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Abstract

In the United States, cardiovascular disease is the leading cause of death and the rate of maternal
mortality remains among the highest of any industrialized nation. Maternal cardiometabolic
health throughout gestation and postpartum is representative of placental health and physiol-
ogy. Both proper placental functionality and placental microRNA expression are essential to
successful pregnancy outcomes, and both are highly sensitive to genetic and environmental
sources of variation. Placental pathologies, such as preeclampsia, are associated with maternal
cardiovascular health but may also contribute to the developmental programming of chronic
disease in offspring. However, the role of more subtle alterations to placental function and
microRNA expression in this developmental programming remains poorly understood. We
performed small RNA sequencing to investigate microRNA in placentae from the Rhode
Island Child Health Study (n = 230). MicroRNA counts were modeled on maternal family his-
tory of cardiovascular disease using negative binomial generalized linear models. MicroRNAs
were considered to be differentially expressed at a false discovery rate (FDR) less than 0.10.
Parallel mRNA sequencing data and bioinformatic target prediction software were then used
to identify potential mRNA targets of differentially expressed microRNAs. Nine differentially
expressed microRNAs were identified (FDR < 0.1). Bioinformatic target prediction revealed 66
potential mRNA targets of these microRNAs, many of which are implicated in TGFp signaling
pathway but also in pathways involving cellular metabolism and immunomodulation. A robust
association exists between familial cardiovascular disease and placental microRNA expression
which may be implicated in both placental insufficiencies and the developmental programming
of chronic disease.

Introduction

As the leading cause of death in the United States, cardiovascular disease (CVD) is expected to
affect 44.1% of the population by 2035.! CVD has an extremely complex, multifactorial etiology,
where neither genetic nor environmental influences act alone to contribute to disease onset.>
There is growing body of literature linking maternal cardiometabolic health during pregnancy
to adverse cardiovascular health outcomes in offspring later in life.%* These developmental ori-
gins of long-term cardiovascular health outcomes are thought to be the consequence of changes
to placental physiology.

The state of a mother’s cardiometabolic health during gestation and postpartum is related to
the health and functionality of the placenta. As a central vascular organ overseeing fetal growth,
development and the intrauterine environment, proper functionality of the placental remains
central to successful gestational outcomes. Resting at the interface of the maternal and fetal envi-
ronment, the placenta participates in a variety of molecular processes, such as nutrient trans-
port, immunomodulation, and endocrine signaling, all of which are made possible through the
development of a villi-based vasculature system which allows for communication between
mother and offspring.® Maternal cardiovascular and metabolic conditions during pregnancy,
including type II diabetes, hypertension and hypercholesterolemia have been implicated in dys-
function of placental micro and macro-vasculature. In addition, pathophysiologic characteris-
tics of placental insufficiency, similar to those occurring in preeclampsia, manifests in
cardiovascular effects including hypertension and kidney malfunction.”® Additionally, such
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placental insufficiencies are associated with adverse gestational
outcomes, such as fetal growth restriction, which itself serves as
a significant risk indicator for the development of CVD later in
life.>"!! Physiological and functional abnormalities of the placenta
also serve as an indicator of maternal cardiometabolic health, as
well as newborn health outcomes that potentially manifest as risk
of chronic disease.'?1” Considering placental development occurs
concurrently with fetal heart development, and each organ utilizes
common humoral growth signals, such as transforming growth
factor-beta (TGFP) and vascular endothelial growth factor
(VEGF), deficiencies in the organogenesis of either organ may alter
the formation of the other, initiating physiological changes with
potential lifelong cardiovascular consequences.'®** While the
associations between maternal cardiometabolic risk factors, pla-
cental insufficiency and offspring lifelong health outcomes are well
defined,”®?! the molecular mechanisms by which this develop-
mental programming is established have yet to be robustly delin-
eated. Additionally, these overt placental pathologies are relatively
rare, and cannot account for the prevalence of CVD and deficien-
cies in maternal health, postpartum.

