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Predicting initial microlayer thickness in
nucleate boiling using Landau–Levich theory
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A phenomenological model is proposed to estimate the initial thickness of the liquid
microlayer forming beneath a vapour bubble growing on a solid surface upon nucleate
boiling. The model employs an analogy between the microlayer formation and the classic
plate withdrawal problem. It calculates the microlayer thickness by considering it as a
Landau–Levich film, where the thickness is a function of the meniscus speed and radius
of curvature. Given the nearly hemispherical shape of the bubble during the early growth
stage when the microlayer is first deposited, we assume that the meniscus speed can be
approximated by the bubble expansion rate, and estimate the meniscus curvature using the
Rayleigh equations. Unlike previous theories that assume that the bubble radius growth
is proportional to the square root of time, the proposed model does not rely on any
specific law of growth for vapour bubbles. The model is validated for predicting the
microlayer thickness in water and ethanol, showing good agreement with experimental
measurements and empirical correlations. Subsequent analyses of the microlayer interface
profile address inconsistent reports – some described a wedge-like shape, whereas others
reported a slight outward curvature with decreasing thickness in the outer region. This
discrepancy is attributed to a reduction in the expansion rate of the microlayer’s outer edge,
particularly when the bubble reaches its maximum width. Our model provides insights into
microlayer dynamics, essential to boiling heat transfer, as the evaporative heat flux through
the microlayer is very sensitive to its initial thickness.

Key words: boiling, thin films, lubrication theory

1. Introduction

The growth of vapour bubbles on heated solid surfaces under conditions of high
superheating and low pressure is typically rapid. During this rapid expansion, which occurs
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Figure 1. (a) A simplified illustration (not to scale) of a vapour bubble growing on a solid wall; the microlayer
beneath the bubble is made thicker to aid visualisation. (b) Dragging of a viscous liquid by a moving plate, also
known as the Landau–Levich problem.

shortly after the initial formation of a vapour bubble embryo, a thin micrometre-thick
liquid layer is often trapped under the bubble on the solid surface (Moore & Mesler 1961;
Tong & Tang 2017), as depicted in the schematic in figure 1(a). Due to the microlayer’s
small thickness, heat conducted through it leads to rapid liquid evaporation. As a result, a
high local heat transfer coefficient is achieved. Liquid evaporation from the microlayer is
believed to make a significant contribution to the volume growth of the vapour bubble and
to the high heat transfer performance observed in boiling phenomena (Cooper & Lloyd
1969; Chen et al. 2020; Bureš & Sato 2022; Tecchio et al. 2022).

The thickness of the microlayer, illustrated in figure 1(a), denotes the thickness of the
portion of the liquid layer that is trapped under the bubble and away from the bubble front.
Experimental observations (Jung & Kim 2014; Sinha, Narayan & Srivastava 2022; Tecchio
et al. 2022) have indicated that post-formation, the microlayer undergoes thinning due to
evaporation, which depends on the initial thickness δ0 when the microlayer is first created.
The term ‘initial’ refers to the thickness of the microlayer when it is first deposited.

Several models have been proposed to determine the initial thickness of the microlayer.
The boundary layer consideration has been a popular approach to determine this value used
by researchers (Cooper & Lloyd 1969; Olander & Watts 1969; van Ouwerkerk 1971). As
the bubble grows, it pushes the liquid outwards, leading to the development of a laminar
boundary layer on the solid surface. The microlayer thickness δ0 is assumed to be equal to
the displacement thickness of this viscous boundary layer. A simple formula (1.1) was first
derived by Cooper & Lloyd (1969) based on the assumption that the bubble radius obeys
an Rb ∝ t1/2 law:

δ0 = C
√

νt, (1.1)

where ν is the liquid kinematic viscosity, C is a constant, and t is the growth time since
nucleation. Equation (1.1) considers only the kinematic viscosity as a material parameter,
and does not include the effect of surface tension, which was recently demonstrated to
have an impact on the microlayer thickness (Hänsch & Walker 2016).

The coefficient C has been subject to various estimations. Olander & Watts (1969)
proposed C = √

π/2, while Cooper & Lloyd (1969), accounting for short-lived effects
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Boiling microlayer prediction using Landau–Levich film

of residual flows near the bubble front, suggested a slightly smaller value, C ≈ 0.8.
Details on the derivation of (1.1) and potential improvements of the underlying model
are provided in Appendix A. van Ouwerkerk (1971) adopted a cylindrical geometry and
proposed the coefficient C ≈ 1.27. However, experimental measurements have indicated
that this formula tends to overestimate the microlayer thickness. Empirical approaches
using experimental data have also been employed to determine C, with reported values
such as C ≈ 0.3–0.4 for water (Koffman & Plesset 1983), and C ≈ 0.22 for ethanol vapour
bubbles (Gao et al. 2013).

Additionally, the predictions of (1.1) yield a monotonic increase in the thickness from
the nucleation site, whilst recent experiments (Chen, Haginiwa & Utaka 2017; Sinha et al.
2022; Tecchio et al. 2022) and computational fluid dynamics simulations (Hänsch &
Walker 2019) have revealed more complex liquid film profiles. A non-monotonic behaviour
was observed, where the microlayer thickness initially increases, reaches a maximum and
then decreases in its outermost part. This profile evolution was not explained by traditional
boundary-layer approaches. The proportionality law of Rb ∝ t0.5 was originally derived to
describe the heat-transfer-controlled growth of bubbles in a uniformly superheated liquid
(Plesset & Zwick 1954; Mikic, Rohsenow & Griffith 1970). However, the validity of
this law is questionable in practical situations where bubbles form upon heterogeneous
nucleation on a heated wall and grow in a liquid with a non-uniform temperature.

A different approach was adopted by Smirnov (1975), who conducted a hydrodynamic
analysis of the liquid flow near the bubble front and in the microlayer, assuming a
two-dimensional axisymmetric radial flow. The formula that he proposed to calculate the
microlayer thickness is

δ0 =
√√√√√√

2νṘb

−9R̈b − 2Rb
...
Rb

Ṙb
+ 2Ṙ2

b
3Rb

, (1.2)

where Rb is the bubble radius, and a dot over a quantity indicates its time derivative.
Equation (1.2) does not depend on any specific bubble growth law. Upon a meticulous
examination of the derivation, we identified flawed physical assumptions that raise
concerns about the formula’s validity. Detailed information is provided in Appendix B.
Nevertheless, his approach has enlightening aspects, such as that the microlayer formation
should be viewed as a local phenomenon linked to the liquid flow near the bubble front,
rather than relating it to the liquid boundary layer outside the bubble as in the previous
theories.

Katto & Shoji (1970) argued that microlayer formation is intricately related to the
flow of viscous liquid near the front of the bubble. This flow is driven by the pressure
drop resulting from surface tension and changes in the curvature of the free interface.
Zijl & Moalem-Maron (1978) were the first to hypothesise that the physical origin for
microlayer formation is analogous to the thin liquid film deposited on a solid plate
when it is withdrawn vertically from a liquid bath. This problem, famously known as
the Landau–Levich film problem (Landau & Levich 1942), offers useful insights into the
microlayer formation mechanism.

