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Abstract

The objective of the current study was to evaluate the effects of breed and genomic inbreeding
on 305-day lactation yields of milk, fat and protein; and fertility traits of pasture-based dairy
cows in Argentina. The genomic inbreeding and heterozygosity of 890 first-lactation cows and
27 bulls were calculated through methods based on the genomic relationship matrix and run
of homozygosity using 44 174 single-nucleotide polymorphisms. Cows were classified into
four breed groups: Holstein, Holstein crossbred, Holstein–Jersey crossbred and Jersey cross-
bred. The effect of genomic inbreeding was not significant on production traits, but inbred
cows increased 3.0 days calving to conception interval (CCI) per 1% genomic inbreeding.
On average, purebred Holstein cows produced 1119 kg milk, 22 kg fat and 30 kg protein
more than Jersey crossbred cows. In the case of the fertility traits, Jersey crossbred cows
had 45 days shorter CCI than purebred Holstein cows. A possible reason for the non-signifi-
cant effects of genomic inbreeding of production and fertility traits is that these effects were
evaluated in a crossbred population in which rates of heterozygosity would operate to some
extent in the opposite direction to rates of genomic inbreeding.

Introduction

The dominant breed of dairy cattle in Argentina is Holstein (Gastaldi et al., 2020).
Traditionally, the cows have been produced using dairy sires from the USA of high-genetic
potential for milk production, which are suitable for indoor systems using total mixed rations
(Lazzarini et al., 2019). Contradictorily to the intensive indoor systems, in Argentina 149/155
of dairy farms are pastoral (Gastaldi et al., 2020). Feeding is based mainly on grazing alfalfa
(Medicago sativa L.) throughout the year, in combination with silage and concentrates
(Gastaldi et al., 2020). Some dairy farmers have used Jersey sires to incorporate Jersey ×
Holstein crossbred cows, which produce lower milk yields but higher proportions of fat and
protein. In 2021, approximately 3 197 025 of 3 475 028 semen doses from dairy bulls that
were marketed in Argentina were from Holstein, 0.05 from Jersey and the rest from other
dairy breeds such as Brown Swiss and Guernsey (Cámara Argentina de Biotecnología de la
Reproducción e Inseminación Artificial, 2021).

Inbreeding depression is the reduction of an individual’s fitness due to fixation of deleteri-
ous recessive genes (Falconer and Mackay, 1996). Progeny that results from mating of genet-
ically related animals results in high inbreeding coefficient. A inbreeding coefficient has been
originally defined as the probability that an individual inherits two identical alleles at the same
locus from the parents (Malécot, 1969) or as the correlation between two homologous alleles in
uniting gametes (Wright, 1922). Therefore, inbreeding could also be reflected as an increase in
autozygosity (i.e. homozygosity due to the inheritance of identical alleles by offspring) and a
loss of genetic variability (deficit in heterozygosity). Inbreeding coefficients can be calculated
through either ancestral pedigrees or genomic analysis. Parentage data can be used to construct
the relationship matrix (A) among the individuals represented in the pedigree file. This matrix
is symmetric, the elements of the diagonal represent the genetic relationship among the indi-
viduals of the pedigree and the diagonal elements represent the degree of inbreeding of each
animal in the pedigree, where the value is 1 plus the expected inbreeding coefficient (Falconer
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and Mackay, 1996). Analysis of inbreeding in large populations
poses difficulty due to the need for a simple and accurate, but
high-throughput method to calculate the inbreeding coefficient.
Such calculations of inbreeding predict only the expected propor-
tion of animal genome that is considered identical by descent
(Nietlisbach et al., 2017). Inaccurate estimates of inbreeding coef-
ficients can arise if pedigrees are small or incomplete, missing
parentage can underestimate actual rates of inbreeding
(Nietlisbach et al., 2017; Gutiérrez-Reinoso et al., 2022).

