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Abstract
Most applications of Bayesian Inference for parameter estimation and model selection in astrophysics involve the use of Monte Carlo
techniques such as Markov Chain Monte Carlo (MCMC) and nested sampling. However, these techniques are time-consuming and their
convergence to the posterior could be difficult to determine. In this study, we advocate variational inference as an alternative to solve the
above problems, and demonstrate its usefulness for parameter estimation and model selection in astrophysics. Variational inference con-
verts the inference problem into an optimisation problem by approximating the posterior from a known family of distributions and using
Kullback–Leibler divergence to characterise the difference. It takes advantage of fast optimisation techniques, which make it ideal to deal
with large datasets and makes it trivial to parallelise on a multicore platform. We also derive a new approximate evidence estimation based
on variational posterior, and importance sampling technique called posterior-weighted importance sampling for the calculation of evidence,
which is useful to perform Bayesian model selection. As a proof of principle, we apply variational inference to five different problems in
astrophysics, where Monte Carlo techniques were previously used. These include assessment of significance of annual modulation in the
COSINE-100 dark matter experiment, measuring exoplanet orbital parameters from radial velocity data, tests of periodicities in measure-
ments of Newton’s constant G, assessing the significance of a turnover in the spectral lag data of GRB 160625B, and estimating the mass
of a galaxy cluster using weak gravitational lensing. We find that variational inference is much faster than MCMC and nested sampling
techniques for most of these problems while providing competitive results. All our analysis codes have been made publicly available.
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1. Introduction

Markov Chain Monte Carlo (MCMC) is the most common
method for inference, and for sampling multi-modal probabil-
ity distributions (Hastings 1970; Gelfand & Smith 1990; Sharma
2017; Hogg & Foreman-Mackey 2018; Speagle 2019). Following
the rapid rise in the usage of Bayesian analysis in astronomy,
MCMC (and nested sampling) techniques are now widely used
(starting with Saha & Williams 1994) for a variety of problems
ranging from parameter estimation, model comparison, evaluat-
ing model goodness-of-fit, to forecasting for future experiments.
This is because it is usually not possible to analytically calcu-
late the multi-dimensional integrals needed for computing the
Bayesian posteriors or evidence, and the numerical evaluation of
these integrals can easily get intractable. Also, almost all numeri-
cal optimisation techniques run into problems while maximising
the Bayesian posterior, when the total number of free parameters
gets large. For this reason, there has been an unprecedented surge
in the usage of Monte Carlo techniques in astrophysics. However,
MCMC techniques are not tied only to Bayesian methods. They
have also been used in frequentist analysis, for sampling complex
multi-dimensional likelihood needed for parameter estimation
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(Wei et al. 2017). That said, the ubiquity of MCMC methods in
astronomy has been driven by the increasing usage of Bayesian
methods. Applications of MCMC to a whole slew of astrophysical
problems have been recently reviewed in (Sharma 2017). Although
a large number of MCMC sampling methods have been used,
the most widely used MCMC sampler in astrophysics is Emcee
(Foreman-Mackey et al. 2013). Bayesianmodel comparison is usu-
ally done using Nested sampling (Skilling et al. 2006), which is
also a Monte Carlo-based technique. A large number of pack-
ages have been used in astrophysics for carrying out Bayesian
model comparison using Nested Sampling techniques, such as
MultiNest (Feroz, Hobson, & Bridges 2009), Nestle,a dynesty
(Speagle 2020) etc. These techniques are however computationally
expensive.

Although, MCMC has evolved into one of the most impor-
tant tools for Bayesian inference (Robert & Casella 2011), there
are problems for which we cannot easily use this approach, espe-
cially in the case of large datasets or models with high dimen-
sionality. Variational inference (Jordan et al. 1999) provides a
good alternative approach for approximate Bayesian inference
and has been the subject of considerable research recently (Blei,
Kucukelbir, & McAuliffe 2017). It provides an approximate poste-
rior for Bayesian inference faster than simple MCMC by solving
an optimisation problem. Ranganath, Gerrish, & Blei (2014) and

ahttp://kylebarbary.com/nestle/.
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Kucukelbir et al. (2016) compare the convergence rates for vari-
ational inference against other sampling algorithms. They both
show that variational inference convergences much faster in lesser
number of iterations, even when the Metropolis–Hastings algo-
rithm does not converge for the same problem.

The use of variational inference with deep learning is becom-
ing more widespread in Astrophysics, especially in the areas of
image generation and classification. Generating reliable synthetic
data that can be used as calibration data for future surveys is an
important task, which otherwise is a expensive task. Ravanbakhsh
et al. (2016), Spindler, Geach, & Smith (2020), Bastien et al. (2021)
have used conditional variational auto encoder (cVAE) for the task
of image generation. Ravanbakhsh et al. (2016) used cVAE with
convolutional layers and adversarial loss to generate galaxy images
using galaxy zoo dataset, Bastien et al. (2021) used cVAE with
fully connected layers for the task of generating synthetic images
from radio galaxies. Walmsley et al. (2019) used Bayesian neu-
ral networks (BNNs) for calculating posterior over image labels,
which can provide uncertainties for each label for a given image.
This can be converted to traditional deterministic classification by
collapsing posterior to corresponding point estimates.

Jiang et al. (2021) used BNN for tracing fibrils in the Hα images
of the sun. A specific BNN dubbed FibrilNet was used for the
segmentation task, i.e., the probability of each pixel being a fib-
ril is predicted with a uncertainty, then a fibril fitting algorithm
is used on this mask to trace firbils and identify their orienta-
tion. A significant number of confirmed exoplanets (about 4 000
which is 30% of all identified exoplanets) have been identified
through the validation of false positive cases from non-planet sce-
narios. Armstrong, Gamper, & Damoulas (2020) used Gaussian
process classifier (GPC) for this validation task and showed that
their method is much faster than the competing algorithm vespa
with comparable results. Lin &Wu (2021) combined deterministic
deep learning classifier CLDNN (it combines CNN and a LSTM)
with variational inference to detect events of binary coalescence
in observation data of gravitational waves along with uncertainty
estimates. This can be used in real-time detection of events and
the events with high uncertainty can be pushed for further exami-
nation rather than accepting or discarding event. Morales-Álvarez
et al. (2019) used variational gaussian processes for tackling the
problem of crowdsourcing in Glitch detection in LIGO. They show
that variational gaussian processes very well compared to other
traditional deep learning techniques and also take less time to
train.

