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Abstract
Consider the following classes of pairs consisting of a group and a finite collection of subgroups:

• C = {(G, H) |H is hyperbolically embedded in G}
• D= {(G, H) | the relative Dehn function of (G, H) is well-defined} .

Let G be a group that splits as a finite graph of groups such that each vertex group Gv is assigned a finite collection
of subgroups Hv, and each edge group Ge is conjugate to a subgroup of some H ∈Hv if e is adjacent to v. Then
there is a finite collection of subgroups H of G such that

1. If each (Gv, Hv) is in C, then (G, H) is in C.
2. If each (Gv, Hv) is in D, then (G, H) is in D.
3. For any vertex v and for any g ∈Gv, the element g is conjugate to an element in some Q ∈Hv if and only if g

is conjugate to an element in some H ∈H.

That edge groups are not assumed to be finitely generated and that they do not necessarily belong to a peripheral
collection of subgroups of an adjacent vertex are the main differences between this work and previous results in
the literature. The method of proof provides lower and upper bounds of the relative Dehn functions in terms of
the relative Dehn functions of the vertex groups. These bounds generalize and improve analogous results in the
literature.

1. Introduction

Consider the following classes of pairs consisting of a group and a finite collection of subgroups:

• C = {(G, H) |H is hyperbolically embedded in G}
• D= {(G, H) | the relative Dehn function of (G, H) is well-defined} .

Theorem 1.1. Let G be a group that splits as a finite graph of groups such that each vertex group Gv

is assigned a finite collection of subgroups Hv, and each edge group Ge is conjugate to a subgroup of
some H ∈Hv if e is adjacent to v. Then there is a finite collection of subgroups H of G such that

1. If each (Gv, Hv) is in C, then (G, H) is in C.
2. If each (Gv, Hv) is in D, then (G, H) is in D.
3. For any vertex v and for any g ∈Gv, the element g is conjugate in Gv to an element of some

Q ∈Hv if and only if g is conjugate in G to an element of some H ∈H.
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The theorem is trivial without the third item in the conclusion; indeed, the pair (G, {G}) belongs to
both C and D. In comparison with previous results in the literature, our main contribution is that our
combination results do not assume that edge groups are finitely generated or contained in Hv.

The notion of a hyperbolically embedded collection of subgroups was introduced by Dahmani,
Guirardel, and Osin [9]. A pair (G, H) in C is called a hyperbolically embedded pair, and we write
H ↪→h G. Our combination results for hyperbolically embedded pairs (G, H) generalize analogous
results for relatively hyperbolic pairs in [1, 7, 8, 16, 17] and for hyperbolically embedded pairs [9, 14].

The notions of finite relative presentation and relative Dehn function�G,H of a group G with respect
to a collection of subgroups H were introduced by Osin [18] generalizing the notions of finite presen-
tation and Dehn function of a group. A pair (G, H) is called finitely presented if G is finitely presented
relative to H, and �G,H is called the Dehn function of the pair (G, H). While a finitely presented group
has a well-defined Dehn function; in contrast, the Dehn function of a finitely presented pair (G, H) is
not always well defined, for a characterization see [12, Thm.E(2)]. Our result generalizes combination
results for pairs (G, H) with well-defined Dehn function by Osin [17, Thms. 1.2 and 1.3].

We prove Theorem 1.1 for the case of graphs of groups with a single edge, since then the general
case follows directly by induction on the number of edges of the graph. This particular case splits into
three subcases corresponding to the three results stated below. The proofs of these subcases use char-
acterizations of pairs (G, H) being hyperbolically embedded [15, Thm. 5.9] and having a well defined
Dehn function [12, Thm. 4.7] in terms of existence of G-graphs with certain properties that relate to
Bowditch’s fineness [5]. These characterizations are discussed in Section 2. The proof of Theorem 1.1
for the case of a graph of groups with a single edge entails the construction of graphs satisfying the con-
ditions of those characterizations for the fundamental group of the graph of groups. We use the existing
graphs for the vertex groups as building blocks.

Our method of proof provides lower and upper bounds for the relative Dehn function of the funda-
mental group of the graph of groups in the terms of the relative Dehn functions of the vertex groups;
see Section 6. Specifically, Theorem 1.6 below generalizes results of Brick [6] on bounds for the Dehn
functions of free products (see the improvement by Guba and Sapir [11]) and improve the bounds found
by Osin for relative Dehn functions in [18, Thms 1.2 and 1.3].

Our main result reduces to the following statements.

Theorem 1.2 (Amalgamated Product). For i ∈ {1, 2}, let (Gi, Hi ∪ {Ki}) be a pair and ∂i : C→Ki a
group monomorphism. Let G1 ∗C G2 denote the amalgamated product determined by G1

∂1←−C
∂2−→G2,

and let H=H1 ∪H2. Then:

1. If Hi ∪ {Ki} ↪→h Gi for each i, then H ∪ {〈K1, K2〉} ↪→h G1 ∗C G2.
2. If (Gi, Hi ∪ {Ki}) ∈D for each i, then (G1 ∗C G2, H ∪ {〈K1, K2〉}) ∈D.
3. For any g ∈Gi, the element g is conjugate in Gi to an element of some Q ∈Hi ∪ {Ki} if and only

if g is conjugate in G to an element of some H ∈H ∪ {〈K1, K2〉}.
In the following statements, for a subgroup K of a group G and an element g ∈G, the conjugate

subgroup gKg−1 is denoted by Kg.

Theorem 1.3 (HNN-extension I). Let (G, H ∪ {K, L}) be a pair with K 
= L, C a subgroup of K, and
ϕ : C→ L a group monomorphism. Let G∗ϕ denote the HNN-extension 〈G, t | tct−1 = ϕ(c) for all c ∈C〉.
Then:

1. If H ∪ {K, L} ↪→h G then H ∪ {〈Kt, L〉} ↪→h G∗ϕ .
2. If (G, H ∪ {K, L}) ∈D, then (G∗ϕ , H ∪ {〈Kt, L〉}) ∈D.
3. For any g ∈G, the element g is conjugate in G to an element of some Q ∈H ∪ {K, L} if and

only if g is conjugate in G∗ϕ to an element of some H ∈H ∪ {〈Kt, L〉}.
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Note that the third items of Theorems 1.2 and 1.3 follow directly from standard arguments in
combinatorial group theory. This article focuses on proving the other statements.

Corollary 1.4 (HNN-extension II). Let (G, H ∪ {K}) be a pair, C a subgroup of K, s ∈G, andϕ : C→Ks

a group monomorphism. Let G∗ϕ denote the HNN-extension 〈G, t | tct−1 = ϕ(c) for all c ∈C〉. Then:

1. If H ∪ {K} ↪→h G then H ∪ {〈K, s−1t〉} ↪→h G∗ϕ .
2. If (G, H ∪ {K}) ∈D, then (G∗ϕ , H ∪ {〈K, s−1t〉}) ∈D.
3. For any g ∈G, the element g is conjugate in G to an element of some Q ∈H ∪ {K} if and only

if g is conjugate in G∗ϕ to an element of some H ∈H ∪ {〈K, s−1t〉}.
Proof. First, we prove the statement in the case that s is the identity element of G. Let L be the HNN-

extension L=K∗ϕ . Observe that there is a natural isomorphism between G∗ϕ and the amalgamated
product G ∗K L. In this case, the conclusion of the corollary is obtained directly by invoking Theorem 1.2,
since the pair (L, {L}) is in both classes C and D.

Now we argue in the case that s ∈G is arbitrary. Let ψ : C→K the composition Is ◦ ϕ where Is is the
inner automorphism Is(x)= s−1xs. Since

G∗ϕ = 〈G, t | cs−1 t = ϕ(c)s−1 for all c ∈C〉,
there is a natural isomorphism G∗ϕ→G∗ψ which restricts to the identity on the base group G, and the
stable letter of G∗ψ corresponds to s−1t in G∗ϕ . Since ψ maps C≤K into K, we have reduced the case
of arbitrary s ∈G to the case that s is the identity in G and the statement of the corollary follows.

Let us describe the argument proving our main result using the three previous statements. The
argument relies on the following observation.

Remark 1.5. If a pair (G, H ∪ {L}) belongs to C (respectively D) and g ∈G then (G, H ∪ {Lg}) belongs
to C (respectively D). This statement can be seen directly from the original definitions of hyperbolically
embedded collection of subgroups [9] and relative Dehn function [18]. It can be also deduced directly
from Theorems 2.2 and 2.9, respectively, in the main body of the article.

Proof of Theorem 1.1. The case of a tree of groups satisfying the hypothesis of the theorem follows
from Theorem 1.2 and Remark 1.5. Then the general case reduces to the case of a graph of groups
with a single vertex, where the vertex group corresponds to the fundamental group of a maximal tree of
groups. In the case of a graph of groups with a single vertex, each edge corresponds to applying either
Theorem 1.3 or Corollary 1.4 together with Remark 1.5.

The following theorem generalizes results of Brick [6, Proposition 3.2] on bounds on Dehn functions
of free products and improve bounds for relative Dehn functions found by Osin [18, Theorems 1.2
and 1.3].

Theorem 1.6.