Currently, the availability of molecular markers distributed
throughout the whole genome enables the estimation of genome-
based inbreeding coefficients without the need to record extensive
genealogy or parental relationship among individuals (Leutenegger
et al., 2003). Therefore, genomic-based inbreeding coefficients
demand less time and effort than pedigree-based measures.
Besides, they can be more accurate due to their capacity to account
for variation in the random process of meiotic recombination
(Mendelian sampling). The simplest estimations of this realized
inbreeding coefficient rely on single-nucleotide polymorphism
(SNP) analysis of different genomic relationship matrix (GRM)
formulations (equivalent to the F calculation when the A matrix
is used) (VanRaden, 2008) or analysing multi-SNP consecutive
DNA stretches, known as run of homozygosity (ROH) (Keller
et al., 2011; Purfield et al., 2012). Depending on the GRMs utilized,
the single-SNP inbreeding coefficients could describe (1) deviations
from Hardy–Weinberg equilibrium (HWE) (FHOM), (2) correla-
tions between uniting gametes (FUNI) and (3) the variance of addi-
tive genetic values (FGRM) (Villanueva et al., 2021). On the other
hand, the ROH-based inbreeding coefficient, calculated as the
sum of the ROHs identified in an individual divided by the total
genome length, ideally represents the proportion of the individual’s
autosomal genome that is autozygous (Howrigan et al., 2011).

Similarly, the rate of heterozygosity of an individual can be cal-
culated from genotypes and requires no knowledge of ancestry in
contrast to pedigree inbreeding (Iversen et al., 2019).

The effect of inbreeding on production and reproduction traits
has been well documented in Holstein–Friesian dairy cattle,
depicting that as inbreeding increases milk production, fertility
is reduced (Cassell et al., 2003; McParland et al., 2007).
Although a similar relationship has been reported in the Jersey
breed, the effect of inbreeding has a greater influence on milk
yield in the Holstein–Friesian breed (Maiwashe et al., 2008;
Pryce et al., 2014). Other studies have reported that fat and pro-
tein yield follow the same trend as milk yield, but inbreeding has
substantially less influence on change of milk yield, resulting in
small regression coefficients (Dezetter et al., 2015; Doekes et al.,
2019). Also, increases in inbreeding coefficients have been asso-
ciated with larger concentrations of somatic cell counts (SCCs)
in milk, with greater incidence seen in older animals
(McParland et al., 2007). Contrary to these findings, some studies
have found no significant effect of inbreeding on SCCs (Rokouei
et al., 2010; Dezetter et al., 2015).

Crossbreeding is the mating of individuals from different lines,
breeds or populations (Lopez-Villalobos et al., 2000). As a breed-
ing strategy, crossbreeding offers the removal of the negative
effects associated with inbreeding depression in particular traits
associated with fitness and survival (Falconer and Mackay,
1996). Crossbreeding also offers a potentially attractive avenue
for farmers to improve economic efficiency by using breed com-
plementary and exploiting heterosis for milk production, fertility
and survival (Buckley et al., 2014). The heterozygosity rate has
been indicated as a proxy for heterosis (Iversen et al., 2019); in

F1 crosses all animals are expected to be heterozygotes (maximum
heterozygosity rate), but in backcross and subsequent generations
a reduction in heterozygotes frequency would be observed,
altogether a heterosis decline. Therefore, given the interplay
between crossbreeding, inbreeding and heterozygosity, quantifica-
tion of these values in crossbreed cattle would be relevant for
management decisions in dairy cattle.

Comparisons between Jersey, Holstein and Jersey × Holstein
crossbred cows for production and reproduction traits in pasture-
based production systems of Argentina have been reported in the
literature (Baudracco et al., 2011; Mancuso and Marini, 2012; Biga
et al., 2022). To our knowledge, there are no studies in the litera-
ture that report the rate of genomic inbreeding and heterozygosity
calculated using genetic markers in a crossbred population and
the effects of genomic inbreeding in dairy cattle in Argentina.
The objective of the current research was to evaluate breed and
genomic inbreeding on lactation milk yields, fat and protein con-
tent and fertility in pasture-based dairy cows from Argentina.

Materials and methods

Data

Study population
Records of 20 005 Holstein and Holstein × Jersey cows born
between 1994 and 2010 were obtained from 37 dairy farms.
Dates of birth, services, calving, dairy controls, drying-off, trans-
fers and rejection added up to a total of 755 141 records. The cows
(4804/20 005 Holstein and 5201/20 005 Holstein × Jersey) belong
to 30 half-sisters families. In particular, the crossbred groups con-
sidered in this study were the following: H: purebred cows with
1.00 Holstein (639); HX: backcross to Holstein with 0.75
Holstein and 0.25 Jersey (64); HJ: first crossbred Holstein–
Jersey with 0.50 Holstein and 0.50 Jersey (157); JX: backcross to
Jersey with 0.25 Holstein and 0.75 Jersey (30).

