the continuous probabilistic fact c.
24: for i ∈ {1, . . . , ni} do
25: fi ← ComputeProbability(c, i) � fi is a fresh probabilistic fact for the current interval i.
26: D ← D ∪ fi

27: Rd ← Rd ∪ {hi ← ∧i−1
j=1 not fj} ∧ fi

28: end for
29: end for
30: return Rd, D
31: end function
32:
33: function HandleComparisonAtoms(R)
34: K ←GetComparisonAtoms(R)
35: for all a ∈ K do � Loop over all the comparison atoms.
36: ic ← ComputeIntervalsComparison(a)
37: Rt ← {}
38: for all r ∈ R do
39: if a ∈ R then
40: for i ∈ {1, . . . , ia} do � Loop over the intervals that make the comparison atom a true.
41: ra ←Replace(r, a, hi)
42: Rt ← Rt ∪ {ra}
43: end for
44: else
45: Rt ← Rt ∪ {r}
46: end if
47: end for
48: R ← Rt

49: end for
50: return R
51: end function

HandleIntervals, and HandleComparisonAtoms that convert the between and out-

side comparison predicates, compute the number of intervals and the new dis-

crete probabilistic facts, and manage the comparison atoms, respectively. Functions

ConvertBetween and ConvertOutside convert, respectively, the comparison predi-

cates between/3 and outside/3 into combinations of above/2 and below/2. Function

ComputeIntervals(c) computes the intervals for the continuous random variable c.
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Function ComputeProbability(c, i) computes the probability for the i-th probabilis-

tic fact for the continuous random variable c. Function GetComparisonAtoms(R)

returns all the comparison atoms in the rules R of the program. Function

ComputeIntervalsComparison(c) computes the number of intervals involved in the com-

parison atom c. Function Replace(a, hi) replaces the comparison atom a with the

corresponding discrete fact hi representing the i-th interval.

Theorem 1.

Consider an hybrid probabilistic answer set program P . Let nr be the number of rules, nc

be the number of continuous facts, nk be the number of comparison atoms in the program,

ni be the maximum number of intervals for a continuous fact, o be the maximum number

of outside/3 atoms in the body of a rule, and ic be the maximum number of intervals

where a comparison atom is true. Then, Algorithm 1 requires O(no
r + nc · ni + nk · nr · ic)

time.

Proof.

Let us analyze the three functions used in Discretize. For function

ConvertBetweenOutside, the body of the loop at lines 10–13 is executed nr times. The

while loop at lines 14–17 is executed no
r times. Thus, function ConvertBetweenOutside

has complexity O(no
r). Function HandleIntervals has complexity O(nc · ni). In function

HandleComparisonAtoms, the loop at lines 35–49 is executed nk times. For each

of them, the loop at lines 38–47 is executed nr times. Lastly, the innermost loop

at lines 40–43 is executed at most ic times. So, function HandleComparisonAtoms

has complexity O(nk · nr · ic). Overall, function Discretize has complexity

O(no
r + nc · ni + nk · nr · ic).

Note that the complexity of inference in probabilistic answer set programs is very high

(see Table 2), so the discretization process has a small impact on the overall process.

We can perform conditional inference using the formulas for discrete programs (equa-

tion (2)): if the evidence is on a discrete variable, we can directly apply that formula

to the discretized program. If the evidence is on a continuous variable, say, e= (X >k)

with k ∈R, we first need to create a discretized version of the program by also taking

into account this constraint.

To clarify, in Example 4, we have a variable a with two numerical constraints on it:

below(a, 0.5) and below(a, 0.7). The first interval, Ia1 , is ]−∞, 0.5], the second, Ia2 , is

[0.5, 0.7], and the third [0.7,∞[. After inserting the new probabilistic facts, fa1 for Ia1
and fa2 for Ia2 , we add two more rules ha

1 :− fa1. and ha
2 :− not fa1, fa2., we replicate

the clauses with comparison predicates spanning more than one interval and replace

the comparison predicates with the appropriate ha
i atom, to make them disjoint, as

previously above. For example, the comparison atom below(a, 0.7) of Example 4 is true

in the intervals Ia1 and Ia2 . The clause containing it is duplicated, and in the first copy, we

replace below(a, 0.7) with ha
1 , while in the second with ha

2 . The other comparison atom,

below(a, 0.5), is true in only one interval, so it is sufficient to replace it with ha
1 . This

process is repeated for every continuous random variable. Overall, we obtain the program

shown in Example 5.
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Table 3. Worlds and probabilities for Example 4. f1 and f2
are the two probabilistic facts obtained by the discretization

process of the continuous probabilistic fact a into three
intervals. The column LP/UP indicates whether the world
contributes only to the upper probability (UP) or also to the

lower probability (LP+UP)

id b f1 f2 LP/UP P (w)

0 0 0 0 - 0.145
1 0 0 1 - 0.040
2 0 1 0 UP 0.325
3 0 1 1 UP 0.089
4 1 0 0 - 0.097
5 1 0 1 LP+UP 0.027
6 1 1 0 LP+UP 0.217
7 1 1 1 LP+UP 0.060

Example 5.

By applying the discretization process to Example 4, we get that πa1 = 0.6915 and πa2 =
0.066

1−0.6915 = 0.2139. The program becomes:

0.4::b.

0.6915:: a1.

0.2139:: a2.

int1 :- a2.

int2 :- not a1 , a2.

q0 ; q1:- int1.

q0:- int1 , b.

q0:- int2 , b.

We can now compute the probability of the query, for example, q0: [P (q0), P (q0)] =

[0.303, 0.718]. The worlds are shown in Table 3. Similarly, for the program of Example 3,

we get P (high number strokes) = [0.256, 0.331]. �

We now show that the lower and upper probability of a query from the discretized

program is the same as that from the hybrid sampling semantics.

Theorem 2.