MicroRNAs (miRNA) are small noncoding RNA molecules
(~22 nucleotides) capable of post-transcriptional regulation of
gene expression. These molecules utilize base-pairing to bind to
the 3’-untranslated region of target mRNAs resulting in either
translational repression or mRNA degradation, by which the exact
mechanism largely depends on the degree of sequence comple-
mentarity between the miRNA and target mRNA. Dysregulation
of placental miRNA have previously been implicated in both pre-
eclampsia and fetal growth restriction, suggesting their potential
role as modifiers of newborn and maternal health outcomes in
response to various genetic and/or environmental conditions.'*”
17 However, many of these studies were conducted on small sample
sizes (n < 100), and largely focused on newborn outcomes as they
associate with placental miRNA expression as opposed to the rela-
tionship between gestational characteristics and expression of pla-
cental miRNA.!2-1517

To explore the influence of maternal familial CVD on the pla-
cental miRNA landscape, we utilized placental miRNA sequencing
data from the Rhode Island Child Health Study (RICHS; n = 230)
and examined the relationship between maternal family history of
CVD and placental miRNA expression. Through this clinical his-
tory variable we capture maternally inherited genetic risk of CVD,
as well as shared familial behaviors and environmental risk factors
that may associate with CVD, such as diet and exercise, that con-
tribute to the overall health of the gestational environment.>??
Bioinformatic target prediction was then used to identify potential
mRNA targets of miRNAs significantly associated with maternal
CVD risk, followed by overrepresentation analyses to characterize
the biological pathways in which these mRNAs participate.

Methods
Cohort

The RICHS is a cohort of mother-infant pairs from the Women &
Infants Hospital in Providence, Rhode Island, enrolled between
September 2010 and February 2013. All mothers were at least
18 years of age, had no life-threatening conditions, and delivered
singletons free of congenital/chromosomal abnormalities at or
after 37 weeks of gestation. All participants provided written
informed consent and all protocols were approved by the IRBs
at the Women & Infants Hospital of Rhode Island and Emory
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University, respectively. Data provided by this study include pla-
cental microRNA transcript abundance (n=230). Interviewer-
administered questionnaires were utilized to collect socio-
demographic and lifestyle data. Structured medical record review
was used to collect anthropometric and medical history data.
Maternal family history of CVD was reported and coded as a
binary variable (yes/no). Follow-up questions regarding which pri-
mary relative had been afflicted, coded as “mother,” "father,”
"brother,” and “sister.” Instances where the mother reported a fam-
ily history of CVD but did not identify a specific primary relative
were not included in the study in order to prevent improper clas-
sification of familial CVD incidence.

Tissue collection

Fetal placental samples from all subjects were collected as pre-
viously described.?® Briefly, placental samples were collected
within 2 h of birth; fragments were obtained two centimeters
(cm) from the umbilical cord and free of maternal decidua.
Collected tissue was immediately placed in RNA later solution
(Life Technologies, Grand Island, NY, USA) and stored at 4 °C
for at least 72 h. Subsequently, tissue segments were blotted dry,
snap frozen in liquid nitrogen, homogenized by pulverization
using a stainless steel cup and piston unit (Cellcrusher, Cork,
Ireland) and stored at —80 °C.

miRNA isolation and sequencing

Total RNA was extracted from placenta using the Qiagen
miRNeasy Mini Kit and a TissueLyser LT (Qiagen, Germantown,
MD, USA) following manufacturer’s protocol. Briefly, 25--35
mg of frozen, powdered placental tissue was placed in a 2 ml round
bottom tube with 700 ul of Qiazol Lysing Reagent and one 5 mm
stainless steel bead. The tissue was homogenized in a pre-chilled
tube holder on the TissueLyser LT for two, 5-min cycles at
30 Hz. The resulting homogenate was processed with the Qiagen
miRNeasy Mini Kit with on-column DNAse digestion and eluted
in 50 pl RNase-free water. The RNA was quantitated on a NanoDrop
(Thermo Fisher, Waltham, MA, USA) and quality checked on Agilent
Bioanalyzer using the Agilent RNA 6000 nano kit (Agilent, Santa
Clara, CA, USA). Single end, 1 X 50 bp next generation sequencing
of placental miRNA was performed by Omega Bioservices (Norcross,
Georgia) as previously described.*

miRNA seq processing and QC

Raw FASTQ reads obtained from a total of 230 RICHS samples
were subject to adaptor trimming with cutadapt v1.1634. The 3’
adaptor sequence were trimmed (TGGAATTCTCGGGTGCC
AAGG) and then four bases were trimmed from each end of the
read following vendor’s recommendation (BIOO Scientific,
Austin, TX). We then used trimmed reads and miRDeep2 to quan-
tify microRNA.* miRDeep2 was used to first perform alignment
using bowtiel with human genome hg38.2° The ‘Quantifier’ mod-
ule in miRDeep2 was used to obtain raw counts of microRNAs
with miRbase version 22.%

