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A Novel Approach for Pathway Analysis of GWAS
Data Highlights Role of BMP Signaling and Muscle
Cell Differentiation in Colorectal Cancer
Susceptibility
Aniket Mishra and Stuart MacGregor
Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and the Colorectal Cancer Family Registry (CCFR),
and Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia

Genome-wide association studies (GWAS) have revolutionized the field of gene mapping. As the GWAS
field matures, it is becoming clear that for many complex traits, a proportion of the missing heritability is at-
tributable to common variants of individually small effect. Detecting these small effects individually can be
difficult, and statistical power would be increased if relevant variants could be grouped together for testing.
Here, we propose a VEGAS2Pathway approach that aggregates association strength of individual markers
into pre-specified biological pathways. It accounts for gene size and linkage disequilibrium between mark-
ers using simulations from the multivariate normal distribution. Pathway size is taken into account via a re-
sampling approach. Importantly, since the approach only requires summary data, the method can easily be
applied in all GWASs, including meta-analysis, singleton-based, family-based, and DNA-pooling-based de-
signs. This approach is implemented in a user-friendly web page https://vegas2.qimrberghofer.edu.au and a
command line tool. The web implementation uses gene-sets from the gene ontology (GO), curated gene-
sets from MSigDB (containing canonical pathways and gene-sets from BIOCARTA, REACTOME, KEGG
databases), PANTHER, and pathway commons databases, enabling analysis of a wide range of complex
traits. We applied this method on a colorectal cancer GWAS meta-analysis data set (10,934 cases, 12,328
controls) from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). We report sta-
tistically significant enrichment of association signal for the ‘BMP signaling’ and ‘muscle cell differentiation’
pathways, suggesting a possible role for these pathways onto the risk of colorectal cancer.
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Genome-wide association studies (GWASs) have substan-
tially improved our understanding of the genetic basis of
various complex human phenotypes. GWAS typically tests
the association of each common (minor allele frequency
>0.01 or 0.05) single nucleotide polymorphism (SNP) with
a trait of interest. To control false positives, frequently only
SNPs with association p value less than the genome-wide
significance threshold (p value < 5 × 10−8) are reported,
with relatively little attention paid toward the remaining
SNPs. Since relatively few SNPs will reach genome-wide
significance in a given study, it may not be clear that a
subset of them act within a particular pathway. By also
considering additional sub-threshold SNPs, then it may be
possible to (1) prioritize SNPs for follow-up based on the
pathway they lie in, and (2) to better define the pathways
involved in the trait, leading to insight into the underlying
molecular mechanisms.

Pathway-centric approaches that test the association
of the combined effects of variants in a set of biologically
or functionally related genes are becoming increasingly
popular as a complementary method to GWAS (Pers et al.,
2015; Wang et al., 2009; Wang et al., 2010). Pathway-based
association strategies have several advantages, but further
methodological development is required. In the past few
years, several reviews have been published discussing the
issues related to pathway-based association tests (Robinson
et al., 2014; Wang et al., 2010; 2011). Some of the potential
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problems are as follows: (1) inadequate modeling of the
linkage disequilibrium (LD) pattern within a gene, and
(2) gene-set size and the number of SNPs in a gene may
influence the significance of a gene-set. Here, we report
VEGAS2Pathway, a versatile pathway-based approach
for GWAS data, and demonstrate through simulations
how it appropriately accounts for LD between SNPs, gene
size, and pathway size. We report its implementation in a
user-friendly web page and in command line software.

We applied our method on colorectal cancer GWAS
summary data obtained from the Genetics and Epidemi-
ology of Colorectal Cancer Consortium (GECCO; Peters
et al., 2013) and Colorectal Cancer Family Registry (total
sample size: 10,934 cases and 12,328 controls). Fifty vari-
ants so far reported are associated with colorectal cancer
susceptibility (Peters et al., 2015). Together, these variants
explain only small proportion of the heritability of colorec-
tal cancer (Jiao et al., 2014).

