
J. Aust. Math. Soc. 100 (2016), 78–85
doi:10.1017/S1446788715000476

STRONG SKEW COMMUTATIVITY PRESERVING
MAPS ON RINGS

LEI LIU

(Received 27 January 2015; accepted 4 August 2015; first published online 25 November 2015)

Communicated by A. Sims

Abstract

Let A be a unital ring with involution. Assume that A contains a nontrivial symmetric idempotent and
φ :A→A is a nonlinear surjective map. We prove that if φ preserves strong skew commutativity, then
φ(A) = ZA + f (A) for all A ∈ A, where Z ∈ Zs(A) satisfies Z2 = I and f is a map from A into Zs(A).
Related results concerning nonlinear strong skew commutativity preserving maps on von Neumann
algebras are given.
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1. Introduction

Let A be a ring with involution. For A, B ∈ A, we denote by [A, B]∗ = AB − BA∗ the
skew Lie product of A and B. The skew Lie product was extensively studied because it
naturally arises in the problem of representing quadratic functionals with sesquilinear
functionals (see, for example, [12–15]) and in the problem of characterizing ideals
(see, for example, [3, 10]). Recall that a map φ from A into itself is called a
skew commutativity preserving map if [φ(A), φ(B)]∗ = 0 whenever [A, B]∗ = 0 for all
A, B ∈ A. There have been a number of papers on the study of skew commutativity
preserving maps (see [4, 5] and references therein).

More especially, a map φ is called a strong skew commutativity preserving map
on A if [φ(A), φ(B)]∗ = [A, B]∗ for all A, B ∈ A. Clearly, strong skew commutativity
preserving maps must be skew commutativity preserving maps, but the inverse is not
true generally. In [6], Cui and Park characterized nonlinear surjective strong skew
commutativity preserving maps φ on factor von Neumann algebras A, that is, φ has
the form φ(A) = ψ(A) + h(A)I for all A ∈ A, where ψ : A→ A is a linear bijective
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map satisfying ψ(A)ψ(B) − ψ(B)ϕ(A)∗ = AB − BA∗ for all A, B ∈ A and h is a real
functional on A with h(0) = 0. In [11], Qi and Hou generalized Cui and Park’s
results to prime rings with involution and proved that every nonlinear surjective strong
skew commutativity preserving map φ on a unital prime ring A with involution has
the form φ(A) = λA + f (A) for all A ∈ A, where λ ∈ {−1, 1} and f is a map from
A into Zs(A) (the symmetric center of A). Qi and Hou in [11] also characterized
the nonlinear surjective strong skew commutativity preserving maps of von Neumann
algebras without central summands of type I1. In this article, we continue this line of
investigation and characterize nonlinear strong skew commutativity preserving maps
on general rings with involution.

This article is organized as follows. In Section 2, we deal with the case that A
is a ring with the unit I and involution having a nontrivial symmetric idempotent P,
that is, P∗ = P and P2 = P. We set Zs(A), the symmetric central element of A, that
is, Zs(A) = {Z ∈ A : Z∗ = Z and ZA = AZ for all A ∈ A}. Assume that φ : A→A
is a nonlinear surjective strong skew commutativity preserving map. We show that
φ(A) = ZA + f (A) for all A ∈ A, where Z ∈ Zs(A) satisfies Z2 = I and f is a map from
A into Zs(M). In Section 3, we give several applications of the results in the above
section for some operator algebras. Particularly, we characterize nonlinear surjective
strong skew commutativity preserving maps on factor von Neumann algebras and von
Neumann algebras without central summands of type I1.

2. Characterization of strong skew commutativity preserving maps

In this section, we discuss the nonlinear surjective strong skew commutativity
preserving maps on unital rings with involution.

Theorem 2.1. Let A be a ring with the unit I and involution. Assume that A
contains a nontrivial symmetric idempotent P such that XAP = 0 implies X = 0 and
XA(I − P) = 0 implies X = 0 and φ : A→A is a nonlinear surjective strong skew
commutativity preserving map, that is, φ satisfies

[φ(A), φ(B)]∗ = [A, B]∗

for all A, B ∈ A. Then there exist an element Z ∈ Zs(A) with Z2 = I and a map
f :A→Zs(A) such that φ(A) = ZA + f (A) for all A ∈ A.

