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Abstract

Substrate independence and mind-body functionalism claim that thinking does not depend on
any particular kind of physical implementation. But real-world information processing depends
on energy, and energy depends onmaterial substrates. Biological evidence for these claims comes
from ecology and neuroscience, while computational evidence comes from neuromorphic
computing and deep learning. Attention to energy requirements undermines the use of substrate
independence to support claims about the feasibility of artificial intelligence, the moral standing
of robots, the possibility that wemay be living in a computer simulation, the plausibility of trans-
ferring minds into computers, and the autonomy of psychology from neuroscience.
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1. Introduction
In the Matrix movies, people are kept in a computer-generated dream world
because intelligent machines are using human bodies as a power source. This story
is ridiculous because bodies are inefficient batteries, but it does suggest the impor-
tance of energy to minds and computers. Without energy, there is no thinking and no
computation. Nevertheless, most reflections on mind and computation ignore the
impact of energy on processing information that supports intelligence.

Unavoidable tradeoffs between energy and information undermine claims that
have been made about the relations between minds, bodies, and computers, including
substrate independence, mind-body functionalism, and multiple realization. Facts
about energy requirements reveal flaws in the arguments that have been made
for these claims. Recent advances in biology concerning the relation between infor-
mation and metabolism converge with new ideas in computer science about tracking
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the inference to energy ratios of computing platforms. These developments substan-
tially reduce the plausibility of substrate independence.

1.1 Substrate independence, functionalism, and multiple realizability
Substrate independence is the hypothesis that mind and computation do not depend
on any particular kind of physical implementation (Bostrom 2003; Tegmark 2017).
Thinking and computing can potentially operate in many different substances
including brains, digital computers, analog computers, and force fields in space aliens.

The term “substrate independence” is a relatively new (post-2000) characteriza-
tion of a philosophical position called “functionalism” that Levin (2018) characterizes
as follows:

Functionalism is the doctrine that what makes something a thought, desire, pain
(or any other type of mental state) depends not on its internal constitution, but
solely on its function, or the role it plays, in the cognitive system of which it is a
part. More precisely, functionalist theories take the identity of a mental state to
be determined by its causal relations to sensory stimulations, other mental
states, and behavior.

Functionalism originated in the 1960s in arguments of Hilary Putnam (1975) that
minds can abstractly be considered as Turing machines with operations independent
of whether they are performed by brains or particular kinds of computers. I prefer the
term “substrate independence” to “functionalism”, which has very different mean-
ings in other fields such as sociology, psychology, education, and engineering.

Arguments for substrate independence and functionalism are often based on exam-
ples of multiple realization where similar kinds of thinking or computation occur in
different physical systems (Bickle 2020; Polger and Shapiro 2016). For example, percep-
tion and inference operate in octopus brains, which are organized very differently from
human brains, and Microsoft Word and other software programs run equally well in
different brands of computers. Energy considerations show that multiple realizability
is much more limited than suggested by thought experiments.

1.2 Why substrate independence matters
The doctrine of substrate independence has implications for many important questions
in science, engineering, and philosophy. It supports the possibility of computer systems
with human-level intelligence understood as abstract information processors rather
than as dependent on details about brains and bodily inputs (Tegmark 2017). Full arti-
ficial intelligence appears more feasible if substrate independence is true, although it
might be achievable by engineering feats that ignore how human minds work.

Substrate independence would also make it more plausible that computers could
eventually have moral status that justifies attributing praise and blame to them on
ethical grounds (Bostrom and Yudkowsky 2014). Computers are not yet known to be
conscious, but substrate independence implies that consciousness does not depend on
any special causal powers of human brains, so that AI could eventually be conscious
and capable of the kinds of feelings that make people responsible for their actions.
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Substrate independence is also an undefended premise in arguments that we may
now be living in a computer simulation (Bostrom 2003; Greene 2018). If powerful
computers could fully simulate these human minds in ways not determined by
how brains work, it is conceivable that what we take to be our own daily experiences
are just simulations running on some big computers.

Substrate independence would also increase the viability of allowing people to
survive death by uploading their minds into digital computers (Blackford and
Broderick 2014; Kurzweil 2005, 2012; Schneider 2019). If your thoughts are just
abstract computations not dependent on the details of how your brain works, then
immortality beckons.

Substrate independence also offers a general strategy for cognitive science, the
interdisciplinary investigation of mind and intelligence. In contrast to the increasing
influence of cognitive neuroscience in many areas of psychology and philosophy,
cognitive science could operate with more abstract computational considerations
independent of the details of brains that use neurons, neurotransmitters, hormones,
and other biological mechanisms. The importance of these questions about brains,
artificial intelligence, computer simulation, and the relation between psychology
and neuroscience demand assessment of the plausibility of substrate independence.