Materials and Methods
VEGAS2Pathway Strategy

VEGAS2Pathway is a two-step pathway analysis strategy.
First, it calculates the gene-based test statistics for all genes
using the VEGAS (VErsatile Gene-based Association
Study) approach (Liu et al., 2010; Mishra & MacGregor,
2015), which accounts for the LD between the SNPs within
a gene through simulation. Second, for each of a set of
pre-specified gene-sets, the relevant gene-based results
are carried forward to compute a pathway-based test. To
give users a pathway analysis platform useful for a wide
range of complex traits, we incorporated gene-sets from
the Gene Ontology (GO; Gene Ontology Consortium,
2008) curated gene-sets from MSigDB (Liberzon et al.,
2011; containing canonical pathways and gene-sets from
BIOCARTA, REACTOME, KEGG databases), PANTHER
(Thomas et al., 2003), and pathway commons (Cerami
et al., 2011) databases. We filtered these gene-sets to in-
clude only those with size between 10 and 1,000 genes.
Overall, there are 6,212 gene-sets, including 18,399 genes
with 511,336 annotations. To compute the pathway-based
test, the relevant gene-based p values were first converted
to upper-tail χ2 statistics with one degree of freedom,
before summing. This process of summing is potentially
an informative approach for polygenic traits because each
gene contributes to the pathway results concomitant with
strength of evidence for association at that gene. Contrast
this with the hypergeometric-based pathway approaches
(Lee et al., 2012; Pers et al., 2015), where genes are either
‘in’ or ‘out’ of the pathway, based on them exceeding a
particular p value. Generating accurate significance levels
for very strongly associated genes is difficult because the
simulation derived gene-based p value can be zero (in the
default scenario this means 0 of the 1 × 106 simulation
replicates exceeded the result for the real data). In such

cases, we allocate a p value of 1 × 10−6 for such genes. This
approach may underestimate the importance of such genes
but has the advantage of ensuring the resultant pathway
results are not driven entirely by one or a few genes.

Under a polygenic model and assuming a non-
competitive test, larger pathways will typically be more
significant than smaller pathways. Since we believe the ge-
netic architecture for many complex traits will be polygenic,
a non-competitive test is unlikely to provide useful results
(as large pathways will be much more likely to be significant
than small ones due to the accumulation of polygenes).
Instead, we implemented a competitive test in which each
pathway is benchmarked against the ‘typical’ pathway of
the same size. Specifically, we corrected for pathway size
bias by adopting a resampling approach where the same
number of genes as present in a pathway are repeatedly
drawn at random from all set of genes used in the study
and summed. The empirical p value of association for a
pathway is calculated using following formula:

Emp P =
∑N

1 I
(
χ2∗ ≥ χ2) + 1

N + 1
,

where N is the number of resamples performed. The
χ2* is the summed χ2 statistics computed per resample,
which is compared against the observed summed χ2 for
pathway under consideration. I() is an indicator function.
Figure 1 describes the schematic representation of the VE-
GAS2Pathway strategy.

Simulation to Establish Properties of VEGAS2Pathway

We applied VEGAS2Pathway on 1,000 simulated quantita-
tive phenotypes with standard normal distribution N (0, 1).
We extracted the top-pathway test statistics from 1,000 sim-
ulations to allow estimation of a significance threshold (as-
sessment of how differently the results for the 6,212 path-
ways behave relative to the situation where, for example,
there were 6,212 completely independent pathways). We
also used the set of 1,000 simulations to assess the correla-
tion between gene size and gene p value, and between path-
way size and pathway p value.

Application on GWAS Summary Data

We applied VEGAS2Pathway approach on colorectal can-
cer GWAS summary data obtained from GECCO (Peters et
al., 2013) and the Colorectal Cancer Family Registry. This
meta-analysis of GWASs was performed across 11 studies
totaling 10,934 cases and 12,328 controls of European an-
cestry. Sample selection and genotyping methods for par-
ticipating studies have been previously described (Peters et
al., 2013). Please refer to Supplementary Text 1 for brief de-
scription on participating studies and GWAS methodology.