VI has also been used in the task of parameter estimation.
(Hortúa, Malagò, & Volpi 2020a) combined BNN with normal-
ising flows (NFs) for estimating astronomical and cosmological
parameters from 21 cm surveys. Gabbard et al. (2020) use cVAE for
estimating the source parameters for gravitational wave detection.
They show that the estimated parameters are close to the parame-
ters from traditional MCMC algorithms. The significant amount
of time taken in this process is training of the cVAE network;
it takes about O(1) day. Once trained the network need not be
trained again, and the GW detection parameters can be obtained
six orders of magnitude faster, when compared to existing tech-
niques.

Few works were done comparing MCMC and VI approached.
In the work done by Regier et al. (2018), a generative model for
constructing astronomical catalogs using telescope image datasets
was developed using Bayesian inference. They developed two
approximate inference procedures using MCMC and variational

inference for their statistical model and compared the effective-
ness of the methods. The aforementioned paper found that for
the synthetic data generated from their model, MCMC was bet-
ter in estimating uncertainties, but it was about three orders
slower compared when compared to the competing variational
inference procedure. Whereas on real data taken from SDSS,
the uncertainty estimates in both the procedures were far from
perfect. In that work, they were successful in applying varia-
tional inference to the entire SDSS data, thus demonstrating its
feasibility on very large datasets. This technique has also been
used in lensing for estimating the uncertainties in parameters
through BNNs (Blundell et al. 2015) for the problem of Singular
Isothermal Ellipsoid plus external shear and total flux magnifica-
tion (Perreault Levasseur, Hezaveh, & Wechsler 2017). Recently,
Hortúa et al. (2020b) used BNN for estimating parameters for cos-
mic microwave background. They found that VI was four orders
faster when compared to MCMC with slight compromise in accu-
racy. They also showed that using output from BNN as initial
proposal for Markov chain resulted in higher acceptance rate for
Metropolis–Hasting algorithm.

For the purpose of computing Bayesian evidence, needed
for model comparison, Bernardo et al. (2003) have compared
Variational Bayes and Annealed importance sampling (AIS) (Neal
2001) for the task of evidence estimation and posterior evaluation.
Their results show that Variational Bayes is about 100 times faster
when compared to AIS without any significant loss in accuracy.

In this study, we shall explain how a particular adaptation of
variational inference (dubbed ADVI) can supersede Monte Carlo
techniques such as MCMC and nested sampling for parameter
estimation and Bayesian model comparison and apply these tech-
niques to five different problems in astrophysics and compare the
results to Monte Carlo methods. The outline of this paper is as
follows. In Section 2, we introduce the idea of Bayesian modeling
and provide an introduction to MCMC. In Section 3, we present
an overview of the variational inference method. In Section 4,
we discuss a specific implementation of variational inference
called Automatic differentiation variational inference (ADVI). In
Section 5, we explain how variational inference can be used for
parameter estimation and model comparison. Applications to
ancillary problems in astronomy are outlined in Section 6. We
conclude in Section 7. The code for all the analyses in this study
can also be found on a github link provided at the end of this
study.

2. Overview of Bayesian modeling and MCMC

We first start with a very brief primer on Bayesian modeling and
parameter inference, and then explain how Monte Carlo methods
are applied to these problems. More details on Bayesian meth-
ods and their applications in astrophysics are reviewed in Trotta
(2017), Sharma (2017), Kerscher & Weller (2019) and references
therein. Bayes Theorem in general terms is given as

p(θ |D)= p(D, θ)
p(D)

= p(D|θ)p(θ)
p(D)

, (1)

where p(θ) is the prior belief on the parameter θ , p(D|θ) is known
as the likelihood, which models the probability of observing the
data D given parameter θ . p(θ |D) called posterior probability, is
the conditional probability of θ given D, which can be interpreted
as the posterior belief over the parameters after evidence or data
D is observed. p(D) is termed as the marginal likelihood or model
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evidence, which is obtained by integrating out θ from the joint
probability distribution p(D, θ), the numerator term in Equation
(1). All the conditional probabilities in Equation (1) are implic-
itly conditioned on the model m. Hence, the marginal likelihood
p(D) provides the probability that the model m will generate the
data irrespective of its parameter values and is a useful quantity
for model selection.

Bayesian models treat the parameters as a random variable and
impose preliminary knowledge about the parameter through the
prior. Inference in the Bayesian model amounts to conditioning
on the data and computing the posterior P(θ |D). This computa-
tion is intractable for models where the prior and likelihood take
different functional forms (non-conjugates). In these cases, ana-
lytical closed form estimation of the marginal likelihood is also
intractable. This has led to the usage of sampling methods to solve
for such intractable distributions.

MCMC methods are sampling techniques, which enable us to
sample for any unnormalised distribution (Hastings 1970; Gelfand
& Smith 1990; Sharma 2017; Hogg & Foreman-Mackey 2018;
Speagle 2019). The idea of MCMC algorithms is to construct
and sample from a Markov chain whose stationary distribution
is the same as the desired distribution, and use those samples to
compute expectations and integrals of required quantities using
Monte Carlo integration techniques. We will briefly introduce the
Metropolis–Hastings algorithm (M–H) (Metropolis et al. 1953;
Hastings 1970), which is the simplest MCMC algorithm. Although
the M–H algorithm is simple, it shares many of the same princi-
ples with the newer and more complex MCMC algorithms. M–H
algorithm requires a proposal distribution q(θ ′|θ), which is used
to generate parameter samples. Assume the unnormalised poste-
rior distribution over the parameters θ to be represented as the
function f (θ), i.e. f (θ)∝ p(D|θ)p(θ). The M–H algorithm works
as follows.
• Assume that θk is the previous sampled point, draw the next

sample θ ′ from the proposal distribution q(θ ′|θk)
• Draw a random number r from a uniform distribution between

0 and 1
• Accept the sample if f (θ ′)q(θt |θ ′)

f (θk)q(θ
′|θt)

> r (θk+1← θ ′) else reject the
sample (θk+1← θk)

When run long enough, the M–H algorithm produces samples
from the desired posterior distribution. Although the algorithm
is simple, there are many different parameters in the algorithm
that are to be tuned to achieve ideal results. One of the important
parameters for the algorithm is the number of samples that the
algorithm has to run for achieving reliable results. There is nothing
called absolute convergence for a MCMC algorithm and one can
only rely on heuristics. We can run multiple chains with different
initial points and can compare posterior inferences like the mean
and variance from both the chains. There are other metrics like
autocorrelation time (Sokal 1997) and Gelman–Rubin diagnostic
(Gelman & Rubin 1992) which can be used to check for pseudo-
convergence of MCMC algorithms.