The dairy farms are located in the central dairy basin of
Argentina (central-eastern region). On each farm, two daily milk-
ings were performed within a semi-stabled feeding system with
cows outside grazing alfalfa during the hot summer months
and oats or barley in the winter. The diet was systematically sup-
plemented with maize silage, soybean meal and concentrates ela-
borated in house containing 0.16–0.18 of crude protein.

The cow’s reproductive management system involves continu-
ous calving, where calving periods are uniformly distributed
throughout the year.

Genotyping and quality control
A total of 970 cows (718 purebred Holstein and 252 crossbred
Holstein × Jersey) and 29 bulls (24 Holstein and 5 Jersey) were cho-
sen for genotyping as described elsewhere (Carignano et al., 2018).
Briefly, quality control of the genotypic data was carried out using a
set of tools and routines provided by PLINK v1.9 (Purcell et al.,
2007). Individuals with a genotype call rate (CRIND) <90% were
excluded from further analysis. SNPs with a call rate (CRSNPs)
<90%, a deviation from HWE P < 1.10−8 and minor allele fre-
quency <0.01 were removed from the study. After the quality con-
trol, the data set for genomic inbreeding calculations comprised of
44 174 SNPs and 917 individuals (890 cows and 27 bulls).

Genomic inbreeding and heterozygosity coefficients
Genomic-based individual’s inbreeding coefficients (F) were cal-
culated using different approaches as follows:
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FROH: The inbreeding coefficient FROH for each cow was calcu-
lated using the - -homozyg routine implemented in PLINK version
1.9 (Purcell et al., 2007). The runs of homozygous genotypes for
each individual were defined using sliding windows of 50 SNPs
across the genome, requiring 25 homozygous SNPs spanning a
≥1000 kb distance. A sliding window hit (‘homozygous’) contained
at most one heterozygous SNP and none missing calls. An SNP was
included in an ROH segment if the hit rate (proportion of ‘homo-
zygous’ windows that overlap that position) was >0.05. The final
ROH segments were constrained to a maximum interval between
two consecutive SNPs of 500 kb, allowing one heterozygous geno-
type and a minimal density of 1 SNP/100 kb.

The coefficient FROH was defined as the proportion of the
autosomal genome in runs of homozygosity:

FROH = LROH
Laut

where LROH is the total length of all ROH segments identified in
an individual and Laut is the length of the autosomal genome cov-
ered by SNPs (i.e. between the first SNP and the last SNP per
chromosome for all autosomal chromosomes).

FGRM: The inbreeding coefficient FGRM for each cow was calcu-
lated using the diagonal elements of the GRM according to
VanRaden (2008):

FGRM = 1
N

∑N

i=1

(Xi − 2Pi)
2

hi
− 1

where Xi is the genotype coded as the number of reference allele
copies for the ith SNP; Pi is the observed frequency of this allele
(i.e. the allele whose homozygous genotype was coded as ‘0’), N is
the total number of markers and hi = 2Pi(1− Pi) is the expected
heterozygosity.

FHOM: This inbreeding coefficient was based on the homozy-
gous excess and is defined as

FHOM = O(hom)− E(hom)
N − E(hom)

= 1− 1
N

∑N

i=1

Xi(2− Xi)
hi

where O(hom) is the observed number of homozygous markers of
the individual and E(hom) is the expected number of homozygous
markers under the HWE calculated from the allele frequencies
estimated on the sample. The expected number of homozygotes
is calculated assuming HWE as 1− 2Pi(1− Pi).

FUNI: The inbreeding coefficient FUNI is based on the correl-
ation between uniting gametes following the method proposed
by Ritland (1996):

FUNI = 1
N

∑N

i=1

X2
i − (1+ 2Pi)Xi + 2P2

i

hi

where 2Pi(1 − Pi) = 1 if Xi is heterozygous and = 0 if it is
homozygous.

The inbreeding coefficients FGRM, FHOM and FUNI were calcu-
lated using the –ibc routine implemented in GCTA v1.24 software
(Yang et al., 2011).