We used GWAS meta-analysis summary data to perform
the pathway analysis. The 1000 Genomes phase 1 Euro-
pean data was used as a reference for VEGAS2 (Mishra
& MacGregor, 2015) joint-SNP gene-based analysis. The
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GWAS Summary Data

Assign SNPs to genes and calculate gene-based test 
sta�s�cs using VEGAS/VEGAS2 approach

Calculate empirical p-value of associa�on through 
resampling of gene–based tests sta�s�cs

Are any genes within 
500kb of each other

Yes: Keep farthest gene 
and drop all 
neighbouring genes

No: Go to next step

Summarize gene-based test sta�s�cs into pathways

Assign Genes to a pathway

FIGURE 1
Schematic representation of VEGAS2Pathway strategy: After
reading in the two-column (SNP id and GWAS p value) text file,
the gene-based test statistics are calculated using the VEGAS ap-
proach. These genes are then assigned to pathways. If a path-
way contains a gene within another gene then the smaller gene is
dropped. In another scenario, if a pathway contains overlapping
or genes less than 500 kb away then only one gene (chosen ran-
domly) is used to represent the association signal of the region
while all nearby genes are dropped. In this way, VEGAS2Pathway
ensures that all gene-based test statistics assigned to a pathway
are at least 500 kb away from each other. The gene-based test
statistics are then summed to compute a statistic for each path-
way. An empirical p value for each pathway is computed by com-
paring the summed set score against that of replicates of the same
size obtained through resampling of gene-based test statistics.

50 kb gene-boundary option was used to include the cis-
regulatory variants. The computational burden for VE-
GAS2 increases dramatically with an increase in the num-
ber of SNPs per gene, and hence for a gene containing more
than 1,000 variants it successively prunes the list of variants
with r2 criteria of 0.99, 0.90, 0.70, and 0.50. After each prun-
ing interval, VEGAS2 checks the number of pruned SNPs.
If the number of pruned SNPs is less than 1,000, then VE-
GAS2 uses the pruned SNPs from that interval to perform
gene-based analysis; otherwise, it iteratively applies an in-
creasingly stringent r2 criterion on all SNPs in the gene.
After applying a pruning criteria of r2 = 0.50, it uses all
pruned SNPs for analysis, irrespective of the number. Once
the gene-based test statistics were calculated, we performed
pathway analyses using the resampling approach.

Comparison with other Pathway Analysis Approaches

We analyzed the top five pathways identified by VE-
GAS2Pathway, using the pathway analysis approaches im-
plemented in the INRICH (Lee et al., 2012) and MA-
GENTA (Segre et al., 2010) software. We used the same
gene-pathway annotations as used in VEGAS2Pathway
analysis to perform pathway analysis using INRICH and

MAGENTA. The INRICH program is based on the hyper-
geometric pathway analysis approach that compares the
number of significant versus non-significant genes in a
pathway, and control for type 1 error through permuta-
tion (Lee et al., 2012). We created the interval file us-
ing plink (with criteria: –clump-p1 1 × 10−4 –clump-p2
0.05 –clump-r2 0.5 –clump-range-border 20). The 1000
Genomes European reference data were used to compute
pair-wise LD. We ran INRICH with default settings except
the number of permutations parameter (-r) was changed
to 1,000,000. The MAGENTA program is an extension of
gene-set enrichment analysis (GSEA), a widely used ap-
proach for pathway analysis of gene expression data. It is
based on a weighted Kolmogorov–Smirnov-like running
sum statistic algorithm, which tests whether a gene-set is
more enriched with highly ranked gene scores than would
be expected by chance (Segre et al., 2010). We ran MA-
GENTA using default settings.

We also tested whether VEGAS2Pathway implicates the
top pathways obtained using MAGENTA and INRICH pro-
grams. We performed pathway analysis on colorectal can-
cer GWAS data considering aforementioned 6,213 gene-
sets using INRICH and MAGENTA. For INRICH, we first
performed pathway analysis using default settings and re-
analyzed the top 10 pathways by changing the number of
permutations parameter (-r) to 1,000,000. We used default
settings to perform pathway analysis using MAGENTA.