Zijl & Moalem-Maron (1978) regarded the outward expanding bubble front as the
meniscus formed in the Landau–Levich problem upon the free liquid surface, and
estimated the microlayer thickness as

δ0 = 0.944
√

2
(μum

σ

)2/3
Rm, (1.3)
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with μ being the liquid dynamic viscosity, σ the surface tension, um the speed of
the bubble front, and Rm the meniscus radius of curvature (see figure 1a). The latter
was calculated via a modified expression of the capillary length where the meniscus
acceleration replaced the gravitation acceleration:

Rm = 1
2

(
− 2σ

ρR̈b

)1/2

, (1.4)

where ρ is the liquid density. However, this line of thought was largely overlooked and did
not gain popularity in microlayer studies.

Recently, Tecchio et al. (2022) revisited the Landau–Levich film to explain the
outward-curved interface profile of the microlayer observed in their experiments. They
hypothesised that the microlayer could be regarded as a liquid film deposited by the
expansion of the bubble front. The decrease in the microlayer thickness was attributed
to the reduction in the bubble expansion rate at the later growth stage. It was the first time
a physical origin was provided for the non-monotonic profile, as the traditional boundary
layer approach failed to do so. The value of Rm was determined from their experimental
data. Kim & Seok Oh (2021) also used (1.3) for predicting the initial microlayer thickness;
however, they do not address the non-monotonic profile observed in experiments (Chen
et al. 2017; Utaka et al. 2018).

This study proposes a simple model for predicting the initial thickness of the microlayer.
This prediction is grounded on a phenomenological comparison between the microlayer
and the Landau–Levich film. The term ‘initial’ emphasises the pure hydrodynamic
aspect of the problem, concentrating on the microlayer thickness immediately upon its
formation. Therefore, microlayer thinning resulting from evaporation after its creation
is not accounted for. For validation, we undertake a comparative study between the
model predictions and experimental data, examining various bubble growth laws for both
water and ethanol. A noteworthy feature of our model is that it is free from empirical
constants. Subsequently, we use the model to address and explain contrasting experimental
observations about the interface profile of the microlayer.

2. Problem formulation

We consider the axisymmetric growth of a vapour bubble on a flat smooth surface
submerged in a large pool of liquid, as illustrated in figure 1(a). A two-dimensional
axisymmetric reference frame (r, z) centred on the nucleation site is adopted, with z
indicating the vertical (axial) direction, and r the horizontal (radial) direction. At a specific
time moment ti, the outer edge of the microlayer has reached the radial position ri, located
around the border of regions (II) and (III) in figure 1(a), with local thickness denoted as δ0.
By collecting a series of δ0 values at different ri as time elapses, we can construct the initial
thickness profile of the microlayer as a function of r, resulting in δ0(r). The microlayer
interface remains static once the microlayer is deposited on the solid without phase change
or contact line motion (Zhang, El Mellas & Magnini 2024). Hence the interface profile of
the microlayer located on the left-hand side of the end of the microlayer (r < ri) is the
initial thickness of the microlayer, δ0(r), depicted in figure 1(a), deposited before this
instant ti.

We investigate the rapid volumetric growth of the bubble. In reality, this phenomenon
is observed in situations with high wall superheats, high wall heat fluxes, and low system
pressures (Carey 2020). The rapid growth pattern results in the bubble taking a nearly
hemispherical shape, and also implies that a microlayer is likely trapped on the solid
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surface (Cooper & Lloyd 1969; Hänsch & Walker 2016). We use Rb to denote the bubble’s
time-dependent hemispherical cap radius. The vapour in the bubble is at saturation with a
uniform pressure pv . The surrounding liquid is at a constant saturation state, characterised
by a pressure p∞.

Our focus here is on the early stage of microlayer deposition by the expanding bubble,
i.e. the hydrodynamic aspects of the microlayer. The phase change effect becomes apparent
after the creation of the microlayer. Experimental observations have highlighted the
thinning of the microlayer due to mass loss through evaporation, indicating that the
microlayer creation is a faster process than evaporation. For instance, the microlayer is
formed within 1 ms for water at atmospheric pressure, whereas the time scales associated
with the liquid evaporation are at least one order of magnitude larger (Utaka, Kashiwabara
& Ozaki 2013; Chen et al. 2020). Therefore, it is possible to describe the microlayer
formation from a pure hydrodynamic perspective.

The thickness of this microlayer is typically two to three orders of magnitude smaller
than its radial extension, δ/Rb � 1; e.g. for water boiling at atmospheric pressure,
the microlayer reaches thicknesses of a few micrometres, while its radial extension
is of the order of 1 mm. Therefore, in this work, the evolution of this microlayer is
described using the lubrication approximation. For r → 0, the film terminates with a triple
solid–liquid–vapour contact line, which leaves a dry patch centred at r = 0. As r → ∞,
the microlayer profile joins the advancing bubble front at the bottom of the hemispherical
cap of the bubble.

The microlayer can be divided into three distinct regions along the radial direction;
see figure 1(a). The first (innermost) region is near the triple contact line. We consider a
highly wettable solid surface to facilitate microlayer formation (Bureš & Sato 2021). The
contact line receding is slow on wettable surfaces due to the small contact angle (Snoeijer
& Eggers 2010; Zhang & Nikolayev 2022), thus its motion can be neglected during
microlayer formation. After this phase, the expanding dry area may give rise to a dewetting
ridge (Urbano et al. 2018; Tecchio et al. 2022). However, this dewetting effect is out of the
scope of this study. The second region is a thin layer of liquid, where the interface is nearly
parallel to the solid surface, described in § 2.1 using the lubrication approximation. The
third region is the bubble front, which takes a meniscus shape, described in § 2.2. The
interface transitions from the nearly flat microlayer to the nearly hemispherical bubble
dome of radius Rb. We refer to the outermost part of the interface as the ‘bubble front’,
identified by the radial position rf , where rf also represents the width of the bubble, under
the hemispherical assumption rf ≈ Rb. At the point of the interface transitioning between
the last two regions, there exists a meniscus with the characteristic radius of curvature Rm
(Smirnov 1975; Zijl & Moalem-Maron 1978). This meniscus marks the outer edge of the
microlayer and is responsible for determining the thickness of the deposited liquid film on
the solid. We denote its outward-moving speed as um. The speed um can be approximated
as the bubble expansion rate Ṙb(t).

2.1. Equations for the thin film region
To emphasise the similarity of this problem with the Landau–Levich film (Landau &
Levich 1942), we change the axisymmetric coordinate system (r, z) to a planar coordinate
system (x, z), in a frame of reference moving with the bubble front rf ; see figure 1(b),
where x = −r + rf . The assumption of planar flow is justified by the slender nature of the
microlayer with a thickness two orders of magnitude smaller than its radial extension r.
In such a frame of reference, the solid wall is pulling up at speed um with respect to
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the liquid bath, and a thin layer of liquid is deposited on it. Landau & Levich (1942)
studied the problem of an infinite flat film. If the contact line is present, then when the film
length is significantly larger than the thickness of the liquid film, Snoeijer et al. (2006) has
shown that the liquid film far from the contact line can still be described as the original
Landau–Levich problem.