1.3 Energy
In ordinary language, energy is vaguely the capacity for vigorous activity, but I will
use the technical definition from physics. Energy is the capacity for doing work, which
is defined as force times distance moved. Energy comes in different forms including
kinetic (motion), potential (stored), and thermal (molecular motion), all of which are
capacities for applying forces over distances. Power is the energy or work per time
interval, typically measured in watts, which are joules per second, where a joule is a
measure of force through a distance.

The operations of brains and computers depend on mechanisms, which are combi-
nations of connected parts (entities) whose interactions (activities) produce regular
changes that accomplish results (Bechtel 2008; Craver and Darden 2013; Glennan 2017;
Thagard 2019b). All mechanisms require energy to carry out the required interac-
tions. In brains, the main parts are neurons that use glucose as their primary energy
source to carry out changes such as the firing of one neuron exciting or inhibiting the
firing of other neurons. In contrast, the main parts of computers are silicon chips
connected by wires using electrons to process information within and between chips.
Substrate independence assumes that there is no important difference between
chemical energy in brains and electrical energy in computers.

2. Why energy matters
The Turing machine is not a mechanism, but rather a mathematical model in the form
of an abstract device that manipulates symbols on a strip of tape according to rules.
The unreality of Turing machines is evident from the infinite length of the tape and
the absence of a power source for the manipulation of symbols. Turing machines
operate independently of the bounds of time, space, and energy.

In contrast, physical computers and brains are bounded in time and space and are
subject to energy limitations. Real systems take inputs from their environments, process
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information about those inputs, and act on the environments by outputs such as
communication and physical actions. Energy usage in cognitive systems has five impor-
tant characteristics concerning limits, costs, consumption, efficiency, and tipping points.

1. Energy is limited. For all systems, whether electrical or biochemical, environ-
ments provide only a finite amount of energy to fuel their operations.
Biological systems are limited by getting enough food to provide the glucose
that makes neurons function. Electrical systems are limited by the availability
and cost of electricity.

2. Acquiring energy has costs. Even when energy is available in the environment,
there are costs associated with acquiring it. Biological systems spend time and
energy in gathering and storing food. Owners of electrical systems must pay
for electricity and the infrastructure that delivers it such as generating
stations and transmission lines.

3. Input, output, and processing of information expend energy. Mechanisms consume
energy to sense environments by supporting biological organs such as eyes
and ears or by supporting electrical sensors such as cameras and micro-
phones. Processing information acquired by the senses also requires energy
in forms such as the glucose used by neurons or the electricity used by digital
computers. Outputs in the form of actions on the environment can be partic-
ularly expensive because of the glucose required to move muscles and the
electricity required to control motors in robots.

4. Energy must be used efficiently. Because gaining energy is costly, cognitive
systems must ensure that they get a good ratio of production to energy.
Biological systems need to balance their acquired food against amounts of
perception, cognition, and action, and electrical systems also need to balance
electricity usage against amounts of sensing, processing, and moving.
Relevant measures of energy efficiency include perceptions/calories in
biological systems and inferences/joules in electrical systems, where one
calorie equals approximately 4.18 joules. According to Lane and Martin
(2010) and Szathmáry (2015), a major evolutionary transition occurred when
the acquisition of mitochondria allowed cells to have more energy per gene.

5. Qualitative tipping points are energy-sensitive. Quantitative changes in energy use
can tip into qualitative changes when critical thresholds are passed. For
example, if a biological organism drops below a quantity of energy acquisition
needed to sustain its body, it will undergo the qualitative change of death by
starvation. If an electrical system uses unsupportable quantities of electricity,
it will undergo the qualitative change of being discarded by its users.

Let us now examine in more detail how these five characteristics operate in biolog-
ical and computational systems. Here is a sketch of my general argument:

1. Real-world information processing depends on energy.
2. Energy depends on material substrates.
3. Therefore, information processing depends on material substrates.
4. Therefore, substrate independence is false.

This argument is not strictly deductive as “depends on” may not be transitive. The
sketch needs to be fleshed out by considering evidence for premises 1 and 2 in

Philosophy of Science 73

https://doi.org/10.1017/psa.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.15


biological and computational systems. My conclusion is not that substrate indepen-
dence is always false, just that there are important real-world cases where it fails.

3. Energy and information in biology
Different forms of energy are convertible into each other, for example, when the
chemical energy in gasoline is converted into mechanical energy to move a car.
But conversion is subject to the five characteristics of limits, costs, efficiency,
consumption, and tipping points. Using gasoline to power cars will not work well
if there is little gasoline extractible from the environment, the cost is too high,
consumption is excessive or inefficient, or there are tipping points leading to quali-
tative failures. These problems are evident, most generally, in the field of ecology and,
more specifically, in neuroscience.