Results
Establishing Type 1 Error Cut-Off

The pathway annotations used for VEGAS2pathway analy-
sis comprises the pathways from different sources, includ-
ing hierarchical gene-sets from GO, curated gene-sets from
MSigDB, PANTHER, and pathway commons. Hence, there
is a frequent overlap in the set of genes included in differ-
ent pathways. Since these pathways are not independent,
application of traditional, multiple testing methods such
as Bonferroni correction, Šidák correction, and false dis-
covery rate (FDR) procedure would be overly conserva-
tive. To estimate the significance threshold correcting for
multiple association tests performed for these overlapping
pathways, we applied the VEGAS2Pathway approach on
GWAS summary files from 1,000 simulated quantitative
phenotypes with standard normally distributed trait values.
Figure 2A shows the distribution of -log10 p values in the
top pathway for 1,000 replicates of simulated phenotypes.
The simulation-derived 95% empirical significance thresh-
old for VEGAS2Pathway association test, taking into ac-
count the multiple testing of 6,213 correlated pathways, was
1.00 × 10−5 (50 of 1,000 replicates exceeded this). By using
this empirical threshold, we are correcting for 5,000 effec-
tively independent tests (since 0.05/5000 = 1.00 × 10−5).
In comparison, if we were to Bonferroni correct for all
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FIGURE 2
Simulation results. (A) The distribution of absolute log10 p values of 1,000 replicates. The line represent 5% interval of top -log10
p values. (B) The distribution of Pearson’s correlation between gene-based p value and number of SNPs in the gene. (C) The distribution
of Pearson’s correlation between pathway-based p value and number of SNPs in the pathway. (D) Pathway type 1 error rate versus
pathway size.

6,213 pathways, our threshold for significance would be
0.05/6213 = 8.02 × 10−6.

The effect of both gene size and pathway size are impor-
tant to consider in pathway analysis. If there is a positive
correlation between a gene’s size and its gene-based p
value, then pathways with an excess of bigger genes in
them will repeatedly appear as significant in pathway
analysis. Similarly, problems may also occur if pathway
size is correlated to pathway significance. VEGAS2Pathway
uses the VEGAS approach to perform gene-based analysis.
In addition to accounting for LD between SNPs, we expect
that the VEGAS approach will also deal appropriately with

gene size. To account for pathway size, VEGAS2Pathway
compares each gene-set with multiple resamples of the sets
with the same number of genes, an approach that should
deal appropriately with different pathway sizes. To assess
performance of VEGAS2Pathway in practice, we calculated
the Pearson’s correlation coefficient between gene size
and gene-based p value, and pathway size and empirical
p value of pathway association. Figures 2B and 2C show
the correlation distribution between and gene-size and
gene-based p value, and pathway-size and pathway-based p
value respectively in 1,000 replicates. The correlation is typ-
ically close to zero, both between gene size and gene-based
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TABLE 1
Top Five Pathways from Pathway Analysis of Colorectal Cancer GWAS Summary Data

Pathway size Empirical p values after removing
Pathway ID (# of genes) Empirical p value genes with genome-wide significant SNPs

GO:0060393_Regulation_of_ 18 <1.00 × 10−6 1.14 × 10−3

pathway-restrictedSMAD_
protein_phosphorylation

PID_BMPPATHWAY 40 2.00 × 10−6 4.80 × 10−3

GO:0042692_Muscle_ 86 8.00 × 10−6 7.80 × 10−5

cell_differentiation
Panther_TGF-beta_ 57 3.00 × 10−5 2.70 × 10−3

signaling_pathway
GO:0048729_Tissue_ 156 4.40 × 10−5 6.60 × 10−3

morphogenesis

p value (median -1.43 × 10−3, with 90% of simulation
replicates in a -0.01 to +0.01 range), and between pathway
size and pathway-based p value (median 2.16 × 10−5, with
90% of simulation replicates in a -0.08 to +0.08 range).
Furthermore, we checked how the type 1 error rate varied
by pathway size. Figure 2D shows that the type 1 error rate
is independent of the pathway size and mean type 1 error
rate is preserved to 0.05.