The original theory for determining the thickness of the liquid film was developed under
the assumption of a solid moving at a constant speed, implying the static behaviour of
the meniscus. The meniscus speed um generally decreases as the bubble grows larger,
which does not satisfy static conditions. Nevertheless, Zhang & Nikolayev (2021) have
demonstrated that the quasi-steady solution remains a valid approximation for dynamic
scenarios in which the meniscus speed and curvature vary over time. It is shown that thin
liquid films deposited on the inner walls of capillary tubes by receding menisci of liquid
plugs remain nearly stationary after deposition due to high viscosity in the thin film if
phase change is absent. A similar behaviour is expected for the microlayer. The initial
thickness at a radial distance r is determined by the speed um and Rm at the instant when
the meniscus passes through r (Zhang & Nikolayev 2021).

For the thin film region in figure 1(b), Landau and Levich derived an equation describing
the thickness δ using the lubrication theory:

∂3δ

∂x3 = 3μum

σ

δ0,LL − δ

δ3 , (2.1)

where μ is the liquid viscosity, and σ is surface tension. Unless otherwise indicated, all
quantities used refer to the liquid phase. Here, δ0,LL is the asymptotic liquid film thickness
far from the meniscus region, where the interface tends to be parallel to the solid wall.

This is the upper boundary condition to (2.1):

δ → δ0,LL,
∂δ

∂x
→ 0 and

∂2δ

∂x2 → 0, as x → ∞. (2.2)

‘Upper’ refers to the relative direction indicated in figure 1(b). The lower boundary
conditions are presented in § 2.3.

2.2. Equations for the meniscus region
In the meniscus region, across the curved interface, there is a discontinuity in normal stress
that can be expressed by the Laplace equation

p(x) = pv − σK, (2.3)

where p is the liquid pressure near the interface, and K is the interface curvature calculated
as the total curvature of a shell of revolution around the z-axis in figure 1(a) (Bucci 2020):

K = K1 + K2 =

⎡
⎢⎢⎣ x

sin
(

tan−1 ∂δ

∂x

)
⎤
⎥⎥⎦

−1

+
∂2δ

∂x2[
1 +

(
∂δ

∂x

)2
]3/2 , (2.4)

where K1 and K2 are the parallel and meridian parts of the curvature, respectively. In the
meniscus region, the interface slope is large, and K1 satisfies

K1 ≈ 1
Rb

. (2.5)
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To obtain the liquid pressure near the interface in the third region, we use the full
expression for the interface curvature in (2.4) and use the Rayleigh equation in the
differential form (Tong & Tang 2017),

∂p
∂r

= −ρ

(
2RbṘ2

b + R2
bR̈b

r2 − 2R4
bṘ2

b

r5

)
, (2.6a)

∂2p
∂r2 = ρ

(
4RbṘ2

b + 2R2
bR̈b

r3 − 10R4
bṘ2

b

r6

)
, (2.6b)

where ρ is the density of the liquid. Equations (2.6) represent the liquid pressure gradient
outside the interface of a growing bubble Rb in a liquid of infinite extent. Constant liquid
pressure p∞ is reached as r → ∞.

Using (2.6), we approximate the liquid pressure near the interface as

p(r) ≈ p(Rb) + (r − Rb)
∂p
∂r

∣∣∣∣
r=Rb

+ 1
2

(r − Rb)
2 ∂2p

∂r2

∣∣∣∣
r=Rb

. (2.7)

Substituting the pressure derivatives using (2.6) results in

p(r) ≈ p(Rb) − ρR̈b(r − Rb) − ρ

[
3
(

Ṙb

Rb

)2

− R̈b

Rb

]
(r − Rb)

2. (2.8)

Strictly speaking, (2.8) is applicable to the liquid outside the hemispherical interface.
Regardless, we make the approximation of extending its application to the liquid area close
to, but inside, the extension of the hemispherical interface (as depicted in the dashed region
in figure 1(a)). This area is sufficiently distant from the solid surface, making boundary
layer effects negligible. Taking (2.8) back to the frame of reference of the moving meniscus
as in figure 1(b), and using x = −r + rf , leads to

p(x) ≈ p(Rb) + ρR̈bx − ρ

[
3
(

Ṙb

Rb

)2

− R̈b

Rb

]
x2, (2.9)

where x is positive, representing the liquid pressure near the interface in the dashed area.
Incorporating the viscosity effect of bubble expansion and accounting for the usual

discontinuity in normal stress, the pressure drop across the interface is given as (Tong
& Tang 2017)

p(Rb) = pv − 2σ

Rb
− 4μ

Ṙb

Rb
, (2.10)

where the second and third terms on the right-hand side represent the contributions of
surface tension and viscosity, respectively. To assess the relative importance of these two
terms, we calculate the ratio of the viscous term to the surface tension term, and obtain
2μṘb/σ = 2 Cab ∼ 10−2, where Cab represents the capillary number of bubble growth.
Since the ratio is small, the viscous effect on the pressure discontinuity across the interface
will be omitted from further consideration.

997 A44-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

55
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.559


X. Zhang, I. El Mellas and M. Magnini

Substituting (2.10) into (2.9) and then equating the obtained expression to (2.3), we find
the equation for the dynamic meniscus in the transition region as

∂2δ

∂x2[
1 +

(
∂δ

∂x

)2
]3/2 = ρ

σ

[
3
(

Ṙb

Rb

)2

− R̈b

Rb

]
x2 − ρR̈b

σ
x + 1

Rb
. (2.11)

We integrate (2.11) in the interval [0, x], which produces

∂δ

∂x[
1 +

(
∂δ

∂x

)2
]1/2 = ρ

σ

[(
Ṙb

Rb

)2

− R̈b

3Rb

]
x3 − ρR̈b

2σ
x2 + 1

Rb
x − 1, (2.12)

where the constant −1 on the right-hand side is determined using the condition ∂δ/∂x →
−∞ at x → 0, i.e. the interface is nearly perpendicular to the solid surface. Equations
(2.11) and (2.12) determine the thickness of the liquid δ in the meniscus region close to the
bubble front.

2.3. Matching the thin film and meniscus regions
We first look at the meniscus region. At small values of δ, the solution of (2.11) and
(2.12) must go over into the solution for the thin film region, which is governed by (2.1).
Therefore, using the limit of small δ, we have ∂δ/∂x → 0 in the solution of the meniscus
region. At the same time, the left-hand side of (2.12) approaches 0, and x approaches a
value denoted as x̄. Its value is the positive root of the equation

a3x3 + a2x2 + a1x + a0 = 0, (2.13)

where

a3 = ρ

σ

[(
Ṙb

Rb

)2

− R̈b

3Rb

]
, a2 = −ρR̈b

2σ
, a1 = 1

Rb
, a0 = −1. (2.14)

Note that x̄ = √
2σ/(ρg) is the characteristic length in the Landau–Levich original

formulation (Landau & Levich 1942).
The law of growth for Rb is commonly expressed as Rb = Cbtn, where Cb is a constant

determined by the heating conditions and the properties of the liquid. For bubbles on solid
surfaces during the thermal diffusion controlled stage, the value of n is given theoretically
as 0.5 by Mikic et al. (1970), whilst in some experiments, n < 0.5 is reported (Sinha
et al. 2022). The second time derivative R̈b = n(n − 1)Cbtn−2 remains negative regardless.
Consequently, the coefficients a3, a2 and a1 are positive, and (2.13) possesses a single
positive root.