3.1 Ecology
Whereas the cognitive sciences have long attended to information processing while
ignoring energy, the field of ecology has long attended to metabolism while
neglecting information. O’Connor et al. (2019, 3) reorient ecology by proposing five
principles that integrate information into ecological understanding.

Principle 1: Information is a fundamental feature of living systems, and therefore,
also of all ecological systems.

Principle 2: Syntactic and semiotic information interact in feedbacks, with energetic
processes and material cycles, to influence structure, function and organization in
ecological systems.

Principle 3: Information processing requires energy and materials; therefore, supply of
energy and materials and thermodynamic constraints can limit information processing

Principle 4: Information processing allows components of living systems to measure
the environment and their own state and to measure the relationship between their
state and past and expected environments.

Principle 5: Information processing systems are linked within and across scales of
biological organization.

Principles 2 and 3 are the most relevant to energy and substrate independence.
O’Connor et al. use the terms “syntactic” and “semiotic” as follows:

Syntactic information exists in any spatial or temporal arrangement of events or
objects, including the species or functional diversity of a set of interacting
species : : : the notes and rhythms in a bird’s song, or temporal pattern of
sunrise and sunset. (2019, 3)

Information contained in structure, reflecting the structure’s history, can (but
does not need to) represent signs or symbols that convey meaning as interpreted
by an observer (semantic information : : : ). Semiotic information is the content
and the quality of semantic information as it is carried by signs (2019, 3–4).

Both kinds of information relate to energy. Syntactic information in the form of non-
random organization is made possible by work done with energy in the environment.
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Spatial and temporal arrangements such as bird songs require energy expenditures to
produce them. For semantic information, the acquisition of meaning through
perceptual-motor interactions with the world requires energy in the form of light,
sound, or muscular motion.

O’Connor et al. (2019) stress the interdependence of information with energy and
material systems. Energy is required to create, maintain, and process information.
Thus, the new emphasis on information in ecological theory ties it closely with
considerations about energy, providing support for my premise that information
processing is dependent on energy. The kinds of energy used in biological systems
such as sense organs and muscles is dependent on their material constituents. For
example, hearing depends on material structures of the outer, middle, and inner
ear that gain their energy from glucose fueling for cells. Movement depends on
similar fueling for muscle cells.

Metabolism is the sum of chemical reactions that sustain life, including conversion
of food to energy, the conversion of food and fuel to structures such as proteins, and
the elimination of wastes. The principles of O’Connor et al. (2019) indicate the rele-
vance of information to metabolism because organisms use representations with
syntactic and semantic properties to help them in finding food that fuels metabolism.
Energy and information are interdependent in that an organism needs energy to
acquire and use information, but it also uses information to acquire energy by gath-
ering food. All organisms and hence the ecologies in which they operate are therefore
subject to balances between energy and information. Information is not just struc-
tured data, code, or text, but must also be stored, manipulated, sent, and received
in processes that require energy.

3.2 Brains
Brains are often considered to be information processors, but they are also notable as
energy users. A 3-pound brain in a 150-pound body has only 2% of its weight but uses
around 20% of its energy (Raichle and Gusnard 2002). The brain has around 86 billion
neurons whose operation requires continuous supplies of glucose. Billions of neurons
build up electrical charges and send electrochemical signals to approximately 10,000
neurons often more than 100 times per second. The expended energy in each neuron
needs to be replaced by blood transport to neurons and glia cells that support them.
When blood supplies are blocked by mechanism failures such as strokes, heart attacks,
and asphyxiation, neurons die.

The correlation between brain size and intelligence is imperfect, as elephants and
some species of whales have brains with more volume and neurons than humans. But
more neurons usually means more intelligence, especially when the neurons operate
in brain areas associated with complex problem solving such as the prefrontal cortex.
Adding neurons, however, poses an evolutionary problem because of their intense
energy needs. For brains to get bigger, food acquisition needs to increase despite
the limitations of environmental ability, number of hours available for foraging,
and energy cost of acquiring food.

Susanna Herculano-Houzel (2016) describes the steady increase in sizes of primate
brains from lemurs to gorillas but notes the dramatic increase in human brain size
that occurred in Home erectus around 1.5 million years ago. Following Wrangham
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(2009), she attributes increased brain size to the invention of cooking, which makes
meat and plants much easier to digest and energy intensive. Because cooking dramat-
ically increased energy efficiency, humans could evolve larger brains without having
to spend more time and energy searching for additional food supplies.

Quantitative increases in human brain size led to qualitative tipping points in
human intelligence with emergent capabilities not found in other animals. Around
50–100,000 years ago, large human brains became capable of recursive thought that
provided capabilities for language, art, and tools that make tools (Corballis 2011;
Coolidge and Wynn 2018). Recursion requires the interaction of large numbers of
neurons capable of representations of representations (Thagard 2021). Without the
efficiency of cooking and the development of large brains, humans would not be
capable of the energy/information balance that eventually made human civilization
possible. Less than 15,000 years ago, the invention of agriculture provided sufficient
food sources that led to dramatic increases in the number of humans as well as the
development of productive practices such as writing, counting, and using complex
machines.

