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1. Introduction 
I see my assignment in this talk as beinq to focus on the interac­

tion between the magnetic fields produced by dvnamo action and the 
dynamics of the fluid flow which drives this dynamo, and to make some 
connections to the solar and stellar dynamo problems. To do this really 
requires we start with a fluid dynamical model that satisfies relevant 
laws of fluid dynamics, and in which the flow can actually respond to 
the induced macmetic field. Thus the so-called kinematic dynamo models 
are not enough for our purposes, and we must address the full MHD dvnamo 
problem in a self-consistent way. For example, we do not allow our­
selves the license to vary independently the convection and differential 
rotation, as is commonly done in kinematic dynamo calculations, because 
the laws of physics do not allow that. We have been attempting to do 
self consistent MHD dynamo modeling at Boulder for the past several 
years, starting from a nonlinear fluid dynamical model for convection in 
a rotating spherical shell. This model we believe is physically com­
plete in itself, with a minimum of ad hoc assumptions. It is much 
simpler than the real sun, but contains a lot of the physics we consider 
most relevant to the solar and stellar dynamo problem. I like to view 
the"model more as an analog to the solar or a stellar convection zone, 
rather than as an approximation—much as a laboratory rat or monkey is 
used as an analog to a human being in many medical experiments. Each 
exists and is physically complete, and much, though not all, of their 
biochemistries are the same or are closely related. 

Our model is for fully three-dimensional, nonaxisymmetric, non­
linear convection in a deep shell initially in uniform rotation and 
heated uniformly from inside. (Details of the computational approach 
are given in Gilman, 1975, 1977.) It has a central gravity, and constant 
viscosity and thermal conductivity (which we are forced to compare to 
eddy viscosities and thermal diffusivities on the sun). Stress free 
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velocity boundary conditions are applied at top and bottom boundaries 
along with constant heat flux bottom and constant temperature top. The 
fluid is currently incompressible but a compressible version is now 
undergoing testing and should be operational this fall. (And we do have 
some results for linear compressible convection in a deep rotatino 
spherical shell, see, eg. Gilman and Glatzmaier (1^81), Glatzmaier and 
Gilman (1981a,b,c, 19821". 

My plan in this talk is first to comment on the observational con­
straints provided by the sun which seem most relevant to the MHD dynamo 
problem, and then summarize the hydrodynamic results bearing on those 
constraints. Then I will discuss what kind of dynamo behavior we actu­
ally get with the model and contrast that with the observations. 
Finally, I will generalize and extrapolate some to a more general pic­
ture of rotating convectively driven spherical shell dynamos, and com­
ment on possible implications of these generalizations for stellar 
dynamos. 

2. Observational constraints 
You all know the principal observational characteristics of solar 

cycles—the migration of spot zones toward the equator, Hale's sunspot 
polarity law, field reversals at the poles near cycle maximum, amplitude 
variations from cycle to cycle, and between north and south hemispheres, 
etc. In addition, the surface differential rotation of the sun is well 
known. As Robert Howard has told you, there also appear to be small 
amplitude ( ± ^ 5m/sec) torsional oscillations on this mean rotation 
profile, linked in phase to the solar cycle, but extending to much 
higher latitude. The search for giant cell convective velocities has so 
far revealed only fleeting glimpses, and an upper limit of roughly 
lOm/sec per longitudinal wave number (LaBonte, Howard and Gilman, 1981, 
and earlier references cited therein). There is some indication of 
other rotation rate changes with time both within a cycle and from cycle 
to cycle, of a few percent. For example, Eddy et al (1978) reported 
from sunspot measurements a declining rotation rate in the first half of 
the 20th century, followed by a leveling off and possible increase. 
There is a suggestion in these data of an inverse correlation between 
amplitude of the cycle envelope, and low-latitude rotation, which may be 
a significant clue regarding the long-term workings of the solar dynamo. 

The most important missing element in our knowledge of solar rota­
tion for the dynamo problem is its variation with depth. The faster 
rotation rate of spots compared to the plasma has long been interpreted 
as evidence of an increase of angular velocity with depth (Foukal, 
1972). Angular velocity increases with depth near the surface were sug­
gested by Deubner et al. (1979) from frequency shifts in 5 minute oscil­
lations, but the errors are large and more recent measurements at Kitt 
Peak (unpublished) do not confirm this result. More startling are new 
observations by Hill and colleagues (to be published; see also Gough, 
(1982)) indicating interior rotation rates several times the surface 
rate. It is not clear yet how much of the proposed increase occurs 
within the convection zone itself, but such a result, if confirmed, will 
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be very important for solar differential rotation and dynamo theory. 
This is because, as many of you know, kinematic dynamo theory 

applied to the sun favors angular velocity increasing with depth to give 
migration of the zone of sunspot formation toward the eguator with time, 
while global convective models, at least those in which the strong 
influence of rotation upon convection in the deep layers of the convec­
tion zone is taken into account, favor angular velocity constant on 
cylinders and decreasing with depth. 

As you also know, there is now evidence of luminosity changes asso­
ciated with sunspot passage across the solar disk (e.g. Willson, et. 
al., 1981) which imply the magnetic field is modifying the energy output 
of the sun and causing intermittent storage of energy in the convection 
zone. Dynamo models will ultimately have to address this question, 
though none appears capable of doing so now, at least not on sunspot 
spatial scales. 