With the help of (2.11), we find that the second derivative of δ at x = x̄ tends to

∂2δ

∂x2

∣∣∣∣
x=x̄

= 3a3x̄2 + 2a2x̄ + a1, (2.15)

which indicates that the meniscus region has a constant value of ∂2δ/∂x2 as the upper limit
of the region.
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The lower limit of the thin film region corresponds to the upper limit of the meniscus
region, thus for matching the two solutions, we require the continuity of the second
derivative ∂2δ/∂x2 as in Landau & Levich (1942). Equation (2.15) provides the sought
lower boundary condition required for the solution of (2.1). Recall that the lubrication
theory is applied to the thin film region, therefore the continuity of ∂2δ/∂x2 indicates
the continuity of the interface curvature as ∂δ/∂x is small in this region. The constant
identified at the right-hand side of (2.15) coincides with the curvature of the interface
1/Rm, thus the lower boundary condition for (2.1) can be rewritten as

∂2δ

∂x2

∣∣∣∣
δ→∞

→ 1
Rm

, (2.16)

where Rm is the radius of the characteristic curvature in the meniscus region, as illustrated
in figure 1(a). Landau and Levich decided this matching point at x̄, and the matching
condition requires

1
Rm

= ∂2δ

∂x2

∣∣∣∣
x=x̄

. (2.17)

Therefore, (2.16) and (2.17) provide the lower boundary conditions to (2.1). With the
help of both upper and lower boundaries, a numerical solution to (2.1) has been given
(Landau & Levich 1942) as

δ0 ≈ 1.34Rm

(μum

σ

)2/3
, (2.18)

where the upper boundary condition δ0,LL is replaced with δ0 as we determine the initial
microlayer thickness as a Landau–Levich film. In this equation, Rm is calculated using
(2.17) and (2.15), and um can be equal to Ṙb approximately. The coefficient 1.34 in the
equation was obtained numerically by Landau and Levich under the condition that μum/σ

is sufficiently small. This condition is generally satisfied as Ṙb � σ/μ for a given fluid.
Equation (2.18) suggests that microlayer formation should result from a balance between

surface tension, viscosity and inertial effects. While the above analysis applies the
lubrication approximation and does not explicitly consider inertial effects, they play a
significant role in the overall dynamics of bubble growth. The inertial effects impact the
second time derivative of Rb. This, in turn, influences the value of Rm in the meniscus
region. Our analysis maintains well-defined surface tension, with no shear stress applied
to the interface. Factors like liquid impurities, surfactants and highly curved interfaces,
which could lead to variations in interface temperature and non-uniform surface tension,
are not taken into account.

Compared to the theory of determining the microlayer thickness as the displacement
thickness of the hydrodynamic boundary layer outside the bubble on the solid (Cooper
& Lloyd 1969; Olander & Watts 1969), (2.18) incorporates the effect of surface tension
and regards the formation of the microlayer as a local phenomenon due to the liquid flow
near the bubble front. Notably, obtaining this equation is independent of the common
assumption of the growth law as Rb ∝ t0.5, which indicates that the equation can handle
complex bubble growth patterns.

We must also notice that the derivation of (2.18) assumes the formation of the microlayer
on smooth surfaces. In reality, given that δ0 is typically of the order of a few micrometres,
which can be close to the surface roughness, additional corrections may be necessary for
surfaces with an absolute roughness of the order of 1 μm.
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3. Validation and discussion

This section compares the prediction of (2.18) with experimental data on the initial
microlayer thickness, and discusses some characteristics of the microlayer using the
proposed model.

3.1. Experiments by Jung & Kim (2018)
Jung & Kim (2018) conducted experiments on single bubble nucleate boiling in a pool
of saturated water under atmospheric pressure. The fluid properties of saturated water
and steam (Harvey 1998) are summarised in table 1. Their experiment observed the
growth of a bubble on an indium tin oxide (ITO) coated heater, driven by phase change.
A high-speed camera captured the bubble growth, and Rb(t) was reported as plotted in
figure 2. A microlayer was observed on the ITO surface, and its thickness was measured
using laser interferometry. Due to the heat applied by the heater, liquid evaporated from
the microlayer, resulting in a thinning of the microlayer. To account for this mass loss, they
reconstructed the initial thickness of the microlayer δ0(r) when it was initially deposited
on the ITO surface, utilising the heater temperature data.

We established a power regression fitting curve for the Jung & Kim (2018) data for Rb(t)
as

Rb(t) ≈ 0.0455t0.5, (3.1)

which provides the growth rate Ṙb plotted in figure 2.
At each time instant, coefficients a3, a2 and a1 are calculated as indicated in (2.14),

using known values of Ṙb and R̈b. The value of x̄ is then found by solving (2.13), and
the corresponding Rm is plotted in figure 2. When calculating δ0 using (2.18), we assume
that the velocity of the bubble front is equal to the bubble growth rate: um = Ṙb. For an
adequate comparison, we also compute the predictions of (1.1) by Cooper & Lloyd (1969)
with C = 0.8, (1.2) by Smirnov (1975), and (1.3) by Zijl & Moalem-Maron (1978).

Figure 3 presents a comparison of predictions for the initial microlayer thickness as
a function of radial distance r based on (1.1), (1.2), (1.3) and (2.18). It is assumed that
the thickness at a position r is determined by the instant where the meniscus passes
through. The initial thickness reconstructed from experimental measurements by Jung &
Kim (2018) is also included in the plot for comparison. The microlayer thickness exhibits
a consistent, monotonic increase from the nucleation site and remains below 6 μm in the
experimental data, which is in good agreement with the prediction of the proposed model
(2.18). Despite the steady decrease in the bubble’s growth rate, denoted as Ṙb or um, the
radius of curvature Rm continues to increase with Rb, surpassing the reduction in Ṙb. This
results in δ0, a product of Rm and um, showing a rising trend. Notably, the predictions from
(1.1) and (1.2) tend to overestimate the microlayer thickness by over 200 %.

3.2. Experiments by Sinha et al. (2022)
Sinha et al. (2022) investigated bubble behaviour and microlayer dynamics during the
growth of a single bubble on the heated solid wall of a vertical rectangular flow channel.
The experiments were conducted with sub-cooled water under atmospheric pressure
conditions. In the early rapid growth stage, both the bubble and microlayer exhibited
symmetric expansion in the flow direction and perpendicular to the bulk flow, which led
to the conclusion that the impact of bulk flow during the early stage was negligible, and
the bubble growth process resembled that characteristic of pool boiling conditions. The
thin-film interferometry technique, coupled with high-speed cinematography, captured the
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Figure 2. The Jung & Kim (2018) experimental data of bubble radius as a function of time (crosses), the power
regression curve (solid line) and the bubble growth rate Ṙb based on the regression curve (blue dashed line).
The corresponding Rm calculated by (2.17) is plotted in red.

r (mm)

0.2 0.4 0.6 0.8 1.0 1.2 1.40

5δ 0
 (
µ

m
)

10

15

The proposed model

Cooper & Lloyd (1969)

Smirnov (1975)

Jung & Kim (2018)

Zijl & Moalem-Maron (1978)

Figure 3. Initial thicknesses of the microlayer reconstructed from experimental data of Jung & Kim (2018)
(circles), predicted by the proposed model of (2.18) (solid line), and from Cooper & Lloyd (1969) (dash-dotted
line), Smirnov (1975) (long dashed line) and Zijl & Moalem-Maron (1978) (short dashed line).

spatial and temporal evolution of the microlayer thickness. This approach allowed for
recording the side view of the bubble as a function of time.