Application of VEGAS2Pathway on Colorectal Cancer
GWAS Summary Data

We performed pathway analysis on colorectal cancer GWAS
summary data using the VEGAS2Pathway approach. Three
pathways reached the genome-wide, pathway-based sig-
nificant p value of less than 1.00 × 10−5, which are
GO:0060393_regulation_of_pathway-restricted_SMAD_
protein_phosphorylation (pathway-based p value < 1.00 ×
10−6), PID_BMPPATHWAY (pathway-based p value =
2.00 × 10−6) and GO:0042692_muscle_cell_differentiation
(pathway-based p value = 8.00 × 10−6). Overall, the top
five pathways pointed toward the Sma/Mad-related protein
(SMAD), bone morphogenetic protein (BMP), and trans-
forming growth factor beta (TGFβ) signaling and muscle
cell differentiation pathways. Table 1 shows the top five
pathways observed in pathway analysis.

The GO:0060393_regulation_of_pathway-restricted_
SMAD_protein_phosphorylation pathway consists of 18
genes, of which six show a gene-based p value less than
.05. Sixteen of the 18 genes in this pathway contain a
top-SNP with a p value less than .05 (refer to Supplemen-
tary Table 1 for gene-based test statistics of genes in the
GO:0060393_regulation_of_pathway-restricted_SMAD_
protein_phosphorylation pathway). The SMAD7 and
BMP4 genes are the largest contributors to the result for
this pathway. After removing all genes with top SNPs
showing p value less 5.00 × 10−8, the pathway still shows
evidence for an association (pathway-based p value = 1.14
× 10−3), showing that sub-genome-wide threshold genes
make an important contribution to this pathway result.
Germline mutations in BMPR1A (gene-based p value =
3.77 × 10−4, top SNP rs71503853 p value = 2.91 × 10−6)

have been reported to be associated with juvenile polyposis
syndrome (JPS; Yamaguchi et al., 2014; OMIM 174900),
which is a risk factor for colorectal cancer (Brosens et al.,
2007; Howe et al., 1998). Another gene, SMAD6 (gene-
based p value = 5.00 × 10−3, top SNP rs3809571 p value
= 9.70 × 10−5), is involved in lung cancer cell growth and
survival (Jeon et al., 2008). Two further genes with gene-
based p values less than .05 are BMP2 and BMP7. BMP2 is
located 342 kb away from the colorectal cancer associated
38 kb LD region at 20p12.3 (Study et al., 2008). Overexpres-
sion of BMP2 is a risk factor for survival of non-small cell
lung cancer patients (Chu et al., 2014). BMP7 influences
proliferation, migration and invasion of lung (Liu et al.,
2012), and breast cancer cells (Alarmo et al., 2009).

The second significant pathway PID_BMPPATHWAY
is an expert-curated pathway provided by the pathway in-
teraction database (Schaefer et al., 2009; downloaded from
MSigDB). This pathway consists of 40 genes, including 7
(6 genes with gene-based p value < .05) of the 18 genes of
GO:0060393_regulation_of_pathway-restricted_SMAD_
protein_phosphorylation pathway. In addition to the
six overlapping genes with GO:0060393_regulation_
of_pathway-restricted_SMAD_protein_phosphorylation
pathway, there are three more genes in PID_ BMPPATH-
WAY showing a gene-based p value less than .05: GREM1
(gene-based p value = 3.60 × 10−5), TAB2 (gene-based p
value = 4.83 × 10−5), and SMAD5 (gene-based p value =
0.011). Refer to Supplementary Table 2 for gene-based test
statistics of all genes in the PID_BMPPATHWAY. Variants
in the GREM1 are associated with the colorectal cancer.
The PID_BMPPATHWAY shows evidence of association
(pathway-based p value = 4.80 × 10−3) after removal of
GREM1 and other genes with top SNP p value less than 5.00
× 10−8, suggesting the contribution of sub-genome-wide
threshold genes.