3. Results from spherical shell convection model relevant to the dynamo 
problem 

Rotation axis 
i 

Convection 
zone 

Equator 

Differential 
rotation 

Global convection 
which drives the 
differential rotation 

Convection and differential 
rotation together drive the 
dynamo. 

Figure 1: Schematic drawing of global convection and d i f f e r e n t i a l 
ro ta t ion from model ca lcu la t ions. 
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We have now performed a large number of numerical experiments for 
nonlinear convection of an incompressible fluid in a rotating spherical 
shell, varying the convection zone depth, heating rate, viscosity and 
rotation rate. One general conclusion from all these calculations is 
that in order for the convection to sustain a large amplitude, broad 
equatorial acceleration such as the sun has, two conditions must be met: 
First, the convection zone must be relatively deep, roughly one-third of 
the radius or more. Second, the influence of rotation upon the convec­
tion must be strong so that the turn over time for the convection is not 
short compared to the rotation time. This condition should be met in 
the deep part of the solar convection zone. In shallow convection zones 
the equatorial acceleration has small extent in latitude, and if the 
influence of rotation upon the convection is weak, the differential 
rotation is weak, and is in the form of an equatorial deceleration even 
slightly above critical for convection to occur. 

A schematic picture of the global convection and differential rota­
tion is shown in Figure 1. Convective rolls with a north-south axis are 
preferred due to rotation (if the rotational influence is very strong, 
the roll axis will tend to line up with the rotation axis, rather than 
bend with latitude as seen here). The horizontal velocity vectors in 
these rolls are tilted with respect to the east-west direction (due to 
the coriolis force) in such a way that fast moving particles are also 
moving toward the equator. This results in a Reynolds stress and net 
angular momentum flux toward the equator from high latitudes, which is 
how the equatorial acceleration is produced. The strong influence of 
rotation upon the convection leads to a strong preference for north-
south rolls with this property, allowing a large amplitude differential 
rotation to build up. Also, with strong influence of rotation, fluid 
particles moving radially do not conserve angular momentum but are 
instead subject to longitudinal pressure torques that keep the particle 
paths from deviating far from the radial direction -- this is a 
manifestation of the near "heliostrophic" balance between pressure gra­
dient and coriolis forces, which allows the convection to continue to 
release potential energy and transport heat efficiently. As a conse­
quence radial angular momentum transport is either outward, or weakly 
inward. In either case, a surface equatorial acceleration is main­
tained. 

In addition, also due to the constraint of rotation, the angular 
velocity tends to be constant on cylinders (the Taylor - Proudman 
theorem), and therefore decreases with depth. This is also a quite gen­
eral result, modified only when some additional force is large enough to 
compete with pressure gradients and coriolis forces. It does not 
depend, for example, on the detailed properties of turbulent transport, 
unless such transport is large enough to upset the heliostrophic bal­
ance. In our model calculations, this can be made to occur by increas­
ing the buoyancy force by increasing the heating rate. Then inward 
radial angular momentum transport due to departures from heliostrophic 
balance begins to dominate. But the first consequence of this is to wipe 
out the surface equatorial acceleration, and then to change the radial 
qradient so angular velocity increases inward. Because of the loss of 
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equatorial acceleration, the solution ceases to be of interest for the 
sun, but may be for other stars (see e.g. Gilman, P 8 0 ) . 

The relative amplitudes of differential rotation and the convection 
which drives it are functions of, among other things, the fluid viscos­
ity. Generally speaking, the lower the viscosity, the larger the dif­
ferential rotation that can be produced. In- an earlier paper (Gilman, 
1980) I reported that it appeared that an upper limit to differential 
rotation energy was perhaps 40% of the total kinetic energv. That esti­
mate was erroneous as we have now found, by reducing the viscosity, 
examples for which the differential rotation is as much as 80# of the 
total kinetic energy, the convection only 20^. I mention this because 
this ratio of energies is very important for determining the kind of 
dynamo behavior we get, for example, whether magnetic cycles occur or 
not. Solutions with relatively low amplitude global convection are also 
easier to fit within the observational upper limits for giant cells. 

If we return to Figure 1, we can see the elements needed for dynamo 
action: differential rotation, and a helical structure to the convec­
tion, such that in the northern hemisphere, fluid moving toward the pole 
has a clockwise rotation, fluid moving toward the equator a counter­
clockwise rotation. This results in left-handed or negative helicity 
(scalar product of velocity and vorticity) in the northern hemisphere, 
right handed or positive in the southern. The shearinq due to differen­
tial rotation will generate toroidal field from poloidal field, while 
the transporting and twisting of fields by the helicity will generate 
new poloidal field. The relative strengths of these two processes 
clearly depends on the relative strengths of convection and differential 
rotation. 

We can also see from Figure 1 a reason why one would like to do the 
MHD rather than the kinematic dynamo problem: the helicity arising from 
the spiral structure of the flow, and the angular momentum transport 
arising from the tilt of the velocity vectors, are obviously closely 
linked. A change in helicity due to a change in the convection is 
likely to be accompanied by a change in the rate of angular momentum 
transport, and therefore in the differential rotation. 