The experimentally recorded equivalent bubble radius Rb(t) for flow Reynolds number
Re = 3600 is represented by black crosses in figure 4. The growth law Rb(t) ∝ t0.5 is
not suitable for accurately predicting the data in this experiment, as the bulk liquid is
sub-cooled. The growth law Rb(t) ∝ t0.5 was originally developed for bubbles growing
in a saturated liquid. Therefore, Sinha et al. (2022) used a power regression for the
experimental data of Rb(t),

Rb(t) ≈ 0.01652t0.4254, (3.2)

which is plotted as a black solid curve in figure 4. The bubble growth rate Ṙb(t) and Rm
calculated by (2.17) are also obtained using the fitting curve of Rb(t).

Assuming um ≈ Ṙb(t), the predicted initial microlayer thickness δ0 from (2.18) is
compared with the experimental data (circles) in figure 5. Equation (1.1) cannot provide
a prediction as the growth law does not follow Rb(t) ∝ t0.5. Equations (1.2) and (1.3)
can still be applied, and their predictions are shown as the long and short dashed lines
in figure 5, respectively. Although the two equations are not limited by the assumption
Rb(t) ∝ t0.5, they overestimate the thickness, especially (1.2), as the dashed lines are above
the experimental data in figure 5. The proposed model generally yields thickness values
that agree with the experimental measurement.
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Figure 4. The Sinha et al. (2022) experimental data of bubble radius as a function of time (crosses), the power
regression of (3.2) (solid line), and the bubble growth rate Ṙb based on the regression curve (blue dashed line).
The corresponding Rm calculated by (2.17) is plotted in red.
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4 The proposed model
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Sinha et al. (2022) 
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Figure 5. Initial thicknesses of the microlayer: experimental data of Sinha et al. (2022) (circles), and
predictions by (2.18) (solid line), by Smirnov (1975) (long dashed line) and by Zijl & Moalem-Maron (1978)
(short dashed line). The three rightmost data points are enlarged and shown in the inset.

A distinctive feature highlighted in the experiments of Sinha et al. (2022) is the
reduction in microlayer thickness at its outer periphery, accompanied by a slight curvature
in the interface. This characteristic is depicted in the inset of figure 5, where the rightmost
data points are magnified for clarity. This non-monotonic behaviour is not captured by the
proposed model, which predicts a constantly increasing thickness from the nucleation site.
The non-monotonic aspect is addressed in § 3.3.2.

3.3. Some characteristics of the microlayer

3.3.1. Thickness dependence on the bubble growth rate
Chen et al. (2020) conducted nucleate boiling experiments in a water pool under
atmospheric pressure, measuring the microlayer thickness through laser interferometry
across a wide range of heat fluxes, leading to various bubble growth rates. Their findings
suggested a weak dependence of the initial microlayer thickness on the bubble expansion
rate. This conclusion aligns with the earlier results obtained by Utaka et al. (2013), who
conducted similar experiments measuring the microlayer structure in nucleate pool boiling
for water and ethanol under atmospheric pressure. Based on their experimental data, Utaka
et al. (2013) proposed two empirical formulas for predicting the initial microlayer thickness
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regardless of the growth rate:

δ0(r) = 4.46 × 10−3r, water, (3.3a)

δ0(r) = 1.02 × 10−2r, ethanol, (3.3b)

where r is in mm, and δ0 is given in μm.
Yabuki & Nakabeppu (2014) also proposed an empirical formula based on their

experiments of boiling bubbles on a heated surface in a pool of saturated water, as

δ0(r) = 4.34r0.69, (3.4)

where r is in millimetres, and δ0 is given in micrometres.
To test this feature of the microlayer, we employ the growth law proposed by Mikic et al.

(1970) for bubbles growing on a heated surface with temperature Tw:

Rb(t) = Cb(�T)t0.5, (3.5)

where Cb(�T) = 2
√

3/π Ja
√

α is the growth constant related to the solid superheat,
�T = Tw − Tsat, Tsat is the saturation temperature of the liquid corresponding to the
liquid pool pressure p∞, and α = k/(ρcp) is the thermal diffusivity. The Jakob number
Ja is defined as

Ja = ρcp(Tw − Tsat)

ρvL , (3.6)

where cp is the heat capacity of the liquid, ρv is the density of the vapour, and L is the
latent heat. Various bubble growth rates are achieved by tuning �T .

Equation (3.5) is employed to describe the bubble growth during the diffusion-controlled
stage on superheated solid surfaces in a uniformly saturated liquid. We disregard the initial
inertia-controlled growth, typically occurring within a duration shorter than 0.1 ms (Mikic
et al. 1970). Two distinct superheat conditions are considered, with �T = 10 K and 25 K,
assuming that the bubble growth on the solid surface adheres to (3.5) and that its interface
is nearly hemispherical, implying um ≈ Ṙb. The microlayer thickness δ0, predicted by
(2.18), is computed and plotted against the radial distance from the nucleate site r in
figure 6. The experimentally obtained (3.3) and (3.4) are presented in the same plot. The
fluid properties of saturated water and ethanol at atmospheric pressure are listed in table 1.

The prediction of the initial microlayer thickness by the present model is in good
agreement with the empirical relations (3.3) and (3.4). The variation in microlayer
thickness exhibits weak dependence on the change in the superheat conditions. For water,
the growth rates are Cb(10 K) ≈ 2.4 × 10−2 m s−0.5 and Cb(25 K) ≈ 6.0 × 10−2 m s−0.5.
For ethanol, the growth rates are Cb(10 K) ≈ 8.4 × 10−3 m s−0.5 and Cb(25 K) ≈ 2.1 ×
10−2 m s−0.5. Despite a 2.5-fold alteration in the growth rate, the corresponding change in
δ0 is less than 20 %. This observation aligns with experimental findings, confirming that
the initial microlayer thickness demonstrates little sensitivity to heat flux, i.e. to the bubble
expansion rate (Utaka et al. 2013; Chen et al. 2020). The present model also predicts that
the microlayer thickness of ethanol is about 1.5 larger than that of water at the same r. This
is also in agreement with experimental observations (Koffman & Plesset 1983).