The last significant pathway is GO:0042692_ mus-
cle_cell_differentiation, consisting of 86 genes of which 18
show a gene-based p value less than .05 (refer to Supple-
mentary Table 3). Interestingly, apart from BMP4 none
of the other genes showed strong evidence for an asso-
ciation at a gene-based level, with much of the signal
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TABLE 2
Top Five Pathways from VEGAS2Pathway Analysis of Colorectal Cancer GWAS Summary Data and their Test Statistics Using the INRICH
and MAGENTA Approaches

VEGAS2Pathway MAGENTA
Pathway ID Pathway size p value INRICH p value p value

GO:0060393_Regulation_of_ 18 <1.00 × 10−6 6.00 × 10−6 1.17 × 10−2

pathway-restrictedSMAD_
protein_phosphorylation

PID_BMPPATHWAY 40 2.00 × 10−6 7.00 × 10−6 1.31 × 10−2

GO:0042692_Muscle_cell_differentiation 86 8.00 × 10−6 1.75 × 10−4 3.60 × 10−3

Panther_TGF-beta_signaling_pathway 61 3.00 × 10−5 8.81 × 10−3 6.00 × 10−4

GO:0048729_Tissue_morphogenesis 156 4.40 × 10−5 3.61 × 10−4 5.20 × 10−5

deriving from the combined effect of many genes with
moderate effect sizes. As a result, the significance of
GO:0042692_muscle_cell_differentiation was only slightly
altered by removing genes, which were individually signif-
icant (those with top SNPs with p value less 5.00 × 10−8)
from the analysis (pathway-based p value = 7.80 × 10−5).

Comparisons with other Pathway Analysis Approaches

To see if these pathways are also implicated by other ap-
proaches, we performed pathway analysis using INRICH
and MAGENTA software. We used the same gene-pathway
annotations as used for VEGAS2pathway to make associa-
tion statistics comparable across approaches. Table 2 shows
the association p-values for our reported top five pathways
using the INRICH and MAGENTA approaches.

All top five pathways observed for colorectal cancer us-
ing VEGAS2pathway show association p values less than
.05 using both INRICH and MAGENTA. In each case,
the association p values obtained using INRICH and MA-
GENTA were less significant than the ones obtained using
VEGAS2Pathway. These results are in line with the obser-
vations by Evangelou et al. (2012), who reported that the
Fisher’s method approach (in which combined test statistics
of all variants in a pathway is compared against combined
test statistics of permuted gene-sets of same size, similar to
the VEGAS2Pathway approach) is likely to be a more pow-
erful competitive pathway analysis approach than the hy-
pergeometric and GSEA approaches.

INRICH, a hypergeometric approach, by default uses
1.00 × 10−4 as a threshold for a variant to be called
significant, hence it will be underpowered to detect a
pathway containing many variants with association p
value greater than 1.00 × 10−4. On the contrary, VE-
GAS2Pathway uses information of all associations from
GWAS analysis to perform pathway analysis. Hence,
VEGAS2Pathway outperforms INRICH to identify
GO:0042692_muscle_cell_differentiation pathway, which
contains many moderately associated genes (refer to
Supplementary Table 3).

Both VEGAS2Pathway and MAGENTA are two-step,
pathway analysis methods in which a gene-based associ-
ation test statistics are first calculated to test the associa-
tion of a pathway. MAGENTA considers only the top SNP

within a gene-boundary to define gene’s association test
statistics, whereas VEGAS2Pathway combines association
test statistics of all SNPs within a gene boundary to cal-
culate each gene’s association test statistics. Hence, VE-
GAS2Pathway would be more powerful than MAGENTA
to identify pathways containing genes with many indepen-
dently associated variants. The variation in results from
VEGAS2Pathway and MAGENTA might also be due to
inherent differences between hypotheses tested. As men-
tioned previously, MAGENTA is based on the GSEA ap-
proach, which tests whether the gene-set is enriched with
highly ranked genes than expected by chance, whereas VE-
GAS2Pathway tests whether the combined association test
statistics of genes within a pathway is significantly different
from the ones obtained from randomly generated gene-sets.