How much of what we have just said concerning convection of an 
incompressible fluid in a rotating spherical shell is likely to carry 
over to the compressible case? The answer is that we do not know for 
certain, because no comparably nonlinear calculations have yet been 
done. However, from the work of Glatzmaier and myself for linear 
compressible convection, extended to the initial tendency for nonlinear 
convection in Glatzmaier and Gilman (1982), we can make preliminary 
statements. In particular from compressible convective modes strongly 
influenced by rotation that do extend the full depth of the convection 
zone, we still get angular momentum transport toward the equator from 
high enough latitudes to produce a broad equatorial acceleration. The 
helicity of these modes also looks to be similar to that of the 
incompressible convection. However, the radial gradient of angular 
velocity they produce may change sign at mid-depth, with angular velo­
city constant on cylinders only in the deep part of the convection zone 
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where the influence of rotation upon the convection is strongest, A 
typical angular velocity profile might look like that of Figure ?. This 
result does depend upon what is assumed for both the relative magnitude, 
and depth dependence, of the viscosity and thermometric diffusivity. 
Its reality and magnitude (and generality) in the fully nonlinear case 

DIFFERENTIAL ROTATION Xi(r f^) 
(Compressible Model-Glatzmaier & 
Gilman Initial Tendency Calculation) 

Figure 2: Schematic profile of differential rotation estimated 
from first calculations of compressible convection in a rotating 
spherical shell of Glatzmaier and Gilman (1982) when convective 
modes extend to full depth of convection zone. 
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needs to be tested. If such a radial angular velocity gradient reversal 
is present somewhere in the middle of the solar convection zone, it 
would have important consequences for solar dynamo models, because it 
could result in opposite directions of migration in latitude of the 
toroidal field above and below the level of gradient reversal. We 
return to this point after discussing our dynamo results from the 
incompressible model. 

4. Dynamo results from an incompressible convection model 
a) Early solutions 
Our numerical experiments to study the dynamo action of convection 

in a rotating spherical shell are usually begun by first establishing a 
finite amplitude statistically stationary state for the convection and 
the differential rotation it drives, and then adding a small seed mag­
netic field and following its subsequent growth and evolution as well as 
the full nonlinear feedbacks on the inducing motions. We concentrated 
on hydrodynamical solutions for which the differential rotation at the 
outer boundary was about equal in amplitude and profile to the observed 
solar differential rotation. The first experiments, described in Gilman 
and Miller (1981) were for hydrodynamic states in which the convection 
contained initially at least two-thirds of the total kinetic energy of 
the flow, the differential rotation no more than one-third. To our 
dismay, we were not able to find any field reversing dynamos, but only 
more random dynamo action which maintained a broad magnetic spectrum. 
The reason was evident from a study of the energetics of the solutions: 
the differential rotation was not large enough, compared to the convec­
tion, to contribute the dominant mechanism for maintenance of the 
toroidal field. In this case, the helicity of the convection predom­
inated in maintaining all components and scales of field. In the 
language of turbulent dynamo theory, our system behaved more like an 
" a 2" dynamo than an " a - u> " dynamo. 

b) Solutions with lower viscosity 
The only way around this difficulty was to look for hydrodynamic 

states in which differential rotation was a much larger fraction of the 
total kinetic energy of the system. These we found by reducing the 
viscosity and thermometric diffusivity of the system each by a factor of 
10 (still within the range of uncertainty of mixing length estimates, 
when comparing to the sun). The reason this works is that viscous dis­
sipation is what limits the amplitude of differential rotation in the 
model, so a smaller viscosity allows a smaller Reynolds stress, and 
therefore smaller convection amplitude, to maintain the same amplitude 
differential rotation. Smaller viscosity also implies the influence of 
rotation upon the convection is stronger. For solar amplitude differen­
tial rotation, these new solutions have a kinetic energy spectrum for 
the convection which falls near the upper limit from observations as 
calculated in LaBonte, Howard and Gilman (1981). 

With these new solutions, we have found several examples of cyclic 
dynamos, together with a variety of electromagnetic feedbacks. A typi-
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Toroidal Magnetic Field Profiles 

Time 
Step 

Equator 

11920 12080 12240 12400 12560 

Figure 3: Contours of toroidal magnetic field amplitude for a 
sequence of time steps from typical solution of the convectivelv 
driven dynamo model. Solid contours represent positive field (into 
page) dashed contours, negative field. 

Poloidal Magnetic Field Vectors 

Figure 4: Poloidal field vectors for same time steps as in Figure 
3 / 
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cal example of toroidal and poloidal fields from such a solution is 
shown in Figures 3 and 4. Solid and dashed contours represent toroidal 
field amplitudes of opposite signs. (The calculations are cut off at fiO 
latitude for computational stability, an artifact that needs to be 
removed in subsequent models). From Figure 3, one can see that a new 
magnetic cycle in toroidal field begins deeo in the convection zone near 
the equator, then grows in amplitude and expands upward and toward the 
poles, reaching the outer boundary in mid-latitudes. In Figure 4, the 
poloidal field migrates along with it, producing the strongest surface 
poloidal fields near the high latitude end of the toroidal field cycle. 
In a qualitative sense, the migration is as predicted from a - GO 
dynamo theory. 