Given a query q, a hybrid program P , and its discretized version P d, the lower and

upper probability of q computed in the hybrid program (P (q) and P (q)) coincide with

the lower and upper probability computed in its discretized version (PPd

(q) and P
Pd

(q)),

that is,

P (q) = PPd

(q)

P (q) = P
Pd

(q) (6)
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Proof.

Given a hybrid world w and a clause c that contains at least one comparison atom in the

grounding of P , call g1, . . . , gn the set of clauses in the grounding of P d generated from c.

There are two cases. The first is that the samples for the continuous random variables do

not satisfy the constraints in the body of c. In this case, all the gi clauses will have a false

body. In the second case, there will be a single clause gi, where all the hj
i atoms in the

body are true. These atoms can be removed, obtaining an answer set program w
′
that is

the same as the one that would be obtained in the hybrid sampling semantics. It remains

to prove that the resulting probability distributions over the discretized worlds are the

same. We show that the probability of obtaining a program w
′
in the hybrid sampling

semantics and in the sampling semantics from the discretized program is the same. We

need to prove that the probability of a continuous random variable fj of falling into

the interval I
fj
k is the probability that in a world sampled from the discretized program

atom hj
k is true. The latter probability depends only on the probabilities of the fjl facts.

Thus it can be computed by observing that the fjl facts are mutually independent: since

the part of the program defining hj
k is a stratified normal program, the lower and upper

probabilities of hj
k coincide and, if −∞, b2, . . . , bm−1,+∞ are the different bounds for

the intervals they can be computed as:

P (hj
k) = P (not fj1) · P (not fj2) · · · · · P (notfjk−1) · P (fjk)

=

(
1−

∫ b2

−∞
pj(fj) dfj

)
· 1− ∫ b3

b2
pj(fj) dfj

1− ∫ b2
−∞ pj(fj) dfj

· · · · ·
∫ bk+1

bk
pj(fj) dfj

1− ∫ bk
−∞ pj(fj) dfj

=

(
1−

∫ bk

−∞
pj(fj) dfj

)
·
∫ bk+1

bk
pj(fj) dfj

1− ∫ bk
−∞ pj(fj) dfj

=

∫ bk+1

bk

pj(fj) dfj (7)

With our framework, it is possible to answer queries in programs where variables follow

a mixture of distributions. For instance, in the following program

0.4::c.

a:gaussian (10,3).

b:gaussian (9,2).

q0:- c, above(a,6.0).

q0:- not c, above(b ,6.0).

we can compute the probability of the query q0 ([P (q0), P (q0)] = [0.923, 0.923]). Here,

if c is true, we consider a Gaussian distribution with mean 10 and variance 3, if c is
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false, a Gaussian distribution with mean 9 and variance 2. In other words, we consider a

variable that follows the first Gaussian distribution if c is true and the second Gaussian

distribution if c is false.

One of the key features of ASP is the possibility of adding logical constraints that

cut some of the possible answer sets. However, when we consider a PASP (also obtained

via discretization), constraints may cause a loss of probability mass due to unsatisfiable

worlds since these contribute neither to the lower nor to the upper bound (equation (1)).

There can be constraints involving only discrete probabilistic facts, constraints involving

only comparison atoms (thus, continuous random variables), and constraints involving

both. Let us discuss this last and more general case with an example.

Example 6.

Consider the program of Example 4 with the additional rule (constraint)

:− b, below(a, 0.2). When b is true, the value of a cannot be less than 0.2. This results

in a loss of probability mass in the discretized program. The introduction of the con-

straint requires a more granular partition and an additional interval: Ia1 =]−∞, 0.2],

Ia2 = [0.2, 0.5], Ia3 = [0.5, 0.7], and Ia4 = [0.7,+∞[. Note that the probabilities of the

discretized facts will be different from the ones of Example 4. �

When every world is satisfiable, we have that (Cozman and Mauá 2020):

P (q) + P (not q) = 1 (8)

When at least one world is unsatisfiable, equation (8) does not hold anymore, but we

have P (q) + P (not q) + P (inc) = 1, where P (inc) is the probability of the unsatisfiable

worlds. So we can still use the semantics but we need to provide the user also with P (inc)

beside P (q) and P (q). If we want to enforce equation (8), we can resort to normalization:

we divide both the lower and the upper probability bounds of a query by the probability

of the satisfiable worlds. That is, call

Z =
∑

wi||AS(wi)|>0

P (wi) (9)

then Pn(q) = [Pn(q), P
n
(q)] with Pn(q) = P (q)/Z, P

n
(q) = P (q)/Z. This approach has

the disadvantage that if Z is 0 the semantics is not defined. In Example 6, the normalizing

factor Z is 0.7683; thus, the probability of q0 now is P (q0) = [0.093, 0.633]. Note that the

new bounds are not simply the bounds of Example 5 divided by Z since the constraint

splits the domain even further, and the probabilities associated with the probabilistic

facts obtained via discretization change.

4 Algorithms

In this section, we describe two exact and two approximate algorithms for performing

inference in HPASP.
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4.1 Exact inference

4.1.1 Modifying the PASTA solver

We first modified the PASTA solver (Azzolini et al. 2022),2 by implementing the conver-

sion of the hybrid program into a regular probabilistic answer set program (Algorithm 1).

PASTA performs inference on PASP via projected answer set enumeration. In a nutshell,

to compute the probability of a query (without loss of generality assuming here it is an

atom), the algorithm converts each probabilistic fact into a choice rule. Then, it computes

the answer sets projected on the atoms for the probabilistic facts and for the query. In

this way, PASTA is able to identify the answer set pertaining to each world. For each

world, there can be three possible cases: (i) a single projected answer set with the query

in it, denoting that the query is true in every answer set, so this world contributes to

both the lower and upper probability; (ii) a single answer set without the query in it:

this world does not contribute to any probability; and (iii) two answer sets, one with

the query and one without: the world contributes only to the upper probability. There

is a fourth implicit and possible case: if a world is not present, this means that the ASP

obtained from the PASP by fixing the selected probabilistic facts is unsatisfiable. Thus,

in this case, we need to consider the normalization factor of equation (9). PASTA already

handles this by keeping track of the sum of the probabilities of the computed worlds.