Thus, the evolution of human intelligence has been energy-dependent in several
ways. Acquisition of sufficient food was essential to evolution of larger primate brains
and got a large boost from the invention of cooking. Changing energy availability
through cultivating crops and domesticating animals enabled the formation of larger
human groups such as cities and divisions of labor necessary for many cultural
advances. Moreover, the ways in which humans use energy in information processing
is heavily dependent on the particular kinds of matter that operate in human brains –
the intense but efficient operation of billions of glucose-supplied neurons.

For organisms in general and for human brains in particular, these considerations
show that information processing depends on energy, which depends on the material
substrate. Here “depends” means that information acquisition, processing, and appli-
cation are causally affected by mechanisms with particular kinds of parts, interac-
tions, and energy sources. Without such mechanisms, information processing
would not be effective and efficient.

4. Energy in computing
Because digital computers run on electricity, which is currently abundant, it might
seem that energy is not an issue for computing. Energy is largely ignored in the
theory of computing such as Turing machines, but its practical relevance is evident
in the development of neuromorphic computers and machine learning.

4.1 Neuromorphic computing
Carver Mead (1990) proposed the development of neuromorphic (brain-like)
computers to deal with two potential limitations in computing technology: speed
and power consumption. The speed of computers has increased exponentially since
the 1960s in accord with Moore’s law that the number of transistors on a chip doubles
every two years. But physical limits such as problems of heat dispersion put limits on
how much smaller transistors can be built, so computer engineers must look to
parallelism as an alternative way of increasing computers’ speed.
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Most computers today are built with multiple “cores,” which allow parallel proc-
essing, but the number of cores is usually small, e.g., 4 or 28. In contrast, the brain has
86 billion neurons operating in parallel, which allows it to outperform current
computers whose chips do trillions of operations per second in contrast to the
approximately 100 or so spikes per second common in neurons. Companies
like Intel and IBM have developed neuromorphic chips with more than
100,000 neuron-like processors operating in parallel. IBM’s TrueNorth chip has one
million neurons and is capable of 46 billion synaptic operations per second while
using only 70 milliwatts (Akopyan et al. 2015). Intel’s Loihi chip has 128 neuromorphic
cores each with 1,024 neural units (Davies, 2018). Schuman et al. (2017) survey neuro-
morphic computing.

Besides speed, the major motivation for neuromorphic computers is power
consumption. Whereas a traditional supercomputer can require thousands of watts
of power, the brain uses only around 20 watts. The efficiency of computing can be
measured by considering the ratio of operations per energy, for example, inferences
per joule, neural spikes per joule, or (in supercomputers) floating point operations per
second per watt. More abstractly, information efficiency can be measured in bits per
joules.

Early experimental results find that neuromorphic computers are indeed more
energy efficient than digital computers (Martí, Rigotti, Seok, and Fusi 2016; Blouw,
Choo, Hunsberger, and Eliasmith 2019). There are several reasons for such advan-
tages. Neuromorphic machines do much of their computations locally with artificial
neurons connected to ones that are physically close to them, requiring much less
long-distance transmission of information over wires. Algorithms for learning
and memory operate locally so that data do not need to be widely broadcast.
Processing elements in neuromorphic computers only emit spikes when required,
whereas CPUs are constantly active. Parallelism reduces the number of steps to trans-
form an input into an output. Finally, distributing computation across many
processors reduces heat generation so that less energy is required for cooling.
Hence, neuromorphic computing is attractive for applications such as biomedical
devices where low power consumption and real time operation are desirable.

There are also time-related reasons why neural computers can be more efficient
than traditional ones. Neural spiking may not operate as rapidly as traditional silicon
chips, but it can operate in synchrony with inputs from processes in the world
without any external clock. Time represents itself because of the correspondence
between changes in the world and changes in the brain. Neural operations occur
in step with changes in the world on the same time scale, although most current
neuromorphic chips do not exploit this feature.

Neuromorphic computing illustrates the same energy-information tradeoffs that
occur in biology. In general, the more syntactic and semantic information processed
by a computer, the more energy it uses. But neuromorphic computers require less
energy to perform the same task, so their information/energy ratio is better. As with
biology, information processing depends on energy, and energy depends on material
substrates.