Choosing a proposal distribution also plays a vital role in the
quality of samples that are produced. A proposal distribution that
is too narrow can result in accepting all the samples and will
take a lot of time covering the entire parameter space, while a
proposal distribution that is too wide can result in taking large
steps and rejecting most of the samples. For example, consider a

Gaussian distribution N (0, σ ) as the proposal distribution and θk
is the current sample, then the next sample θ ′ is calculated as θ ′ ←
θk +N (0, σ ). The value of σ dictates the distance between the two
proposal and it is the step size in this case. One can use a sim-
ple heuristic like the acceptance ratio for tuning the step size, high
acceptance ratio means that you are accepting all the generated
samples and hence has to reduce the step size and vice-versa. The
choice of proposal distribution is not problem independent and
finding efficient proposal distribution can become increasingly
difficult with increase in dimensions of parameter space.

Initialisation like proposal distribution is an input parame-
ter to most of the MCMC algorithms. A badly initialised chain
can spend a lot of time in regions of low probability, which can
result in a large number iterations for the MCMC algorithm to
reach a stationary condition. In such cases, we discard a certain
number of initial samples from the chain before the stationary
condition is reached. This idea is called as burn-in and the length
of burn-in depends on each individual problem and initialisation.
If the proposal distribution is multi-modal, then starting multi-
ple chains with different initialisations and comparing the samples
will help in identifying if chains have covered all the modes. If
different initialisations result in different chains, then there is no
straight forward method of combining the samples from multiple
chains. One has to run a MCMC algorithm for a long time so that
each chain can cover all the modes, and produce a representative
sample or resort to Nested sampling techniques.

There are many advanced methods like tempering (Vousden,
Farr, &Mandel 2015), which help theMCMC samplers from being
stuck at one mode in multi-modal distributions. Hamiltonian
Monte Carlo (HMC) (Betancourt 2018) which uses the gradients
of the function f (θ) for efficient generation of proposals. HMC
avoids the random walk sampling approach and hence can be
efficient in exploring parameter space even for high dimensional
cases. HMC’s performance is sensitive to two tunable parameters:
the step size ε and the desired number of steps L. If L is too small
then HMC ends up exhibiting random walk behaviour which is
undesirable, and if L is too high the algorithm can waste a lot
of computational power. No-U-Turn Sampler (NUTS) (Hoffman
& Gelman 2011) is an extension to HMC which eliminates the
manual tuning of L and calculates the number of steps through
a recursive algorithm. Therefore, NUTS is as efficient as HMC if
not better in most of the cases and eliminates the need for manual
tuning.

Affine invariant ensemble sampling uses multiple random
walkers for drawing proposal samples and it significantly outper-
forms the standard M–H algorithm in drawing independent sam-
ples with much lesser autocorrelation time (Goodman & Weare
2010; Foreman-Mackey et al. 2013). Nested sampling (Feroz et al.
2019) converts the multi-dimensional integration of evidence D
into a 1D integration by mapping likelihood to the corresponding
prior volume in the corresponding iso-likelihood contours on a
2D curve. This 1D curve integration can be evaluated using trape-
zoid rule. MCMC methods as seen, may require a lot of tuning
and in most cases this tuning can require a deeper mathemati-
cal understanding of algorithm being used for achieving desirable
results.

Therefore in this study, we study a alternative method for per-
forming Bayesian inference called as variational inference, which
is considerably faster than MCMC techniques and does not suffer
from any convergence issues.
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3. Variational inference

The central idea behind variational inference is to solve an optimi-
sation problem by approximating the target probability density.
The target probability density could be the Bayesian posterior or
the likelihood from frequentist analysis. The first step is to propose
a family of densities and then to find the member of that family,
which is closest to the target probability density. Kullback–Leibler
(KL) divergence (Kullback & Leibler 1951) is used as a measure of
such proximity.

For this purpose, we then posit a family of approximate densi-
ties (variational distribution) Q. This is a set of densities over the
parameters. It is important to choose an complex enough varia-
tional family such that the target distribution lies in it, otherwise
the solution obtained will not be close to the target probabil-
ity distribution. Then, we try to find the member of that family
q(θ) ∈Q, known as the variational posterior that minimises the
KL divergence to the exact posterior,

q∗(θ)= arg min
q(θ)∈Q

KL(q(θ)||p(θ |D)). (2)

The KL divergence is defined as

KL(q(θ)||p(θ |D))=Eq(θ)
[
log q(θ)

]−Eq(θ)
[
log p(θ |D)

]
, (3)

where all the expectations are with respect to q(θ). We shall
see in Equation (4) that KL divergence depends on the poste-
rior log p(θ |D), which is usually intractable to compute. We can
expand the conditional using (1) and re-write KL divergence as

KL(q(θ)||p(θ |D))=Eq(θ)
[
log q(θ)

]+Eq(θ)
[
log p(D)

]
−Eq(θ)

[
log p(D, θ)

]
= log p(D)+Eq(θ)

[
log q(θ)

]
−Eq(θ)

[
log p(D, θ)

]
. (4)

The expected value of the log evidence with respect to the vari-
ational posterior is the log evidence term itself, and is independent
of the variational distribution. Hence, minimising the KL diver-
gence term is equivalent to minimising the second and third terms
in Equation (4). Equivalently, one could estimate the variational
posterior by maximising the variational lower bound (also known
as evidence lower bound or ELBO Blei et al. 2017) with respect
to q(θ).