I call your attention to another detail, namely the tendency for 
the poloidal field vectors in high latitudes in the interior of the con­
vection zone to line up parallel to the rotation axis, and therefore 
with the contours of differential rotation, since they are cylindrical. 
This tendency toward "iso-rotation" appears to be important for limiting 
cyclic dynamo action to lower latitudes, particularly the region outside 
the tangent cylinder to the inner boundary. That is, a poloidal field 
parallel to the rotation contours is not sheared out into a new toroidal 
field. One can see from Figure 3, particularly in the southern hemi­
sphere, a tendency for the toroidal field to avoid polar regions at deep 
levels. We will comment on this point further in talking about dynamos 
in stars generally. The reason the effect occurs in the model is that, 
at high latitudes, the convective flow itself including particularly the 
axisymmetric meridional^ circulation, tends to be parallel to the 
rotation axis, causing the poloidal field lines they induce to have a 
similar orientation. This is the opposite of low latitudes, where the 
dominant convective flow is a rotational one about the roll axis, which 
is parallel to the rotation axis.. 

c) Energetics of a typical solution 
Rather than look at a lot of details of these complex dynamo solu­

tions, I think it is instructive to instead concentrate on their ener­
getics. Figure 5 shows time traces of the various kinetic and magnetic 
energies of the same solution as shown in Figures 3 and 4, in dimension-
less form. The magnetic cycles show up most clearly in the toroidal 
field energy — max to min in each cycle is a change of a factor of two 
or so. By contrast, the poloidal field energy is much noisier. This is 
because it is maintained by convection, which itself is much noisier 
than the differential rotation responsible for maintaining the toroidal 
field. This is obvious from the kinetic energy traces for these quanti­
ties seen near the top of the figure. 

From the dimensional time scale drawn in the middle of Figure 5, 
one can see the cycles this model produces are at least an order of mag­
nitude shorter than for the sun, even though differential rotation has 
solar amplitude. We return to a discussion of this point later. 

The toroidal field energy trace also shows an "envelope" to the 
magnetic cycle, whose typical time scale is several cycles. This 
envelope amplitude appears to be connected to long term changes in dif-
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ENERGY TRACES FROM MHD DYNAMO 
DRIVEN BY CONVECTION IN A ROTATING SPHERICAL SHELL 

| 0 3 l I I I I I I I I I I I I I L-ZJ I I I I I I I I I I L 
9960 10480 10960 11440 11920 12400 12880 13360 13840 14320 14800 15280 15760 

TIME STEPS 

Figure 5: Kinetic and magnetic energies (dimensionless) as a func­
tion of time for several thousand time steps from the model solu­
tion shown in Figures 3 and 4, illustrating cycle amplitudes and 
envelope changes. Note the dimensional time scale of 1 year on the 
figure. 

ferential rotation amplitude, in the sense that a declining sequence of 
cycles is associated with a generally rising differential rotation 
energy (which is experiencing a much smaller percentage change). This 
is what we would expect if the j x B force is modulating differential 
rotation amplitude. Relatively quick change in differential rotation, 
such as the sharp drop following step 13800, is due to a combination of 
a sharp rise in j x B force due to previous induction when convection 
was larger, combined with a drop in Reynolds stress due to a subsequent 
drop in convection amplitude. This event is followed by a new magnetic 
cycle of considerably weaker amplitude in toroidal field, a result of 
the weaker differential rotation. 

Thus we can see that in this model, cycle envelope changes are a 
natural outcome of the interplay between the dynamo and its drivers, as 
well as the more independent fluctuations in convection itself. The 
differential rotation does not appear to respond much to the change of j 
x B force in an individual cycle. This is probably because the cycles 
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are relatively short, only a few convective turnover times, while the 
differential rotation changes more on its own internal "spin up" time, 
which is, for the viscosity chosen, considerably longer. Were the 
induced magnetic cycles much longer, we would expect to see a sinqle 
cycle modulation of differential rotation energy as well. 

It is worth noting that the differential rotation changes we find 
correspond to chanqes in absolute rotation velocity at the equator of 
only 1 - 2%, so they are in the ranae discussed from observations. 

d) Effects of decreasing magnetic diffusivitv: increasing feed­
backs 

We have found it particularly instructive to study changes in 
behavior of the dynamo as a function of the assumed magnetic diffusivity 
x] . We measure that quantity in our model by a magnetic Prandtl number 
Q = n / K , in which K is the thermometric diffusivity. (In virtually 
all our calculations K = v , the kinematic viscosity, so the ordinary 
Prandtl number is unity). Then the smaller is 0, the stronger dynamo 
action we shouUVget, since the magnetic Reynolds number, which is pro­
portional to Q , is rising. \, So by varying Q for the same initial 
hydrodynamic solution, we can examine how the dynamo chanqes as we rise 
above the threshold for dynamo action. In our particular case, this 
threshold for small amplitude magnetic fields falls between Q = 1.7 and 
2.0. 

