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Introduction 

The pseudo potential model used to describe the ‘averaged’ motion of charged particles in radio 

frequency (RF) electric field is considered here [1–4]. This approach describes the motion in RF fields 

just qualitatively and cannot describe correctly the subtle effects like the true stability zone, etc. The 

pseudo potential model is very useful for intuitively transparent prediction of the motion of charged 

particles in the electric RF fields. 

 

Classical pseudo potential approach deals mainly with stationary sinusoidal fields but here the 

superposition of sinusoidal fields with arbitrary frequencies and slowly evolving amplitudes is 

considered. The expressions for corresponding pseudo potential function are derived and analyzed. It 

appears that such RF fields allow new interesting ways to control the motion of the charged particles. 

Additional effects are disclosed when the motion of charged particles in a non-uniform and non-

stationary gas-filled media is considered. However, to see some subtle details of the motion one should 

keep higher order terms in the equations — this converts the pseudo potential description of the motion 

into the pseudo Hamiltonian one. A brief description of these new possibilities mainly discovered by the 

author is represented in this paper. 

 

Background of the pseudo potential method 

The equations of motion of charged particle in radio frequency electric (rf) field is written as 
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where m  is the mass of the particle, q  is the charge of the particle,  321 ,, xxxx 


 are the geometrical 

coordinates,  xU


 is the static part of the electric potential,  xV


 is the amplitude of the rf part of the 

electric potential,   is the frequency of the sinusoidal signal (i.e., voltages applied to the electrodes), t  

is the time. The integration of (1) is a complex task and mainly can only be done numerically. However, 

it is difficult to make a transparent understanding what happens with a charged particle in the rf electric 

field using Eq. (1) as the main instrument because here the fundamental aspects of motion are masked 

by mathematical complexity. 

 

A typical way how to introduce the pseudo potential model of charged particle motion is the following. 

First, the solution of Eq. (1) is represented as      tztytx

  where  ty


 is the “slow” component of 

the solution and  tz

  is the fast component of the solution which is considered to be small correction to 

the main part  ty


. Namely, it is assumed that  

          


 ttzttzttzttztz scsc  2sin2cossincos 2211  (2) 

 

where the amplitudes        


,,,, 2211 tztztztz scsc  are considered to be small as compared with the main 

part  ty


 of the solution and it is assumed that both the function  ty


 and the functions 
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       


,,,, 2211 tztztztz scsc  are changing with a much larger characteristic time scale than the period 

2T  of rf oscillations. Next step is to represent the amplitudes        


,,,, 2211 tztztztz scsc   as the 

Taylor series with respect to 1  (i.e., in the vicinity of the point  ):  
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This can be done, since it is clear that near   the rf component of the solution vanishes: due to the 

inertia the particle remains nearly in the same position providing the rf component of the electric field 

periodically changes its direction quickly enough. Then we can represent the potentials  zyU

 , 

 zyV

  and their derivatives as Taylor series near the point  ty


 since it is assumed that 
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Now we can combine Eqs. (1) to (4) and collect separately different harmonics tkcos , tksin  and 

different powers n1 ; this enables us to produce an explicit expressions for the unknown functions 

 tz n

kc

)(

,


,  tz n

ks

)(

,


. Finally, the following compact equations for the “averaged” solution  ty


 can be 

derived (where we keep the terms 21   and neglect terms of higher order): 
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The equations (5) do not look simpler than Eq. (1), however, they can be rewritten as the equations of 

motion of the particle with mass m  and charge q  in some artificial electric field: 
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where the pseudo potential function  yU


 is calculated as 
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The investigation of the profile for the pseudo potential function    yUyU


  allows making 

conclusions about the motion of the charged particle without solving the equations (5): if there are some 

potential wells we can expect stable oscillations inside these wells; if there are the slopes going to 

infinity the motion is unstable. (While the original potential     txVxU cos


  cannot have potential 

wells far from the electrodes due to the Laplace properties of the potential functions  xU


 and  xV


, the 

pseudo potential    yUyU


  can have such potential minima.) The redirecting of attention from the 
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equations of motion (1) to the profiles of the pseudo potential functions (7) is the main point of the 

pseudo potential technique. 

 

The method of the effective potential was first proposed by Kapitsa in the 1950s to calculate the stable 

modes of oscillations for a vertical pendulum with a vibrating suspension [5,6]; later he used this 

method to successfully solve some complex problems of high power electronics [7]. The concept of this 

method began with the fundamental works of Mitropolski and Bogoliubov summarized in [8]. Landau 

generalized as a formal method the original effective potential approach proposed by Kapitsa to describe 

generally mechanical motion of a particle in a rapidly time-oscillating potential force of an arbitrary type 

[1]. For the description of the motion of charged particles in systems with radio frequency 

electromagnetic fields the effective potential method was introduced as a general tool by Gaponov and 

Miller [9,10]. Many subsequent publications re-derived this in different ways; its specific features were 

analyzed in more detail and more carefully than in the original publications. Good reviews of these 

methods, in English, are presented in [3,11]. 

 

Simple applications and further extensions of the pseudo potential method 

Simple examples of the usage of the pseudo potential technique are the stack ring ion guides [12–15]. 