The number of generated answer sets depends on the number of Boolean probabilistic

facts and on the number of intervals for the continuous random variables, since every

interval requires the introduction of a new Boolean probabilistic fact. Overall, if there

are d discrete probabilistic facts and c continuous random variables, the total number of

probabilistic facts (after the conversion of the intervals) becomes T = d+
∑c

i=1(ki − 1),

where ki is the number of intervals for the i-th continuous fact. Finally, the total number

of generated answer sets is bounded above by 2T+1, due to the projection on the prob-

abilistic facts. Clearly, generating an exponential number of answer sets is intractable,

except for trivial domains.

Example 7 (Inference with PASTA.)

Consider the discretized program described in Example 5. It is converted into

{a1}.

{a2}.

{b}.

int1 :- a2.

int2 :- not a1, a2.

q0 ; q1:- int1.

q0:- int1 , b.

q0:- int2 , b.

It has 10 answer sets projected on the atoms q0/0 and a0/0, a1/0, and b/0: AS1 =

{}, AS2 = {a1}, AS3 = {a2}, AS4 = {a2, q0}, AS5 = {b}, AS6 = {a1, a2}, AS7 = {a1, b},
AS8 = {a2, b, q0}, AS9 = {a1, a2, q0}, and AS10 = {a1, a2, b, q0}. For example, the world

2 Code and datasets are available on GitHub at https://github.com/damianoazzolini/pasta and on
zenodo at https://doi.org/10.5281/zenodo.11653976.
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where only a2 is true is represented by the answer sets AS3 and AS4. The query q0 is

present only in one of the two, so this world contributes only to the upper probability.

The world where a1 and a2 are true and b is false is represented only by the answer

set AS9: the query is true in it so this world contributes to both the lower and upper

probability. The world where only a1 is true is represented by AS2, q0 is not present in

it so it does not contribute to the probability. By applying similar considerations for all

the worlds, it is possible to compute the probability of the query q0. �

4.1.2 Modifying the aspcs solver

We also added the conversion from HPASP to PASP to the aspcs solver (Azzolini and

Riguzzi 2023a), built on top of the aspmc solver (Eiter et al. 2021; Kiesel et al. 2022),

which performs inference on Second Level Algebraic Model Counting (2AMC) problems,

an extension of AMC (Kimmig et al. 2017). Some of them are MAP inference (Shterionov

et al. 2015), decision theory inference in PLP (Van den Broeck et al. 2010), and proba-

bilistic inference under the smProbLog semantics (Totis et al. 2023). More formally, let

Xin and Xout be a partition of the variables in a propositional theory Π. Consider two

commutative semirings Rin = (Ri,⊕i,⊗i, ei⊕, e
i
⊗) and Rout = (Ro,⊕o,⊗o, eo⊕, e

o
⊗), con-

nected by a transformation function f :Ri →Ro and two weight functions, win and wout,

which associate each literal to a weight (i.e., a real number). 2AMC requires computing:

2AMC(A) =
⊕o

Iout∈σ(Xout)

⊗o

a∈Iout

wout(a)⊗o

f(
⊕i

Iin∈δ(Π|Iout)

⊗i

b∈Iin
win(b)) (10)

where σ(Xout) are the set of possible assignments to Xout and δ(Π | Iout) are the set of

possible assignments to the variables of Π that satisfy Iout. We can cast inference under

the CS as a 2AMC problem (Azzolini and Riguzzi 2023a) by considering as inner semiring

Rin = (N2,+, ·, (0, 0), (1, 1)), where + and · are component-wise and win is a function

associating not q to (0, 1) and all the other literals to (1, 1), where q is the query. The

first component nu of the elements (nu, nl) of the semiring counts the models where the

query is true, while the second component nl counts all the models. The transformation

function f(nu, nl) returns a pair of values (fu, fl) such that fl = 1 if nl = nu, 0 otherwise,

and fu = 1 if nu > 0, 0 otherwise. The outer semiring Rout = ([0, 1]2,+, ·, (0, 0), (1, 1))
is a double probability semiring, where there is a separate probability semiring for each

component. wout associates a to (p, p) and not a to (1− p, 1− p) for every probabilistic

fact p :: a, while it associates all the remaining literals to (1, 1). aspmc, and so aspcs,

solves 2AMC using knowledge compilation (Darwiche and Marquis 2002) targeting NNF

circuits (Darwiche 2004) where the order of the variables is guided by the treewidth

of the program (Eiter et al. 2021). Differently from PASTA, aspcs does not support

aggregates, but we can convert rules and constraints containing them into new rules and

constraints without aggregates using standard techniques (Brewka et al. 2011).

4.2 Approximate inference

Approximate inference can be performed by using the definition of the sampling semantics

and returning the results after a finite number of samples, similar to what is done for
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programs under the DS (Kimmig et al. 2011; Riguzzi 2013). It can be performed both

on the discretized program and directly on the hybrid program.

4.2.1 Sampling the discretized program

In the discretized program, we can speed up the computation by storing the sampled

worlds to avoid calling again the answer set solver in case a world has been already

sampled. However, the number of discrete probabilistic facts obtained via the conversion

is heavily dependent on the types of constraints in the program.