Figure 6 displays average kinetic and maonetic energies for several 
solutions of the system a's a function of Q. Several effects are evi­
dent. First, as Q is decreased, the total magnetic energy rises, as we 
would expect, but the toroidal and poloidal field energies first rise, 
and then fall off, so that by Q = 0.5 together they constitute only 3% 
or so of the total magnetic energy of the system, as compared to 30% at 
Q = 2.0. Through this range of Q, the convection energy hardly changes 
at all, indicating \/ery little feedback on it; by contrast, the dif­
ferential rotation has dropped steeply, to the point that it becomes 
much smaller than, the convection which drives it. (Incidentally, the 
dynamo solution at 0 = 2.0 represents a finite amplitude dynamo field 
not reachable from a small amplitude initial field, which would decay 
away — we found it instead by using a Q = 1.7 solution as an initial 
state.) The change in surface profile of differential rotation is shown 
in Figure 7, indicating it remains an equatorial acceleration as Q is 
decreased, but is simply of smaller amplitude (its. cylindrical profile 
with depth is also retained). 

What is happening is that as Q is decreased, j x B forces take over 
from viscous forces in braking the differential rotation, as can be 
seen in.Figure 8, which plots the dimensionless rates at which work is 
done to buildup (+) or brake (-) the differential rotation energy. 
These rates are also normalized with respect to the viscous dissipation 
rate (always -1 unit). At Q « 2.0, viscosity dominates, while by Q = 
0.5, the balance .is principally between Reynolds stress and Maxwell 
stress, with viscous dissipation only about 1/3 of the total. (Note 
that coriolis forces acting on the meridional circulation do not play a 
significant role at any Q). 
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DIFFERENTIAL ROTATION PROFILES 
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DIFFERENTIAL ROTATION 
MAINTENANCE RATES 

(Normalized to Dissipation Rate) 
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MAGNETIC PRANDTL NUMBER Q ^ 
Figure 8: Rates at which the differential rotation is maintained (+) or 
braked (-), by Reynolds stresses, Maxwell stresses, and coroilis forces 
acting on the meridional circulation as functions of the magnetic 
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While the j x B force on the differential rotation is larqe enough 
to take over from viscosity in braking it, it is not so large that it 
interferes with the basic "heliostrophic" balance between pressure gra­
dient and coriolis forces, so the Taylor-Proudman constraint is still 
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that of the convection which has much f ine s t ruc ture . There must he a 
value of Q below which convection, too, is damped, thus l i m i t i n g the 
to ta l magnetic energy, but we have not investigated th i s regime. 

Toroidal Magnetic Field Profiles Poloidal Magnetic Field Vectors 

Figure 9: Sample toro ida l and poloidal f i e l d p ro f i l es fo r a high Q 
and low Q case, showing break up of organized global f i e l d in to 
much more chaotic form as the d i f f e r e n t i a l ro ta t ion drops. 
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As a result of this damping of differential rotation with decreas­
ing Q, less toroidal field is induced from poloidal field, and the 
dynamo changes its character. Typical toroidal and poloidal field pro­
files are shown in Figure 9. By 0 = 0.5, both poloidal and toroidal 
fields have lost their global coherence, and have just as much fine 
structure as the small scale fields at high longitudinal wave number in 
the model. Furthermore, the magnetic cycle has disappeared. It does 
not seem to be hidden in the noise of the instantaneous toroidal field 
profile for Q = 0.5, it is really not present at all. If one looks at 
the rates of maintenance of toroidal field shown in Figure 10, one can 
see what has happened. At 0 = 2.0, the dominant mechanism of toroidal 
field maintenance was shearing of the poloidal field by differential 
rotation. The effect of helicity, or the " a effect", which is the sum 
of shearing and transport of field by the convection, is actually nega­
tive. But by 0 = 0.5, the differential rotation has decreased to the 
point that transport and shearing by convection is now the dominant 
mechanism in maintaining the toroidal field. We are back closer to the 
" a 2 dynamo" case, rather like what we found with higher viscosity 
(although our "mean field" is not smooth and coherent on a global 
scale). Thus, the dynamo is capable of shutting off its own cycles; and 
for it to retain a cycle requires the sum of poloidal and toroidal field 
be a substantial fraction of the total magnetic energy of the system fin 
these model solutions, nearly 10#). This also illustrates how important 
a strong differential rotation is to produce cycles in the first place, 
something long known from kinematic dynamo theory. 

It is clear from our results that the dynamo is very sensitive to 
its feedbacks, because all of these changes occur within a factor of 4 
of the threshold magnetic diffusivity for any dynamo action at all. 

e) Other feedback effects. 
We have already seen that j x B feedbacks can profoundly affect the 

differential rotation, including its average amplitude and modulations 
from cycle to cycle. The Q = ?.0 solutions illustrate that a finite 
amplitude magnetic field can allow a dynamo to be sustained when a weak 
field would die out. In addition, Gilman and Miller (1981) showed that 
even a weak magnetic field can completely change the history of convec­
tion patterns. Two time dependent solutions for the flow, initially 
identical but one with a small magnetic field, will diverge away from 
each other in their amplitude and phase histories of the various convec-
tive modes in the spectrum. This precludes long term predictions, and 
will contribute to a certain randomness in the cycle envelope, and in 
field amplitudes with time within a given cycle. 