Philosophy of Science 77

https://doi.org/10.1017/psa.2021.15 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.15


4.2 Machine learning
Artificial intelligence has made major progress since 2012 because of powerful appli-
cations of a neural network technique called deep learning, which has led to spectac-
ularly effective applications such as face and speech recognition (LeCun, Bengio, and
Hinton 2015; Goodfellow, Bengio, and Courville 2016). The AI company DeepMind has
combined deep learning with reinforcement learning to produce amazing successes
such as the world’s best Go player (Silver et al. 2018). DeepMind researchers can afford
to have their Go player improve by playing itself millions of times, but the resulting
information is gained at the expense of a large amount of electrical energy. Schwartz,
Dodge, Smith, and Etzioni (2019) describe how the computations required for deep
learning have been doubling every few months. Strubell, Ganesh, and McCallum
(2019) report the financial and environmental costs of training neural networks
for natural language processing.

The rapidly increasing use of electricity for deep learning and other intensive
kinds of computing such as cryptocurrency is concerning for reasons that go beyond
corporate expense. Standard ways of generating electricity, such as gas power plants,
produce large amounts of greenhouse gases that contribute to global warming which
threatens to change the Earth’s climate in disastrous and irreversible ways in a matter
of decades. Reducing energy use for deep learning and other AI applications should
therefore be a general social concern, and research is investigating generally how to
make computation more energy efficient (Demaine, Lynch, Mirano, and Tyagi 2016).

In contrast to current machine learning, human brains learn from much smaller
numbers of examples with energy-efficient processes that make local changes in the
strength of synaptic connections. Brains have ways of making learning more efficient
by considering relevant subsets of information in data such as ones representing
causal relations that circumscribe what might be relevant to human goals. Deep
learning has no understanding of causality, so it needs huge numbers of training
examples to extract signal from noise. Thagard (2021) examines what it would take
to give computers a human-level capacity for causal reasoning.

Attempts are underway to make deep learning more efficient by performing it on
neuromorphic computers (Esser et al. 2016). An alternative research strategy is to
develop new algorithms that allow AI systems to learn from small numbers of exam-
ples using human methods such as abductive inference to causes, analogy, and taking
into account background information about variability (Holland, Holyoak, Nisbett,
and Thagard 1986). Applications of machine learning have been able to rely on abun-
dant sources of electricity, but constraints such as global warming and portability
suggest that AI researchers need to pay attention to energy/information tradeoffs.
So deep learning developments point to further connections among inference,
energy, and material substrates. Another area of current research concerns the
prospects of quantum computing for increasing energy efficiency (Ikonen, Salmilehto,
and Möttönen 2017).

So deep learning and neuromorphic computing both show the relevance of energy
to understanding and evaluating information processing in computers. As for biolog-
ical systems, efficient use of energy requires attention to material substrates.
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5. Arguments for substrate independence
Substrate independence is often just assumed, but arguments have been used to
support its plausibility based on the Church-Turing Thesis and systematic replace-
ment of components. These arguments fail because they neglect to consider energy.

5.1 Church-Turing thesis
In the 1930s, Alonzo Church and Alan Turing independently produced mathematical
characterizations of effective computation. Church’s lambda calculus and Turing’s
abstract machine turned out to be equivalent to each other and to Kurt Gödel’s char-
acterization of recursive functions. This convergence is taken to support the plausi-
bility of the Church-Turing thesis according to which every effective computation can
be carried out by a Turing machine (Copeland 2017). Tegmark (2017, 65) says, “This
fact that exactly the same computation can be performed on any universal computer
means that computation is substrate independent.”

The Church-Turing thesis might be taken to provide support for substrate inde-
pendence because it shows that computation does not depend on a particular kind
of computing method. But all three mathematical formulations (Church, Turing,
Gödel) ignore time, space, and energy, so the Church-Turing thesis says little about
real-world computational devices. Two computers might be equivalent in what they
compute but differ markedly in how long they take to do so and how much energy
they consume, as we saw in the difference between traditional digital computers and
neuromorphic computers. In real life, bits are not free. The mathematical plausibility
of the Church-Turing thesis provides no support for the doctrine of multiple realiz-
ability, because it does not address the question of how computation can be realized
in real physical systems bounded by time and space as well as energy.

5.2 Gradual replacement
Another argument for substrate independence was used by David Chalmers to
support the feasibility of uploading conscious minds into computers:

Here we upload different components of the brain one at a time, over time. This
might involve gradual replacement of entire brain areas with computational
circuits, or it might involve uploading neurons one at a time. The components
might be replaced with silicon circuits in their original location, or with
processes in a computer connected by some sort of transmission to a brain.
It might take place over months or years, or over hours. If a gradual uploading
process is executed correctly, each new component will perfectly emulate the
component it replaces, and will interact with both biological and nonbiological
components around it in just the same way that the previous component did.
So the system will behave in exactly the same way that it would have without
the uploading. In fact, if we assume that the system cannot see or hear the
uploading, then the system need not notice that any uploading has taken place.
Assuming that the original system said that it was conscious, so will the partially
uploaded system. (Chalmers 2010, 45–46)
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If the parts of one system can be gradually replaced with very different parts
without loss of function, then the actual composition or substrate does not matter.
Like philosophical thought experiments in general, the brain replacement exercise
underspecifies the scientific facts in ways contrived to reach a desired conclusion
(Thagard 2014, 2019b). Parts such as neurons do not operate in isolation, but rather
in mechanisms where connected parts interact to produce regular changes. Whether
the different kinds of parts perform the same function depends not just on the parts
but also on the connections and interactions, both of which require energy. If the
energy uses of the replacing combination of parts are very different from the energy
requirements of the original combination, then it is unlikely that the gradual replace-
ment will work.