Heterozygosity was measured as the proportion of heterozy-
gous marker genotypes for each individual as (N −O)/N, where

N is the number of non-missing genotypes and O is the number
of homozygous genotypes for a given animal (Purcell et al., 2007).

Phenotypic traits
The initial production data set included 316 855 monthly herd tests
from 48 367 lactations belonging to 20 005 cows. The lactation
curves for daily milk, fat and protein production for each cow–lac-
tation were modelled using a sixth-order Legendre polynomial.
Predicted daily yields were then used to calculate 305-day lactation
yields of milk (MY305), fat yield (FY305) and protein yield
(PY305), for each lactation of each cow (Beribe, 2020).

Two fertility traits were calculated, calving to first service inter-
val (CFSI) and calving to conception interval (CCI). CFSI was cal-
culated as the number of days between calving date and the first
service date, and CCI was calculated as the number of days
between calving date and conception date.

Finally, for this study the values of MY305, FY305, PY305, CFSI
and CCI were merged with the 890 first-lactation cows that had
genotypic data. Not all cows that were genotyped and passed qual-
ity control for genetic markers had the full set of phenotypic traits.

Statistical analysis

The effects of breed and inbreeding were estimated using the fol-
lowing mixed model:

yijklm = m+ ai + bj + gk + dxl + tzm + 1ijklm

where:
yijklm is any of the traits evaluated: MY305, FY305, PY305,

CFSI and CCI.
αi is the fixed effect of breed group with four classes (H: pro-

portion of Holstein = 1, HX: proportion of Holstein = 0.75, HJ:
proportion of Holstein = 0.5 and JX: proportion of Holstein =
0.25).

βj is the fixed effect of calving season with five classes:
November–January, February–April, May–June, July–August
and September–October.

γk is the random effect of the contemporary group, defined as
the group of cows that started lactation in the same herd and year.

δ is the regression coefficient of the dependent trait on age at
calving xl.

τ is the regression coefficient of the dependent trait on the gen-
omic inbreeding coefficients zm (expressed as a percentage).

1ijklm is the random residual associated with observation yijklm.
Calving season was defined based on monthly average tem-

peratures and ensuring a representative number of records in
each class (>19 records).

Least-squares means and standard errors were obtained for
each breed group and calving season and used for multiple
mean comparisons using Fisher least significant difference test.

Analyses were performed using the MIXED procedure of SAS
v9.4 (SAS® Institute Inc., 2013, Cary, NC, USA).

Comparisons of mean rates of genomic inbreeding and hetero-
zygosity among the different breed groups were performed using
individual t-tests.

Results

Descriptive statistics for the production and fertility traits and
measures of genomic inbreeding coefficients are presented in
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Table 1. The fertility traits presented greater variability (higher
coefficient of variation [CV]) than production traits. For example,
CCI was in the range of 18–673 days (CV = 64%), whereas FY305
was in the range of 156–281 kg (CV = 12%).

The distributional properties of FGRM, FHOM and FUNI coeffi-
cients were similar; median at −2.69 (FGRM), −1.31 (FHOM) and
−2.26 (FUNI) with (min to max) values at (−13.90 to 46.11),
(−18.72 to 16.04) and (−11.38 to 24.68), respectively. The range
of the FROH values was 0.00–19.00, with positive values for the
mean and median. The range of heterozygosity was from 0.29
to 0.39 with median and mean values of 0.35 and low standard
deviation (Table 1).

Scatter plots anddistributions (histograms) of eachof the genomic
inbreeding coefficients andpairwisePearson’s correlationcoefficients
are presented in Fig. 1. All correlation coefficients were statistically
significant (P < 0.05). The correlation between FROH and FUNI was
strong positive (0.70), but the correlation between FROH and FHOM

was stronger (0.86). No correlation between FROH and FGRM
(−0.08) was observed. Among the inbreeding coefficients derived
from the genomic matrix, a weak negative correlation was found
between FGRM and FHOM (−0.36). The correlations between FGRM
and FUNI, and between FHOM and FUNI were moderately positive.