ELBO(q(θ))=Eq(θ)
[
log p(D, θ)

]−Eq(θ)
[
log q(θ)

]
. (5)

ELBO can be viewed as a lower bound to the evidence term by
rearranging the terms in Equation (4).

log p(D)=KL(q(θ)||p(θ |D))+ ELBO(q(θ)). (6)

The KL divergence between any two distributions is a non-
negative quantity and hence, log p(D)≥ ELBO(q(θ)). Again, we
can see that as the evidence term is independent of the varia-
tional distribution, maximising ELBO will result in minimising
the KL divergence between the variational posterior and the actual
posterior.

Expanding the joint likelihood in Equation (5), the variational
lower bound can be rewritten as

ELBO(q(θ))=Eq(θ)
[
log p(D|θ)]−Eq(θ)

[
log q(θ)

]
+Eq(θ)

[
log p(θ)

]
=Eq(θ)

[
log p(D|θ)]−KL(q(θ)||p(θ)). (7)

The first term in Equation (7), which can be interpreted as the data
fit term, will result in selecting a variational posterior, which max-
imises the likelihood of observing the data. While the second term
can be seen as the regularisation term, which minimises the KL
divergence between the variational posterior and the prior. Thus,
ELBO implicitly regularises the selection of the variational pos-
terior and trades-off likelihood and prior in arriving at a proper
choice for the variational posterior. The log evidence term in
Equation (6) and hence the variational lower bound (ELBO) are
implicitly conditioned on the hyper-parameters of the model. The
hyper-parameters can be learned by maximising the variational
lower bound. Typically, the variational parameters and the hyper-
parameters are learned alternatively by maximising the variational
lower bound.

Variational inference converts the Bayesian parameter estima-
tion into an optimisation problem through the maximisation of
the variational lower bound. Hence, convergence is guaranteed in
variational inference, as is the case of any optimisation problem,
to a local optimum and if the likelihood is log-concave then to a
global optimum. Another important feature of variational infer-
ence is that it is trivial to parallelise. It can handle large datasets
with ease without compromising on the model complexity with
the use of stochastic variational inference (Hoffman et al. 2013).
In the case of some specific likelihoods and variational families,
ELBO cannot be computed in closed form as the computations of
required expectations are intractable. In these settings, either one
resorts to model specific algorithms (Jaakkola & Jordan 1996; Blei
& Lafferty 2007; Braun & McAuliffe 2010) or generic algorithms
that require model specific calculations (Knowles & Minka 2011;
Wang & Blei 2013; Paisley, Blei, & Jordan 2012).

Recent advances in variational inference use ‘black box’
techniques to avoid model specific lower bound calculations
(Ranganath et al. 2014; Kingma &Welling 2013; Jimenez Rezende,
Mohamed, & Wierstra 2014; Salimans & Knowles 2014; Titsias
& Lázaro-Gredilla 2014). These ideas were leveraged to develop
automatic differentiation variational inference techniques (ADVI)
(Kucukelbir et al. 2016) that works on any model written in the
probabilistic programming systems such as Stan (Carpenter et al.
2016)b or PyMC3 (Salvatier, Wiecki, & Fonnesbeck 2016).

4. Automatic differentiation variational inference

Variational inference algorithm requires model specific computa-
tions to obtain the variational lower bound. Typically, variational
inference requires the manual calculation of a custom optimisa-
tion objective function by choosing a variational family relevant
to the model, computing the objective function and its derivative,
and running a gradient-based optimisation.

Automatic differentiation variational inference (ADVI)
(Kucukelbir et al. 2016) automates this by building a ‘black-box’
variational inference technique, which takes a probabilistic model
and a dataset as inputs and returns posterior inferences about the
model’s latent variables. ADVI achieves the results by performing
the following sequence of steps.
• ADVI applies a transformation on the latent variables θ to

obtain real-valued latent variables ζ , where ζ = T(θ) and ζ ∈
R

dim(θ). The transformation T ensures that all the latent vari-
ables lie on a real co-ordinate space, and allows ADVI to use the

bWe have used the ADVI implementation in PyMC3 for our case studies.
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same variational family q(ζ ;φ) (e.g. Gaussian where q(ζ ;φ)=
N (ζ ;μ,�)) on all the models. This transformation changes the
variational lower bound and the joint likelihood p(D, θ) is writ-
ten in terms of ζ as p(D, ζ )= p(D, T−1(ζ ))|JT−1 (ζ )|, where | · |
represents the determinant. Here, JT−1 (ζ ) is the Jacobian of the
inverse of the transformation T. The variational lower bound
takes the following form under this transformation.

ELBO
(
q (ζ ;φ)

)=Eq(ζ ;φ)

[
log p

(
D, T−1 (ζ )

)+ log|JT−1 (ζ ) |]
−Eq(ζ ;φ)

(
log q (ζ ;φ)

)
. (8)

• The variational objective (ELBO) as a function of the varia-
tional parameters φ (for instance mean μ and covariance � of
a Gaussian) can be optimised using gradient ascent.

However, the calculation of gradients of ELBO with respect
to the variational parameters is generally intractable. To push
the gradients inside the expectation, ADVI applies elliptical
standardisation. Consider a transformation Sφ , which absorbs
the variational parameters φ and converts the non-standard
Gaussian ζ into a standard Gaussian η, η= Sφ(ζ ). For instance,
η= L−1(ζ −μ), where L is the Cholesky factor for the covari-
ance �. The expectation in the variational lower bound can be
written in terms of the standard Gaussian q(η)=N (η;0, I) and
the variational lower bound becomes

ELBO
(
q (ζ ;φ)

)=EN (η;0,I)
[
log p

(
D, T−1

(
S−1φ (η)

))
+ log |JT−1

(
S−1φ (η)

) |]+H
(
q (ζ ;φ)

)
.