Transcript filtering and normalization

Raw miRNA counts were imported into DESeq2 for normalization
and differential expression analysis. Only miRNA transcripts with
more than one count per million in at least 10 percent of samples
were included, leaving 802 miRNA transcripts to be analyzed of the
initial 2656 sequenced transcripts. Dispersion estimates were then
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calculated, followed by generation of median ratio size factor esti-
mates to normalize counts for analysis with in DESeq2.®
Normalized counts were then exported from DESeq2 for
Surrogate Variable Analysis (SVA). The Variance Stabilization
Transformation (VST) was applied to count matrices to yield
approximately normalized and log,-transformed abundances,
which were utilized in correlation analyses.?*

Statistical Analyses

SVA

In an effort to adjust for unknown confounders, such as cell-type
heterogeneity and unmeasured sources of technical variation, sur-
rogate variables were estimated for normalized miRNA transcript
reads using the sva package.”>* The full model used in the svaseq
includes variation attributable to family history of CVD while the
null model included only an intercept term. One surrogate variable
was utilized as a covariate in our differential expression analysis.

DESeq? differential expression analysis

miRNA transcript counts were modeled using a negative binomial
generalized linear model to identify differentially expressed tran-
scripts in DESeq2.*° For each of the 802 individual miRNA tran-
scripts which passed strict filtering and quality criteria, the
variance stabilized transformed transcript abundance was
regressed on the history of familial CVD (No =0, Yes = 1), while
adjusting for the first surrogate variable to control for unknown
confounders.?** We considered miRNAs with a false discovery
rate (FDR) less than 10% to be considered a differentially expressed
miRNA (DemiR) with respect to family history of CVD. Extensive
sensitivity analyses were performed by including various parame-
ters as covariates to the original model to assess the robustness
DemiR effect sizes (Supplementary Fig. S1).

Target prediction and filtering

Potential DemiR targets were identified using miRDIP, an online
database of miRNA target predictions.>! Only targets within the
top 1% of confidence scores were returned. However, given that
miRNA do not require perfect complementarity with a target
mRNA and can only target mRNAs expressed in the examined tis-
sue, bioinformatic target prediction is prone to generating false
positives. To enhance our dataset with true miRNA:mRNA rela-
tionships we utilized pre-existing, parallel total RNA sequencing
data in RICHS.”* We then calculated Pearson correlation coeffi-
cients for each miRNA:mRNA pair utilizing normalized miRNA
and mRNA sequencing counts from RICHS.”* Only miRNA:
mRNA target pairs with negative correlation coefficients (g-
value < 0.05) were returned to be used in network and pathway
analyses. Correlation coefficients ranged between -0.41 and -0.21.

Pathway analysis

Predicted DemiR targets were tested for pathway overrepresenta-
tion within ConsensusPathDB (CPDB),*>* against all genes that
passed general QC filtering in RICHS whole transcriptome
RNA-seq analysis.?**>33 CPDB utilizes 12 separate biological path-
way databases, and calculates an enrichment p-value from the
hypergeometric distribution of genes in the list of miRNA targets
and the pathway gene set. Only mRNAs that were expressed > 1
cpm in at least 10% of the RICHS samples were included as the

https://doi.org/10.1017/52040174422000319 Published online by Cambridge University Press

J. M. Tehrani et al.

Table 1. Demographic characteristics of RICHS participants included in the
miRNA sequencing analysis (n = 230)

Maternal characteristics

Age (yrs) - mean (range) 30.9 (18-40)

Family history of CVD (Yes) - % (n) 49% (112)

Race (white) - % (n) T7% (178)
Pregnancy smoking - % (n) 9% (20)
Pre-pregnancy body mass index (BMI) 26.5 (16-46.7)

(kg/m?) - mean (range)

Pre-pregnancy BMI group

Normal and underweight - % (n) 51.3% (118)

Overweight - % (n) 27.0% (62)

Obese - % (n) 21.7% (50)

Infant Characteristics

Gestational age (wks) - mean (range) 39.4 (37-41.4)

Sex (female) - % (n) 49% (113)

Birthweight (g) - mean (range) 3563.7 (2030-5465)

Birthweight group

Small for gestational age (SGA) - % (n) 14.3% (33)

Average for gestational age (AGA) - % (n) 54.3% (125)

Large for gestational age (LGA) - % (n) 31.3% (72)

background for the pathway analysis.?* FDRs were calculated from
the enrichment p-values, and a g-value less than 0.05 was consid-
ered a significant enrichment of miRNA targets in the tested
pathway.