Mixed models were used to study the effects of breed and gen-
omic inbreeding on production and fertility traits. For milk pro-
duction traits, F-statistics indicated that breed and calving age
explained the majority of the variation (Table 2). Besides, calving
season had a significant effect on CFSI. In the case of F coeffi-
cients, only FROH had a significant effect for CCI (P = 0.019).
The rest of the genomic F coefficients evaluated did not influence
MY305, FY305, PY305 or CFSI in the studied population (data
not shown). A simple linear regression analysis of CCI on FROH
showed that CCI increased by 4.87 days per 1% increase of
FROH (P < 0.0001; Fig. 2(a)), but when corrected (full model) by
breed, season calving and age at calving the partial regression
coefficient was 3.0 days per 1% inbreeding. Similarly, regression
analysis of MY305 on FGRM showed that MY305 reduced by
22.7 kg per 1% of FGRM (Fig. 2(b)). However, when the effect of
FGRM was evaluated considering the full model the partial regres-
sion coefficient was not statistically significant.

Effects of genomic FGRM, FHOM and FUNI on the productive
and fertility traits were not significant (data not shown).

The effect of breed group on productivity and fertility was
evaluated through least-squares analysis (Table 3). In general,
milk yield increased as the proportion of Holstein breed increased
in the population. The differences between first-lactation pure-
bred Holstein and JX crossbred cows were 1119 kg milk, 22 kg
fat and 30 kg protein (P < 0.001). The breed groups’ mean com-
parisons for CFSI were not significantly different (Table 2).
However, a trend (P = 0.099) was observed to reduce CCI as the
proportion of Jersey increased; JX cows had 45 days shorter
CCI than H purebred.

The relationship between heterozygosity and FROH across the
different breed groups is presented in Fig. 3. First crossbred HJ
cows which are close to 0.50 H and 0.50 Jersey had the highest
heterozygosity and the lowest FROH coefficients, whereas purebred
H cows tended to have the lowest values of heterozygosity and
highest values of FROH coefficients.

In accordance with Fig. 3, crossbred HJ cows had the lowest
(P < 0.05) rate of inbreeding, measured by the FROH coefficient,
and the highest (P < 0.05) rate of heterozygosity.

Discussion

The current study investigated the effect of breed and genomic
inbreeding coefficients on production and fertility traits in
pasture-based dairy cows from commercial farms of Argentina.
The average rate of milk production found in the current study
(5687 kg milk, 213 kg fat and 197 kg protein per cow) was similar
to that reported for the Holstein breed in Argentina (5760 kg
milk, 207 kg fat and 193 kg protein per cow, respectively) (FCA,
2016). Subtle differences in cows’ productivity between the cur-
rent research and national herd could be explained by variation
in food supplementation intensity and farm management condi-
tions as shown in Lazzarini et al. (2019).

The mean CFSI was 87.5 ± 43.2 days, which was similar to
values reported in USA for Holstein cows (81 ± 4 days; Mullen
et al., 2015) and UK Holstein and Jersey cows (71 ± 1.9 days;
Coffey et al., 2016). The average CCI (155 ± 99.3 days) was in

Table 1. Descriptive statistics for production and fertility traits and different measures of genomic inbreeding of pasture-based dairy cows from commercial herds of
Argentina