1. Under the assumptions of Theorem 1.2(2), if � is a relative Dehn function of (G1 ∗C G2, H ∪
{〈K1, K2〉}) and �i is a relative Dehn function of (Gi, Hi ∪ {Ki}) then

max{�1,�2} 
�
max
{
�1,�2

}
,

where �i denotes the super-additive closure of �i.
2. Under the assumptions of Theorem 1.3(2), if � is a relative Dehn function of (G∗ϕ , H ∪
{〈Kt, L〉}) and �0 is a relative Dehn function of (G, H ∪ {K, L}) then

�0 
�
�0,

where �0 is the super-additive closure of �0
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3. Under the assumptions of Corollary 1.4(2), if � is a relative Dehn function of (G∗ϕ , H ∪
{〈K, s−1t〉}) and �0 is a relative Dehn function of (G, H ∪ {K}) then

�0 
�
�0,

where �0 is the super-additive closure of �0

We conclude the introduction with a more detailed comparison of our results with previous results
in the literature.

1. Dahmani, Guirardel, and Osin proved Theorem 1.2(1) in the case that ∂1 : C→K1 is an isomor-
phism and K1 is finitely generated [9, Thm 6.20]; and Theorem 1.3(1) in the case that C=K
and K is finitely generated [9, Thm 6.19].

2. Osin proved Theorem 1.2(2) in the case that ∂1 : C→K1 is an isomorphism and K1 is finitely
generated, see [17, Thm 1.3]; and Theorem 1.3(2) in the case that C=K and K is finitely
generated, see [17, Thm 1.2].

3. Under the assumptions of Theorem 1.1, if each (Gv, Hv) ∈ C for every vertex v, and there is at
least one v such that Hv is nontrivial in Gv, the existence of a nontrivial collection H such that
(G, H) ∈ C follows from results of Minasyan and Osin [14, Cor. 2.2 and 2.3] and the charac-
terization of acylindrical hyperbolicity in terms of existence of proper infinite hyperbolically
embedded subgroups by Osin [19]; by a nontrivial collection we mean that it contains a proper
infinite subgroup. This alternative approach does not guarantee that the collection H satisfies
the third condition of Theorem 1.1.

4. Theorems 1.2(1) and 1.3(1), in the case that Gi is hyperbolic relative to Hi for i= 1, 2, follow
from results of Wise and the first author [7, Thm. A].

1.1. Organization

The rest of the article consists of five sections. In Section 2, we review characterizations of pairs (G, H)
being hyperbolically embedded and having well-defined Dehn functions in terms of actions on graphs.
In Section 3, we reduce the proof of Theorems 1.2 and 1.3 to prove two technical results, Theorems 3.1
and 3.2. Their proofs are the content of Sections 4 and 5, respectively. The last section contains the proof
of Theorem 1.6.

2. Characterizations using fineness

In this section, we describe a characterization of pairs (G, H) being hyperbolically embedded,
Theorem 2.2; and a characterization of the pairs having a well-defined Dehn function, Theorem 2.9.
These characterizations are in terms of existence of G-graphs with certain properties that relate to
Bowditch’s fineness [5], a notion that is defined below. The characterizations are re-statements of pre-
vious results in the literature [15, Thm. 5.9] and [12, Thm. 4.7]. This section also includes a couple of
lemmas that will be of use in later sections.

All graphs � = (V , E) considered in this section are simplicial, so we consider the set of edges E to
be a collection of subsets of cardinality two of the vertex set V .

Let � be a simplicial graph, let v be a vertex of �, and let Tv� denote the set of the vertices adjacent
to v. For x, y ∈ Tv�, the angle metric ∠v(x, y) is the combinatorial length of the shortest path in the graph
� − {v} between x and y, with ∠v(x, y)=∞ if there is no such path. The graph � is fine at v if (Tv�, ∠v)
is a locally finite metric space. A graph is fine if it is fine at every vertex.

It is an observation that a graph � is fine if and only if for every pair of vertices x, y and every positive
integer n, there are finitely many embedded paths between x and y of length at most n; for a proof
see [5].
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2.1. Hyperbolically embedded pairs

In [19, Definition 2.9], Osin defines the notion of a collection of subgroups H being hyperbolically
embedded into a group G. This relation is denoted as H ↪→h G and, in this case, we say that the
pair (G, H) is a hyperbolically embedded pair. In this article, we use the following characterization
of hyperbolically embedded collection proved in [15] as our working definition.

Definition 2.1 (Proper pair). A pair (G, H) is proper if H is a finite collection of subgroups such that
no two distinct infinite subgroups are conjugate in G.

Theorem 2.2 (Criterion for hyperbolically embedded pairs). [15, Theorem 5.9] A proper pair (G, H) is
a hyperbolically embedded pair if and only if there is a connected G-graph � such that

1. There are finitely many G-orbits of vertices.
2. Edge G-stabilizers are finite.
3. Vertex G-stabilizers are either finite or conjugates of subgroups in H.
4. Every H ∈H is the G-stabilizer of a vertex of �.
5. � is hyperbolic.
6. � is fine at V∞(�)= {v ∈ V(�)|v has infinite stabilizer}.

Definition 2.3. We refer to a graph � satisfying the conditions of Theorem 2.2 as a (G, H)-graph

Let us observe that in [15], Theorem 2.2 is proved for the case that H consists of a single infinite
subgroup, and the authors observe that the argument in the case that H is a finite collection of infinite
subgroups (such that no pair of distinct infinite subgroups in H are conjugate in G) follows by the same
argument. Then the general case in whichH is a finite collection of subgroups follows from the following
statement: if H is a collection of subgroups and K a finite subgroup of a group G, then:

1. H ↪→h G if and only if H ∪ {K} ↪→h G.
2. There is (G, H)-graph if and only if there is a (G, H ∪ {K})-graph.

The first statement is a direct consequence of the definition of hyperbolically embedded collection
by Osin [19]. The if part of the second statement is trivial, and the only if part follows directly from [2,
Thm. 3.4].

2.2. Relative presentations

In [18, Chapter 2], Osin introduces the notions of relative presentation of a group with respect to a
collection of subgroups, and relative Dehn functions. We briefly recall these notions below.

Let G be a group and let H be a collection of subgroups. A subset S of G is a relative generating set
of G with respect to H if the natural homomorphism

F(S, H)= F(S) ∗H∈H H −→G (1)

is surjective, where F(S) denotes the free group with free generating set S. A relative generating set of
G with respect to H is called a generating set of the pair (G, H). A pair that admits a finite generating
set is called a finitely generated pair. Let R⊆ F(S, H) be a subset that normally generates the kernel of
the above homomorphism. In this case, we have a short exact sequence of groups

1→〈〈R〉〉→ F(S, H)→G→ 1,

and the triple

〈S, H | R〉 (2)
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is called a relative presentation of G with respect to H, or just a presentation of the pair (G, H).
Abusing notation, we write G= 〈S, H | R〉. If both S and R are finite we say that the pair (G, H) is
finitely presented.

Lemma 2.4. Let G be a group and let H0 �H be a collection of subgroups. Let P denote the subgroup
of G generated by S0 and the subgroups in H0. If

G= 〈S0 � S, H0 ∪H | R0 � R〉 and P= 〈S0, H0 | R0〉
then

G= 〈S, H ∪ {P} | R′〉 ,
where R′ is the image of R under the natural epimorphism ϕ : F(S0 ∪ S, H0 ∪H)→ F(S, H ∪ {P}).

Proof. Let A= F(S, H), B= F(S0, H0), K the normal subgroup of B generated by R0 and N the
normal subgroup of A ∗ B= F(S0 ∪ S, H0 ∪H) generated by R. Our hypotheses imply that the natural
epimorphisms A ∗ B→G and B→ P induce short exact sequences:

1→〈〈N, K〉〉→ A ∗ B→G→ 1, and 1→K→ B→ P→ 1.

Let us identify P= B/K. The natural epimorphism of the statement of the lemma

ϕ : A ∗ B→ A ∗ (B/K)

induces an isomorphism:

ϕ̂ :
A ∗ B

〈〈N, K〉〉 →
A ∗ (B/K)

ϕ(N)
= A ∗ P

ϕ(N)
.

By the definition of N, we have that ϕ(N) is the normal subgroup of A ∗ P generated by R′ = ϕ(R).
Therefore, the natural epimorphism A ∗ P→G induces a short exact sequence:

1→〈〈R′〉〉→ A ∗ P→G→ 1

which concludes the proof.

The following pair of lemmas allow us to conclude that certain amalgamated products and HNN-
extensions preserve relative finite presentability.

Lemma 2.5 (Amalgamated products). For i ∈ {1, 2}, let (Gi, Hi ∪ {Ki}) be a pair, ∂i : C→Ki a group
monomorphism. Let G1 ∗C G2 denote the amalgamated product determined by G1

∂1←−C
∂2−→G2, and H=

H1 ∪H2. If

Gi = 〈Si, Hi ∪ {Ki} | Ri〉
then

G1 ∗C G2 = 〈S1 ∪ S2, H ∪ {〈K1, K2〉} | R1 ∪ R2〉 .
Proof. Observe that 〈S1 ∪ S2, H ∪ {K1, K2} | R1 ∪ R2, ∂1(c)= ∂2(c) for all c ∈C〉 is a relative presen-

tation of G1 ∗C G2. Since the subgroup 〈K1, K2〉 ≤G1 ∗C G2 is isomorphic to the amalgamated product
K1 ∗C K2, we have that 〈K1, K2 | ∂1(c)= ∂2(c) for all c ∈C〉 is a relative presentation of 〈K1, K2〉. The
proof concludes by invoking Lemma 2.4.