Consider the mediocre history of artificial heart replacement. The Jarvik mechan-
ical heart was first implanted in a human in 1982, and many variants have since been
produced. Decades later, however, artificial hearts are only used as temporary
replacements because of problems that include immune system rejection, durability,
and power supply (McKellar 2018).

Similarly, gradual replacement of groups of neurons with silicon chips
has substantial obstacles of space, time, and energy. Silicon chips are much larger
than neural groups, so they would have difficulty connecting with them within
the confines of the skull. Timing is very different in neurons and chips, even
neuromorphic ones, so there are major difficulties in coordinating the interactions
of chips and neurons. Finally, the problems of systematically replacing the biochem-
ical energy sources of neurons with the electrical energy sources of silicon chips are
large. In accord with the five characteristics I identified, use of energy has to satisfy
constraints concerning limited supplies, costs of operation, consumption rates, effi-
ciency, and tipping points. All of these are affected by the materials that use energy in
different ways.

The gradual replacement story is appealing to those who already
believe that substrates are not important to thinking and computation. But attention
to the mechanisms that operate in different systems show that actual replacement
is problematic because of constraints of space, time, and energy. So the
abstract possibility of replacement does not support the plausibility of substrate
independence.

The replacement argument encourages the hypothesis of multiple realizability
that is often used to show that mental properties cannot be reduced to brain
properties. Critics of the idea of multiple realizability have pointed out that cognitive
neuroscience has in fact made substantial progress by connecting aspects of human
cognition such as vision with neural mechanisms (Bechtel and Mundale 1999;
McCauley and Bechtel 2001; Thagard 1986, 2019a). In computer science, it has
become increasingly evident that hardware and software are not independent,
and that practical success requires that algorithms match hardware. The Church-
Turing thesis and replacement argument fail to support substrate independence
because of mounting evidence that information and energy depend on material
details.
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6. Multiple realization and reduction
Place (1956) and Smart (1959) proposed that mental states are identical to brain
states, but their proposal was challenged by highly influential arguments from
Putnam (1975) and Fodor (1975). Psychology cannot be reduced to neuroscience
because mental states such as pain can be realized in different ways, for example,
by human brains, non-human brains, and computers. Polger and Shapiro (2016,
2018) provide a thorough critique of this anti-reductionist argument from multiple
realization. I largely agree with this critique and will support it with considerations
about energy.

According to Polger and Shapiro (2016, 62), multiple realization occurs only if two
systems perform relevantly the same function in relevantly different ways. They
argue that assumed cases of multiple realization such as vision in humans and octo-
puses do not actually qualify as multiple realization and therefore do not count
against mind-brain identity. My examples from biology and computation show that
energy should be taken into account in the evaluation of the relevant similarities and
differences. The significance of energy is apparent in considerations of endothermy,
information processing, and evidence for mind-body identity.

6.1 Endothermy
Polger and Shapiro (2016, 142) mention that endothermic (warm-blooded) animals
must acquire large amounts of energy and therefore consume much more food than
ectothermic (cold-blooded) organisms. There are indeed important relationships
among metabolism, body-brain size ratios, and neuronal densities (Yu, Karbowski,
Sachdev, and Feng 2014). Larger brains with more neurons consume more energy,
which is a challenge for organisms that need energy to keep themselves warm.
Accordingly, ectothermic animals in tropical climates have larger brains than ecto-
thermic animals in colder climates. A key factor in the development of large-brained
endotherms is the rapid increase in the number of glial cells that are less energy-
demanding than neurons.

These findings show that comparisons of psychological functions such as vision
across different organisms cannot ignore energy considerations. Such functions
operate in environments that include factors of external and internal temperature
that interact with the neural mechanisms that carry out the psychological functions.
Hence, determination of whether psychological functions are multiply realized needs
to include energy assessments. Mammal and bird brains operate in warm-blooded
bodies unlike the cold-blooded bodies of molluscs, reptiles, and fish, which can affect
basic neural operations such as the balance between number of synaptic connections
per neuron and strength of weights between neurons (Yuan et al. 2018).