(9)

• The entropy term in Equation (9) is problem independent and
its gradient can be evaluated in closed form for a Gaussian
distribution. Therefore, its gradients are evaluated before hand
and are used for all the problems. The variational lower bound
Equation (9) has expectations independent of ζ , and hence the
gradient of ELBOwith respect to φ can be calculated by pushing
the gradient inside the expectations.

∇φELBO
(
q (ζ ;φ)

)= EN (η;0,I)
[{∇θ log p(D, θ)∇ζT−1

+ ∇ζ log |JT−1 (ζ )
}∇φS−1φ (η)

]
+∇φH

(
q (ζ ;φ)

)
. (10)

The gradients inside the expectations are computed using auto-
matic differentiation, while the expectation with respect to the
standard Gaussian is computed using Monte Carlo sampling.
The values of ζ = S−1φ (η) and θ = T−1(S−1φ (η)) at corresponding
η are calculated and substituted while evaluating the expecta-
tion.

5. Parameter estimation and Bayesian model selection

Once we have the approximate posterior, we can draw samples
from the variational posterior over the parameters. Unlike in
MCMC, the number of samples required is not an input to the
optimisation and it does not affect the training time of varia-
tional inference. We can find a point estimate of the parameters
using the mean (or median) of the samples from the variational
posterior. In certain cases, we consider the variational distribu-
tion family to be parameterised by the mean, and we learn the
variational posterior by maximising the variational lower bound
with respect to the mean. In these cases, we can directly make use

of the mean rather than sampling from the variational posterior.
The errors and marginalised credible intervals for the parameters
can be obtained by passing the samples from ADVI (similar to
MCMC) to the corner module (Foreman-Mackey 2016) or simi-
lar packages such as ChainConsumer (Hinton 2016) or GetDist
(Lewis 2019).

A major challenge in statistical modeling is choosing a proper
model, which generates the observations. In a Bayesian setting,
one could use a posterior probability over the models in choos-
ing the right model. Consider two modelsM1 andM2 with a prior
probability over them denoted by p(M1) and p(M2). The probabil-
ity of these models generating the observations irrespective of the
parameter values is given by the evidence (marginal likelihood)
p(D|M1) and p(D|M2). Combining the prior and the likelihood,
one could obtain the posterior over the models p(M1|D) and
p(M2|D).

As discussed earlier, the evidence term is computed by evaluat-
ing the integral over the parameter likelihood and prior

p (D|M)=
∫

p (D|θ ,M) p (θ |M) dθ . (11)

This is independent of θ and represents a normalisation con-
stant associated with the posterior. The evidence term provides
the probability of generating the data by some modelM. It implic-
itly penalises models with high complexity through the Bayesian
Occam’s Razor (MacKay 1992; Murphy 2013). Complex models
(models with large number of parameters) will be able to gener-
ate a wider set of observations but with a lower probability for
each set of observation, since p(D|M) over observation sets should
sum to unity. While simpler models will be able to generate only
a fewer set of observations with a higher probability to each set of
observations. For given set of observations D, one could choose
an appropriate model based on the complexity involved in gen-
erating D. If D is simple, we will choose a simple model. Simple
models will be able to provide high likelihood values p(D|θ ,M) for
a large number of parameter values θ , and the prior value p(θ |M)
also takes higher values as the parameter space is small. When the
model complexity increases, the prior over the parameters p(θ |M)
takes a lower value. Also, a complex model will give a high like-
lihood value only for a small number of parameters. For a large
number of parameter values, it will not be able to model simple
data sets.

5.1. Posterior-weighted importance sampling for evidence

The evidence term p(D|M) is intractable for non-conjugate cases,
and variational inference provides a lower bound to the evidence
term (ELBO), which acts as a proxy to the evidence. The tightness
of the ELBO bound depends on how close the approximate pos-
terior is to the actual posterior. ELBO provides a good proxy for
the evidence only when the variational posterior is the same as the
actual posterior. If the variational approximation assumed is not
close to the actual posterior, the bound can be very large and hence
using ELBO for model comparison might not be always correct.
In this study, we derive an approximation to Bayesian evidence
based on the variational posterior and the importance sampling
technique.

Monte Carlo integration technique allows us to approximate
Equation (11) by replacing the integral with a sum over samples
taken from p(θ).

p(D|M)=
∑

θi

p(D|θi,M). (12)
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This approximation generally results in a good estimate for the
expectation but can require a large number of samples in some
cases. Consider a scenario where the likelihood is small in regions
where p(θ) is large, and the likelihood is large where p(θ) is small.
In such a scenario, the approximation is dominated by regions
of low likelihood and can require large number of samples from
p(θ) to achieve the desired estimate. Importance sampling pro-
vides a methodology for efficient sampling for such scenarios.
In importance sampling, we choose a proposal distribution and
use the samples from the proposal distribution for evaluating the
expectation in Equation (11).

p(D|M) =
∫ p(D|θ ,M)p(θ |M)

q(θ)
q(θ)dθ . (13)

=
∑

θi

p(D|θi,M)p(θi|M)
q(θi)

, (14)

where θi denotes the samples from the proposal distribution.
The quantities p(θi)

q(θi) are known as importance weights and these
importance weights compensate for the bias introduced because of
sampling from q(θ) instead of p(θ). It can be easily seen that a pro-
posal distribution should have a large value whenever the product
of the likelihood and the prior is large and a small value when-
ever the product is small. From Equation (1), we can see that the
posterior is equal to the product of likelihood and prior divided
by a normalising constant and hence is a perfect choice for a pro-
posal distribution. Since the posterior distribution is unknown and
is approximated by the variational distribution, we can use the
variational distribution as the proposal distribution. We propose
to use Equation (14) to compute the approximate evidence term
with q(θ) as the variational approximation to the posterior learnt
by maximising ELBO. We call this approximate quantity as poste-
rior weighted importance sampling for evidence (PWISE) and this
will be used as a proxy to the evidence (or marginal likelihood) for
performing Bayesian model comparison.