Results

This study analyzed miRNA sequencing data from 230 placentae
from the RICHS. The demographics of the participants are dis-
played in Table 1. In general, placentae collected in this study were
from full term pregnancies (>37 weeks), all from relatively healthy
mothers who did not experience serious pregnancy complications.
Forty-nine percent (n=113 of 230) of maternal participants
reported a family history of CVD, and forty-nine percent (n =112
0f230) were either overweight or obese, n = 57 of those also report-
ing a family history of CVD.

To analyze the association between maternal family history of
CVD and placental miRNA expression, we performed differential
expression analysis using negative binomial generalized linear
models constructed in DESeq2 on placental small RNA sequencing
data. We identified nine Differentially Expressed miRNAs
(DEmiRs) associated with familial CVD history (FDR < 0.1), four
of which (miR-1246, miR-324-5p, miR-1307-3p, and miR-520a-
3p) met a strict Bonferroni threshold (p-value < 6.23e-05) (Fig. 1).
Sensitivity analyses were performed to adjust for various biological
and technical covariates (RNA integrity, flow cell lane, pregnancy
smoking, maternal race, infant sex and infant birth weight percen-
tile) in order to characterize the robustness of DEmiR effect sizes,
and the DEmiR log, fold changes were strikingly consistent
even with these additional adjustments to the original model
(Supplementary Figs S1 and S2).
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Bioinformatic targets of all nine DEmiRs were predicted using
the miRNA Data Integration Portal (miRDIP).*! miRDIP pre-
dicted 4516 targets across all nine DEmiRs. To enhance our data-
set with true miRNA:mRNA relationships, existing mRNA
sequencing data from RICHS samples were used to calculate
Pearson correlation coefficients were calculated between normal-
ized miRNA and mRNA sequencing counts. Only miRNA:
mRNA pairs where the transcript abundance of a DEmiR and
its miRDIP predicted target were negatively correlated (p-value <
0.05) were considered in downstream pathway analyses. This
correlation-based filtering revealed 7 DEmiRs and 66 predicted
mRNA targets (Supplementary Table S1).2*

The 66 predicted DEmiR targets were tested for pathway over-
representation within ConsensusPathDB (CPDB).>43233 Pathways
related to TGFp signaling, cellular metabolism, and immuno-
modulation were overrepresented among DEmiR targets
(g-value < 0.05). These enrichment results are largely driven
by targets of miR-574-5p, miR-324-5p, miR-326 and miR-
520a-3p (Supplementary Table S1).

Discussion

Maternal mortality rates in the United States are higher than any
other industrialized country and continue to rise. More than 15%
of these deaths are caused by CVD-related health complications,
and over half of these deaths have been deemed preventable as they
occur postpartum, increasing the opportunity for intervention.**
Physiological and functional abnormalities of the placenta serve
as an indicator of maternal cardiometabolic health, as well as new-
born health outcomes that potentially manifest as risk of chronic
disease.!?"'” While our study does not investigate placentae from
mothers diagnosed with CVD, the chronic nature of the disease
provides a unique opportunity to study how the accumulation
of genetic and environmental insults, such as those suggested by
familial CVD, influences placental functionality and the molecular
mechanisms governing adverse gestational outcomes and the
developmental programming of chronic disease.

Our small RNA-seq analysis identified fetoplacental miRNAs
whose expression associate with maternal family history of CVD
(Fig. 1). The expression of microRNAs is known to be sensitive
to various gestational environments, including maternal obesity
and hypoxia.*>*® Oxidative stress resulting from the potential
comorbidities of familial CVD throughout gestation may contrib-
ute to the dysregulation of placental miRNAs. There is also a
known relationship between genetic variation specific to CVD,
and various facets of miRNA biogenesis, activity and function,*”*
where genetic risk of disease may ultimately be influencing the
expression of placental miRNAs and further disrupting the biologi-
cal pathways they regulate. Fetal inheritance of maternal CVD
genetic risk alleles may be relevant to the transcript abundance
of specific miRNAs if a quantitative relationship exists between
specific genetic loci and microRNA expression levels within the
placenta, similar to those previously identified within RICHS pla-
centae on the mRNA level.*