Lemma 2.6 (HNN-extension). Let (G, H ∪ {K, L}) be a pair with K 
= L, C a subgroup of K, ϕ : C→ L
a group monomorphism, and let G∗ϕ denote the HNN-extension 〈G, t | tct−1 = ϕ(c)for all c ∈C〉. If

G= 〈S, H ∪ {K, L} | R〉
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then

G∗ϕ =
〈
S, t, H ∪ {〈Kt, L〉} | R′〉 ,

where R′ is the set of relations obtained by taking each element of R and replacing all occurrences of
elements k ∈K by words t−1ktt. In particular, R and R′ have the same cardinality.

Proof. Let J denote the subgroup Kt, and let ψ : K→ J be the isomorphism ψ(k)= tkt−1. Observe
that 〈S, t, H ∪ {K, L} | R, tct−1 = ϕ(c) for all c ∈C〉 is a presentation for the pair (G∗ϕ , H ∪ {K, L}).
Therefore,

G∗ϕ = 〈S, t, H ∪ {J, L} | R′, ψ(c)= ϕ(c) for all c ∈C〉.
A consequence of Britton’s lemma is that the subgroup 〈J, L〉 ≤G∗ϕ is isomorphic to the amalgamated
product J ∗ϕ(C) L. Hence,

〈J, L〉 = 〈{J, L} |ψ(c)= ϕ(c) for all c ∈C〉.
The proof concludes by invoking Lemma 2.4.

2.3. Relative Dehn functions

Suppose that 〈S, H | R〉 is a finite relative presentation of the pair (G, H). For a word W over the alphabet
S = S �⊔H∈H (H − {1}) representing the trivial element in G, there is an expression:

W =
k∏

i=1

f −1
i Rifi (3)

where Ri ∈ R and fi ∈ F(S). We say a function f : N→N is a relative isoperimetric function of the relative
presentation 〈S, H | R〉 if, for any n ∈N, and any word W over the alphabet S of length≤ n representing
the trivial element in G, one can write W as in (3) with k≤ f (n). The smallest relative isoperimetric
function of a finite relative presentation 〈S, H | R〉 is called the relative Dehn function of G with respect
to H, or the Dehn function of the pair (G, H). This function is denoted by �G,H. Theorem 2.7 below
justifies the notation �G,H for the Dehn function of a finitely presented pair (G, H).

For functions f , g : N→N, we write f 
 g if there exist constants C, K, L ∈N such that f (n)≤
Cg(Kn)+ Ln for every n. We say f and g are asymptotically equivalent, denoted as f � g, if f 
 g and
g
 f .

Theorem 2.7. [18, Theorem 2.34] Let G be a finitely presented group relative to the collection of sub-
groups H. Let�1 and�2 be the relative Dehn functions associated with two finite relative presentations.
If �1 takes only finite values, then �2 takes only finite values, and �1 ��2.

The Dehn function of a pair (G, H) is well defined if it takes only finite values. This can be
characterized in terms of fine graphs as follows.

Definition 2.8 (Cayley–Abels graph for pairs). A Cayley–Abels graph of the pair (G, H) is a connected
cocompact simplicial G-graph � such that:

1. edge G-stabilizers are finite,
2. vertex G-stabilizers are either finite or conjugates of subgroups in H,
3. every H ∈H is the G-stabilizer of a vertex of �, and
4. any pair of vertices of � with the same G-stabilizer H ∈H are in the same G-orbit if H is

infinite.
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Theorem 2.9. Let (G, H) be a proper pair. The following statements are equivalent.

1. The Dehn function �G,H is well defined.
2. (G, H) is finitely presented and there is a fine Cayley–Abels graph of (G, H).
3. (G, H) is finitely presented and every Cayley–Abels graph of (G, H) is fine.

Theorem 2.9 is essentially [12, Theorem E] together with a result on Cayley–Abels graphs from
[2, Theorem H]. This is described below.

Concrete examples of Cayley–Abels graphs can be exhibited using the following construction
introduced by Farb [10]; see also [13].

Definition 2.10 (Coned-off Cayley graph). Let (G, H) be a pair, and let S be a finite relative generating
set of G with respect to H. Denote by G/H the set of all cosets gH with g ∈G and P ∈H. The coned-off
Cayley graph �̂(G, H, S) is the graph with vertex set G∪G/H and edges of the following type

• {g, gs} for s ∈ S and g ∈G,
• {x, gH} for g ∈G, H ∈H and x ∈ gH.

That a pair (G, H) has a well-defined function is characterized in terms of fineness of coned-off
Cayley graphs.

Theorem 2.11. [12, Theorem E] Let (G, H) be a finitely presented pair with a finite generating set S.
The Dehn function �G,H is well defined if and only if the coned-off Cayley graph �̂(G, H, S) is fine.

Every coned-off Cayley graph �̂(G, H, S) with S a finite relative generating set is a Cayley–Abels
graph. The following result implies that coned-off Cayley graphs are, up to quasi-isometry, independent
of the choice of finite generating set, and we denote them by �̂(G, H). Observe now that Theorem 2.9
also follows from the following result.

Theorem 2.12. [2, Theorem H] If � and � are Cayley–Abels graphs of the proper pair (G, H), then:

1. � and � are quasi-isometric, and
2. � is fine if and only if � is fine.

3. Combination theorems for graphs

In this section, we state two technical results, Theorems 3.1 and 3.2, which will be proven in the sub-
sequent sections. The section includes how to deduce the main results of the article, Theorems 1.2
and 1.3, from these technical results.

Theorem 3.1. For i ∈ {1, 2}, let (Gi, Hi ∪ {Ki}) be a pair and ∂i : C→Ki a group monomorphism. Let
G=G1 ∗C G2 denote the amalgamated product determined by G1

∂1←−C
∂2−→G2, and H=H1 ∪H2. Let �i

be a Gi-graph that has a vertex xi with Gi-stabilizer Ki. Then there is a G-graph � with the following
properties:

1. � has a vertex z such that the G-stabilizer Gz = 〈K1, K2〉, and there is a Gi-equivariant inclusion
�i ↪→ � that maps xi to z.

2. If �i is connected for i= 1, 2, then � is connected.
3. If every H ∈Hi ∪ {Ki} is the Gi-stabilizer of a vertex of �i for i= 1, 2, then every H ∈H ∪
{〈K1, K2〉} is the G-stabilizer of a vertex of �.

4. If vertex Gi-stabilizers in �i are finite or conjugates of subgroups in Hi ∪ {Ki} for i= 1, 2, then
vertex G-stabilizers in � are finite or conjugates of subgroups in H ∪ {〈K1, K2〉}.

5. If �i has finite edge Gi-stabilizers for i= 1, 2, then � has finite edge G-stabilizers.
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6. If�i has finitely many Gi-orbits of vertices (edges) for i= 1, 2, then� has finitely many G-orbits
of vertices (resp. edges).

7. If �i is fine for i= 1, 2, then � is fine.
8. If �i is fine at V∞(�i) for i= 1, 2, then � is fine at V∞(�).
9. If �i is hyperbolic for i= 1, 2, then � is hyperbolic.

10. If �i is simplicial for i= 1, 2, then � is simplicial.

Let us explain how Theorem 1.2 follows from the above result.

Proof of Theorem 1.2. For the first statement, suppose Hi ∪ {Ki} is hyperbolically embedded in Gi.
Then Hi ∪ {Ki} is an almost malnormal collection of subgroups of Gi by [9, Prop. 4.33]. In particular,
(Gi, Hi ∪ {Ki}) is a proper pair. By Theorem 2.2, there is a (Gi, Hi ∪ {Ki})-graph�i. Let xi be a vertex of�i

with Gi-stabilizer Ki. Applying Theorem 3.1 to �1, �2, x1 and x2, we obtain a (G1 ∗C G2, H ∪ {〈K1, K2〉})-
graph. Note that (G1 ∗C G2, H ∪ {〈K1, K2〉}) is a proper pair by a standard argument using normal forms.
Then invoke Theorem 2.2 to obtain that H ∪ {〈K1, K2〉} is hyperbolically embedded in G1 ∗C G2.

The second statement is proved analogously. Suppose the relative Dehn function of (Gi, Hi ∪ {Ki})
is well defined. By [17, Prop. 2.36], the pair (Gi, Hi ∪ {Ki}) is proper. It follows that (G1 ∗C G2, H ∪
{〈K1, K2〉}) is also a proper pair by a standard argument using normal forms. By Theorem 2.9, (Gi, Hi ∪
{Ki}) is finitely presented and admits a fine Cayley–Abels graph �i. In particular, there is a vertex
xi ∈ �i with Gi-stabilizer equal to Ki. Apply Theorem 3.1 to �1, �2 and the vertices x1, x2 to obtain
a fine Cayley–Abels graph � for the pair (G1 ∗C G2, H ∪ {〈K1, K2〉}). Since (G1 ∗C G2, H ∪ {〈K1, K2〉})
is finitely presented by Lemma 2.5, then Theorem 2.9 implies that the relative Dehn function of
(G1 ∗C G2, H ∪ {〈K1, K2〉}) is well defined.