4.2.2 Sampling the hybrid program

Sampling the hybrid program has the advantage that it allows general numerical con-

straints, provided they involve only continuous random variables and constants. In this

way, we directly sample the continuous random variables and directly test them against

the constraints that can be composed of multiple variables and complex expressions. In

fact, when constraints among random variables are considered, it is difficult to discretize

the domain. Even if the samples would be always different (since the values are floating

point numbers), also here we can perform caching, as in the discretized case: the con-

straints, when evaluated, are still associated with a Boolean value (true or false). So, we

can store the values of the evaluations of each constraint: if a particular configuration

has already been encountered, we retrieve its contribution to the probability, rather than

calling the ASP solver.

4.2.3 Approximate algorithm description

Algorithm 2 illustrates the pseudocode for the sampling procedure: for the sampling

on the discretized program, the algorithm discretizes the program by calling Discretize

(Algorithm 1). Then, for a number of samples s, it samples a world by including or

not every probabilistic fact into the program (function SampleWorld) according to the

probability values, computes its answer sets with function ComputeAnswerSets (recall

that a world is an answer set program), checks whether the query q is true in every

answer set (function QueryInEveryAnswerSet) or in at least one answer set (function

QueryInAtLeastOneAnswerSet), and updates the lower and upper probability bounds

accordingly. At the end of the s iterations, it returns the ratio between the number of

samples contributing to the lower and upper probability and the number of samples taken.

The procedure is analogous (but without discretization) in the case of the sampling on the

original program. A world is sampled with function SampleVariablesAndTestConstraints:

it takes a sample for each continuous random variable, tests that value against each

constraint specified in the program, and removes it if the test succeeds; otherwise, it

removes the whole rule containing it. The remaining part of the algorithm is the same.

We now present two results regarding the complexity of the sampling algorithm. The

first provides a bound on the number of samples needed to obtain an estimate of the

upper (or lower) probability of a query within a certain absolute error. The second result

provides a bound on the number of samples needed to obtain an estimate within a certain

relative error.
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Algorithm 2. Function Sampling: computation of the probability of a query q by taking s
samples in a hybrid probabilistic answer set program P with rules R, continuous probabilistic
facts C, and discrete probabilistic factsD . Variable type indicates whether the sampling of the
discretized program or the original program is selected.

1: function Sampling(R, C, D, q, s, type)
2: if type == discretized then
3: P s ← Discretize(R, C, D)
4: else
5: P s ← P
6: end if
7: i ← 0
8: while i < s do
9: if type == discretized then

10: w ← SampleWorld(P s)
11: else
12: w ← SampleVariablesAndTestConstraints(P s)
13: end if
14: as ← ComputeAnswerSets(w)
15: if QueryInEveryAnswerSet(as, q) then
16: lb = lb + 1
17: ub = ub + 1
18: else if QueryInAtLeastOneAnswerSet(as, q) then
19: ub = ub + 1
20: end if
21: i ← i + 1
22: end while
23: return lp/s, up/s
24: end function

Theorem 3 (Absolute Error.)

Let q be a query in a hybrid probabilistic answer set program P whose exact lower (upper)

probability of success is p. Suppose the sampling algorithm takes s samples, k of which

are successful, and returns an estimate p̂= k
s of the lower (upper) probability of success.

Let ε and δ be two numbers in [0, 1]. Then, the probability that p̂ is within ε of p is at

least 1− δ, that is,

P (p− ε≤ p̂≤ p+ ε)≥ 1− δ

if

s≥ ε+ 1
2

ε2δ
.

Proof.

We must prove that

P (p− ε≤ p̂≤ p+ ε)≥ 1− δ (11)

or, equivalently, that

P (sp− sε≤ k≤ sp+ sε)≥ 1− δ. (12)

Since k is a binomially distributed random variable with number of trials s and probability

of success p, we have that (Feller 1968):
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P (k≥ r1)≤ r1(1− p)

(r1 − sp)2
(13)

if r1 ≥ sp. Moreover

P (k≤ r2)≤ (s− r2)p

(sp− r2)2
(14)

if r2 ≤ sp. Since P (k≥ r1) = 1− P (k < r1), from equation (13), we have

1− P (k < r1) ≤ r1(1− p)

(r1 − sp)2

P (k < r1) ≥ 1− r1(1− p)

(r1 − sp)2
(15)

if r1 ≥ sp.

In our case, we have r1 = sp+ sε (since r1 ≥ sp) and r2 = sp− sε (since r2 ≤ sp). So

P (p− ε≤ p̂≤ p+ ε) =

= P (r2 ≤ k≤ r1)

= P (k≤ r1)− P (k < r2)

≥ 1− r1(1− p)

(r1 − sp)2
− (s− r2)p

(sp− r2)2
(Eq. 15 and 14 and since P (x≤ v)≥ P (x< v))

= 1− (sp+ sε)(1− p)

(sε)2
− (s− sp+ sε)p

(sε)2
(by replacing the values of r1 and r2)

=
s2ε2 − sp− sε+ sp2 + spε− sp+ sp2 − spε

s2ε2
(by expanding)

=
sε2 − 2p− ε+ 2p2

sε2
(by collecting s and simplifying)

and

sε2 − 2p− ε+ 2p2

sε2
≥ 1− δ

sε2 − 2p− ε+ 2p2 ≥ sε2 − sε2δ

sε2δ ≥ 2p+ ε− 2p2

s ≥ 2p+ ε− 2p2

ε2δ
=

2p(1− p) + ε

ε2δ
. (16)

Since 0≤ 2p(1− p)≤ 1
2 with p∈ [0, 1], then equation (16) is implied by

s ≥ ε+ 1
2

ε2δ

https://doi.org/10.1017/S1471068424000437 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000437


Probabilistic Answer Set Programming 21

Theorem 4 (Relative Error.)

Let q be a query in a hybrid probabilistic answer set program P whose exact lower (upper)

probability of success is p. Suppose the sampling algorithm takes s samples, k of which

are successful, and returns an estimate p̂= k
s of the lower (upper) probability of success.