The functional relevance of miRNAs is largely dictated by the
mRNAs available for them to interact with. These interactions are
heavily influenced by the tissue of origin of both miRNAs and their
target mRNAs. While many of the DEmiRs we identified (miR-
324-5p, miR-520a-3p, miR-574-5p, miR-326) are implicated in
cardiometabolic conditions during pregnancy, including preec-
lampsia and diabetes,’0** their functional role remains largely
understudied in the context of placental physiology.
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Pathway overrepresentation analyses of DEmiR predicted tar-
gets overwhelmingly suggested TGFp signaling to be influenced by
dysregulation of placental miRNAs whose expression associates
with maternal family history of CVD (Table 2). TGFf signaling
encompasses a large family of genes that participate in a myriad
of cellular processes, but these genes are particularly important
to vascular tissues for neovascularization as well as remodeling
and repair of existing tissue.**

Among our predicted DEmiR targets, specifically those of miR-
574-5p, are SMAD2 and SMAD4; two activators and nuclear trans-
locators of the SMAD-dependent TGFf pathway, whose dysregu-
lation are implicated in preeclampsia pathogenesis in human
umbilical vein cells (HUVEC) in vitro.*>*” SMAD2/4 also appear
frequently throughout the various biological pathways reported as
overrepresented, many of which contribute toward TGFp signaling
(including activin and nodal signaling pathways), highlighting
their importance to a diverse set of endothelial cellular processes
and placental physiology as a whole (Table 2).8

TGEFp signaling in the placenta is known to play critical roles in
preimplantation and initial decidualization, and is also active
throughout gestation in endometrial remodeling.*>*¢ While neo-
vascularization is required for successful fetal development, aber-
rant regulation of the signaling pathways overseeing this process
may lead to improper vessel network development in the form
of hypervascularization or vasculature malformation.**® MiR-
574-5p was found to increase in expression with respect to mater-
nal family history of CVD, and was also negatively correlated with
two TGFp pathway activators SMAD2 and SMAD4. The upregu-
lation of miR-574-5p may lead to deficient SMAD2/4 levels,
therefore preventing downstream activation of the TGFp path-
way (Fig. 2). This inhibition may result in broad changes to endo-
thelial function in the placenta, leading to less optimal placental
vasculature networks, or to the construction of immature vessels,
ultimately manifesting as placental insufficiencies, and conse-
quently, adverse gestational outcomes.

While miR-1246 was also shown to increase in expression with
respect to maternal family history of CVD, its predicted targets did
not pass our strict filtering criteria to be included in the pathway
analysis. However, increased expression of miR-1246 has been
shown to also promote angiogenesis through activation of TGFf sig-
naling via VEGF-mediated angiogenic pathways in HUVEC in vitro,
but the exact mechanism by which this activation is achieved is not
well understood.’® The diverse regulatory potential of miR-574-5p
and miR-1246 in overseeing multiple facets of the TGFf pathway,
and their dysregulation with respect to maternal family history of
CVD, suggests an intricate balance of both positive and negative
regulatory phases of endothelial processes that may be sensitive to
both genetic and environmental risk factors associated with CVD.

These endothelial abnormalities are associated with placental
insufficiencies, which, in turn, could result in adverse newborn
health outcomes, acute maternal cardiometabolic complications
and lifelong risk of chronic disease in offspring. This relationship
between placental physiology and gestational outcomes in both
mother and offspring may allow placental miRNAs to serve as bio-
markers for risk of postpartum maternal cardiometabolic health
complications as well as for early life chronic disease risk indicators
in offspring, providing an opportunity for clinical implementation
of early intervention and preventative measures to potentially alle-
viate the societal burden of CVD.!#1952

While the data presented here are incapable of concluding the
direct impact of placental miRNA dysregulation, there is a growing
body of literature, as well as the associations outlined here, that
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Fig. 1. Placental miRNA associates with maternal family history of CVD. (a) Volcano plot representing the results of the differential expression analysis. The y-axis shows the-
log10(p-values) in the association of each miRNA with family history of CVD. The x-axis displays the effect estimates in units of log2 fold change in each miRNA’s transcript
abundance in individuals with familial incidence of CVD. 9 miRNAs are significantly (FDR <0.1) associated with familial CVD history and 4 of those (square shaped) reach are
significant after Bonferroni correction (p-value < 6.23e-05). (b) Estimates of log2 fold change of miRNA transcript abundance of miRNAs significantly associated with familial
CVD history. Squares represent the effect size estimate, while error bars represent standard error of the effect size estimate.

suggest dysregulation of placental miRNAs may be contributing to
the developmental programming and propagation of chronic dis-
eases, such as CVD. However, these findings should be interpreted
within the context of this study’s limitations. Further work validat-
ing the pathophysiological significance of the dysregulated placen-
tal miRNAs identified here should be conducted prior to
application in public health and/or clinical settings, including both
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replication of these findings, as well as experimental studies to bet-
ter demonstrate underlying mechanisms.