6.2 Information processing
Polger and Shapiro (2016, ch. 8) provide an extensive discussion of information-
processing models in cognitive science. They recognize that such models have been
a major motivation for functionalist accounts in the philosophy of mind: if human
thinking is information processing, which can also be done by computers, then
mental functions are multiply realized.
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But what is information? Recent surveys in the Stanford Encyclopedia of Philosophy
provide no general answer (Adriaans 2018; Floridi 2015; Godfrey-Smith and Sterelny
2016). Dictionary definitions of information as facts or knowledge are not informative.
Floridi 2010 defines information as data that are well-formed and meaningful, but this
is of limited use when dictionaries commonly define a datum as a piece of information
and Floridi’s own account of a datum as something distinct is vague. The elegant prob-
abilistic characterization of information by Shannon and Weaver (1949) has little
application to biological systems.

A better way of characterizing information is to specify the classes of mechanisms
by which it operates, which include representation, collection, storage, retrieval, eval-
uation, transformation, sending, and receiving. All of these operate on different
carriers of information that include utterances, sentences, gestures, pictures, patterns
of neural firing, computational processes, and genetic structures made of DNA. I will
illustrate the eight mechanisms using neural patterns.

Representation allows carriers to stand for situations in the world. For example,
different groups of neurons are tuned, either innately or by learning, to different
aspects of the world such as colors. Such tuning enables collection of new information
by interaction with the world, for example, when the retina sends signals from the
eye to the brain where storage takes place by generation of synaptic connections. For
ongoing use, the information must be retrieved from storage, which the brain accom-
plishes by firing the neurons based on their synaptic connections. Whether a carrier
of information is collected, stored, and retrieved depends on its relevance to an
organism’s goals such as survival and reproduction, where relevance is assessed
by an evaluation mechanism. In brains, evaluation is largely performed by emotional
brain areas such as the amygdala, nucleus accumbens, and ventromedial prefrontal
cortex. Information processing also includes making inferences that transform
carriers into new and useful ones using mechanisms that range from learning by asso-
ciation to analogical reasoning. For many species of organisms such as humans, infor-
mation is communicated between individuals, which requires mechanisms for both
sending and receiving different kinds of carriers. Humans have neural processes
for producing utterances as well as for interpreting the utterances of others.

All these mechanisms require energy to keep the parts working, to keep the parts
connected, and especially to accomplish the interactions of parts that produce regular
changes. Neurons need energy to survive, maintain synaptic connections with other
neurons, and interact by processes of excitation and inhibition. Hence, determination
of whether information processing is multiply realized must consider the extent to
which energy constitutes a relevant similarity or difference. Because neurons and
computer chips have mechanisms that use energy in very different ways, we cannot
assume that abstract information processing supports functionalism.

Information processing requires attention to speed as well as inputs and outputs.
If the eight information mechanisms operate too slowly, then an organism will not be
able to accomplish its mental functions in its environmental context. For example,
if an animal is too slow in its transformations of neural patterns, then it is not able
to recognize food and predators fast enough to survive and reproduce, with resulting
extinction. Fast processing is heavily dependent on energy in the same way that
running consumes energy more rapidly than walking. Hence, debates about the
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multiple realization of information processing should take into account time/energy
tradeoffs.

6.3 Identity theory
Polger and Shapiro’s critique of multiple realization arguments is in defense of their
version of a mind-body identity theory, but Endicott (2017) remarks that they do not
advance specific mind-body identity claims. In contrast, Thagard (2019a, b) specifies
neural mechanisms for a host of important mental processes that include perception,
imagery, concepts, rules, analogies, emotions, consciousness, actions, intentions,
language, creativity, and the self. The requisite mechanisms are based on
Eliasmith’s (2013) Semantic Pointer Architecture, which pays close attention to the
brain’s energy usage. Hence arguments for mind-brain connections can in part be
energy-based.

At first glance, it might seem that the Semantic Pointer Architecture supports
multiple realization because its large-scale simulations with millions of artificial
neurons have largely been run on conventional computers (Eliasmith et al. 2012).
But Eliasmith and Stewart (2020) explain why the most recent versions are being
run on neuromorphic chips that mimic the energy efficiency of the brain. They esti-
mate that an artificial neural network the size of a human brain would take half a
gigawatt of power using today’s computers, equivalent to the power produced by
a nuclear power plant. Use of Intel’s Loihi neuromorphic chip is far more energy effi-
cient and makes increasingly large simulations feasible.

Polger and Shapiro (2016, 158) remark that connectionist neural networks can be
built out of most anything, but considerations of energy and time show that multiple
realization fails for them as well as for many other proposed systems. A neural
network built out of toilet paper would be too slow, fragile, and energy demanding
to be of any use. Future defenses of the richness of mind-brain connections can take
into account ways in which the effectiveness of psychological functions depends on
the energy-efficiency of the brain and neuromorphic computer chips. The use of
specialized machines for brain simulations does not support multiple realization
because there are still important energy differences between brains and neuromor-
phic computers, for example, in the role of glial cells and different kinds of
neurotransmitters.