Theorem 3.2. Let (G, H ∪ {K, L}) be a pair with K 
= L, C≤K, and ϕ : C→ L a group monomorphism.
Let G∗ϕ denote the HNN-extension 〈G, t | tct−1 = ϕ(c) for all c ∈C〉. Let� be a G-graph that has vertices
x and y such that their G-stabilizers are K and L, respectively, and their G-orbits are disjoint. Then there
is a G∗ϕ-graph � with the following properties:

1. � has a vertex z such that Gz = 〈Kt, L〉, and there is a G-equivariant inclusion � ↪→ � such
that x �→ t−1.z and y �→ z.

2. If � is connected, then � is connected.
3. If every H ∈H ∪ {K, L} is the G-stabilizer of a vertex of�, then every H ∈H ∪ {〈Kt, L〉} is the

G∗ϕ-stabilizer of a vertex of �.
4. If vertex G-stabilizers in � are finite or conjugates of subgroups in H ∪ {K, L}, then vertex

G∗ϕ-stabilizers in � are finite or conjugates of subgroups in H ∪ {〈Kt, L〉}.
5. If � has finite edge G-stabilizers, then � has finite edge G∗ϕ-stabilizers.
6. If � has finitely many G-orbits of vertices (edges), then � has finitely many G∗ϕ-orbits of

vertices (resp. edges).
7. If � is fine, then � is fine.
8. If � is fine at V∞(�), then � is fine at V∞(�).
9. If � is hyperbolic, then � is hyperbolic.

Proof of Theorem 1.3. This proof is completely analogous to the proof of Theorem 1.2: invoke
Theorem 3.2 and Lemma 2.6 instead of Theorem 3.1 and Lemma 2.5, respectively.

4. Amalgamated products and graphs

This section describes an argument proving Theorem 3.1. While the statement of this result seems intu-
itive, we are not aware of a full account of those techniques in a common framework, so this section
provides a detailed construction.
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4.1. Pushouts in the category of G-sets

Let φ : R→ S and ψ : R→ T be G-maps. The pushout of φ and ψ is defined as follows. Let Z be the
G-set obtained as the quotient of the disjoint union of G-sets S � T by the equivalence relation generated
by all pairs s∼ t with s ∈ S and t ∈ T satisfying that there is r ∈ R such that φ(r)= s and ψ(r)= t. There
are canonical G-maps ı : S→ Z and j : T→ Z such that ı ◦ φ = j ◦ψ . This construction satisfies the
universal property of pushouts in the category of G-sets.

Proposition 4.1. Let φ : R→ S and ψ : R→ T be G-maps. Consider the pushout

S

R Z

T

ıφ

ψ j

of φ and ψ . Suppose there is r ∈ R such that R=G.r. If s= φ(r), t=ψ(r) and z= ı(s), then the G-
stabilizer Gz equals the subgroup 〈Gs, Gt〉.

Proof. Since ı and j are G-maps, 〈Gs, Gt〉 ≤Gz. Conversely, let g ∈Gz. If g ∈Gs then g ∈ 〈Gs, Gt〉.
Suppose g 
∈Gs.

Let r0 denote the element r ∈ R in the statement, in particular, s= φ(r0), t=ψ(r0) and R=G.r0.
Since j (t)= ı(g.s), the definition of Z as a collection of equivalence classes in S � T implies that there
is a sequence r′0, r1, r′1 . . . , rk, r′k of elements of R such that

t=ψ(r′0), φ(r′0)= φ(r1), ψ(r1)=ψ(r′1), . . . , ψ(rk)=ψ(r′k), φ(r′k)= g.s.

Let si = φ(r′i−1)= φ(ri) and ti =ψ(ri)=ψ(r′i). Since R=G.r0, there are elements a0, a1, . . . , ak and
b0, b1, . . . , bk−1 of G such that

ai.ri = r′i and bj.r′j = rj+1

for 0≤ i≤ k and 0≤ j< k. Then
g.s= φ(r′k)= φ(akbk−1ak−1 . . . b0a0.r0)= akbk−1ak−1 . . . b0a0.s

and hence akbk−1ak−1 . . . b0a0 ∈ gGs. Since Gs ≤ 〈Gs, Gt〉, to prove that g ∈ 〈Gs, Gt〉 is enough to show
that ai, bj ∈ 〈Gs, Gt〉. We will argue by induction.

First note that since φ and ψ are G-maps
ai.si = si+1 and bj.tj = tj+1,

and hence
Gsi+1 = aiGsi a

−1
i and Gtj+1 = bjGtj b

−1
j .

Moreover, ti =ψ(ri)=ψ(r′i)=ψ(ai.ri)= ai.ti implies
ai ∈Gti ,

and analogously sj+1 = φ(rj+1)= φ(bj.r′j)= bj.sj+1 implies
bj ∈Gsj+1 .

Since t0 = t and s0 = s, we have that
a0 ∈Gt0 ≤ 〈Gs, Gt〉, and b0 ∈Gs1 = a0Gs0 a−1

0 ≤ 〈Gs, Gt〉.
Suppose i< k, ai, bi ∈ 〈Gs, Gt〉, Gsi ≤ 〈Gs, Gt〉 and Gti ≤ 〈Gs, Gt〉. Then

ai+1 ∈Gti+1 = biGti b
−1
i ≤ 〈Gs, Gt〉,
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and hence

Gsi+1 = aiGsi a
−1
i ≤ 〈Gs, Gt〉.

In the case that i+ 1< k,

bi+1 ∈Gsi+2 = ai+1Gsi+1 a−1
i+1 ≤ 〈Gs, Gt〉.

Therefore, by induction, ai, bj ∈ 〈Gs, Gt〉 for 0≤ i≤ k and 0≤ j< k.

4.2. Extending actions on sets

In the case that K is a subgroup of G and S is a K-set, one can extend the K-action on S to a G-set G×K S
that we now describe. Up to isomorphism of K-sets, we can assume that S is a disjoint union of K-sets:

S=
⊔
i∈I

K/Ki

where K/Ki is the K-set consisting of left cosets of a subgroup Ki of K. Then the G-set G×K S is
defined as a disjoint union of G-sets:

G×K S :=
⊔
i∈I

G/Ki.

Observe that the canonical K-map

ı : S→G×K S, Ki �→Ki

is injective. This construction satisfies a number of useful properties that we summarize in the following
proposition.

For n a natural number and a set X, let [X]n denote the collection of subsets of X of cardinality n. If
X is a G-set, then [X]n is a G-set with action defined as g.{x1, . . . , xn} = {g.x1, . . . , g.xn}.

Proposition 4.2. Let K ≤G and S a K-set.

1. The canonical K-map ı : S→G×K S induces a bijection of orbit spaces S/K→ (G×K S)/G.
2. For each s ∈ S, the K-stabilizer Ks equals the G-stabilizer Gı(s).
3. If T is a G-set and f : S→ T is K-equivariant, then there is a unique G-map f̃ : G×K S→ T

such that f̃ ◦ ı = f .
4. If ı(S)∩ g.ı(S) 
= ∅ for g ∈G, then g ∈K and ı(S)= g.ı(S).
5. In part three, if f induces an injective map S/K→ T/G and Ks =Gf (s) for every s ∈ S, then f̃ is

injective.
6. Let j : [S]n→G×K [S]n be the canonical map. Then for every n ∈N, there is a G-equivariant

injection ı̂ : G×K [S]n→ [G×K S]n such that ı̂ ◦ j = ı̄ where ı̄ : [S]n→ [G×K S]n is the natural
K-map induced by ı : S→G×K S.

Proof. The first four statements are observations. For the fifth statement, suppose f̃ (ı(s1))= f̃ (g.ı(s2)).
Then f (s1)= g.f (s2). Since the map S/K→ T/G induced by f is injective, we have that s1 and s2 are in
the same K-orbit in S, say s2 = k.s1 for k ∈K. It follows that f (s1)= gk.f (s1), and since Ks1 =Gf (s1), we
have that gk ∈Ks1 . Therefore ı(s1)= ı(gk.s1)= g.ı(ks1)= g.ı(s2).

The sixth statement is proved as follows. The K-map ı : S→G×K S naturally induces a K-map
ı̄ : [S]n→ [G×K S]n. By the third statement, there is a unique G-map ı̂ : G×K [S]n→ [G×K S]n such
that ı̂ ◦ j = ı̄ where j : [S]n→G×K [S]n. As a consequence of the fourth statement, ı : [S]n→ [G×K S]n

induces an injective map [S]n/K→ [G×K S]n/G and KA =Gı(A) for every A ∈ [S]n; therefore, ı̂ is
injective.
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As the reader might have noticed, this construction is an instance of general categorical phenomena;
that formulation will have no use in this article so we will not discuss it.

4.3. Graphs as 1-dimensional complexes

While the objectives of this section only require us to consider simplicial graphs, the category of simpli-
cial graphs does not have pushouts [20]. For this reason, it is convenient to work within the framework
of one-dimensional complexes or equivalently graphs in the sense that we describe below. We will only
consider a particular class of pushouts of graphs that behaves well over simplicial graphs. A graph is
a triple (V , E, r), where V and E are sets, and r : E→ [V]2 is a function where [V]n is the collection
of nonempty subsets of V of cardinality at most n. Elements of the set V and E are called vertices and
edges, respectively; the function r is called the attaching map. For a graph �, we denote V(�) and E(�)
its vertex and edge set, respectively. If v ∈ V(�), e ∈ E(�) and v ∈ r(e), then v is incident to e, and v is
called an endpoint of e. Vertices incident to the same edge are called adjacent.