Let ε and δ be two numbers in [0, 1]. Then, the probability that the error between p̂ and

p is smaller than pε is at least 1− δp, that is,

P (|p− p̂| ≤ pε)≥ 1− δp

if

s≥ 3

ε2
ln(

1

δ
).

Proof.

According to Chernoff’s bound (Mitzenmacher and Upfal 2017, Corollary 4.6), we have

that

P (|ps− k| ≥ psε)≤ 2e−
ε2ps

3 .

So

P (|p− p̂| ≥ pε)≤ 2e−
ε2ps

3

and

P (|p− p̂| ≤ pε)≥ 1− 2e−
ε2ps

3 .

Then,

1− 2e−
ε2ps

3 ≥ 1− δp

2e−
ε2ps

3 ≤ δp

ln(2)− ε2ps

3
≤ p ln(δ)

−ε2ps

3
≤ p ln(δ)− ln(2)≤ p ln(δ)

s ≥ 3

ε2
ln(

1

δ
).

Please note that in Theorem 4, we exponentiate δ to p. This is needed to avoid the

appearance of p in the bound since p is unknown. When p is 0, we have no guarantees

on the error. When p is 1, the confidence is 1− δ. For p growing from 0–1, the bound

provides increasing confidence. In fact, approximating small probabilities is difficult due

to the low success probability of the sample.

5 Experiments

We ran experiments on a computer with 8GB of RAM and a time limit of 8 h (28800 s).

We generated five synthetic datasets, t1, t2, t3, t4, and t5, where every world of all

the discretized versions of the programs has at least one answer set. We use the SciPy
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library (Virtanen et al. 2020) to sample continuous random variables. The following code

snippets show the PASTA-backed programs; the only difference with the ones for aspcs

is in the negation symbol, not for the former and \+ for the latter. For all the datasets,

we compare the exact algorithms and the approximate algorithms based on sampling,

with an increasing number of samples. We record the time required to parse the program

and to convert the HPASP into a PASP together with the inference time. The time for

the first two tasks is negligible with respect to the inference time.

5.1 Dataset t1

In t1 we consider instances of increasing size of the program shown in Example 4. Every

instance of size n has n/2 discrete probabilistic facts di, n/2 continuous random vari-

ables ci with a Gaussian distribution with mean 0 and variance 1, n/2 pair of rules

q0 :− below(ci, 0.5), not q1 and q1 :− below(ci, 0.5), not q0, i= {1, . . . , n/2}, and n/2 rules

q0 :− below(ci, 0.7), di, one for each i for i= {1, . . . , n/2}. The query is q0. The goal of

this experiment is to analyze the behaviour of the algorithm by increasing the number

of discrete and continuous random variables. The instance of size 2 is:

0.5::d1.

c1:gaussian (0,1).

q0 :- below(c1 ,0.5), not q1.

q1 :- below(c1 ,0.5), not q0.

q0 :- below(c1 ,0.7), d1.

5.2 Dataset t2

In t2 we consider a variation of t1, where we fix the number k of discrete probabilistic facts

to 2, 5, 8, and 10, and increase the number of continuous random variables starting from

1. Every instance of size n contains k discrete probabilistic facts di, i∈ {0, . . . , k− 1}, n
continuous random variables ci, i∈ {1, . . . , n} with a Gaussian distribution with mean 0

and variance 1, n pair of rules q0 :− below(ci, 0.5), not q1 and q1 :− below(ci, 0.5), not q0,

i= {1, . . . , n}, and n rules q0 :− below(ci, 0.7), d(i−1)%k, one for each i for i= {1, . . . , n}.
The query is q0. Here, when the instance size n is less than the number of discrete

probabilistic facts k, k− n probabilistic facts are not relevant for the computation of the

probability of the query. The instance of size 2 with k= 2 is:

0.5::d0.

0.5::d1.

c1:gaussian (0,1).

c2:gaussian (0,1).

q0 :- below(c1 ,0.5), not q1.

q1 :- below(c1 ,0.5), not q0.

q0 :- below(c2 ,0.5), not q1.

q1 :- below(c2 ,0.5), not q0.

q0 :- below(c1 ,0.7), d0.

q0 :- below(c2 ,0.7), d1.
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5.3 Dataset t3

In t3, we consider again a variation of t1 where we fix the number k of continuous

random variables to 2, 5, 8, and 10, and increase the number of discrete probabilistic

facts starting from 1. Every instance of size n contains k continuous probabilistic facts

ci, i∈ {0, . . . , k− 1}, with a Gaussian distribution with mean 0 and variance 1, n dis-

crete probabilistic facts di, i∈ {1, . . . , n}, k pair of rules q0 :− below(ci, 0.5), not q1 and

q1 :− below(ci, 0.5), not q0, i= {1, . . . , n}, and n rules q0 :− below(c(i−1)%k, 0.7), di, one

for each i for i= {1, . . . , n}. The query is q0. The instance of size 3 with k= 2 is:

0.5::d1.

0.5::d2.

0.5::d3.

c0:gaussian (0,1).

c1:gaussian (0,1).

q0 :- below(c0 ,0.5), not q1.

q1 :- below(c0 ,0.5), not q0.

q0 :- below(c1 ,0.5), not q1.

q1 :- below(c1 ,0.5) , not q0.

q0 :- below(c0 ,0.7) , d1.

q0 :- below(c1 ,0.7) , d2.

q0 :- below(c0 ,0.7) , d3.