We further tested whether VEGAS2Pathway also impli-
cates the top pathways for colorectal cancer obtained us-
ing INRICH and MAGENTA. Supplementary Tables 4 and
5 show top pathways for colorectal cancer obtained us-
ing INRICH and MAGENTA respectively, and their VE-
GAS2Pathway association p values.

Another recent competitive pathway analysis approach
(DEPICT) was not included in this comparison, since its
current implementation does not allow analysis using user
specified gene-pathway annotations.

Web-Based Implementation of VEGAS2Pathway

We implemented VEGAS2Pathway in VEGAS2 web page
https://vegas2.qimrberghofer.edu.au/ and a command line
tool. Users can select VEGAS2pathway analysis in the op-
tions box of the VEGAS2 web page to perform the pathway
analysis. The web-based version is easy to use and requires
only a two-column GWAS summary file with ‘rsID’ and ‘p-
value.’ The user manual and scripts can also be downloaded
from VEGAS2 webpage.

Discussion
We present a novel but simple competitive approach for
pathway analysis of GWAS data. Our approach differs from
existing approaches in a number of ways. Gene-based cal-
culation in ALIGATOR (Holmans et al., 2009) is based
on the assumption that LD within genes is constant, with
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the authors highlighting the difficulty in accounting for
variable LD without resorting to computationally intensive
permutation-based methods. A computationally efficient
simulation approach (VEGAS) is used here to calculate
gene-based test statistics that account for variable LD pat-
terns within a gene and give results similar to those from a
permutation approach. The hypergeometric approach (im-
plemented in DEPICT and INRICH) requires users to pre-
specify a significance threshold for SNPs in the pathway
test, with less significant SNPs ignored. In contrast, our ap-
proach does not use a pre-specified inclusion threshold for
SNPs/genes; instead, all genes are included, with weight-
ing determined by the evidence for each gene from a gene-
based test. Approaches such as GenGen and MAGENTA
consider only a top SNP within a gene boundary to calculate
gene-based test statistics. Only including one SNP per gene
has the potential to discard relevant information if there are
multiple independent signals in a gene. As just one exam-
ple, Yang et al. (2012) reported that among genes with SNPs
associated with height, many had more than one associated
SNP. Our default gene-based test includes all SNPs within a
gene; hence, it would show improved power to detect path-
way that comprises genes with multiple independent risk
variants.

In addition to the adjustment of major confounders for
pathway analysis of GWAS data such as LD between vari-
ants, gene size, and pathway size, the implementation of
VEGAS2Pathway is easy to use. The implementation does
not depend upon commercial software (as is the case with
MAGENTA, which requires a commercial MATLAB li-
cence); rather, a free user-friendly web-based implemen-
tation is provided. Our approach does not require much
preprocessing of input files (as the case in INRICH) a two-
column text file with rsID and p value is a sufficient input to
perform default analysis. The web implementation ignores
variants without rsID, whereas the command line tool allow
user to incorporate variants without rsIDs in their analysis
(providing the user has a data set available to estimate the
relevant pair-wise LD values).

We incorporated both manually curated pathways from
MSigDB (containing canonical pathways and gene-sets
from BIOCRATA, REACTOME, KEGG databases), PAN-
THER, and pathway commons, and computationally pre-
dicted pathways from the GO database. We have provided
a simulation derived multiple testing cut-off since the tradi-
tional multiple testing corrections are over-conservative for
non-independent pathway tests. Including pathways from
different sources should ensure our approach is applica-
ble to a wide range of complex traits. Moreover, the VE-
GAS2Pathway command line implementation allows the
user to specify other gene pathway annotations, giving more
flexibility for analysis.

Our pathway analysis results suggest the enrichment of
association signals for risk of colorectal cancer in BMP-
SMAD signaling and muscle cell differentiation pathways.