Traita N Mean Median SD CV Min Max

MY305 (kg) 833 5687 5631 84.9 15 3295 8375

FY305 (kg) 816 213 213 26.3 12 145 308

PY305 (kg) 816 197 195 26.8 14 156 281

CFSI (days) 890 87.5 75.5 43.2 49 15 297

CCI (days) 890 155.0 126.0 99.3 64 18 673

FGRM 890 −1.95 −2.69 6.2 −13.9 46.1

FHOM 890 −2.06 −1.31 6.3 −18.7 16.0

FUNI 890 −2.01 −2.26 3.5 −11.4 24.7

FROH 890 5.22 5.39 3.5 0.00 19.0

Heterozygosity 890 0.35 0.35 0.02 0.29 0.39

N, number of cows; SD, standard deviation; CV, coefficient of variation (%); Min, minimum value; Max, maximum value.
aMY305, 305-day milk production; FY305, 305-day fat production; PY305, 305-day protein production; CFSI, calving to first service interval; CCI, calving to conception interval; FROH, coefficient
of genomic inbreeding calculated based on proportion of the autosomal genome in runs of homozygosity, FGRM, coefficient of genomic inbreeding obtained from the diagonal elements of
the genomic relationship matrix, FHOM, coefficient of genomic inbreeding calculated based in the homozygous excess and FUNI, coefficient of genomic inbreeding calculated based on the
correlation between uniting gametes. Heterozygosity was calculated as the proportion of heterozygous marker genotypes for each individual.
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line with those reported in the USA (115–177 days) and
Argentina (92–157 days) (Dutour and Melucci, 2011). However,
much shorter CCI values have been reported in Canada (102–
108 days), New Zealand (90–101 days) and UK (100–115 days)
(reviewed by Dutour and Melucci, 2011). The differences between
our results and other studies are explained by the differences in
genetic, management and feeding programmes.

Despite the coefficient of inbreeding being an important vari-
able for breeding mating management in dairy herds, aiming to
reduce inbreeding depression, there is currently no consensus
on which genomic inbreeding coefficient estimator is appropriate
(Dadousis et al., 2022). Furthermore, the evaluation of genomic
inbreeding coefficients in crossbred cattle populations has been
scarcely reported. In the current study, the range of genomic
inbreeding coefficient values for FGRM, FHOM and FUNI were (as
percentage) [−13.90 to 46.11], [−18.72 to 16.04] and [−11.38 to
24.68], respectively. These values did not meet Wright’s original
definitions of inbreeding, since these estimates of genomic

inbreeding are outside of the ranges allowed by probabilities (0–
100%). Alternatively, these estimators can be interpreted as mea-
sures of genotypic variability (heterozygosity) in the current
population compared to a base population (Villanueva et al.,
2021). However, it is important to note that the allelic frequencies
in the base population are often unknown and must be estimated
from the current population assuming HWE (Villanueva et al.,
2021; Dadousis et al., 2022). In this regard, in a study by
Villanueva et al. (2021) FGRM, FUNI and FHOM were analysed
through simulations using different scenarios of allelic frequencies
in the base and current populations. They described that FGRM
and FUNI could indicate variability increasing (genomic inbreed-
ing <0) in the current population when in fact it has decreased
(genomic inbreeding >0), or vice-versa. Also, FGRM and FUNI
could indicate that more variability than present in the base popu-
lation has been lost (genomic inbreeding >100%), which makes
no sense. On the other hand, by definition, FROH has only positive
values, ranging from 0 to 19% in the current research. Among

Figure 1. Pearson correlations and P-values (within brackets) (above diagonal), scatter plots (below diagonal) between each pair of the four genomic inbreeding
estimators and densities (diagonal) of the inbreeding estimators of dairy cows in commercial herds of Argentina. 1FROH, coefficient of genomic inbreeding calcu-
lated based on proportion of the autosomal genome in runs of homozygosity; 2FGRM, coefficient of genomic inbreeding obtained from the diagonal elements of the
genomic relationship matrix; 3FHOM, coefficient of genomic inbreeding calculated based in the homozygous excess; 4FUNI, coefficient of genomic inbreeding calcu-
lated based on the correlation between uniting gametes.
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several alternative estimates of genomic inbreeding coefficients, it
is accepted that FROH values are more accurate and/or comparable
to classical inbreeding coefficient based on pedigree information
to determine inbreeding in several livestock species and humans,
as they reflect the shared ancestry of genomic haplotypes (Curik
et al., 2014; Purfield et al., 2017; Yengo et al., 2017; Yoshida
et al., 2020).

Overall, based on the FROH, the rate of inbreeding present in
this sample of purebred and crossbred cows is similar to the
rates of inbreeding reported in other studies; 1.93–3.05% in
Irish Holstein–Friesian (McParland et al., 2007), 3.6% in US
Holstein (Cassell et al., 2003) and 5.00 in French Holstein
(Dezetter et al., 2015).