One feedback effect we have looked for but not found is magneti­
cally driven torsional oscillations. It turns out the model does have 
torsional oscillations in it, but these are present even without a mag­
netic field. They do migrate in the same direction as the toroidal 
field in the model but a rate which is faster by 40% or so.. They have a 
similar amplitude to that observed on the sun. They appear to be a form 
of axisymmetric inertial oscillations in which the restoring force is 
the coriolis force. It is entirely possible magnetically driven tor-
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sional oscillations will be produced in the model in solutions whose 
dynamo period is much longer than we presently find. 

f) Symmetry of the magnetic field about the equator. 
In our solutions, we have found that, if the initial magnetic field 

has one dominant symmetry about the equator (for example, toroidal field 
either symmetric or antisymmetric about the equator), this symmetry is 
likely to be preserved over many magnetic cycles (several thousand model 
time steps) and initial growth of the field for either symmetry is vir­
tually the same. However, due to departures from one particular sym­
metry in the motion field, the second symmetry does come into the mag­
netic field with time, and there are occasions when the dominant sym­
metry changes, and becomes locked into the opposite form for several 
cycles. This phenomenon seems to be easier to produce with the model 
than is a "maunder minimum", apparently the opposite of the sun. 

It is easy to see how a symmetry change can come about if one just 
allows the convection to be temporarily a little more vigorous in one 
hemisphere than the other. A stronger poloidal field is then induced in 
that hemisphere, earlier in the cycle, which the differential rotation 
then amplifies into a stronger toroidal field also at an earlier phase 
in the cycle. A small succession of these events leads to the phase of 
the cycle in one hemisphere getting well ahead of that in the other, 
leading to the opposite symmetry of field about the equator. It would 
seem that in the sun, the two hemispheres are more closely linked than 
in the model. 

5. Generalizations and applications 
a) Application to the sun 
Obviously, our dynamo solutions fail to reproduce the solar dynamo 

in some important respects. Kinematic dynamo theory so far has done 
better, but its practitioners have had more free parameters and func­
tions at their disposal. Our problem is how to get the correct direc­
tion of migration of toroidal field, and cycle period, while still stay­
ing within the constraints of fluid dynamics. In the former problem, 
compressibility may help greatly. If the schematic differential rota­
tion profile shown in Figure 2, with an angular velocity maximum at 
mid-depth, proves to be the rule in the compressible case, then we might 
generate magnetic cycles which start near the equator deep in the con­
vection zone, for which the toroidal field then migrates roughly paral­
lel to the axis of rotation toward the surface and higher latitudes. 
Upon reaching the reversed gradient of angular velocity there, it then 
migrates back toward the equator. In the sunspot cycle, all we would 
then be seeing is this upper branch of the cycle. 

This picture offers some real advantages. For example, it would 
explain why spots first appear in mid latitudes, and the equatorward 
moving branch in each hemisphere would keep the two hemispheres more 
closely linked together. A disadvantage would be that it is not clear 
how the high latitude part of the torsional oscillations would fit in. 
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Such a hybrid dynamo would prove unnecessary if we were to find 
that with several density scale heights in the convection zone, the con-
vective modes maintaining the equatorial acceleration also produced an 
angular velocity increasing inward all the way to the bottom of the con­
vection zone, this would be more consistent with what is emerqing from 
the oscillations measurements, but there is no evidence from what 
compressible convection calculations we have done so far that it will 
happen. 

Either way this problem is solved, it would provide resolution of 
the conflict between differential rotation and dynamo models over the 
sign of the radial gradient of angular velocity. 

SCHEMATIC OF POSSIBLE DYNAMO REGIMES FOR 
CONVECTION IN A ROTATING SPHERICAL SHELL 
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Figure 11: Schematic regime diagram for kinds of dynamos expected 
from model as functions of the conductivity and influence of rota­
tion upon the dynamics. 
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As for the short dynamo period we find, we see at least two possi­
bilities. One is that the global convection driving the differential 
rotation of the sun is even weaker than in our current model — for 
which rms. horizontal velocities are already no more than lOm/sec per 
wave number. The other is that, due to the highly intermittent magnetic 
field structure in the solar convection zone, not all of the helicity 
present in the convection is felt by the field. For example, a field 
larqely confined to the boundaries of convection cells would not feel 
the helicity of the cells' interior. If this is the case, it will be 
very difficult to deal with in global dynamo models, because of practi­
cal limits on spatial resolution, and will require sophisticated parame­
terization of the unresolved small scale interaction of velocities dnd 
magnetic fields to capture its global effects. The role of maanetic 
buoyancy also needs to be considered further. 

b) Generalizations from our dynamo results. 
Based on our experience with the dynamo model so far, as well as 

other physical arguments, it is possible to construct a plausible, but 
very schematic, "regime diagram", illustrating what kind of dynamo 
action to expect. This may help us think about dynamos in other stars. 
Such a diagram is shown in Figure 11. In Figure 11, the vertical axis 
is the electrical conductivity for the model (proportional to ff1. The 
horizontal axis is an unspecified measure of the influence of rotation 
upon the dynamics. It could, for example, be the ratic of rotation fre­
quency to buoyancy growth rate or convective turnover rate, although, 
particularly at low and moderate influence of rotation, viscosity also 
enters in. Below the horizontal axis, we indicate that, without mag­
netic fields, as the rotational influence grows, the differential rota­
tion energy DRKE grows as a fraction of the total kinetic energy TKE of 
the system. But eventually, the rotation has such a strong influence on 
the convection it nearly suppresses it. This drives the differential 
rotation down at an even faster rate, because it is driven by Reynolds 
stresses, which are second order in convective velocities. 