6. Applications to astrophysical problems

As a proof of principle, we now apply ADVI to five different
problems from astronomy, particle astrophysics, and gravitation,
where MCMC and nested sampling techniques were previously
used for parameter estimation and model comparison. We discuss
in detail the ELBO derivation for one of these problems, namely
the COSINE-100 dark matter experiment, in Section 6.1. We
also compare the computational costs using ADVI over MCMC
and nested sampling techniques. In this study, we use the PyMC3
python package for all our ADVI experiments and PyMC3 or
emcee python packages for our MCMC experiments. We also use
nestle or dynesty packages to calculate evidence and compare
with our approximate evidence calculation using PWISE.

Previously, Cameron, Eggers, & Kroon (2019) had compared
AIS and nested sampling and showed that nested sampling out-
performsAIS inmany cases withmuch shorter run time. Although
other sampling techniques such as Gaussianized Bridge Sampling
(Jia & Seljak 2019), proximal nested sampling (Cai, McEwen, &
Pereyra 2021), stepping stone algorithm (Maturana-Russel et al.
2019), diffuse nested sampling (Brewer 2014), adaptive annealed
importance sampling (Liu 2014) have been investigated. Nested
sampling is most widely used because of the ready availability of
packages such as Dynesty and Nestle. Hence for model selection
problems, we check if Nested samling and approximate evidence
lead to the same qualitative conclusion using Jeffreys scale.

6.1. Assessment of significance of annual modulation in
cosine-100 data

Weakly interacting massive particles (WIMP) are elementary par-
ticles beyond the standard model of particle physics that are
hypothesised as dark matter candidates (Desai et al. 2004). Over
the past few decades, many experiments have been carried out
to detect WIMPs, and out of all of these, only DAMA/LIBRA
has identified annual modulations, which show all the correct
characteristics of being generated by WIMP particle interactions
(Bernabei et al. 2018). This result however has been ruled out
by many other direct detection experiments. However, all these
experiements used a target material different than DAMA/LIBRA.
The COSINE-100 experiment dark matter experiment (Adhikari
et al. 2019) is the first experiment with target material, which is a
replica of the DAMA/LIBRA target, and therefore can be used to
verify the claims of annual modulation of DAMA/LIBRA using an
independent detector target. This experiment has recently started
taking data and released its first results about 2 years ago (Adhikari
et al. 2019). An independent analysis of this data using Bayesian
model comparison methods was carried out in Krishak & Desai
(2019). The COSINE-100 experiment uses data from five different
crystals. The event rate for each of these crystals is given by

R= C+ p0 exp
(− ln 2 · t

p1

)
+A cosω(t− t0). (15)

The last term in Equation (15) corresponds to the annual
modulation caused by the WIMP particle interactions (Freese,
Frieman, & Gould 1988). We do a model selection between two
hypothesis: viz., that the data from the crystals consist of the cosine
term (H1), versus without the cosine term (H2). For this purpose,
the data of all the five crystals are fit simultaneously using the same
values for the cosine parameters across all crystals, and crystal-
specific values for the remaining background-only parameters.

Before we move on to model comparison, we explain the
process involved in variational inference and the lower bound
derivation for this problem. This will provide a deeper theoretical
understanding of variational inference and also serve as a motiva-
tion for using automatic differentiation variational inference. As
discussed in Section 3, we first need to posit a family of variational
distributionsQ that approximate the posterior distribution. Let us
approximate the variational family as a Gaussian distribution with
diagonal variance, i.e. qφ(θ)=N (μ,�). For this particular prob-
lem, the likelihood P(D|θ) is a Gaussian with mean given by the
event rate described in Equation (15) and standard deviation given
by the errors in the data. The priors P(θ) used for all the param-
eters are uniformly distributed. More details of the analysis and
choice of priors can be found in Krishak & Desai (2019).

q(θ)=
∏

i∈(C,p0,p1,A,ω,t0)

1√
2πσ 2

i
exp

(
− (θi −μi)2

2σ 2
i

)
.

p(θ)=
∏

i∈(C,p0,p1,A,ω,t0)

1
maxi −mini

.

p(D|θ)=
∏
i

1√
2πσ 2

i
exp

(
− (r− Ri)2

2σ 2
i

)
,

where μi and σi are the variational parameters (denoted by φ) and
Ti = p0 exp (− ln 2·ti

p1 )+A cosω(ti − t0). The variational parame-
ters (φ) are then estimated through ELBO maximisation. The
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ELBO for the cosine problem is given in Equation (16), and we
will simplify the equation for one chosen latent variable ‘C’ for
brevity.

ELBO=Eq(C,p0,p1,A,ω,t0)
[
log p

(
D|C, p0, p1,A,ω, t0

)]
−KL

(
q
(
C, p0, p1,A,ω, t0

) ||p (C, p0, p1,A,ω, t0))
=Eq(θ)

[
Eq(C)

[
log p(D|θ)] log p(C)

q(C)

]]

−KL
(
q(θ)||p(θ)), (16)

where (p0, p1,A,ω, t0) are the latent variables θ . Equation (17)
shows the final equation for ELBO for the latent variable ‘C’ after
substituting for the aforementioned likelihood, prior, and vari-
ational distribution. For a detailed derivation of Equation (17),
please refer to Appendix.

ELBO=1
2
+ log

B
√
2πσ 2

C
Cmax − Cmin

−
∑
i

1
2σ 2

i

(
Eq(p0,p1,A,ω,t0)

[
(ri − Ti −μC)2

]+ σ 2
C

)

−KL
(
q
(
p0, p1,A,ω, t0

) ||p (p0, p1,A,ω, t0)) , (17)

where μC and σC are the variational parameters describing the
posterior over ‘C’. The log term (second term) in Equation (17)
is the result of KL divergence between the variational distribution
and the prior distribution. This acts as a regularisation term, which
will prevent σC (variance of variational posterior) from going to
zero during the maximisation of ELBO (due to the third term,
which is negative). Consequently, the variational posterior learnt
bymaximising ELBOwill be a well formed distribution, with prob-
ability density not only around the mean but also over a larger
region covering the posterior. We can calculate the gradients of
the ELBO with respect to the variational parameters (φ) and use
stochastic gradient decent for estimating φ.