In our study the effects of inbreeding and crossbreeding on
milk production and fertility traits were evaluated using a single
model. A decrease in milk, fat and protein yields with a decreasing
breed proportion of Holstein is in line with previous research in
New Zealand (Lembeye et al., 2016), Ireland (Prendiville et al.,
2011) and Argentina (Baudracco et al., 2011; Mancuso and
Marini, 2012; Biga et al., 2022). The productive performance of
the HJ crossbred cows was lower than the productive performance

of the purebred Holstein and higher than the JX crossbred cows.
Because there were not purebred Jersey cows it was not possible to
estimate heterosis effects. Crossbreeding systems have been
adopted widely in the New Zealand dairy industry because of
the favourable heterosis for milk production and fertility resulting
in improved farm profitability (Lopez-Villalobos et al., 2000). All
crossbred cows in the current study tended to have shorter CFSI
and CCI than purebred Holstein but differences were not signifi-
cant. These results can be used for modelling studies to evaluate
the effects of these fertility rates on farm profitability under
pasture-based conditions of Argentina.

The effects of inbreeding, evaluated as the regression coeffi-
cient of the milk production and fertility traits on the estimators
of genomic inbreeding (FGRM, FHOM and FUNI) considered in the
current research were not significant. These results are in dis-
agreement with previous reports by Cassell et al. (2003) in US
Holstein cows and McParland et al. (2007) in Irish dairy cattle.
The only trait that was affected by inbreeding, considering the
FROH estimator, was CCI (P < 0.05), which agrees with the effect
of inbreeding on the lengthening of the calving interval by up
to 0.31 days per 1% increase in inbreeding (Fuerst and Sölkner,

Table 2. F-values and P-values (within brackets) for factors affecting production and fertility traits of pasture-based dairy cows from commercial herds of Argentina

Traita

Effect

Breed Calving season Age at calving FROH

MY305 22.52 (<0.001) 0.82 (0.485) 16.63 (<0.001) 0.62 (0.430)

FY305 9.01 (<0.001) 0.84 (0.503) 12.20 (<0.001) 0.05 (0.821)

PY305 14.53 (<0.001) 1.03 (0.391) 14.86 (<0.001) 0.58 (0.447)

CFSI 1.37 (0.252) 2.52 (0.040) 2.68 (0.102) 1.90 (0.168)

CCI 2.10 (0.099) 2.07 (0.083) 0.24 (0.622) 5.44 (0.019)

FROH, coefficient of genomic inbreeding calculated based on runs of homozygosity.
aMY305, 305-day milk production; FY305, 305-day fat production; PY305, 305-day protein production; CFSI, Calving to first service interval; CCI, calving to conception interval.

Figure 2. Pearson correlations and P-values (within brackets) (above diagonal), scatter plots (below diagonal) between each pair of the four genomic inbreeding
estimators and densities (diagonal) of the inbreeding estimators of dairy cows in commercial herds of Argentina. 1FROH, coefficient of genomic inbreeding calcu-
lated based on proportion of the autosomal genome in runs of homozygosity; 2FGRM, coefficient of genomic inbreeding obtained from the diagonal elements of the
genomic relationship matrix; 3FHOM, coefficient of genomic inbreeding calculated based in the homozygous excess; 4FUNI, coefficient of genomic inbreeding calcu-
lated based on the correlation between uniting gametes.
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1994; Smith et al., 1998). In this study, the Holstein sires were
imported from the US Holstein population using frozen semen,
which is a common practice to produce herd replacements.
The apparent constriction of no significant effect of inbreeding
on milk and fertility traits in this study compared with the signifi-
cant effects reported by Cassell et al. (2003) in US Holstein cows
and McParland et al. (2007) in Irish Holstein–Friesian cows can
be explained considering that in this study we evaluated the effect
of inbreeding using a crossbreed population.

The apparent no effects of inbreeding on MY305, FY305,
PY305 and CFSI are likely attributed to the fact that the effect
of genomic inbreeding was evaluated across breed groups.
Crossbreeding and inbreeding have opposite effects (Falconer
and Mackay, 1996); inbreeding is the mating of animals that are

more closely related than the average in a population increasing
homozygosity, which increases the frequency of unfavourable
genotypes, and crossbreeding is the mating of animals that are
less related than the average in a population increasing heterozy-
gosity, which allows the expression of heterosis (interactions
between alleles in the same locus). Table 3 shows that the HJ
crossbred cows, which have the maximum rate of heterozygosis
(0.38) in fact, had the lowest mean rate of inbreeding (0.02%)
measured according to the FROH formula. Furthermore, FROH
would credibly measure autozygosity (homozygosity genomic
segments produced by identity by descent) and is nowadays con-
sidered the most consistent coefficient and the one that best cap-
tures inbreeding depression in livestock (Keller et al., 2011;
Peripolli et al., 2017; Caballero et al., 2020, 2022; Lozada-Soto