Proof. We shall organize the proof of Theorem 2.1 in a series of claims.

Claim 1. Let X ∈ A. Then PAX = 0 implies X = 0 and (I − P)AX = 0 implies X = 0.

If PAX = 0, then we have X∗A∗P = 0, that is, X∗AP = 0. It follows from the
property of P that X∗ = 0. So, X = 0.

Similarly, one can prove that (I − P)AX = 0 implies X = 0.

Claim 2. Let A ∈ A. Then PAPXP = PXPA∗P for all X ∈ A implies PAP = PZ, where
Z ∈ Zs(A).
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Taking X = P, we get PAP = PA∗P. It follows that PAPXP = PXPAP. Then we let

APAPA =
{ n∑

j=1

X jPAPY j : X j,Y j ∈ A, n ∈ N
}

and

APA =
{ n∑

j=1

X jPY j : X j,Y j ∈ A, n ∈ N
}
.

It is easy to see that APAPA is an ideal of APA. We can define an additive map
ψ :APA→APAPA by ψ(

∑n
j=1 X jPY j) =

∑n
j=1 X jPAPY j. The map is well defined.

Indeed, if
∑n

j=1 X jPY j = 0, we have
∑n

j=1 X jPY jYPAP = 0 for all Y ∈ A. It follows
from the fact that PAPXP = PXPAP that

∑n
j=1 X jPAPY jYP = 0. From the property of

P, we obtain
∑n

j=1 X jPAPY j = 0, which means that ψ is well defined. Moreover, the
following equations hold

ψ
( n∑

i=1

XiPYi

m∑
j=1

X′jPY ′j
)
= ψ

( m∑
j=1

( n∑
i=1

XiPYi

)
X′jPY ′j

)
=

m∑
j=1

( n∑
i=1

XiPYi

)
X′jPAPY ′j

=

n∑
i=1

XiPYi

m∑
j=1

X′jPAPY ′j

=

n∑
i=1

XiPYiψ
( m∑

j=1

X′jPY ′j
)
.

This implies that ψ is a left APA-module homomorphism, that is, ψ ∈
HomAPA(APA,APAPA). By [7, Ch. 4, Theorem 4.9], there exists an element
Z ∈ APAPA such that ψ(X) = XZ for all X ∈ APA. In particular,

PAP = ψ(P) = PZ.

Next we shall show that Z ∈ Zs(A). In fact, for any Y ∈ A, X =
∑n

i=1 XiPYi ∈ APA,

ψ(XY) = ψ
( n∑

i=1

XiPYiY
)
=

n∑
j=1

XiPAPYiY = ψ(X)Y.

It follows that XYZ = XZY , that is, APA(YZ − ZY) = 0. Thus, by Claim 1, we get
YZ = ZY for all Y ∈ A. Furthermore, since PAP = PA∗P, we get PZ = PZ∗ and so
PA(Z − Z∗) = 0. It follows from Claim 1 that Z = Z∗. Hence, Z ∈ Zs(A), as desired.

In what follows, let P1 = P and P2 = I − P1. We denoteAi j = PiAP j for i, j = 1, 2.
Then A = A11 +A12 +A21 +M22 and each element A ∈ A can be written as A =
A11 + A12 + A21 + A22, where Ai j ∈ Ai j, i, j = 1, 2.
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Claim 3. φ(P1) = ZP1 + ZP1 , where Z,ZP1 ∈ Zs(A).

For any X ∈ A, since [P1, [P1, [P1, X]∗]∗]∗ = [P1, X]∗,

[P1, [P1, [φ(P1), φ(X)]∗]∗]∗ = [φ(P1), φ(X)]∗.