The problem of choosing a suitable variational family Q is not
always easy. Consider the above case where the variational distri-
bution is the Gaussian distribution. The prior for ‘C’ is a uniform
distribution between 0 and 400, which implies that the mean of
the posterior distribution μ should be a positive value. But there
is no explicit condition present in Equation (17) that constrains
the μ to take only positive values after optimisation. Therefore,
the choice of the variational family Q depends on each individual
problem and involves solving a complex constrained optimisation
problem.

ADVI mitigates the above problems by using a clever trans-
formation on the latent variables, by converting the constrained
latent space to unconstrained space as discussed in Section 4.
ADVI models the variational distribution in the unconstrained
space as a Gaussian distribution and the transformations applied
on the latent variables will satisfy the required constraints on
the posterior distribution. The transformation into unconstrained
space also mitigates the constraints of support matching that are
essential, when choosing a variational distribution in constraint
space, making ADVI a desirable choice for performing variational
inference.

For doing the Bayesian model comparison, Krishak & Desai
(2019) used nested sampling with the dynesty (Speagle 2020)
package for model comparison, as the nestle package was not
converging while calculating Bayesian evidence for this problem.

Table 1. Log evidence values and Bayes factor for the two hypothe-
ses computed using PWISE, and dynesty packages. This result
favours H2 that there is no annual modulation in COSINE-100 data.

PWISE Dynesty

Hi ln(D) Bayes factor ln(D) Bayes factor

H1 121.7 – 153.7 –

H2 132.9 e11.2 168.4 e14.7

To perform model comparison, we calculate PWISE as discussed
in Section 5.1, using samples from the posterior approximation
obtained through ADVI. Table 1 shows a comparison of the results
between the proposed approximation to evidence (PWISE) and
Nestled Sampling (computed using dynesty) for the same sets
of priors. We can see that the Bayes factor in both the cases is
approximately the same and leads to the same qualitative evidence
using Jeffreys scale (Trotta 2017). Of course, one caveat in directly
applying the Jeffreys scale is that in case the priors for an alter-
nate model are not theoretically motivated, the Jeffreys scale needs
to be revised and calibrated to the specific model used Gordon &
Trotta (2007). The Bayes factor calculated for H2 compared to H1
with PWISE is e11.2. Hence, we conclude that H2 is favoured over
H1, which agrees with the result from Krishak & Desai (2019). For
assessing the relative computational cost between both the meth-
ods, we executed the nested sampling code given in Krishak &
Desai (2019). The dynesty sampling code took about 13 h (using
a single core), whereas ADVI took only 5 min, which is two orders
smaller than nested sampling.

6.2. Exoplanet discovery using radial velocity data

The presence of a planet or a companion star results in tempo-
ral variations in the radial velocity of the host star. By analysing
the radial velocity data, one can draw inferences about the ratio of
masses between the host planet and the companion, and orbital
parameters like the period and eccentricity. For this purpose, a
MCMC package has been designed called Exofit (Balan & Lahav
2009), which enables the retrieval of the orbital parameters of exo-
planets from radial velocitymeasurements.We shall determine the
orbital parameters using both MCMC and ADVI techniques and
compare the results.

The first step involves defining a model and imposing priors
on the latent variables. We follow the model defined in Section 2.2
of Balan & Lahav (2009). The equations used for the analysis are
now discussed. The radial velocity of a star of mass M in a binary
system with companion of massm in an orbit with time period T,
inclination I and eccentricity e is given by:

v(t)= k
[
cos (f +ω)+ e cosω

]+ v0, (18)

where

k= (2πG)1/3m sin I
T1/3(M+m)2/3

√
1− e2

. (19)

In Equations (18) and (19), v0 is the mean velocity of the center
of mass of the binary system, T is the orbital period of the planet,
and ω is the angle of the pericenter measured from the ascending
point.
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Table 2. The assumed prior distribution of various param-
eters and their boundaries. It is similar to choice of priors
given by Balan & Lahav (2009). For the parametersmarked
as Jeffreys prior, the prior used is equal to the reciprocal of
the parameter. We note that modified Jeffreys refers to a
slightmodification of the standard Jeffreys prior, in which
additive constants are added, since the lower limits are
zero (Gregory 2005)

Parameter Priors

T (days) Jeffreys

k (ms−1) Mod. Jeffreys

e Uniform

ω (◦) Uniform

v0 (ms−1) Uniform

τ (◦) Uniform

s (ms−1) Half normal

Table 3. The parameter values from both MCMC (computing using
PyMC3) and ADVI for determination of exoplanet parameters from
radial velocity data. Both of these are comparable to the actual val-
ues obtained from (Sharma 2017), which are used to generate the
synthetic data used for this analysis.

Parameter Actual MCMC ADVI

T (days) 350 349.746 349.630

k (ms−1) 0.105 0.150 0.150

e 0.300 0.301 0.303

ω (◦) −90 −90.298 −90.241
v0 (ms−1) 0 0.004 0.004

τ (◦) 87.5 89.954 89.954

If di is the observed radial velocity data, the likelihood function
is given by Balan & Lahav (2009):

P(D|θ ,M)=A exp−
( N∑

i=1

[
(di − vi)2

2(σ 2
i + s2)

])
, (20)

where A= (2π)−N/2
[ N∏
i=1

(σ 2
i + s2)−1/2

]
. Here, s is an additional

systematic term, which is estimated by maximising the likelihood
of Equation (20). The choice of priors for each of the above param-
eters can be found in Table 2. PyMC3 allows us to easily place these
priors on model variables and define our model.

The data for this purpose have been obtained from Sharma
(2017) and the parameter values obtained from both the proce-
dures are shown in Table 3. We find that ADVI converges to a
solution in 10 s with a mean error of 1.83× 10−5 whereas MCMC
took 31 s to converge with a mean error of 1.98× 10−5. The results
and Bayesian credible intervals are shown in Figure 1 and agree
with the corresponding results from Sharma (2017). (cf. Figure 8
of Sharma 2017.)

6.3. Testing the periodic G claim

Anderson et al. (2015) have argued for a periodicity of 5.9 yr in
the CODATA measurements of Newton’s gravitational constant
G, which also show strong correlations with similar variations in
the length of the day. These results have been disputed by Pitkin

Table 4. Log evidence values for the four hypotheses and Bayes fac-
tor computed with respect to H1 calculated using both PWISE and
nestle package. The log evidence for all hypotheses are compa-
rable, except for H3. However, even for H3, the Bayes factor using
both the methods qualitatively leads to the same conclusion using
Jeffreys scale of H3 been decisively favoured over H1.