5.4 Dataset t4

In t4, we consider programs with one discrete probabilistic fact d and one continu-

ous random variable a that follows a Gaussian distribution with mean 0 and standard

deviation 10. An instance of size n has n pairs of rules q0 :− between(a, lbi, ubi), not q1

and q1 :− between(a, lbi, ubi), not q0 where lbi and ubi are randomly generated (with,

lbi <ubi), for j = 1, . . . , n, and n rules of the form q0 :− d, between(a, LBj , UBj), where

the generation of the LBj and UBj follows the same process of the previous rule. We set

the minimum value of lbi and LBj to -30 and, for both rules, the lower and upper

bounds for the between/2 comparison predicate are uniformly sampled in the range

[ui−1, ui−1 + 60/n], where ui−1 is the upper bound of the previous rule. The query is

q0. Here, the goal is to test the algorithm with an increasing number of intervals to

consider. An example of an instance of size 2 is:

0.4::d.

c:gaussian (0,10).

q0:- between(c, -30 , -23.606), not q1.

q1:- between(c, -30 , -23.606), not q0.

q0:- d, between(c,-30, -29.75).

5.5 Dataset t5

Lastly, in t5 we consider programs of the form shown in Example 3: the instance of index

n has n people involved, n discrete probabilistic facts, and n d/1 and s/1 continuous
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(a) (b)

Fig 1. Results for t1, t4, and t5 (left) and results for aspcs applied to t3 (right) with two and
five continuous facts.

(a) (b)

Fig 2. Results for the experiment t2 with a fixed number of discrete facts and an increasing
number of continuous variables.

random variables. The remaining part of the program is the same. Example 3 shows the

instance of index 4 (four people involved). The query is high number strokes.

5.6 Exact inference results

The goal of benchmarking the exact algorithms is threefold: (i) identifying how the

number of continuous and discrete probabilistic facts influences the execution time, (ii)

assessing the impact on the execution time of an increasing number of intervals, and (iii)

comparing knowledge compilation with projected answer set enumeration. Figure 1(a)

shows the results of exact inference for the algorithms backed by PASTA (dashed lines)

and aspcs (straight lines) on t1, t4, and t5. For t5 PASTA is able to solve up to instance

4, while aspcs can solve up to instance 9 (in a few seconds). Similarly for t1, where aspcs

doubles the maximum sizes solvable by PASTA. The difference is even more marked for
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(a) (b)

Fig 3. Results for the experiment t3 with a fixed number of continuous random variables and
an increasing number of discrete facts. The x axis of the left plot is cut at size 20, to keep the

results readable.

t4: here, PASTA solves up to instance 11 while aspcs up to instance 35. Figures 2 and

3 show the results for t2 and t3. Here, PASTA cannot solve instances with around more

than 20 probabilistic facts and continuous random variables combined. The performance

of aspcs are clearly superior, in particular for t3 with 2 and 5 continuous random variables

(Figure 3(a)). Note that this is the only plot where we cut the x axis at instance 20,

to keep the results readable. To better investigate the behavior of aspcs in this case,

we keep increasing the number of discrete facts until we get a memory error, while

the number of continuous variables is fixed to 2 and 5. Figure 1(b) shows the results:

with 2 continuous variables, we can solve up to instance 110, while with 5 continuous

variables, we can only solve up to 75. In general, the results of exact inference are in

accordance with the theoretical complexity results. However, as also empirically shown by

Azzolini and Riguzzi (2023a), knowledge compilation has a huge impact on the execution

times. Overall, as expected, PASTA is slower in all the tests, being based on (projected)

answer set enumeration. For all, both PASTA (exact algorithm) and aspcs stop for lack

of memory.

5.7 Approximate inference results

The goal of the experiments run with approximate algorithms is: (i) analyzing the impact

on the execution time of the number of samples taken, (ii) comparing the approach

based on sampling the original program against the one based on sampling the converted

program in terms of execution times, and (iii) assessing the memory requirements. Table 4

shows the averages on five runs of the execution time of the approximate algorithm

applied to both the discretized and original program with 102, 103, 104, 105, and 106

samples, for each of the five datasets. Standard deviations are listed in Table 5. For t2

and t3, we consider programs with the same number of continuous variables and discrete

probabilistic facts. In four of the five tests (all except t4), sampling the original program is

slower than sampling the converted program, sometimes by a significant amount. This is

probably due to the fact that sampling a continuous distribution is slower than sampling

a Boolean random variable. For example, in instance 100 of t3, sampling the original
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Table 4. Results for the approximate algorithms based on sampling. The columns contain,
from the left, the name of the dataset, the instance index, and the average time required to

take 102, 103, 104, 105, and 106 samples on the original and converted program. O.O.M. and
T.O. stand, respectively, for out of memory and timeout

Data. Inst. 102 s. O./C. 103 s. O./C. 104 s. O./C. 105 s. O./C. 106 s. O./C.

t1 50 2.81/2.21 12.46/2.07 116.07/10.19 1200.19/90.83 11998.92/906.13
t1 60 3.05/2.13 14.50/2.10 139.83/11.19 1417.36/103.63 14154.23/1059.09
t1 70 3.80/2.16 17.05/2.25 167.39/12.69 1645.97/117.31 16523.49/1222.05
t1 80 4.00/1.74 19.26/2.42 190.23/14.29 1859.69/135.09 18524.07/1375.32
t1 90 4.26/1.89 21.44/2.63 215.25/16.03 2060.15/152.52 20518.89/1558.51
t1 100 4.51/1.96 23.69/2.90 231.85/17.95 2254.84/170.81 22692.96/1751.96

t2 50 3.77/1.35 22.80/2.82 223.95/17.21 2299.33/163.13 22277.69/1654.94
t2 60 4.22/1.33 27.02/3.09 269.97/20.14 2752.39/194.99 26532.31/1986.42
t2 70 4.63/1.42 31.49/3.43 312.66/23.54 3134.76/226.24 T.O./2271.90
t2 80 4.65/1.6 36.00/3.88 363.20/27.02 3616.07/261.18 T.O./2646.70
t2 90 5.42/1.66 42.78/4.24 418.04/30.26 4006.67/293.14 T.O./2926.46
t2 100 5.77/2.18 46.35/4.63 457.80/34.05 4520.69/327.29 T.O./3286.04