It follows from the surjectivity of φ that

[P1, [P1, [φ(P1), X]∗]∗]∗ = [φ(P1), X]∗. (2.1)

Taking X = A12 ∈ A12 in (2.1), we get A12φ(P1)∗P1 = P2φ(P1)A12, which implies that
P2φ(P1)A12 = 0 and A12φ(P1)∗P1 = 0. By Claim 1 and the property of P, P2φ(P1)P1 =

P2φ(P1)∗P1 = 0, that is, P2φ(P1)P1 = P1φ(P1)P2 = 0.
Moreover, taking X = A11 ∈ A11 in (2.1), we obtain P1φ(P1)A11 = A11φ(P1)∗P1. By

Claim 2, there exists an element Z1 ∈ Zs(A) such that P1φ(A11)P1 = Z1P1. With a
similar argument, we have P2φ(P1)P2 = Z2P2, where Z2 ∈ Zs(A). Hence,

φ(P1) = Z1P1 + Z2P2 = (Z1 − Z2)P1 + Z2.

We denote Z = Z1 − Z2 and ZP1 = Z2. Then φ(P1) = ZP1 + ZP1 .
Finally, we need to prove that Z , 0. On the contrary, if Z = 0, then φ(P1) = Z2 ∈

Zs(A). It follows that [P1, X]∗ = [φ(P1), φ(X)]∗ = 0 for all X ∈ A. This leads to
P1 ∈ Zs(A). So, (I − P1)AP1 = 0. From the property of P1, we get I − P1 = 0, which
is impossible as P1 is nontrivial.

In the sequel, Z is the symmetric central element in Claim 3.

Claim 4. Let Ai j ∈ Ai j, 1 ≤ i , j ≤ 2. Then:

(a) φ(X) = P1 implies Xi j = 0;
(b) φ(X) = Ai j implies Xi j = ZAi j and X ji = 0.

It follows from Claim 3 that

[P1, X]∗ = [φ(P1), φ(X)]∗ = [ZP1, P1]∗ = 0.

Then X12 = X21 = 0. So, (a) is true.
Similarly, by Claim 3,

[P1, X]∗ = [φ(P1), φ(X)]∗ = [ZP1, A12]∗ = ZA12,

which implies that X12 = ZA12 and X21 = 0. If φ(X) = A21, we can obtain X21 = ZA21

and X12 = 0 in the same way. So, (b) is true.

Claim 5. φ(Aii) = ZAii for all Aii ∈ Aii, i = 1, 2.

For any A11 ∈ A11 and A12 ∈ A12, by the surjectivity of φ, there exists an element
X ∈ A such that φ(X) = A12. Then [X, A11]∗ = [φ(X), φ(A11)]∗ = [A12, φ(A11)]∗, that is,

XA11 − A11X∗ = A12φ(A11) − φ(A11)A∗12. (2.2)
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Multiplying (2.2) by P1 from the left-hand side and P2 from the right-hand side, we
arrive at −A11X∗P2 = A12φ(A11)P2. By Claim 4(b), this is equivalent to

A12φ(A11)P2 = 0.

It follows from Claim 1 that P2φ(A11)P2 = 0. Similarly, we have [A11, X]∗ =
[φ(A11), φ(X)]∗ = [φ(A11), A12]∗, that is,

A11X − XA∗11 = φ(A11)A12 − A12φ(A11)∗. (2.3)

Multiplying (2.3) by P2 from both sides, we obtain P2φ(A11)A12 = 0, which implies
P2φ(A11)P1 = 0. At the same time, multiplying (2.3) by P1 from the left-hand side and
P2 from the right-hand side, and combining the fact that P2φ(A11)P2 = 0, we arrive
at A11XP2 = P1φ(A11)A12. Using Claim 4(b) again, we have ZA11A12 = P1φ(A11)A12.
Therefore, P1φ(A11)P1 = ZA11 holds for all A11 ∈ A11.