Figure 11 illustrates the obvious point that, for any amount of 
influence of rotation upon the dynamics, there will be an electrical 
conductivity below which there is no dynamo action. At low influence of 
rotation, this is because while convection has its full amplitude, the 
helicity or a effect is too small to overcome the dissipation. At high 
influence, it is because rotation is suppressing convection and dif­
ferential rotation. At higher conductivities but weak rotational influ­
ence, we get dynamos, but they are not field reversing, because the dif­
ferential rotation is too weak. This is the region to the left of the 
vertical wavy line. To the right of that line, we get cyclic dynamos in 
an enclosed pocket inside of which the differential rotation exceeds 
some substantial fraction of the total kinetic energy of the system. 
From our model, that fraction appears to be in the range 0.3 to 0.4. 
Above and to the right of that pocket, we still get dynamos, but the 
cycles are lost, this time because j x B forces reduce the differential 
rotation to the point where shearing of the poloidal field by it is not 
the principal means by which toroidal field is maintained. 
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The various boundary lines we have drawn may not He sharp or 
unique, but may depend on the direction from which they are approached 
in the parameter space -- that is, hysteresis may be present, with 
memory of the previous state of the dynamos that were used as initial 
conditions for the next calculation. We have already seen an example of 
this in our solutions at 0 = ?.0. 

Our calculations so far have essentially been along two vertical 
lines in this diagram, one to the left and one to the right of the wavy 
vertical, line. To really quantify such a diagram and verify its various 
parts, we obviously need many more calculations, but these are guite 
expensive with our large model. Such calculations would be worthwhile 
and much more practical with a simplified version, if a good one can be 
found. 

c) Applications to stars 
Even given uncertainties in the regime diagram for the dynamo 

model, there are additional uncertainties in extrapolating from it to 
the sun and other stars. For example, to make the connection, we must 
identify the electrical conductivity with a turbulent conductivity for a 
convection zone. But that may be affected bv the influence of rotation 
upon convection, in which case the horizontal and vertical axes would 
not be independent. This would be a problem mostly on the far right-
hand side of the diagram. 

But let us suppose that the regime diagram in Figure 11 does apply 
to stars, at least in some form. Stars with cycles lik£ the sun such as 
observed in Calcium emission by Wilson (1978) obviously would fall 
inside the enclosed "dynamos with cycles" region, at intermediate influ­
ence of rotation on the dynamics. This would be consistent with the 
observations of Vaughan, et al. (1981) that stars with cyclic calcium 
emission all have rotation periods of ?0 days or longer. Stars with 
shorter rotation period have no cycles, and higher emission. On Figure 
11, these stars would lie to the right of the upper boundary of the 
cyclic region. For some distance to the right of this boundary, the 
magnetic field amplitude ought to grow, bevond which it drops as the 
convection is more suppressed by rotation. Clearly other stars with 
strong but non-cyclic emission could simply lie well above the whole 
"cycles" region on the diagram. For these, even at intermediate rota­
tion, the conductivity was sufficiently high that the induced j x B 
force shut down the differential rotation, eliminating the cycle. The 
calcium emission should be larger than for the cyclic stars, which is 
what is observed. 

With respect to cycle periods, we presumably would have the same 
problem with applying our model to other stars as we have had for the 
sun, and the solution may be the same and therefore equally difficult --
better representation of the small-scale interaction between velocities 
and magnetic fields. With respect to the direction of migration of the 
toroidal field, we have no information from other stars, but it would 
obviously be extremely valuable input to dynamo models. I would specu­
late that, the stronger is the influence of rotation on the dynamics of 
a particular star that has a magnetic cycle, the more likely the dom-
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inant migration will be from low to high latitudes, as in our dynamo 
calculations. I would think this would be particularly true for cyclic 
red giants in which the convection zone is geometrically very deep but 
still contains very few scale heights. 

The effects of convection zone depth are hidden in the regime 
diagram in Figure 1.1. In general, the shallower the depth (characteris­
tic of early type main sequence stars) the shorter is the turnover time 
in the convection zone. As, for example, Gilman (19R0) showed, even 
though the rotation rate of these stars is hiqher than the sun, ulti­
mately the influence of rotation on the dynamics is less, reducing the 
probability of cyclic dynamo action in these stars, and, for the earli­
est, eliminating dynamo action altogether (see also Durney and Latour, 
1078). 