3.3.2. Spatial variation of the interface profile
In the preceding subsection, we used the assumption of Rb(t) ∝ t0.5, a common feature in
multiple theories that predict the microlayer thickness. The resultant spatial profile of the
microlayer exhibits a steady increase from the nucleation site. This wedge-like microlayer
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Figure 6. Comparison of the initial microlayer thickness predicted by the present model and empirical
formulas of Utaka et al. (2013) and Yabuki & Nakabeppu (2014): (a) water, (b) ethanol.

structure aligns with observations from many experiments (Utaka et al. 2013; Jung & Kim
2014, 2018; Chen et al. 2020).

A non-monotonic profile of microlayer thickness has also been reported: it reaches a
plateau in the middle, then decreases towards the outer edge of the meniscus, resembling
an interface bent like a speed bump with a local maximal thickness (Chen et al. 2017;
Sinha et al. 2022; Tecchio et al. 2022). This distinctive pattern mirrors the film deposited
by a meniscus travelling at non-constant speeds in capillary tubes, a phenomenon observed
experimentally by Youn et al. (2016) and Youn, Han & Shikazono (2018), and explained
theoretically by Zhang & Nikolayev (2021) using the Landau–Levich film problem under
unsteady conditions. As depicted in (2.18), the thickness results from the product of the
radius of curvature of the meniscus and its advancing speed. Throughout the entire process
of a bubble growing on solid surfaces, the bubble undergoes expansion at a decelerating
rate: Rb increases monotonically with time, yet R̈b is negative. In the later stages of bubble
growth, the microlayer’s width nearly halts expansion on the solid, and the expansion
speed approaches zero. Consequently, the resulting thickness calculated by (2.18) could
decrease, suggesting the possibility of a maximal thickness during the process.

Moreover, in real-world scenarios, the values of Rb(t) and the bubble’s width on the
solid should eventually approach a maximal value, in contrast to the implication of
the proportionality law Rb(t) ∝ tn, which suggests an indefinite growth of Rb(t). This
highlights the need for a more nuanced model that accounts for the eventual stabilisation
of these parameters at later stages. To address this, we propose a function

Rb(t) = Rc − (Rc − Cbtn) e−t/tc, (3.7)

where Rc represents the radius towards which the bubble approaches the end stage of
growth, and tc characterises the rate at which the bubble approaches Rc. For small t, this
function approximates Rb(t) ≈ Cbtn, implying adherence to the power growth law that can
be determined as in (3.5). As t approaches tc, Rb(t) ≈ Rc, indicating that the bubble is close
to a non-growth stage. This construction more accurately reflects real-world situations,
providing a more realistic representation of bubble growth dynamics.
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Figure 7. The Sinha et al. (2022) experimental data of bubble radius as a function of time (crosses), the
regression of (3.7) (solid line), and the bubble growth rate Ṙb based on the regression curve (blue dashed line).
The corresponding Rm calculated by (2.17) is plotted in red.
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Figure 8. Initial thicknesses of the microlayer: experimental data of Sinha et al. (2022) (circles), and
prediction by (2.18) (solid line) using (3.7) to describe the bubble growth rate.

The experimental data of Rb(t) by Sinha et al. (2022) are employed to determine the
parameters in (3.7). The regression curve is depicted in figure 7, with Rc = 1.10 × 10−3 m,
Cb = 2.58 × 10−2 m s−0.5, n = 0.5 and tc = 1.96 × 10−3 s. Compared with the regression
curve for Rb in figure 4, (3.7) aligns more closely with the experimental data, particularly
for larger t. Using the new regression curve, (2.18) is employed to compute the microlayer
thickness as a function of r. The results are plotted and compared in figure 8. The slight
change in the behaviour of Rb results in a noticeable alteration in the microlayer profile:
the thickness no longer exhibits a monotonic increase, but instead features a maximal
value before decreasing. The resulting profile shows an outward curvature, resembling the
observations made by Sinha et al. (2022).

We consider another simplified scenario to highlight the expansion deceleration effect
on the microlayer profile. We construct two laws of growth using (3.5) and (3.7), setting
Cb = 3 × 10−2 m s−0.5 in both equations. We introduce a minor deceleration effect by
setting Rc = 9.5 × 10−4 m and tc = 3 × 10−3 s in (3.7). Consequently, for small t, the
bubble growth of both equations closely follows the power law, while for larger t, the
growth decelerates as specified in (3.7), where Rb approaches Rc. The respective bubble
radii as functions of time, specified by the two growth laws, are illustrated in figure 9. The
corresponding bubble growth rates Ṙb and Rm, calculated using (2.17), are also depicted.
As expected, Ṙb exhibits a lower rate for the growth law of (3.7) when t is large. By
applying these growth laws, we can calculate the initial thickness of the microlayer as
predicted by the model. The results are presented in figure 10. At small r (i.e. short t), the
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Figure 9. Comparison of the two laws of growth for the bubble radius Rb: unstopped as specified by (3.5)
(dashed lines) and subsiding as calculated by (3.7) (solid lines). The bubble growth rates Ṙb are plotted in blue,
and the corresponding Rm calculated by (2.17) are plotted in red.

r (mm)

0.2 0.4 0.6 0.8 1.0

Rb → Rc

Rb ∝ t 0.5

1.20

3

6

δ 0
 (
µ

m
)

Figure 10. Initial thicknesses of the microlayer predicted by the proposed model using the laws of growth of
(3.5) (dashed line) and (3.7) (solid line).

microlayer thicknesses are comparable. However, for larger r, the microlayer thickness for
the bubble growth specified by the unstopped growth law of (3.5) continues to increase,
while the growth governed by (3.7) reaches a plateau before decreasing. This behaviour
illustrates a bent overall interface profile. It is noteworthy that although the two growth
laws for Rb in figure 9 almost overlap, with their difference likely being comparable to
the experimental uncertainty in the bubble volume measurement, the resulting microlayer
thicknesses may differ by up to 30 % at its outer periphery (r = 1 mm).

The objective of comparing the two growth laws is to attribute the curved interface
profile of the microlayer to the deceleration effect in the expansion rate of the microlayer’s
outer edge, which is assumed to be equal to the bubble’s expansion rate on the solid in
the current formulation. Under idealised conditions where the bulk liquid is perfectly
superheated, the bubble radius on the solid as a function of time may indeed follow the
power law described by (3.5) for an extended period of time. Consequently, the initial
thickness of the microlayer would exhibit continuous, non-stop growth from the nucleation
site. This scenario might be the case presented in § 3.1, where Rb(t) was well-fitted by (3.5)
in figure 2, and a wedge-like profile was observed. The deceleration effect becomes more
pronounced when the bulk liquid is sub-cooled or only at saturation. In such cases, the
bubble can maintain a fast growth rate at an early stage while it stays in the superheated
thermal boundary layer on the solid surface. As the bubble grows taller, it protrudes
out of the thermal boundary layer and comes into contact with the sub-cooled liquid;
a significant reduction in the growth rate occurs, as the heat transfer from the interface
becomes insufficient to sustain the earlier growth rate. The thermal boundary thickness δt
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on a heated wall in a liquid pool can be calculated as (Kays, Crawford & Weigand 2004)

δt ≈ 7.14
(

μα

ρgβ �T

)1/3

, (3.8)

where β is the thermal expansion coefficient of the liquid, and g is the gravitational
acceleration. For water on a solid wall superheated by 10 K, δt ≈ 0.62 mm, which can
be smaller than the bubble radius.