For any A21 ∈ A21, by the surjectivity of φ, there exists an element X ∈ A such that
φ(X) = A21. Then [X, A11]∗ = [φ(X), φ(A11)]∗ = [A21, φ(A11)]∗, that is,

XA11 − A11X∗ = A21φ(A11) − φ(A11)A∗21. (2.4)

Multiplying (2.4) by P2 from both sides, we get A21φ(A11)P2 = 0. It follows from
Claim 1 that P1φ(A11)P2 = 0. Hence, φ(A11) = ZA11.

Similarly, φ(A22) = ZA22 can be obtained.

Claim 6. Z2 = I and φ(Ai j) = ZAi j for all Ai j ∈ Ai j, 1 ≤ i , j ≤ 2.

For any B12 ∈ A12 and B21 ∈ A21, by the surjectivity of φ, there exist U,V,W ∈ A
such that φ(U) = P1, φ(V) = B12 and φ(W) = B21. Then we have the following three
equations.

[U, A12]∗ = [φ(U), φ(A12)]∗ = [P1, φ(A12)]∗,
[V, A12]∗ = [φ(V), φ(A12)]∗ = [B12, φ(A12)]∗

and
[W, A12]∗ = [φ(W), φ(A12)]∗ = [B21, φ(A12)]∗,

which are equivalent to

UA12 − A12U∗ = P1φ(A12) − φ(A12)P1, (2.5)
VA12 − A12V∗ = B12φ(A12) − φ(A12)B∗12 (2.6)

and
WA12 − A12W∗ = B21φ(A12) − φ(A12)B∗21 (2.7)

for all A12 ∈ A12. Multiplying (2.5)–(2.7) by P2 from the left-hand side and P1 from
the right-hand side, respectively, we obtain P2φ(A12)P1 = 0, P2φ(A12)B∗12 = 0 and
B21φ(A12)P1 = 0. It follows from Claim 1 and the property of P that P1φ(A12)P1 = 0
and P2φ(A12)P2 = 0. So, φ(A12) = P1φ(A12)P2. Moreover, by Claim 3,

[P1, A12]∗ = [φ(P1), φ(A12)]∗ = [ZP1, φ(A12)]∗.
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This leads to A12 = Zφ(A12). Similarly, we obtain A21 = Zφ(A21).
Next we shall show that Z2 = I. In fact, for any A12 ∈ A12 and A21 ∈ A21, we get

[A12, A21]∗ = [φ(A12), φ(A21)]∗, that is, A12A21 = φ(A12)φ(A21). It follows that

Z2A12A21 = Zφ(A12)Zφ(A21) = A12A21,

that is, (Z2 − I)A12A21 = 0. Fixing A12, from the property of P, we get (Z2 − I)A12 = 0.
Then, using the property of P again, we have (Z2 − I)P = 0 and so (Z2 − I)AP = 0.
Hence, Z2 = I, φ(A12) = ZA12 and φ(A21) = ZA21.

Claim 7. φ is almost additive, that is, for any A, B ∈ A, φ(A + B) − φ(A) − φ(B) =
ZA,B ∈ Zs(A).

For any X ∈ A, it is easy to check that

[φ(A + B) − φ(A) − φ(B), φ(X)]∗ = [φ(A + B), φ(X)]∗ − [φ(A), φ(X)]∗ − [φ(B), φ(X)]∗
= [A + B, X]∗ − [A, X]∗ − [B, X]∗ = 0.

Since φ is surjective, we obtain a symmetric central element ZA,B ∈ Zs(A) such that
φ(A + B) − φ(A) − φ(B) = ZA,B.

Now, by Claims 5–7,

φ(A) = φ(A11 + A12 + A21 + A22)
= φ(A11) + φ(A12) + φ(A21) + φ(A22) + ZA

= Z(A11 + A12 + A21 + A22) + ZA

= ZA + ZA

for all A ∈ A, where ZA ∈ Zs(A). Define a map f :A→Zs(A) by f (A) = ZA for all
A ∈ A. Then we have φ(A) = ZA + f (A), completing the proof. �

Because a unital prime ring with involution satisfies the hypotheses of Theorem 2.1
if it contains a nontrivial idempotent, the following result is immediate from
Theorem 2.1, which was obtained in [11, Theorem 2.1].