Table 3. Least-squares means and standard errors for production and fertility traits, and means and standard errors of inbreeding coefficients of purebred Holstein
and crossbred Holstein × Jersey cows from pasture-based commercial herds of Argentina

Traita

Breedb

H
639

HX
64

HJ
157

JX
30 P-valuec

MY305 (kg) 5932 ± 67.0 5566 ± 122.0 5125 ± 117.0 4813 ± 159.0 <0.001

FY305 (kg) 219 ± 2.2 215 ± 4.1 203 ± 3.9 197 ± 5.3 <0.001

PY305 (kg) 205 ± 2.3 195 ± 4.1 182 ± 3.9 175 ± 5.3 <0.001

CFSI (days) 90 ± 3.0 77 ± 6.5 81 ± 5.9 81 ± 8.9 0.252

CCI (days) 160 ± 6.3 151 ± 14.0 140 ± 12.2 115 ± 19.4 0.099

FROH 6.6 ± 0.11 3.7 ± 0.18 0.020 ± 0.0004 5.2 ± 0.76

FGRM −3.4 ± 0.16 −0.2 ± 0.51 −0.9 ± 0.35 21 ± 1.8

FHOM 0.8 ± 0.17 −6.7 ± 0.38 −11.2 ± 0.18 −6 ± 1.2

FUNI −1.3 ± 0.09 −3.5 ± 0.19 −6.0 ± 0.14 7 ± 1.4

Heterozygosity 0.35 ± 0.0004 0.36 ± 0.0004 0.38 ± 0.0003 0.34 ± 0.0004

aMY305, 305-day milk production; FY305, 305-day fat production; PY305, 305-day protein production; CFSI, calving to first service interval; CCI, calving to conception interval. FROH, mean of
genomic inbreeding coefficient calculated based on proportion of the autosomal genome in runs of homozygosity. Heterozygosity was calculated as the proportion of heterozygous marker
genotypes for each individual.
bH, purebred cows with 1.00 Holstein; HX, crossbred Holstein with 0.75 Holstein and 0.25 Jersey; HJ, crossbred Holstein–Jersey with 0.50 Holstein and 0.50 Jersey; JX, crossbred Jersey with
0.25 Holstein and 0.75 Jersey.
cP-value for breed group effect.

Figure 3. Relationship between heterozygosity and FROH in purebred Holstein and crossbred Holstein × Jersey cows from pasture-based commercial herds of
Argentina. H, purebred cows with 1.00 Holstein; HX, crossbred Holstein with 0.75 Holstein and 0.25 Jersey; HJ, crossbred Holstein–Jersey with 0.50 Holstein
and 0.50 Jersey; JX, crossbred Jersey with 0.25 Holstein and 0.75 Jersey. 1Heterozygosity was calculated as the proportion of heterozygous marker genotypes
for each individual. 2FROH, coefficient of genomic inbreeding calculated based on proportion of the autosomal genome in runs of homozygosity.
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et al., 2022). Based on the available information so far, FROH
shows the highest correlation with the classical F pedigree-based
(Purfield et al., 2012, 2017; Ferenčaković et al., 2013; Marras
et al., 2015; Caballero et al., 2022; Dadousis et al., 2022).

Other studies have reported no significant effects of inbreeding
on production and fertility traits (Hodges et al., 1979) using a
small sample of cows, but concordantly with the results obtained
in the current study. In a much larger study, Hofmannová et al.
(2019) conclude that inbreeding has a negligible influence on
the breeding values for conception.

This study reports significant effects of breed on milk produc-
tion and fertility using data from a large commercial herd. These
results can be used for simulation studies that assist the design of
crossbreeding programmes (Lopez-Villalobos et al., 2000; Clasen
et al., 2020) that increases farm profitability. This study also reports
rates of genomic inbreeding and heterozygosity calculated using
genetic markers. It was found that, in general, the effects of gen-
omic inbreeding on milk production and fertility traits were not
significant, except on the CCI. A possible reason for these non-
significant effects is that these effects were evaluated in a crossbred
population in which rates of heterozygosity would operate to some
extent in the opposite direction to rates of genomic inbreeding.
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