But there is an even more subtle effect here. If the suggestion 
from our calculations is correct that the seat of cyclic dynamo action 
is principally in low latitudes outside the tangent cylinder to the 
inner boundary of the convection zone, then the shallower the convection 
zone in a star with a cyclic dynamo, the more the variable Calcium emis­
sion should be confined to low latitudes. If such a star is being 
observed pole-on, it might be yery difficult to measure cyclic variabil­
ity, even if present. On the other hand, if its axis is nearly perpen­
dicular to the line of sight, even a convection zone only 13% of the 
radius would produce activity over a belt ± 30° latitude, or half of 
the observed area. It would be \/ery instructive if the amolitude of 
cyclic emission could be correlated with orientation of the star's axis, 
for a range of convection zone depths. 

I thank Ron Gilliland for reviewing the manuscript, Betsy Alves and 
Bobbie Morse for typing it, and Jack Miller and Mike Kuhn for programming 
the calculations. 
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D I S C U S S I O N 

IONSON: Dr. Golub has been stressing for years tha t the total magnetic flux is essentially 
constant throughout the solar cycle. Wha t appears to be cycling is the magnetic flux power 
spectrum. Tha t is, during solar minimum the flux is found primarily in bright points, during 
maximum in larger scale active regions. Has this very important empirical constraint been 
confirmed by contemporary dynamo theories? 

GILMAN: Not really, and I am not sure we should expect them to, since such a spectrum 
shift may well depend strongly on the details of surface dynamics of active regions, which 
dynamo models do not usually account for. 

SCHUSSLER: First I have a comment on Dr. Ionson's question: In a model of the solar 
dynamo on the basis of fluxtubes, the anticorrelation of ephemeral active regions and big 
active regions is achieved if ephemeral active regions are assumed to be the shredded par ts 
of fluxtubes under the influence of convection (cf. Nature 288, p . 150). 

Next I have a question to Dr. Gilman: You get a ratio Toroidal Field Energy/Poloidal 
Field Energy e& 3 for your model. Don't you think this is too small for the solar case? 

GILMAN: It may be. I would note that whatever is happening on the sun tha t allows i ts 
magnetic fields not to sense the full helicity of global convection could also be the cause 
of the low poloidal field, since in the dynamo theory helicity is responsible for it. So if we 
solve the problem of the short dynamo period, we may also have solved the problem of 
poloidal field ampli tude. But tha t remains to be seen. 
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WEISS: It is possible to include magnetic buoyancy within the Boussinesq approximation, 
and it would be interesting to see how this affected your results. In order to explain small-
scale magnetic structures at the solar surface (and thus satisfy the observers) one would 
need to include intermittent magnetic fields and magnetic buoyancy in the theoretical 
description. 

GILMAN: I agree, but this task is not an easy one. I decided to wait to look at mag­
netic buoyancy effects until the compressible version of our model was running, in which 
buoyancy would occur naturally. 

SPRUIT: You mentioned that concentration of fields at the boundaries of cells will reduce 
the effect of helicity on the field. This suggests that the amount of dynamo action obtained 
should depend on the numerical resolution. Is this seen? 

GILMAN: This would be true only if the resolution were inadequate to resolve the finest 
structure the model was capable of producing at the magnetic Reynolds number Rm of 
the flow. In our model, Rm for the smallest resolvable flow patterns is of order unity, so a 
large increase in resolution should not change the dynamo action much. 

FRISCH: First, I would like to stress that to the best of my knowledge, the Gilman-Miller 
dynamo is the first example of a numerical nonlinear fluid dynamo where no violence 
is done to the equation of fluid dynamics. They have clearly been able to capture the 
first non-trivial magnetic bifurcation. Now, from nonmagnetic convection experiments (and 
calculations) we have learned that there are generally many bifurcations leading to quite 
different statistical states. It seems hard to rule out similar possibilities for the magnetic 
bifurcations. For example I would not rule out the possibility of getting field reversals just 
by increasing Reynolds numbers (and resolution). 

GILMAN: Since differential rotation plays such a prominent role in determining whether 
there are cycles or not, I would be quite surprised if cycles reintroduced themselves for 
higher magnetic Reynolds numbers of the convection, while rotation and other parameters 
are kept fixed. It would have to come from a different cause than stretching of the poloidal 
field into the toroidal direction by differential rotation. 

MULLAN: What happens to the dynamo as the convection zone becomes deeper? In 
particular, does the dynamo mode change radically (or at all) when the convection occurs 
throughout the star, rather than in a shell only? 

GILMAN: I doubt our results would change much for deeper convection zones, since these 
calculations are already for a depth of 40% of the outer radius. The convective scale, and 
therefore the magnetic patterns would get somewhat larger, but by no more than a factor 
of 2. However, if the convective layer were made much shallower, the dynamo would change, 
because we would no longer have a broad equatorial acceleration. 

GIOVANELLI: The calculations shown give very impressive results on flow patterns. I am 
not so happy with the magnetic fields, which seem to me to have been parameterized to 
the extent that results of various types can be obtained by varying the parameters. But 
this makes it very difficult to produce results which can be compared in detail with what 
we will observe at the surface. Yet this is what the observer expects from any theory. We 
really want to find out the physical relationships between what we observe and what causes 
it. There still seems a long way to go. 

GILMAN: There is a long way to go, and I think you are asking too much of the theory in 
terms of details. To make lasting progress on a problem of this difficulty, we need to stick 
fairly close to the laws of physics and build, step by step. 
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