t3 50 3.90/1.82 25.46/3.18 245.32/19.08 2439.00/176.84 21818.69/1808.43
t3 60 4.71/1.89 29.50/3.59 288.98/22.79 2817.13/215.89 26084.07/2176.02
t3 70 5.17/1.86 34.16/3.83 335.37/25.34 3247.42/241.67 T.O./2452.97
t3 80 5.51/2.03 38.71/4.36 382.96/29.40 3685.38/281.14 T.O./2823.65
t3 90 5.67/2.09 44.20/4.71 432.43/32.85 4123.31/318.48 T.O./3154.16
t3 100 6.15/2.15 48.83/5.17 476.51/36.47 4535.84/357.23 T.O./3542.78

t4 50 2.37/22.55 2.10/23.99 7.27/34.63 59.20/95.59 571.27/428.92
t4 60 2.42/43.08 2.29/44.18 7.81/61.99 62.36/178.80 602.12/842.64
t4 70 2.41/O.O.M. 2.35/O.O.M. 8.28/O.O.M. 66.26/O.O.M. 636.83/O.O.M.
t4 80 2.47/O.O.M. 2.61/O.O.M. 8.83/O.O.M. 69.69/O.O.M. 668.62/O.O.M.
t4 90 2.03/O.O.M. 2.89/O.O.M. 9.79/O.O.M. 75.85/O.O.M. 717.39/O.O.M.
t4 100 2.52/O.O.M. 3.09/O.O.M. 10.11/O.O.M. 77.70/O.O.M. 736.59/O.O.M.

t5 50 6.14/2.29 44.20/6.72 440.02/69.44 4433.25/1065.66 T.O./24376.32
t5 60 7.03/3.16 53.01/8.30 533.38/87.33 5437.58/1575.33 T.O./23889.43
t5 70 8.16/3.14 62.37/10.44 637.10/125.86 6497.07/1874.05 T.O./T.O.
t5 80 8.82/3.26 70.79/12.62 728.98/163.81 7610.59/2855.01 T.O./T.O.
t5 90 9.41/3.34 80.89/14.43 845.18/209.66 8931.12/3879.62 T.O./T.O.
t5 100 10.26/4.01 89.73/16.35 936.90/248.00 9984.17/4310.61 T.O./T.O.

program is over 12 times slower than sampling the converted program. However, the

discretization process increases the number of probabilistic facts and so the required

memory: for t4, from the instance 70, taking even 100 samples requires more than 8GB

of RAM. To better assess the memory requirements, we repeat the experiments with the

approximate algorithms with 6, 4, 2, and 1GB of maximum available memory. For all,

taking up to 105 samples in the original program is feasible also with only 1GB of memory.

The same considerations hold for sampling the converted program, except for t4. Table 6

shows the largest solvable instances together with the number of probabilistic facts, rules

(for the converted program), and samples for each instance: for example, with 1GB of
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Table 5. Standard deviations for the results listed in Table 4. A dash denotes that there are
no results for that particular instance due to either a memory error or a time limit

Data. Inst. 102 s. O./C. 103 s. O./C. 104 s. O./C. 105 s. O./C. 106 s. O./C.

t1 50 0.97/1.34 0.70/0.15 6.71/0.71 71.46/5.84 920.82/54.93
t1 60 0.99/1.19 0.76/0.11 9.10/0.65 95.47/5.71 1003.31/50.87
t1 70 1.29/1.17 0.67/0.12 10.55/0.73 86.36/7.61 1141.45/51.24
t1 80 1.24/0.92 1.01/0.10 9.52/0.65 71.22/7.98 1381.12/64.04
t1 90 1.24/1.01 1.29/0.11 10.65/0.71 56.47/7.00 1525.12/120.35
t1 100 1.20/0.96 1.37/0.24 12.62/0.92 59.29/10.79 1754.89/99.47

t2 50 0.92/0.23 0.68/0.22 11.56/0.51 150.47/3.92 438.66/39.72
t2 60 0.86/0.03 1.03/0.06 15.06/0.40 162.91/3.81 581.83/53.66
t2 70 0.93/0.11 0.86/0.10 20.00/0.44 158.68/7.14 -/68.62
t2 80 0.17/0.19 0.82/0.20 22.24/1.22 202.95/9.73 -/50.98
t2 90 0.47/0.19 3.66/0.30 30.78/1.43 218.51/12.05 -/53.71
t2 100 0.37/0.91 3.03/0.34 22.13/2.67 159.32/13.80 -/60.19

t3 50 0.07/0.11 0.85/0.11 5.92/0.59 75.95/7.63 324.79/56.21
t3 60 0.57/0.14 1.81/0.14 12.05/1.58 140.43/10.00 262.68/63.53
t3 70 0.54/0.20 2.09/0.24 15.22/1.75 162.67/12.74 -/88.86
t3 80 0.56/0.10 2.31/0.36 15.50/2.30 183.78/9.30 -/67.44
t3 90 0.20/0.13 1.43/0.34 22.31/2.25 173.10/15.10 -/100.41
t3 100 0.26/0.12 1.89/0.39 22.30/2.61 158.54/8.47 -/93.45

t4 50 1.22/0.31 0.15/1.52 0.27/3.66 2.78/6.86 6.35/13.43
t4 60 1.19/1.22 0.17/3.23 0.35/4.77 3.08/16.63 12.71/27.04
t4 70 1.21/- 0.15/- 0.35/- 4.22/- 18.99/-
t4 80 1.19/- 0.17/- 0.43/- 4.27/- 25.56/-
t4 90 0.93/- 0.15/- 0.44/- 3.42/- 27.86/-
t4 100 1.10/- 0.18/- 0.66/- 4.61/- 23.38/-

t5 50 0/0.92 1.92/0.51 17.83/8.27 122.23/208.32 -/3971.11
t5 60 0.93/1.56 2.01/0.66 22.59/10.41 177.61/238.23 -/7447.05
t5 70 1.10/1.46 2.46/0.93 20.09/14.83 158.03/400.35 -/-
t5 80 0.92/0.88 2.97/1.27 34.17/26.08 303.35/709.13 -/-
t5 90 0.82/0.94 2.15/1.37 37.42/28.92 442.68/684.92 -/-
t5 100 0.92/1.36 3.81/1.17 47.29/26.12 793.68/745.80 -/-

memory, it is possible to take only up to 104 samples in the instance of size 40. For this

dataset, the increasing number of between/3 predicates requires an increasing number

of rules and probabilistic facts to be included in the program during the conversion, to

properly handle all the intervals: the instance of size 70 has 142 probabilistic facts and

more than 30,000 rules, which make the generation of the answer sets very expensive and

sampling it with only 8GB of memory is not feasible.