The graph (V , E, r) is simplicial if every edge has two distinct endpoints and r is injective.
Equivalently, (V , E, r) is simplicial if r : E→ [V]2 is injective and its image does not intersect [V]1.

A graph � is a subgraph of a graph � if V(�)⊂ V(�), E(�)⊂ E(�) and r� equals the restriction
of r� to E(�). Abusing notation, we consider any vertex of a graph � as an edgeless subgraph with a
single vertex, and any edge e of � as the subgraph with vertex set the set of vertices incident to e in �
and edge set consisting of only e.

For a vertex u of a simplicial graph � = (V , E, r), let star�(u) denote the subgraph
with vertex set V(star(u))= {u} ∪ {v ∈ V | v is adjacent to u} and edge set E(star(u))= {e ∈ E |
the endpoints of e belong to V(star(u))} and the attaching map is the corresponding restriction of r.

Our notion of morphism allows the collapse of edges to single vertices. Specifically, a morphism of
φ : (V , E, r)→ (V ′, E′, r′) of graphs is a pair of maps φ0 : V→ V ′ and φ1 : E→ V ′ ∪ E′ such that there is
a commutative diagram

φ−1
1 (E′) E′

[V ]2 [V ′]2

φ1

r r′

φ0

φ−1
1 (V ′) V ′

[V ]2 [V ′]1

φ1

r ∼=
φ0

where the horizontal bottom arrow φ0 is the natural G-map induced by φ0 : V→ V ′, and V ′ → [V ′]1 is
the natural bijection given by v �→ {v}. Observe that in general for a morphism φ = (φ0, φ1) : �→� of
graphs, the map φ0 does not determine φ1; however if� is simplicial then φ0 determines φ1. A morphism
(φ0, φ1) is a monomorphism (also called an embedding) if both maps are injective.

Given a graph morphism φ = (φ0, φ1) : �→� and a subgraph 
 of �, the preimage φ−1(
) is the
subgraph of � with vertex set φ−1

0 (V(
)) and edge set φ−1
1 (V(
)∪ E(
)).

Let G be a group. A G-graph is a graph (V , E, r) where V and E are G-sets, and r is a G-map with
respect to the natural G-action on [V]2 induced by the G-set V . A morphism (φ0, φ1) of G-graphs is a
morphism of graphs such that each φi is a G-map. A G-equivariant embedding is a monomorphisms of
G-graphs. A G-action on a graph � has no inversions if for every e ∈ E and g ∈G such that g.e= e, g.v=
v for every v ∈ r(e). For a G-action without inversions on a graph� and K ≤G, let�K denote subgraph of
� defined by V(�K)= {v ∈ V(�) | k.v= v for all k ∈K} and E(�K)= {e ∈ E(�) | k.e= e for all e ∈K}.

4.4. Extending group actions on graphs

Let K be a subgroup of G, and let �= (V , E, r) be a K-graph. Define

G×K �= (G×K V , G×K E, r̃)
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where r̃ is unique G-map induced by the commutative diagram

E G ×K E

[V ]2 [G ×K V ]2

r

j

r̃

ı

where ı : V ↪→G×K V and j : E ↪→G×K E are the canonical K-maps, see Lemma 4.2(3). Note that
there is a canonical K-equivariant embedding

� ↪→G×K �

induced by ı and j . We consider � a K-subgraph of G×K �.

Remark 4.3. Proposition 4.2, parts 2 and 4 imply:

1. If � is a simplicial K-graph without inversions, then G×K � is a simplicial G-graph without
inversions.

2. For any connected subgraph � of G×K �, there is g ∈G such that g.� is a subcomplex of �,
in a commutative diagram,

G ×K Λ G ×K Λ

Δ Λ

g

g

In particular, if � is connected, then every connected component of G×K � is isomorphic
to �.

4.5. Pushouts of graphs

Let X and Y be G-graphs, let C≤G be a subgroup and suppose XC and YC are nonempty. Let x ∈XC

and y ∈YC be vertices. The C-pushout Z of X and Y with respect to the pair (x, y) is the G-graph Z
obtained by taking the disjoint union of X and Y and then identifying the vertex g.x with the vertex g.y
for every g ∈G.

Equivalently, the C-pushout Z of X and Y with respect to the pair (x, y) is the G-graph Z whose vertex
set V(Z) is the pushout of the G-maps κ1 : G/C→V(X) and κ2 : G/C→V(Y) given by C �→ x and
C �→ y; and edge set the disjoint union of the G-sets E(X) and E(Y), and attaching map E(Z)→ V(Z)2

defined as the union of the attaching maps for X and Y postcomposed with the maps V(X)→ V(Z) and
V(Y)→ V(Z) defining the pushout.

X

G/C Z W

Y

j1

ı1κ1

κ2
ı2

j2

The standard universal property of pushouts holds for this construction: if j1 : X→W and j2 : Y→W
are morphisms of G-graphs such that j1 ◦ κ1 = j2 ◦ κ2, then there is a unique morphism of G-graphs
Z→W such that above diagram commutes.
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Remark 4.4. Let Z be the C-pushout of X and Y with respect to a pair (x, y).

1. For any vertex x in X, Gx =Gı1(x) or x is in the image of κ1.
2. For any edge e of X, Ge =Gı1(e).
3. If X/G and Y/G both have finitely many vertices (resp. edges), then Z/G has finitely many

vertices (resp. edges).

Example 4.1. Let G= A ∗C B where A and B are free abelian groups of rank two, and C is maximal
cyclic subgroup of A and B. Let X be the A-graph consisting of a single vertex with the trivial A-action
and define Y analogously for B. Then the graph G×A X is the edgeless G-graph with vertex set the
collection of left cosets of G/A; and analogously G×B Y is the edgeless graph with vertex set G/B.
Let Z be the C-pushout of X and Y. By parts (4) and (7) of Proposition 4.5, Z is a connected edgeless
G-graph and hence a single vertex.

Example 4.2. Let A= 〈a1, a2, a3 | [a1, a2]〉 and B= 〈b1, b2, b3 | [b1, b2]〉, and let X= �̂(A, 〈a1, a2〉, a3)
and Y= �̂(B, 〈b1, b2〉, b3) be the coned-off Cayley graphs. Note that X is the Bass–Serre tree of the
splitting of A as the graph of groups

1 1 〈a1, a2〉
1

with two vertices and two edges with trivial edge group.
Let G= A ∗C B be the amalgamated product where C corresponds to the cyclic subgroup 〈a1〉 ≤ A

and 〈b1〉 ≤ B. Consider the C-pushout Z of G×A X and G×B Y. By the fourth, fifth and sixth statements
of Proposition 4.5 below, Z is a tree, it contains three distinct G-orbits of vertices, two of these G-
orbits have all representatives with trivial stabilizer, and there is a vertex z with stabilizer 〈a1, a2, b2〉 =
〈a1, a2〉 ∗〈a1〉=〈b1〉 〈b1, b2〉, and there are four distinct orbits of edges all with representatives having trivial
stabilizer. Hence, Z is the Bass-Serre tree of a splitting of G given by the graph of groups

1

1

〈a1, a2, b2〉
1 1

1

1

with three vertices and four edges. In particular, Z is the coned-off Cayley graph of �̂(G, Gy, {a3, b3}).

Proposition 4.5. Let G be the amalgamated free product group A ∗C B, let X be a A-graph, and let Y
be a B-graph. Let x ∈XC and y ∈YC be vertices. Let Z be the C-pushout of G×A X and G×B Y with
respect to (x, y). Let z= ı1(x)= ı2(y). The following properties hold:

1. The homomorphism Ax ∗C By→G induced by the inclusions Ax ≤G and By ≤G is injective and
has image Gz. In particular, Gz = 〈Ax, By〉 is isomorphic to Ax ∗C By.

2. The morphism X ↪→G×A X
ı1−→ Z is an A-equivariant embedding. Analogously, Y ↪→G×B

Y
ı2−→ Z is a B-equivariant embedding.

From here on, we consider X and Y as subgraphs of Z via these canonical embeddings.
3. For every vertex v (resp. edge e) of Z, there is g ∈G such that g.v is a vertex (resp. is an edge

g.e) of the subgraph X∪Y.
4. For every vertex v of X which is not in the A-orbit of x, Av =Gv where Gv is the G-stabilizer of

v in Z. Analogously for every vertex v of Y not in the B-orbit of y, Bv =Gv.
5. For every edge e of X (resp. Y), Ae =Ge (resp. Be =Ge) where Ge is the G-stabilizer of e in Z .
6. If the complexes X/A and Y/B both have finitely many vertices (resp. edges), then Z/G has

finitely many vertices (resp. edges).
7. If X and Y are connected, then Z is connected.
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8. There is a G-tree T and a morphism ξ : Z→ T of G-graphs with the following properties: The
G-orbit of ξ (z) and its complement in the set of vertices of T make T a bipartite graph; the
preimage ξ−1(ξ (z)) is a single vertex; and if a vertex v of T is not in the G-orbit of ξ (z), then
the preimage of the star of v is a subgraph of Z isomorphic to X or Y.