Another factor affecting the bubble’s expansion on the solid surface is buoyancy, which
tends to lift the bubble away from the surface. This effect becomes more pronounced as the
bubble grows larger and contributes to the deviation of the bubble from a hemispherical
shape (Zhang et al. 2024).

We must underline that we refrain from asserting that (3.7) is the definitive or exclusive
function to describe the behaviour of Rb(t). Instead, we emphasise that (3.7) serves as
one possible simple expression that accounts for the observed slowing-down effect in
the radius of vapour bubbles during the later stages of growth on heated solid surfaces.
This phenomenon is commonly encountered in practice, contrasting with the idealised
proportionality law Rb(t) ∝ tn, which implies non-stop bubble expansion.

Another noteworthy observation pertains to the situation when the meniscus reaches
its maximum width, at which um approaches 0. According to the prediction from (2.18),
the thickness then becomes 0. This would impact only a small portion of the thickness
prediction. A comparable phenomenon is observed in the meniscus oscillation in capillary
tubes. When the meniscus speed decelerates to zero during the deposition of a liquid film,
the film thickness decreases but does not reach zero when the meniscus speed decreases
to zero (Youn et al. 2018; Zhang & Nikolayev 2021). The liquid film remains attached to
the meniscus, and so does the microlayer.

4. Conclusions

We propose a phenomenological model that estimates the initial thickness of the
microlayer forming under vapour bubbles growing on solid surfaces. This model
conceptualises the microlayer as analogous to the liquid film in the Landau–Levich
problem. In this framework, the microlayer formation is governed by the liquid flow near
the bubble front of the bubble on the solid, and its thickness is determined by the balance
of surface tension and viscous forces. Our model offers a broader range of applications,
unlike the previous theories relying on specific bubble growth laws as Rb(t) ∝ t0.5.

We employ the model to compute microlayer thickness under water and ethanol bubbles
growing under varying conditions. The comparisons with experimental data have shown
good agreement. Considering the idealised growth law for bubbles Rb(t) = Cbt0.5, the
model predicts that microlayer thickness is insensitive to the growth coefficient Cb, which
is associated with the solid’s heating flux or, more broadly, the heating conditions of the
solid. This observation agrees with previous experimental findings, where the microlayer
under water vapour bubbles typically measures below 5 μm at extension 1 mm from the
nucleation site, regardless of the heating conditions.

Later, we use the model to investigate the interface profile of the microlayer, addressing
inconsistent reports in previous studies. Some reported a wedge-like microlayer with
thickness steadily increasing from the nucleation site. Others reported a slightly outwardly
curved profile, reaching maximal thickness in the middle, and tapering towards the
outermost part of the microlayer. We attribute the decrease in microlayer thickness to the
slowing down of the microlayer expansion rate. This is often linked to the deceleration of
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the bubble growth rate as the bubble reaches its maximum width on the solid surface. In
situations where the microlayer can expand on the solid with the bubble unconstrained, the
microlayer thickness will continue to increase constantly. In real-world situations where
the bubble experiences a significant reduction in growth rate near its maximal width, the
microlayer thickness decreases accordingly. This explains the observed thinner microlayer
near the outermost part when the growth slows down compared to earlier stages.

Knowledge of microlayer features from the model can contribute to developing
mechanistic models for nucleate boiling heat transfer. Those models require accurate
information on the microlayer thickness and growth behaviour as the evaporative heat
flux through the microlayer is believed to influence total boiling heat transfer significantly.
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Appendix A. Comments on Cooper & Lloyd (1969)

Cooper & Lloyd (1969) proposed a simplified hydrodynamic theory that predicts the initial
thickness of the microlayer as the displacement thickness of the boundary layer outside a
growing bubble. The flow is assumed to be two-dimensional.

The flow pattern in region A (well outside the bubble) is sketched in figure 11(a). The
liquid velocity reduces from a uniform outward radial velocity to zero in a boundary layer
near the wall. The liquid in the microlayer near the bubble front (region C) is not stationary,
whilst the velocity decays rapidly in a time of the order of δ2/4ν. In region D, the liquid
away from the bubble front can be considered at rest.

Obtaining an analytical flow pattern in region B is difficult, as inertial, viscous and
surface tension forces are all significant. Cooper & Lloyd (1969) applied a velocity −ub
in the r-direction to the flow in figure 11(a), which gives the flow pattern sketched in
figure 11(b) when observed from a reference frame moving with the bubble front: the free
interface is nearly stationary, and the liquid velocity u′(z, t) = u − ub is parallel to the
wall. The mass conservation is the major assumption in the original paper, which states
that liquid flow from the right-hand side is equal to the rate flowing out at the left-hand
side:

δ0ub =
∫ ∞

0
u′ dz, (A1)

where the microlayer thickness δ0 can be regarded as the displacement thickness of the
boundary layer in Stokes’ first problem, which determines the flow created by a sudden
movement of an infinitely long plate to speed uw from rest. The Navier–Stokes equation
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D
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Dδ0

Vapour
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Figure 11. (a) Sketch of a growing bubble on the solid and liquid flow. (b) Liquid flow pattern in the frame of
reference of the moving wall, where the latter moves at a speed uw towards the left.

for such a problem is reduced to

∂u′

∂t
= ν

∂2u′

∂z2 (A2)

with boundary conditions

u′(z) = 0 when t = 0, (A3a)

u′(0) = uw(r, t) and u′(∞) = 0 when t > 0, (A3b)

where the velocity uw(r, t) of the wall is defined below. When solving (A2), Cooper &
Lloyd (1969) used

uw(r, t) = V̇
2πr2 = C′(r) tn, (A4)

where the bubble volume growth rate was estimated as V̇ = 2πC3
bnt3n−1, with the bubble

radius calculated as Rb(t) = Cbtn. They took n = 0.5 and applied uw(r, t) = C′(r)t0.5 to
(A3b). A simple form of u′ can then be obtained as

u′ = uw
√

πierfc
(

z
2
√

νt

)
, (A5)

where ierfc(x) is the integral of the complementary error function ierfc(ξ) from x to ∞.
Therefore, ∫ ∞

0
u′ dz = uw

√
π

2

√
νt. (A6)

In substituting (A6) into (A1), Cooper & Lloyd (1969) argued that uw = ub, and
consequently obtained

δ0 =
√

π

2

√
νt. (A7)

However, under the hemispherical bubble approximation, ub(t) should equal Ṙb =
0.5Cbt−0.5, which is inconsistent with their assumption uw ∝ t0.5 made in the boundary
condition (A3b).