Here the electrodes are a sequence of rings or planes with circular holes [15]. To the electrodes rf 

voltages    tUR cos  are applied where the neighboring electrodes always have potentials with 

opposite polarities:  

          tUtUtUtU RnRn cos,cos 122  (8) 

The rf potential for the electric field inside the ion guide is defined as [16]: 
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where 
22 yxr   is the radial coordinate, z  is the axial coordinate, L  is the distance between the 

electrodes, R  is the radius of the electrodes, 0I  is the modified Bessel function [17]. The profile of the 

pseudo potential calculated using Eq. (7) looks like a tray with rapidly (exponentionally) growing edges 

where it approaches the boundaries of the electrodes — the region with strongly inhomogeneous rf field. 

As a result the particles are well confined inside the ion guide. Additionally there is the sinusoidal 

corrugation along the tray which complicates the usage of the device as an effective mobility separator 

or mobility spectrometer [18]. A more sophisticated example of such a device is called “RF Carpet” 

which uses the same technique as described in ref. [19,20]. 

 

When the sinusoidal voltages applied to the electrodes have the same frequency but different phase 

values the rf electric field has a more complex representation: 

        txWtxVxUtxU rf  sincos,


  (10) 

or, equivalently,  

        xtxGxUtxU RFRFrf


  cos,  (11) 

where        22
xWxVxGRF


 ,       xVxWxRF


arctan . In this case the “slow” part of the 

trajectory is also defined by the equations (6) but with a different recipe how to calculate the pseudo 

potential component   :yU

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This extended expression can be used to eliminate the parasitic corruption of the pseudo potential profile 

for stack ring ion guides. Namely, when the voltages are applied as  

        ,sin,cos,sin,cos 3424144 tUtUtUtUtUtUtUtU RnRnRnRn     (13) 

the rf potential for the electric field inside the ion guide is defined as [21] 
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and the pseudo potential of Eq. (12) demonstrates no corrugation along the axis OZ . (Similar technique 

can be used for devices like rf carpets, ion funnels, etc., to eliminate or to decrease parasitic 

corrugations.) 

 

The most general rf voltages which produce electric fields for which the pseudo potential technique can 

be used are the voltages described by the pseudo discrete Fourier spectrum [22]. In this case the 

spectrum is decomposed into islands with nonzero values while the spectrum outside the islands is 

exactly zero (Figure 1). The islands should be “narrow” and should be placed “far from each other” 

where the terms “narrow” and “far” are treated in the same way as “slow motion” and “fast frequency” 

for the classical pseudo potential theory.  

 

(a)   (b)  

 

Figure 1. Examples of the pseudo discrete Fourier spectra: (a) continuous pseudo discrete spectrum, (b) 

pulsed pseudo discrete spectrum.  

 

The voltages  tf  which are characterized by the pseudo discrete spectrum can always be represented as 

the combination of fast sinusoidal signals with slowly evolving amplitudes: 

        ttqttptf kkkk  sincos  (15) 

which results to the rf electric potential represented as  

        ttxWttxVtxU kkkkrf  sin,cos,,


 (16) 

The pseudo potential technique applied to Eq. (16) results in the equations (6) with the pseudo potential 

function which can be calculated as 
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The expression in Eq. (17) is close to that of Eq. (12), however, there is an essential difference here: the 
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pseudo potential  tyU ,


 depends on time and hence enables more possibilities to control the motion of 

charged particles. An example of the devices which use the pseudo potentials (17) are the A-Wave ion 

guides [23,24]. Here the charged particles with different charges and masses are collected by the rf 

electric field into compact bunches and these bunches of particles are moved from entry to exit with the 

same group velocity regardless of differences in masses, charges and initial energies for individual 

particles inside the bunch. 

 

Pseudo magnetic fields, pseudo Hamiltonians, etc. 

What we did up to now is to represent the solution  tx


 of the equations of motion as      tztytx

  

where  ty


 is the “slow” component of the solution and  tz

  is the “fast” component of the solution 

and to find the equations for the “slow” function  ty


 as a series with respect to n1 : 

           
4322

2
1111

dt

yd k  (18) 

where the series (18) is restricted by the terms 21  . However, it is interesting to see what happens if 

we restrict Eq. (18) to terms up to 31  , 41  . etc.  

 

The terms 31   are responsible for the appearance of the pseudo magnetic field  tyBeff ,


 if there is no 

other agent acting on the particle. However, if there is a true quasi static magnetic field  tyB ,


 an 

additional pseudo potential term appears as well. The resulting equations for the averaged trajectory 
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

, which can be derived using the same technique, are the following:  
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where the pseudo potential function  tyU ,


 is calculated as in Eq. (17) and 
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The terms 41   and higher result in very complex equations with no transparent interpretation. To 

simplify them it is necessary to convert the equations into the hamiltonian representation using some 

pseudo Hamiltonian function  2210

11
HHHH


. Even more interesting is the consideration 

of motion of charged particles in a gas media taking into account the nonlinear character of the drag 

force coefficient, the existence of gas flows, spatial gradients of gas flows and gas media characteristics, 

rf phase spatial gradients. Accurate calculations result in the appearance of additional non-potential 

pseudo forces which are absent in the simplified damped pseudo potential model [25]. However, the 

detailed considerations of these interesting topics are outside the scope and the size of this paper and 

will be published separately. 
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Conclusion 

Pseudo potentials are an interesting challenge and wonderful toy for CPO theoreticians. Pseudo 

potentials are very useful in inventing new and powerful rf devices for mass spectrometry as well. The 

investigation of the pseudo potentials is definitely not finished and there are still many interesting facts 

in this field of science to be discovered by the inquisitive researches [26]. 
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