I have shown how energy considerations concerned with endothermy, information
processing, and mind-brain identities support the rejection of multiple realization
arguments for functionalism. The philosophical debate is ongoing, as serious
responses to Polger and Shapiro (216) have been given by Aizawa (2017),
Chirimuuta (2018), and others. Garson (2003) and Piccinini (2015) maintain that infor-
mation and computation are “medium independent”, another term for substrate
independent. I hope that future discussions will include close attention to energy
requirements.

7. Conclusion
According to Tegmark (2017), “matter doesn’t matter” to computation, intelligence,
and consciousness. In contrast, I have argued that attention to the energy require-
ments of different kinds of mechanisms shows that the constitution and operation
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of both biological and computational systems are highly dependent on energy. Any
information processing system requires energy for its sensory inputs, internal proc-
essing, and outputs by communication and action. Acquisition of energy also requires
energy, which therefore must be used efficiently if an organism or computer is to be
effective enough to survive. In addition to the energy required for the interactions
between parts in a mechanism, energy is required for the forces and processes that
keep parts connected (Findlay and Thagard 2012).

Substrate independence is an empirical claim poorly supported by arguments such
as the Church-Turing thesis and the gradual replacement thought experiment. Energy
considerations in biology and computation make general substrate independence
implausible because different forms of matter have markedly different costs as
measured by ratios of information processing operations to energy consumed.
There may, however, be special cases where transformation between substrates does
not violate energy constraints, but my biological and computational examples show
that such transformations cannot be taken for granted.

These examples provide substantial support for the two premises of my general
argument:

1. Real world information processing depends on energy.
2. Energy depends on material substrates.

Here “A depends on B” means “changes in B cause important changes in A”. I have
shown how energy differences cause important differences in information processing:
the contribution of metabolism to perception in living systems, the effects of energy
availability on brain evolution, the speed and power consumption advantages of low-
energy neuromorphic computers, energy challenges of machine learning, and the role
of energy in information mechanisms. In all of these cases, different material
substrates have causal effects on energy usage and hence on information processing.
So, information processing depends on material substrates.

The resulting implausibility of substrate independence has important conse-
quences for current debates. The energy dependence of thinking and computation
does not imply that artificial intelligence is impossible, but it does show that we
cannot automatically assume that human thought processes can be converted into
computational mechanisms. Whether such conversion can be realized is an empirical
question that can only be answered by ongoing investigation. Particularly problem-
atic are aspects of thinking that are closely tied to the biological mechanisms of
human bodies, including perception, emotion, and consciousness (Barsalou 2008;
Pepperell 2018).

Because computers are unlikely ever to emulate the energy operations of human
bodies, AI will have to find ways of duplicating or working around the major contri-
butions that imagery, emotion, and conscious experience make to human thought.
Because these functions are also important to the ethical lives of humans, abandon-
ment of substrate independence casts doubt on whether computer systems will ever
deserve the same moral status as humans (Thagard 2021).

If substrate independence is false, then the prospects for uploading minds to
computers become much less appealing. Merely converting neurons and synapses
to their computational equivalents will not replicate the neural mechanisms that
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depend on biochemical, glucose-based energy. Neuroscience does not yet have an
account of how neural operations generate consciousness, although there are sugges-
tions about relevant mechanisms, including information integration (Tononi, Boly,
Massimini, and Koch 2016), broadcasting to a neural blackboard (Dehaene 2014),
and competition among neural representations called semantic pointers (Thagard
and Stewart 2014). These mechanisms can be combined in a common model
(Thagard in press). Each of these mechanisms is energy intensive and therefore might
depend on the particular kind of energy used by brains. Without the dubious assump-
tion of substrate independence, it is mere faith that uploading brains to computers
will maintain human-like consciousness.

Challenging substrate independence undercuts speculations that we are currently
living in a computer simulation. Some future computer simulations might turn out to
be conscious, but the very different mechanisms and energy operations of computers
and brains make it equally plausible that simulations of thinking will not achieve
consciousness, just as simulations of ocean waves are not wet.

Finally, the undermining of claims about substrate independence and multiple
realization has implications for understanding the relation between psychology
and neuroscience. Rejection of substrate independence does not imply reversion to
dualist claims that mind and thinking require non-material substances. Viable alter-
natives to dualism include mind-body identity, the claim that all human mental
processes are neural mechanisms. The important interconnections among informa-
tion, energy, and material substrates show that mind-body identity is not refuted by
arguments about multiple realization. A more complex but still materialist alterna-
tive is that mind results from multilevel interacting mechanisms that are molecular
and social as well as neural (Thagard 2019a, b). Either way, taking energy seriously in
both biological and computational systems points to a deeper understanding of
minds, bodies, and computers.
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