Corollary 2.2. Let A be a prime ring with the unit I and involution. Assume that A
contains a nontrivial symmetric idempotent and φ :A→A is a surjective map. If φ
is a nonlinear surjective strong skew commutativity preserving map, then there exists
a map f :A→Zs(A) such that φ(A) = A + f (A) or φ(A) = −A + f (A) for all A ∈ A.

Proof. By Theorem 2.1, there exist an element Z ∈ Zs(A) with Z2 = I and a map
f : A→ Zs(A) such that φ(A) = ZA + f (A) for all A ∈ A. We only need to prove
that Z = I or Z = −I. Indeed, since A is a prime ring with involution, we see that
Zs(A) ⊆ C, where C is the center of Qml(A) and Qml(A) is the maximal left ring of
quotients ofA (see [1, 2]). Noticing that C is a field [2, Theorem A.6], we have Z = I
or Z = −I by Z2 = I. �
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3. Applications

In this section, we will give several applications of the results in the above section.
Recall that a von Neumann algebra M is a weakly closed, self-adjoint algebra of

operators on a complex Hilbert space H containing the identity I. The center of M
is denoted by Z(M) = {Z ∈ M : ZM = MZ for all M ∈ M}. The algebraM is called
a factor if Z(M) = CI. We denote that A is the central carrier of A ∈ M. It is well
known that the central carrier of A is the projection whose range is the closed linear
span of {MA(h) : h ∈ H}. For each self-adjoint operator R ∈ M, the core of R, denoted
by R, is sup{A ∈ Z(M) : A = A∗, A ≤ R}. If P ∈ M is a projection and P = 0, we call
P a core-free projection. It is easy to see that P = 0 if and only if I − P = I. We refer
reader to [8] for the theory of von Neumann algebras.

Theorem 3.1. LetM be a factor von Neumann algebra and φ :M→M a surjective
strong skew commutativity preserving map. Then φ(A) = A or φ(A) = −A for all
A ∈ M.

Proof. It is well known that a factor von Neumann algebra is prime. Since Z(M) =
CI, we see that Zs(M) = RI. By Corollary 2.2, there exists a map f : A → RI
such that φ(A) = A + f (A) or φ(A) = −A + f (A) for all A ∈ M. We only need to
prove that f ≡ 0. In fact, for any A, B ∈ M, we have [A, B]∗ = [φ(A), φ(B)]∗ =
[A + f (A), B + f (B)]∗, which implies [A, f (B)]∗ = 0. Taking A = iI, we get f (B) = 0
for all B ∈ M. Then f ≡ 0, completing the proof. �

Theorem 3.2. Let M be a von Neumann algebra without central summands of type
I1. Assume that φ :M→M is a surjective strong skew commutativity preserving
map. Then there exists an operator Z ∈ Zs(M) with Z2 = I such that φ(A) = ZA for
all A ∈ M.

Proof. From [9, Lemma 4], we know that each nonzero central projection of M
is the central carrier of a core-free projection of M. Since I is a nonzero central
projection of M, we can obtain a core-free projection P ∈ M with central carrier I.
It follows from P = I that span{MP(h) : h ∈ H} is dense in H. For A ∈ M, AMP = 0
implies A = 0. Similarly, since I − P = I, we see that AM(I − P) = 0 implies A = 0.
Hence, by Theorem 2.1, there exist an operator Z ∈ Zs(M) with Z2 = I and a map
f :M→Zs(M) such that φ(A) = ZA + f (A) for all A ∈ M.

Furthermore, since φ is a strong skew commutativity preserving map, for any
A, B ∈ M, we have [A, B]∗ = [φ(A), φ(B)]∗ = [ZA + f (A), ZB + f (B)]∗, which implies
[ZA, f (B)]∗ = 0. Taking A = iI, we get Z f (B) = 0 for all B ∈ M. Multiplying the
above equation by Z from the left-hand side, we get f (B) = 0 for all B ∈ M. Hence,
φ(A) = ZA for all A ∈ M, completing the proof. �
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