6 Related Work

Probabilistic logic programs with discrete and continuous random variables have been the

subject of various works. Gutmann et al. (2011a) proposed Hybrid ProbLog, an exten-

sion of ProbLog (De Raedt et al. 2007) to support continuous distributions. There are
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Table 6. Largest solvable instances of t4 by sampling the
converted program when reducing the available memory. The
columns contain, from the left, the maximum amount of
memory, the largest solvable instance together with the

number of probabilistic facts (# p.f.) and rules (# rules)
obtained via the conversion, and the maximum number of
samples that can be taken (max. # samples). Note that we
increase the number of samples by starting from 102 and

iteratively multiplying the number by 10, up to 106, so in the
last column, we report a range: this means that we get a
memory error with the upper bound while we can take the
number of samples in the lower bound. Thus, the maximum

values of samples lie in the specified range

Memory Instance # p.f. # rules Max. # samples

6GB 60 122 22495 > 106

4GB 50 102 16151 [105, 106]
2GB 50 102 16151 [103, 104]
1GB 40 82 10554 [104, 105]

several differences with Hybrid ProbLog: first, Hybrid ProbLog focuses on PLP while

our approach on PASP. Thus, the syntax and semantics are different. For the syntax, in

PASP, we can use rich constructs such as aggregates that greatly increase the expressivity

of the programs. For the semantics, at high level, PLP requires that every world (i.e.,

combination of probabilistic facts) has exactly one model while PASP does not. Another

difference with Hybrid ProbLog is in the discretization process: Hybrid ProbLog dis-

cretizes the proofs of a program, while we directly discretize the program. Moreover,

their inference algorithm is based on the construction of a compact representation of

the program via BDDs, while we use both ASP solvers with projective solutions and

knowledge compilation targeting NNF.

Distributional Clauses (Gutmann et al. 2011b) and Extended PRISM (Islam et al.

2012) are two other proposals to handle both discrete and continuous random variables.

The semantics of the former is based on a stochastic extension of the immediate con-

sequence Tp operator, while the latter considers the least model semantics of constraint

logic programs (Jaffar and Maher 1994) and extends the PRISM framework (Sato 1995).

Michels et al. (2015) introduced Probabilistic Constraint Logic Programming whose

semantics is based on an extension of Sato’s DS (Sato 1995). Azzolini et al . (2021)

proposed a semantics for hybrid probabilistic logic programs that allows a denumerable

number of random variables. In general, all the previously discussed approaches only

support normal clauses, do not adopt some of the ASP constructs, such as aggregates

and constraints, and require that the worlds have a single model. Some languages allow

handling uncertainty in ASP, such as LPMLN (Lee and Wang 2016), P -log (Baral et al.

2009), PrASP (Nickles and Mileo 2015), and differentiable SAT/ASP (Nickles 2018) but

none of these consider continuous distributions. PASOCS (Tuckey et al. 2021) is a system

for performing inference in probabilistic answer set programs under the CS, but it does

not allow worlds without answer sets and continuous variables while plingo (Hahn et
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al. 2022) considers the LPMLN, P-log, and ProbLog semantics (the relationship among

these has been discussed in (Lee and Yang 2017)). The credal least undefined semantics

(Rocha and Gagliardi Cozman 2022) and the smProbLog semantics (Totis et al. 2023)

handle unsatisfiable worlds, but by considering three-valued semantics and do not allow

continuous random variables.

There is a large body of work on inference in Probabilistic Programming (PP) (Pfeffer

2016; Gehr et al. 2016; Tran et al. 2017; van de Meent et al. 2021) with both discrete and

continuous random variables, with several available tools (Tran et al. 2016; Bingham et

al. 2018; Phan et al. 2019). PLP and PASP adopt a declarative approach to describe a

domain, so they are particularly suitable for describing relational domains. Translating a

PLP/PASP into PP is possible but would result in a much longer and less understandable

program.

7 Conclusions

In this paper, we propose HPASP, an extension of PASP under the CS that allows both

discrete and continuous random variables. We restrict the types of possible numerical

constraints and, to perform exact inference, we convert the program containing both dis-

crete probabilistic facts and continuous random variables into a program containing only

discrete probabilistic facts, similarly to (Gutmann et al. 2011a). We leverage two existing

tools for exact inference, one based on projected answer set enumeration and one based

on knowledge compilation. We also consider approximate inference by sampling either the

discretized or the original program. We tested the four algorithms on different datasets.

The results show that the exact algorithm based on projected answer set enumeration is

feasible only for small instances while the one based on knowledge compilation can scale

to larger programs. Approximate algorithms can handle larger instances and sampling

the discretized program is often faster than sampling the original program. However, this

has a cost in terms of required memory, since the discretization process adds a consistent

number of rules and probabilistic facts. In the future, we plan to extend our framework to

also consider comparisons involving more than one continuous random variable and gen-

eral expressions, as well as considering lifted inference approaches (Azzolini and Riguzzi

2023b) and handle the inference problem with approximate answer set counting (Kabir

et al. 2022).
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