As a matter of fact, uw should have the form

uw(r, t) = R2
b

r2 ub(t) (A8)

where r > Rb, and when the bubble passes the point in question r = Rb, we have uw = ub.
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Applying (A8) to boundary condition (A3b), we obtain (Carslaw & Jaeger 1959)

u′ = z
2
√

πν

∫ t

0

ub(τ )

(t − τ)3/2 exp
( −z2

4ν(t − τ)

)
dτ. (A9)

The displacement thickness or the microlayer thickness is then calculated by integrating
u′ from z = 0 to infinity using (A1). Equating the microlayer thickness to the displacement
thickness of the viscous boundary layer can be considered reasonable when liquid
dynamics in the meniscus region is governed primarily by inertial effects. To estimate
the importance of inertia, one can calculate the Bond number (Bo) based on the interface
acceleration:

Bo = �ρ L2 |ab|
σ

, (A10)

where �ρ is the difference in density between the two phases, L is the characteristic length
of the meniscus (of the order of 0.1 mm), and ab is the acceleration of the bubble interface.
The Bond number is smaller than 1 in the meniscus region, which indicates that the surface
tension effect should not be neglected, and using the displacement thickness would lead to
an overestimation of the microlayer thickness.

Appendix B. Review of Smirnov (1975)

Smirnov performed a hydrodynamic analysis of the microlayer in the two-dimensional
axisymmetric cylindrical coordinates with simplifications from the lubrication theory.
After a meticulous re-examination of his paper, we have found that his formulation
contains flawed physical assumptions and derivations. We believe that it is important to
show these mistakes as Smirnov’s theory is popular in microlayer description.

B.1. Governing equations
In the lubrication theory, the liquid in the microlayer moves primarily in the r-direction,
implying uz � ur. The equation of momentum in two-dimensional axisymmetric
cylindrical coordinates was written as

∂ur

∂t
+ ur

∂ur

∂r
= − 1

ρ

∂p
∂r

+ ν
(
∇2ur − ur

r2

)
, (B1)

where

∇2ur = 1
r

∂ur

∂r
+ ∂2ur

∂r2 + ∂2ur

∂z2 . (B2)

The equation of continuity in the original paper was written as

∂

∂r
(rurδ0) = 0, (B3)

where ur(r, z) is the liquid velocity in the r-direction, and δ0 is the initial thickness of the
microlayer.

Without considering phase change, and assuming that the interface stands still once
created, the correct form of the continuity equation in the microlayer should be written as
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(Zhang & Nikolayev 2021)
∂Φ(r)

∂r
= 0, (B4)

where Φ(r) represents the liquid volumetric flux through the lateral surface of the cylinder
in the microlayer at r, which can be expressed as

Φ(r) = 2πr
∫ δ0

0
ur dz. (B5)

The equation of continuity should then be written as

∂

∂r

(
r
∫ δ0

0
ur dz

)
= 0. (B6)

B.2. Boundary conditions
Smirnov introduced an assumption regarding the profile of ur(z) at r = Rb by assuming it
as a separation of variables, expressed as

ur = Ṙb
z
δ0

f2(t), (B7)

where f2(t) is a function of time, with t = 0 corresponding to the moment where the
microlayer is created. At a given position r, when the bubble interface passes through,
t = 0 and f2(0) = 1. The value of f2(t) should decay rapidly as the microlayer does not
vary with time if evaporation is absent.

Equation (B7) implies a linear variation of ur(z) from the solid surface to the interface
for a given moment t > 0. However, this assumption leads to a non-zero velocity gradient
at the free interface: ∂ur/∂z /= 0 at z = δ0, indicating the presence of shear stress on the
interface. In practice, this assumption does not hold true for liquid–vapour interfaces if
the surface tension is assumed constant, where shear stress at the interface is typically
non-existent.

Take a step back. Even if we concede that (B7) is reasonable, one substitutes (B7) into
(B6) and the equation of continuity becomes

∂

∂r

(
rṘbδ0

) = 0, (B8)

which is inconsistent with the original equation of continuity (B3).
Later, Smirnov used (B3) to obtain

∂ur

∂r
= −ur

r
− ur

δ0

∂δ0

∂r
(B9)

and
∂2ur

∂r2 = 2ur

r2 + 2ur

rδ0

∂δ0

∂r
+ 2ur

δ2
0

(
∂δ0

∂r

)2

− ur

δ0

∂2δ0

∂r2 . (B10)

Smirnov argued that one should examine the equation of momentum only when the
microlayer is just created, where t = 0, and assumed ∂r = ∂Rb. Substituting (B7) into
(B1) using (B9) and (B10), then integrating the obtained expression from z = 0 to z = δ0,
one arrives at equation (8) of Smirnov (1975). The coefficient of the second term on the
left-hand side of equation (8) should be −2/3, instead of −2 as stated in the original paper.
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During the processing, the integration of ∂2ur/∂z2 on the right-hand side was performed
by Smirnov as ∫ δ0

0

∂2ur

∂z2 dz = ∂ur

∂z

∣∣∣∣
z=δ0

− ∂ur

∂z

∣∣∣∣
z=0

= 0 − Ṙb

δ0
, (B11)

which is inconsistent with the assumed velocity profile (B7).
After the integration, the calculating equation for determining the initial thickness was

then expressed as

δ0 =
√√√√√√

2νṘb

− 2
ρ

∂p
∂Rb

− R̈b + 2Ṙ2
b

3Rb

, (B12)

where p is the pressure in the liquid at the phase interface. It can be calculated using the
Rayleigh equation

p − p∞
ρ

= RbR̈b + 3
2

Ṙ2
b. (B13)

In equation (11) of the original paper, an additional term 2σ/ρRb was introduced on the
right-hand side of (B13) to account for the discontinuity of the normal stress across the
phase interface. However, given that p represents the pressure in the liquid, there seems to
be no appropriate place for introducing this discontinuity in (B13). This suggests that the
surface tension effect should not have been included in the theory in the first place.

B.3. Liquid pressure gradient
To obtain the gradient of the liquid pressure ∂p/∂Rb, Smirnov took the time derivative on
both sides of (B13) and made the assumption

∂p
∂r

∣∣∣∣
r=Rb

= ∂p
∂t

∂t
∂Rb

. (B14)

Estimating the liquid pressure gradient using the substitution of (B14) raises questions
about the validity of the approach, a concern that has also been raised by Bureš & Sato
(2022).

Recently, Jung & Kim (2018) reintroduced the surface tension effect, which should
not have been included, as demonstrated above. Nonetheless, a mistake exists in their
formulation. The last term in the denominator of equation (11) in Jung & Kim (2018)
is incorrectly expressed as this term must be dimensionless, and as such, it should be
represented as

δ0 =
√√√√√ 2νt

9(1 − n) + 2
(

1
n

− 1
)

(n − 2) + 0.66n + 4σ

ρC3
bnt3n−2

, (B15)

where the bubble takes the law of growth in the form Rb = Cbtn. This error also appears
in Sinha et al. (2022), which used the Jung & Kim (2018) formula. One can estimate
the surface tension correction, the last term of the denominator on the right-hand side of
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(B15), by assuming n = 0.5 and Cb = 3 × 10−2 m s−0.5. This term is then calculated for
water using fluid properties in table 1:

4σ

ρC3
bnt3n−2

≈ 0.0242t0.5. (B16)

For t = 1 ms, this term gives a correction of approximately 7.65 × 10−4, which is much
smaller than the sum of the rest in the denominator of 2.33 in (B15).

Since the original equation by Smirnov (1975) contains flawed physical assumptions,
utilising an equation based on the original one may lead to results that lack physical
coherence.
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