BMP-SMAD signaling is involved in cellular differentiation
(Kobayashi et al., 2005) and apoptosis (Guha et al., 2002).
Interestingly, different genes encoding regulators of BMP
signaling such as the BMP antagonist (GREM1), BMPs
(BMP2, BMP4 and BMP7), kinase (TAB1), BMP receptor
(BMPR1A), and inhibitory SMADs (SMAD6 and SMAD7)
are driving the association of the PID_BMPPATHWAY. Re-
cently, the BMP-SMAD1 signaling pathway was shown to
stabilize tumor suppressor p53, suggesting its loss of func-
tion in tumorogenesis (Chau et al., 2012). Another study
reported the inactivation of BMP signaling in majority of
sporadic colorectal cancer patients (Kodach et al., 2008).

Our study is the first to report an association of the mus-
cle cell differentiation pathway with colorectal cancer. Many
genes moderately associated with colorectal cancer drive
the association of muscle cell differentiation pathway in-
cluding NRG1, CAPN2, NOS1, FGF10, SOX15, and ATG5.
Several lines of evidence suggest biological plausibility for
the role of this pathway in tumorigenesis. The high expres-
sion of the transmembrane NRG1 and NRG1/HER3 signal-
ing in the tumor mesenchymal stem cells is associated with
poor colorectal cancer prognosis and colorectal cancer cell
progression, respectively (De Boeck et al., 2013). CAPN2-
dependent IκBα degradation is responsible for secondary
resistance of colorectal cancer cells to the CPT-11 (irinote-
can) anti-cancer therapy (Fenouille et al., 2012). Expression
of NOS1 is negatively associated with patient response to
adoptive T-cell anti-cancer therapy (Liu et al., 2014). FGF10
is reported to induce cell migration and invasion in pancre-
atic cancer cells through FGF10/ FGFR2 signaling (Nomura
et al., 2008). SOX15 was reported to show tumor suppres-
sive effects in pancreatic cancer (Thu et al., 2014). ATG5 is
strongly downregulated in colorectal cancer patients (Cho
et al., 2012). In aggregate, these results suggest that the vari-
ants residing in genes involved in muscle cell differentiation
pathway might play an important role in colorectal cancer
risk.

In the current analysis, we assigned variants that lie
within 50 kb on either side of a gene’s transcription site
to compute its association p value. This choice of bound-
ary might have ignored distantly located risk variants; we
used this selection criterion to strike a balance between in-
clusions of possible cis-regulatory variants and maintain-
ing specificity of a gene. The VEGAS2Pathway implemen-
tation allows user to specify the gene-boundary to compute
gene-based p value. Furthermore, to note SNP assignment
based on a wide boundary leads to inclusion of many non-
risk variants, which can dilute the association signal of a
gene. Assigning SNPs based on their regulatory relationship
to genes is an important future direction. Similarly, future
work would ideally expand this approach to include rare
variants for gene- and pathway-based analyses. Further to
add, our current work did not explore all aspects of VE-
GAS2 gene-based tests such as top-SNP and top percent-
age tests, but this study was performed considering default
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all variant test. Recently, Wojcik et al. (2015) compared 21
different methods for gene- and pathway-level analysis of
GWAS data and reported that the VEGAS approach con-
sidering the top 10% of SNP association p values performs
better in terms of both sensitivity and control of type 1 error
rate. In this work, we focused on the performance of three
methods — VEGAS2Pathway, INRICH, and MAGENTA —
on real data from colorectal cancer GWAS; further com-
parison of VEGAS2Pathway approach with other available
methods under different simulated scenarios will be an im-
portant extension of current work.

In summary, we report the VEGAS2Pathway approach
for pathway analysis of GWAS summary data. It accounts
for LD between SNPs within a gene, and between neigh-
boring genes, gene size, and pathway size. The current ver-
sion of VEGAS2Pathway uses computationally predicted
gene ontology pathways and expert-curated pathways from
the MSigDB, PANTHER, and pathway commons databases.
This approach is implemented in both a user-friendly web
page and a unix command line perl script. We applied our
method on colorectal cancer GWAS summary data and
found evidence that genes involved in the BMP signaling
and muscle cell differentiation pathways might play a role
in the development of colorectal cancer.
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