Proof. The first item is a direct consequence of Proposition 4.1. For the second item, first note that that
the composition X ↪→G×A X

ı1−→ Z is a morphism of A-graphs. Observe that to prove the embedding
part is enough to consider only vertices of X that are in the A-orbit of x. Suppose that a.x and x with a ∈ A
both map to z ∈ Z. Then, a ∈Gz = Ax ∗C By and therefore a ∈ Ax and hence a.x= x. Item three follows
directly from the definition of Z, and items four to six are consequences of Proposition 4.2.

To prove the seventh statement suppose that X and Y are connected graphs. The subgraph X∪Y of
Z is connected since both X and Y contain the vertex z. On the other hand, any vertex of Z belongs to
a translate of X∪Y by an element of G. Therefore to prove that Z is connected, it is enough to show
that for any g ∈G there is a path in Z from z to g.z. For any g ∈G and a ∈ A, there is a path from g.z to
ga.z in Z: indeed, there is a path from z to a.z in the connected A-subgraph X of Z, and hence there is a
path from g.z to ga.z in Z. Analogously, for any g ∈G and b ∈ B, there is a path from g.z to gb.z. Since
any element of G is of the form a1b1 . . . anbn with ai ∈ A and bi ∈ B, there is a path from z to g.z for any
g ∈G.

Now we prove the eighth statement. Observe that G splits as G= A ∗Ax (Ax ∗C By) ∗By B where the
subgroups Ax, By and Ax ∗C By are naturally identified with the G-stabilizers of x ∈G×A X, y ∈G×B Y,
and z ∈ Z. Let T denote the Bass–Serre tree of this splitting. The vertex and edge sets of T can be
described as:

V(T)=G/A �G/(Ax ∗C By) �G/B

and

E(T)= {{gA, g(Ax ∗C By)} | g ∈G} � {{g(Ax ∗C By), gB} | g ∈G}
respectively. Note that T is a bipartite G-graph, the equivariant bipartition of the vertices given by G/A �
G/B and G/(Ax ∗C By).

Consider the A-map from X to T that maps every vertex of X not in the A-orbit of x to the vertex A,
and x �→ Ax ∗C By. Since T is simplicial, this induces a unique morphism of G-graphs j1 : G×A X→ T .
Analogously, there is B-map Y→ T that maps every vertex not in the B-orbit of y to the vertex B and
y �→ Ax ∗C By; this induces a unique G-map j2 : G×B Y→ T .

G ×A X

G/C Z T

G ×B Y

j1

ı1κ1

κ2

ξ

ı2

j2

Consider the G-maps κ1 : G/C→G×A X and κ2 : G/C→G×B Y given by C �→ x and C �→ y,
respectively. Since j1 ◦ κ1 = j2 ◦ κ2, the universal property implies that there is a surjective G-map
ξ : Z→ T .

Note that ξ−1(ξ (z)) is contained in the orbit G.z. Suppose g.z ∈ ξ−1(ξ (z)). Then g(Ax ∗C By)= Ax ∗C By

and hence g ∈ Ax ∗C By. Since Ax ∗C By is the G-stabilizer of z, we have that g.z= z. This shows that
ξ−1(ξ (z))= {z}.

Let us conclude by proving that if v ∈ V(T) is not in the G-orbit of ξ (z)= Ax ∗c By then ξ−1(starT(v))
is a graph isomorphic to either X or Y. Note that such a vertex v is an element of G/A∪G/B. By
equivariance, it is enough to consider the two symmetric cases, namely v= A or v= B. Let us prove
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that ξ−1(starTA) is isomorphic to X. Observe that any edge of starT(A) is of the form {A, a(Ax ∗C

By)} with a ∈ A. Since (ξ ◦ ı1)−1(starT(A))= j−1
1 (starT(A)) and ξ−1(starT(A))⊂ ı1(G×A X), we have that

ξ−1(starT(A))= ı1(j
−1
1 (starT(A)). Recall that the canonical A-map X→G×A X is injective, and this

defines a natural identification of X with a subgraph of G×A X which equals j−1(starT(A)) by defi-
nition of j . Then we have that ı1(j−1

1 (starT(A))= ı1(X) is isomorphic to X by the second item of the
proposition.

4.6. Proof of Theorem 3.1

Lemma 4.6. Let ξ : �→ T be a morphism of graphs where T is a bipartite tree, say V(T)=K ∪ L.
Suppose ξ−1(v) is a single vertex for every v ∈ L, and ξ−1(star(v)) is a connected subgraph for every
v ∈K. Let �= {ξ−1(star(v)) | v ∈K}. Then:

1. � is a simplicial graph if and only if every � ∈� is simplicial.
2. � is a δ-hyperbolic graph if and only if every � ∈� is a δ-hyperbolic graph.
3. For any vertex u of �, the following statements are equivalent:

• � is fine at u.
• For every � ∈�, if u is a vertex of �, then � is fine at u.

Proof. Note for any vertex u of �, if ξ (u) ∈ L then u is a cut vertex of �. The bipartite assumption on
T implies that if 
 is the closure of a connected component of � \ ξ−1(L), then 
 equals some � ∈�.

The first and second statements follow from the previous observation, the second one with important
generalizations [3]. For the third statement, if � is fine at u, then any subgraph containing u is fine at
u. Conversely, let u be a vertex of � such that any � containing u is fine at u. There are two cases to
consider.

Suppose that ξ (u) ∈K. Then there is a unique� ∈� that contains u. The bipartite assumption implies
that Tu�= Tu�. Since every vertex of � that maps to L disconnects �, the metric spaces (Tu�, ∠u) and
(Tu�, ∠u) coincide. Since � is fine at u, then � is fine at u.

Suppose that ξ (u) ∈ L. Observe if x, y ∈ Tu� and x and y belong to different subgraphs in �, then
∠u(x, y)=∞. Therefore, for any x ∈ Tu�, every ball of finite radius in Tu� centered at x is a ball of finite
radius in Tu� centered at x for some �. Since by assumption, � is fine at v, every ball of finite radius
in Tv� centered at x is finite.

Proof of Theorem 3.1. Let � be the C-pushout of the G-graphs G×G1 �1 and G×G2 �2 with
respect to (x1, x2), and let z be the image of x1 in �. The first six properties of � are direct corol-
laries of Proposition 4.5. The last four properties follow directly by invoking Proposition 4.5(8) and
Lemma 4.6.

5. HNN-extensions

This section describes a proof of Theorem 3.2. The argument is analogous to the one proving
Theorem 3.1. In this case, we need to construct a G∗ϕ-graph from a given G-graph that we call the
ϕ-coalescence.

Definition 5.1 (Coalescence in sets). Let H be a subgroup of a group A, let ϕ : H→ A be a monomor-
phism and let G be the HNN-extension:

G= A∗ϕ = 〈G, t | tct−1 = ϕ(c) for all c ∈C〉.
Let X be an A-set, x ∈ XH and y ∈ Xϕ(H). The ϕ-coalescence of X with respect to (x, y) is the G-set Z
arising as quotient of G×A X by the equivalence relation generated by the set of basic relations:

B= {(gt.x, g.y) | g ∈G}.
https://doi.org/10.1017/S0017089523000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000265


Glasgow Mathematical Journal 17

Note that the quotient map:

ρ : G×A X→ Z

is G-equivariant.

Example 5.1. Let ϕ : A→ A be a group automorphism and consider the HNN-extension G= A∗ϕ . Let
X be the A-set consisting of a single point. Then G×A X is the G-space G/A, and then the ϕ-coalescence
of X is again a single point.

Example 5.2. Consider a free product A=H1 ∗H2. Let ϕ : H1→H2 be an isomorphism, and G= A∗ϕ .
Let X be the A-set A/H1 ∪ A/H2 of all left cosets of H1 and H2 in A. Then G×A X is the G-set of left
cosets G/H1 ∪G/H2. The ϕ-coalescence Z of X with respect to the pair (H1, H2) is the quotient G×A X
by identifying gtH1 and gH2 for every g ∈G. Hence, Z is naturally isomorphic as a G-set to G/H1.
Observe that the A-map X→ Z given by H1 �→H1 and ϕ(H1) �→ tH1 is an injective A-map.

Lemma 5.2. Let H be a subgroup of a group A, let ϕ : H→ A be a monomorphism and let G= A∗ϕ . Let
X be an A-set, let x, y ∈ X be in different A-orbits such that Ax =H, Ay = ϕ(H). If Z is the ϕ-coalescence
of X with respect to (x, y), and z= ρ(y), then:

1. the G-stabilizer Gz equals ϕ(H), and
2. the A-map j : X→ Z defined by the commutative diagram

G ×A X

X Z,

ρ

j

ı

is injective.