This study only includes term placentae from live births, where
premature births and other birth defects were excluded. The cross-
sectional design of this study limits the interpretation of miRNA
associations temporally, and may not be representative of
miRNA associations throughout gestational development. This
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Table 2. DEmiR target pathway enrichment analysis results
Pathway Enriched pathway components p-Value  g-Value  Source
Signaling by Activin SMAD4; ACVR2B; SMAD2 2.5E-05  0.00196  Reactome
Signaling by NODAL SMAD4; ACVR2B; SMAD2 2.5E-05 0.00196  Reactome
Activation of BAD and translocation to mitochondria AKT3; YWHAQ; BCL2 6.8E-05 0.00278 Reactome
Intrinsic Pathway for Apoptosis AKT3; BCL2L1; YWHAQ; BCL2 7.7TE-05 0.00278 Reactome
The NLRP1 inflammasome BCL2L1; BCL2 8.8E-05 0.00278 Reactome
Role of Calcineurin-dependent NFAT signaling in lymphocytes RAN; BCL2L1; YWHAQ; BCL2 1.7E-04  0.00435 PID
Downregulation of SMAD2/3:SMAD4 transcriptional activity SMAD4; NEDD4L; SMAD2 1.9E-04 0.00435 Reactome
Platelet degranulation APP; APLP2; PHACTR2; TAGLN2; CALU  3.4E-04 0.00665  Reactome
Response to elevated platelet cytosolic Ca** APP; APLP2; PHACTR2; TAGLN2; CALU  4.0E-04 0.00697 Reactome
Activation of BH3-only proteins AKT3; YWHAQ; BCL2 5.1E-04 0.00812  Reactome
TGF-beta receptor signaling activates SMADs SMAD4; NEDDA4L; SMAD2 6.9E-04  0.00990 Reactome
BH3-only proteins associate with and inactivate anti-apoptotic BCL2 members ~ BCL2L1; BCL2 8.1E-04  0.01064 Reactome
Class | PI3K signaling events mediated by Akt AKT3; BCL2L1; YWHAQ 9.0E-04 0.01093  PID
TGF-Core SMAD4; ACVR2B; SMAD2 9.8E-04 0.01103 Signalink

) [ ]
o ® 0 )
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3 I =]
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ola
wiIN

.
Smad2 £
Smad3
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‘EMT
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------- o>

Fig. 2. Regulation of TGFf signaling in the placenta via miR-574-5p mediated SMAD2/4 regulation. SMAD2 serves as an activator of the TGFf} pathway, and SMAD4 serves as a
nuclear translocator. The mRNA transcripts of these genes are both predicted targets of miR-574-5p, and their dysregulation within the placenta may impact various TGFp-con-
trolled processes in endothelial cells throughout gestation, including: neovascularization, angiogenesis, vascular remodeling, epithelial to mesenchymal transitions, and overall
placentation. Adapted from “TGFb Signaling Pathway”, by BioRender.com (2019). Retrieved from https://app.biorender.com/biorender-templates.

study relies on self-reported family history of CVD, and which
may ultimately lead to variation in results attributable to recall
bias. While we tested for various confounders to the best of
our ability, there is still a possibility of unmeasured confounding
which remains in our analysis. Lastly, the RICHS cohort consists
predominantly of healthy, white mothers and their offspring
from the New England region of the United States, potentially
limiting the ability of these results to be generalized to those with
acute cardiometabolic complications, and to more racially diverse
populations.
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Conclusion

MiRNAs serve as an important form of post-transcriptional gene
regulation during early development, and are sensitive to both
genetic and environmental conditions. Here we have shown that
the expression of 9 placental miRNAs are associated with maternal
family history of CVD, and that the mRNA targets of these
miRNAs largely play a role in TGFp signaling, indicating their
involvement in endothelial cell functionality and placental physi-
ology as a whole. Dysregulation of miRNA expression in the
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placenta may contribute to adverse newborn and maternal health
outcomes, ultimately playing a role in the developmental program-
ming of chronic diseases, including CVD.
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