Proof. The inclusion ϕ(H)⊆Gz is a consequence of ρ being G-equivariant, ϕ(H)= Ay and ρ(y)= z.
Conversely, let g ∈Gz. Then g.y∼ y in G×A X, and it follows that there is an integer n≥ 1 and a sequence
w1, w2, . . . , wn of elements of G×A X such that g.y=w1, wn = y and wi and wi+1 are the components
of a basic relation (see the definition of coalescence). Since x and y are in different A-orbits in X, they
represent different G-orbits in G×A X, see the first item of Proposition 4.2. Hence, we have that wi = gi.x
if i is even, and wi = gi.y if i is odd, for some elements gi of G where g1 = g and gn ∈ φ(H). Note that
the integer n is odd, and the chain of basic relations between the wi’s in G×A X can be expressed as:

g1.y∼ g2.x∼ g3.y∼ g4.x∼ . . .∼ gn−1.x∼ gn.y.

By definition of basic relation, tg−1
2 g1 ∈ ϕ(H), tg−1

2 g3 ∈ ϕ(H), tg−1
4 g3 ∈ ϕ(H), tg−1

4 g5 ∈ ϕ(H), and so on
until tg−1

n−1gn ∈ ϕ(H). Since n is odd, we have that

g−1
1 gn = (tg−1

2 g)−1(tg−1
2 g3)(tg−1

4 g3)−1(tg−1
4 g5) . . . (tg−1

n−1gn) ∈ ϕ(H),

which implies g= g1 ∈ ϕ(H). This shows that Gz = ϕ(H)
Now we prove the second statement. By Lemma 4.2, the natural A-map X→G×A X is injective.

Observe that Z is obtained as a quotient of G×A X by the G-equivariant equivalence relation generated
by the basic relation t.x∼ y. Hence to prove injectivity of X→G×A X→ Z, it is enough to show that the
restriction to A.x∪ A.y is injective. Assume there are a1, a2 ∈ A such that a1.x and a2.x map to the same
element in Z. Then letting a= a−1

2 a1, both a.x and x map to the same element in Z. Hence, a.x∼ x which
implies that at−1.y∼ t−1.y. Therefore (ta−1t−1).y∼ y and thus by the first statement, ta−1t−1 ∈ ϕ(H), and
hence a−1 ∈ t−1ϕ(H)t=H. This results in a ∈H. Therefore, a−1

2 a1 ∈H and a1.x= a2.x. We have shown
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that the restriction A.x→ Z is injective. With a similar argument one can show that A.y→ Z is also
injective.

Definition 5.3 (Coalescence in graphs). Let H be a subgroup of a group A, let ϕ : H→ A be a monomor-
phism, and let G= A∗ϕ . Let X be an A-graph, let x, y ∈ V(X) such that x ∈ XH and y ∈ Xϕ(H). The
ϕ-Coalescence Z of X with respect to (x, y) is the G-graph with vertex set the ϕ-Coalescence of the
A-set V(X) with respect to (x, y), edge set G×A E(X), and attaching map E(Z)→ [V(Z)]2 defined as the
composition

E(X) [V (X)]2

E(Z) = G ×A E(X) G ×A [V (X)]2

[V (Z)]2

where the horizontal middle arrows are induced by the attaching map E(X)→ [V(X)]2 (see Lemma
4.2(3)) and the the bottom vertical map is induced by the quotient map G×A V(X)→ V(Z). Let ρ : G×A

X→ Z denote the induced G-morphism.

Remark 5.4 (Equivalent definition of coalescence). Equivalently, the ϕ-coalescence Z of the A-graph
X with respect to (x, y) is the quotient Z of the G-graph G×A X by the equivalence relation generated
by gt.x∼ g.y for all g ∈G.

Proposition 5.5. Let H be a subgroup of a group A, let ϕ : H→ A be a monomorphism and let G=
A∗ϕ . Let X be an A-graph, let x, y ∈X in different A-orbits such that Ax =H, Ay = ϕ(H). If Z is the
ϕ-coalescence of X with respect to (x, y), and z= ρ(y), then the following properties hold:

1. Gz = ϕ(H).
2. The map X ↪→G×A X−→ Z is an A-equivariant embedding.

From here on, we consider X as a subgraph of Z via this canonical embedding.
3. For every vertex v (resp. edge e) of Z, there is g ∈G such that g.v is a vertex (resp. is an edge

g.e) of X.
4. For every vertex v of X which is not in the A-orbit of x, Av =Gv where Gv is the G-stabilizer of

v in Z.
5. For every edge e of X Ae =Ge where Ge is the G-stabilizer of e in Z.
6. If the complex X/A has finitely many vertices (resp. edges), then Z/G has finitely many vertices

(resp. edges).
7. If X is connected, then Z is connected.
8. There is a G-tree T and a morphism ξ : Z→ T of G-graphs with the following properties: The

G-orbit of ξ (z) and its complement in the set of vertices of T make T a bipartite G-graph; the
preimage ξ−1(ξ (z)) is a single vertex; and if a vertex v of T is not in the G-orbit of ξ (z), then
the preimage of the star of v is a subgraph of Z isomorphic to X.

The following argument is analogous to the proof of Proposition 4.5.

Proof. The first and second statements are direct consequences of Lemma 5.2 when considering V(X)
and E(X) as A-sets. Items three to six follow directly from the definition of Z and Proposition 4.2.

Suppose X is connected. By Proposition 4.2, the graph G×A X is a disjoint union of copies of the
connected subgraph X, and hence any element in Z belongs to a translate of X by an element of G.
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Therefore, to prove that Z is connected, it is sufficient to show that for any g ∈G there is a path in Z
from z to g.z.

First observe that if there is a path from z to g.z, then there is a path from z to gt.z. Indeed, there is
a path from x to y in the connected subgraph X of G×A X, and hence there is a path from z= ρ(t.x) to
t.z= ρ(t.y) in Z. Therefore, there is a path from g.z to gt.z in Z, and in particular a path from z to gt.z.

Now observe that if there is a path from z to g.z, then there is a path from z to ga.z for any a ∈ A.
Indeed, there is a path from z to a.z in the connected A-subgraph X of Z. Hence, there is a path from g.z
to ga.z in Z, and in particular a path from z to ga.z.

To conclude, any g ∈G is a product of the form g= a1tθ1 a2tθ2 . . . antθn an+1 with ai ∈ A and θi =±1.
Therefore, an induction argument using the two previous statements shows that there is a path from z to
g.z in Z for every g ∈G.

Now we prove the eighth statement. Consider the barycentric subdivision T of the Bass–Serre tree
of the splitting G∗ϕ . Specifically, T is the tree with vertex set

V(T)=G/A �G/H

edge set

E(T)= {{gA, gtH} | g ∈G} � {{gA, gH} | g ∈G}.
Note that all the edges of T are G-translates of the following two edges attached at the vertex tH,

A
{A, tH}

tH tA
{tH, tA}

Suppose that the A-set V(X)= (⊔i∈I A/Ai

) � A/H � A/ϕ(H). Then

V(G×A X)=
(⊔

i∈I

G/Ai

)
�G/H �G/ϕ(H).

Since T is a simplicial graph, there is an induced G-equivariant morphism of graphs

ψ : G×A X→ T

defined on vertices by:

Ai �→ A, H �→H, ϕ(H) �→ tH.

Note that any edge in G×A X of the form {gAi, gaAj} for g ∈G and a ∈ A is collapsed to the vertex gA
in T; and edges of the form {gAi, gH} and {gAi, gtH} are mapped to the edges {gA, gH} and {gA, gϕ(H)} of
T , respectively. This map induces a G-equivariant morphism of graphs ξ : Z→ T such that the following
diagram commutes,

G ×A X

Z T.

ψρ

ξ

Indeed this diagram commutes since ψ is G-equivariant and ψ(tH)=ψ(ϕ(H)).
Observe that ξ (z)=ψ(tH) and ψ−1(tH)= {tH, ϕ(H)}, then ρ(tH)= ρ(ϕ(H)) implies that

ξ−1(ξ (z))= {z}.
By definition of T , if a vertex v is not in the G-orbit of ξ (z)= tH, then v ∈G/A. Hence, the partition

V(T)=G/A �G/H‘ makes T a bipartite G-graph. Any edge of starT(A) is of the form {A, atH} for some
a ∈ A. Hence, ξ−1(starT(A))= ρ(ψ−1(starT(A)))= ρ(X) and then the definition of Z implies that ρ(X) is
isomorphic X.

Proof of Theorem 3.2. The argument is the same as the one used to prove Theorem 3.1, the only
difference is the use of Proposition 5.5 instead of Proposition 4.5.
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6. Dehn functions and coarse isoperimetric functions

In this section, we recall the definition of coarse isoperimetric function of a graph and recall how one can
recover the relative Dehn function of a pair via Cayley–Abels graphs; see Theorem 6.4. In the second
part of the section, we discuss a technical result that provides bounds for coarse isoperimetric functions
of graphs based on maps into trees; see Proposition 6.6. These results are used to obtain bounds on the
relative Dehn function of fundamental groups of graph of groups based on the relative Dehn functions
of the vertex groups; see Corollary 1.6.

6.1. Coarse isoperimetric functions

A singular combinatorial map X→ Y between one-dimensional CW-complexes is a continuous map
such that the restriction to each open one-dimensional cell of X is either a homeomorphism onto an open
cell of Y or its image is contained in the 0-skeleton of Y . A singular combinatorial loop c : I→ X is a
singular combinatorial map such that its domain is a CW-complex homeomorphic to a closed interval.
The length Len(c) of c is defined as the number of open 1-cells of I that map homeomorphically to open
cells of X.

Let� be a connected graph, regard it as a CW-complex, and consider the path-metric on� obtained by
regarding each edge as a segment of unit length. Let k> 0. An k-filling of a singular combinatorial loop
c : I→ � is a pair (P,�) consisting of a triangulation P of the 2-disc D2 and a singular combinatorial
map � : P(1)→ � such that �|∂D equals the closed path c (after identifying the endpoints of the domain
of c) and the image under � of the boundary of each 2-cell of P is a set of diameter at most k in �.
Define |(P,�)| to be the number of faces of P and

area�k (c) := min{|(P,�)| : (P,�) an k-filling of c}.
The k-coarse isoperimetric function f �k : N→N of � is then defined to be

f �k (�) := sup{area�k (c) : Len(c)≤ �}.
We say that f �k is well defined if it takes only finite values. The graph � is k-fillable if f �k is well defined,
and � is fillable if it is k-fillable for some integer k. Note that if f �k is well defined then f �

�
is well defined

for all �≥ k.
For two functions f , g : N→N, define f 
 g if there exist constants C, K, L ∈N such that

f (n)≤Cg(Kn)+ Ln.

We say that f is asymptotically equivalent to g if f � g if f 
 g and g
 f .

Proposition 6.1. [4, Proposition III.H.2.2] If � and �′ are quasi-isometric connected graphs such that
� is fillable, then �′ is fillable and f �k � f �

′
k for all sufficiently large integers k.

We conclude the subsection recalling two results in order to deduce Corollary 6.4 which shows that
the relative Dehn function of a finitely presented pair is equivalent to coarse isoperimetric fuctions of
Cayley–Abels graphs.

The following theorem is a re-statement of a result of Osin; see [12, Prop. 4.8].

Theorem 6.2. [18, Thm. 2.53] Let G be a group and let H be a collection of subgroups. If�G,H is well
defined, then �̂(G, H) is fillable and �G,H � f �̂(G,H)

k for all sufficiently large integers k.

Theorem 6.3. [12, Theorem E] Let (G, H) be a finitely generated pair. If �̂(G, H) is fine and fillable,
then (G, H) is finitely presented and �G,H is well defined.
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As previously observed, the coned-off Cayley graphs of a finitely generated pair (G, H) are Cayley–
Abels graphs of the pair. Theorem 2.12 states that all Cayley–Abels graphs of a finitely generated pair
are quasi-isometric, and if one of them is fine then all of them are fine. Moreover, fillable and the class of
coarse isoperimetric functions are quasi-isometry invariants of graphs by Proposition 6.2. Putting these
results together with the two results above, and Theorem 2.11, one obtains the following corollary.

Corollary 6.4. Let � be a Cayley–Abels graph of finitely generated proper pair (G, H).

1. If�G,H is well defined, then� is fine and fillable, and�G,H � f �k for all sufficiently large integers
k.

2. If � is fine and fillable, then (G, H) is finitely presented and �G,H is well defined.

6.2. Relative Dehn functions and splittings

Let g : N→N be a function. Then g is superadditive if g(m)+ g(n)≤ g(m+ n). If g(0)= 0 then the
super-additive closure g : N→N of g is the function:

g(n)=max

{
k∑

i=1

g(ni) | k ∈N, ni ∈N,
k∑

i=1

ni = n

}
,

and it is an observation that ḡ is the least super-additive function such that g(n)≤ g(n) for all n. Note that
the requirement g(0)= 0 is necessary in order for ḡ to be well defined. An outstanding open question
raised by Mark Sapir is whether the Dehn function of any finite presentation is asymptotically equivalent
to a superadditive function [11].

Proposition 6.5. Let r : �→� be a retraction of graphs. If � is k-fillable, then � is k-fillable and
f �k (n)≤ f �k (n).

Proof. Let c : I→� is a singular combinatorial loop. If (P,�) is a k-filling of c in � then it is
an observation that (P, r ◦�) is a k-filling of c in �. Therefore, area�k (c)≤ area�k (c) and the result
follows.

The following proposition is the main technical result of the section.

Proposition 6.6. Let ξ : �→ T be a morphism of graphs where T is a bipartite tree, say V(T)=K ∪ L.
Suppose ξ−1(v) is a single vertex for every v ∈ L, and ξ−1(star(v)) is a connected subgraph for every
v ∈K. Let �= {ξ−1(star(v)) | v ∈K}.

If there is k> 0 such that each � ∈� is a k-fillable graph and
g(n) := sup{f �k (n) |� ∈�}<∞ for every n,

then � is k-fillable and
f �k (n)≤ g(n)

where g denotes the super-additive closure of the function g : N→N.

Proof. It is an observation that if c1 and c2 are singular combinatorial loops in � with the same initial
point, and both admit k-fillings, then the concatenated loop c1 · c2 admits a k-filling and

Len(c1 · c2)= Len(c1)+ Len(c2) and areak(c1 · c2)≤ areak(c1)+ areak(c2).

To prove that f �k (n)≤ g(n), we prove that if c : I→ � is a singular combinatorial loop in � then
area�k (c)≤ g(Len(c)).

Let c : I→ � be a singular combinatorial loop in �. Consider the loop ξ ◦ c in the tree T . The image
of ξ ◦ c is a finite subtree Tc of T . Let #Tc ∩K denote the number of vertices of Tc that belong to K. To
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the loop c assign the complexity |c| = (#Tc ∩K, Len(c)) ∈N×N. Consider the lexicographical order
on N×N, and recall that this is well-ordered set. We prove by induction on (#Tc ∩K, Len(c)) that
area�k (c)≤ g(Len(c)).

Base case |c| = (0, m). Suppose that Tc does not contain vertices in K. In this case, the bipartite
assumption on T implies that Tc consists of a single vertex v in L. Since ξ−1(v) is a single vertex of �, it
follows that c is constant path and hence Len(c)= 0 and area�k (c)= 0≤ g(0).

Base case |c| = (1, m). Suppose that the vertex set of Tc contains a single vertex in K, say v. Then the
bipartite assumption on T implies that Tc is a subgraph of star(v) and hence the image of c is contained
in the subgraph �= ξ−1(star(v)). By assumption, � is k-fillable, and hence there is k-filling of c in �
which is trivially also a k-filling in �. Hence,

area�k (c)≤ area�k (c)≤ f �k (Len(c))≤ g(Len(c))≤ g(Len(c)).

General case |c| = (n, m) with n≥ 2. For the inductive step, suppose that Tc ∩K has at least two
vertices in K. Without loss of generality, we can identify the domain I of c with the closed interval [0, 1]
(with some CW-structure). Since Tc is connected, the bipartite assumption on T , implies that Tc contains
a vertex v ∈ L such that v is not a leaf of Tc, in particular, Tc − {v} has at least two connected components.
Then (ξ ◦ c)−1(Tc − {v}) is a disconnected open subset of [0, 1]. Let J1 be the closure of a connected
component of (ξ ◦ c)−1(Tc − {v}). By changing the initial point of the loop c : I→ �, we can assume
that J1 = [0, α] for some α < 1. Let J2 = [α, 1], and let ci be the restriction of c to the interval Ji. Then ci

is singular combinatorial loop, and c is the concatenation c1 · c2. Since Tc − {v} is disconnected, it follows
that 0< Len(ci)< Len(c). Since #Tci ∩K ≤ #Tc ∩K, it follows that |ci|< |c|. Hence by induction

area�k (c)≤ area�k (c1)+ area�k (c2)

≤ g(Len(c1))+ g(Len(c2))

≤ g(Len(c1)+ Len(c2))= g(Len(c))

where the first inequality follows from the observation in the first paragraph of this proof, the second
inequality uses the induction hypothesis, and the third one uses that g is superadditive.

6.3. Proof of Theorem 1.6

Proof. The proofs of the first two statements are analogous, and the argument goes back to the method
of proof of the corresponding theorems in the introduction. The third statement is a consequence of the
second one; see the proof of Corollary 1.4(2).

We prove the first statement and leave the proof of the second statement to the reader. We remark that
the argument essentially reproves Theorem 1.2(2).

Let�i be a Cayley–Abels graph of (Gi, Hi ∪ {Ki}) for i= 1, 2. Then�i has a vertex xi with Gi-stabilizer
Ki. Let � be the C-pushout of G×G1 �1 and G×G2 �2 with respect to (x1, x2). Theorem 3.1 implies that
� is a Cayley–Abels graph of (G1 ∗C G2, H ∪ {〈K1, K2〉}). By Proposition 4.5(8), there is a morphism
of graphs ξ : �→ T that satisfies the hypothesis of Proposition 6.6, namely, T is a bipartite tree with
V(T)=K ∪ L such that ξ−1(v) is a single vertex for each v ∈ L, and ξ−1(star(v)) is isomorphic to �i for
some i= 1, 2 for every v ∈K. Corollary 6.4 implies that �1 and �2 are both k-fillable for some k. Then
Proposition 6.6 implies that � is k-fillable and

f �k 
max{f �1
k , f �2

k } �max
{

f �1
k , f �2

k

}
.

Then Corollary 6.4 implies that

�
max
{
�1,�2

}
.

On the other hand, the properties of the morphism �→ T imply that there is a retraction �→ �i and
hence Proposition 6.5 implies that f �i

k 
 f �k and therefore �i 
�.
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