PWISE Nestle

Hi ln(D) Bayes factor ln(D) Bayes factor

H1 227.5 – 232.1 –

H2 364.6 e137.1 364.7 e132.6

H3 243.4 e15.9 313.8 e81.7

H4 362.9 e135.4 364.9 e132.8

(2015) using Bayesian inference as well as by Desai (2016) using
frequentist analysis, both of which argued that the data for G
can be explained without invoking any sinusoidal modulations.
Pitkin (2015) tested this claim by performing Bayesian model
selection using samples generated from MCMC and found from
the Bayesian Odds ratio that the data favoured a constant value of
G with some extra noise over a periodic modulation of G by a fac-
tor of e30. We performedmodel selection using ADVI and nestle
on the data provided by Pitkin (2015) to compare the accuracy of
variational inference approach.

We compute the Bayesian evidence for all the four hypotheses
considered by Pitkin using the same notation as in Pitkin (2015)
and compare them as follows:

1. H1—the data variation can be described by Gaussian noise
given by the experimental errors and an unknown offset;

2. H2—the data variation can be described by Gaussian noise
given by the experimental errors, an unknown offset and an
unknown systematic noise term;

3. H3—the data variation can be described by Gaussian noise
given by the experimental errors, and unknown offset, and a
sinusoid with unknown period, phase and amplitude;

4. H4—the data variation can be described by Gaussian noise
given by the experimental errors, an unknown offset, an
unknown systematic noise term, and a sinusoid with unknown
period, phase and amplitude;

The general model used is

mi(A, P, φ0, Ti, t0)=A sin (φ0 + 2π(Ti − t0)/P)+μG,

where A is the sinusoid amplitude, P is the period, φ0 is the initial
phase, t0 is the initial epoch, andμG is an overall offset. The details
of the model and assumptions can be found in Pitkin (2015). We
have assumed a Gaussian likelihood and uniform prior for all the
parameters. Following the model defined by Pitkin (2015), we per-
form model selection using the approximate evidence calculated
using the PWISE. Our results computed using PWISE and nestle
can be found in Table 4. The log evidence for all the hypotheses are
comparable, except for H3. However, even for H3, the Bayes fac-
tor (compared to H1) using both the methods qualitatively lead to
the same conclusion using Jeffreys scale, viz. H3 been decisively
favoured over H1. All the experiments were completed under a
minute and the time taken by both ADVI and nested sampling
are similar.
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Figure 1. Left: Radial velocity as a function of time for a star in a binary system. The orange line is the best fit obtained using ADVI and the green line is obtained fromNUTSMCMC.
Right: 68%, 90% and 95% credible intervals of parameters obtained using ADVI. The corresponding plots for the same data using MCMC can be found in Figure 8 of Sharma (2017).

Figure 2. Left: ADVI based marginalised credible intervals of the linear (n= 1) LIV fit for the spectral lag energy data. Right: ADVI based Marginalized parameter constraints of
the linear (n= 2) LIV fit for the spectral lag energy data. Both the plots were generated using the corner.py module (Foreman-Mackey 2016). The corresponding parameter
constraints obtained using MCMC can be found in Figures 3 and 4 fromWei et al. (2017), and they agree with these contours.

6.4. Statistical significance of spectral lag transition in GRB
160625B

Wei et al. (2017) have detected a spectral lag transition in the spec-
tral lag data of GRB 1606025B, which they have argued could be
a signature of the violation of Lorentz invariance (LIV). Ganguly
& Desai (2017) perform a frequentist model comparison test to
ascertain the statistical significance of this claim for a transition
from positive to negative time lags, and showed the significance
of this detection is about 3− 4σ , depending on the specific model
used for LIV.

For this analysis, Wei et al. (2017) have fit these observed lags
to a sum of two components: an assumed functional form for the
intrinsic time lag due to astrophysical mechanisms and an energy-
dependent speed of light due to quadratic and linear LIV models
(See Equations (2) and (5) of Wei et al. 2017). Using the same
equations, we first carry out parameter estimation using ADVI
and our best-fit model can be found in Figure 2. Again, a Gaussian
likelihood and uniform prior was used for this analysis.

Furthermore, we supplement the studies in Ganguly & Desai
(2017) by performing Bayesian model selection using ADVI by fit-
ting a variational family on each of the three models, consisting
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Table 5. Log Evidence values computed using PWISE and nestle
package and Bayes factor for hypothesis n= 1 and n= 2 LIV, when
compared to the null hypothesis are shown.

PWISE Nestle

Hi ln(D) Bayes factor ln(D) Bayes factor

Hn=1 −29.5 e16.4 −26.9 e18.6

Hn=2 −26.3 e19.6 −23.9 e21.6

Hnull −45.9 − −45.5 −

of the null hypothesis and two Lorentz violation models. We
then calculate the approximate evidence using PWISE to perform
model selection as defined in Section 5.1. The credible intervals
for our parameters can be found in Figure 2. The log evidence
values and the Bayes factors compared to the null hypothesis are
shown in Table 5 for both Nested sampling (using nestle) and
PWISE. We see that they are comparable in both the cases and
would lead to the same conclusion using Jeffreys scale. For this
example, all the experiments were completed under a minute and
the time taken by both ADVI and nested sampling are similar.
Using Jeffery’s scale, we can say that n= 2 (quadratic) LIV model
is significantly favoured by the data over the other two models,
which is in agreement with the information theory based model
comparisons carried out in Ganguly & Desai (2017).

6.5. Estimating the mass of a galaxy cluster with weak
lensing

The propagation of light is affected by the gravitational field it
passes through along its way from the observer. This effect is called
gravitational lensing (Schneider, Ehlers, & Falco 1992). The distor-
tion in the image of an object compared to its true intrinsic shape is
usually known as weak lensing. Hoekstra et al. (2013) outline how
the mass of galaxy clusters and mass–concentration relation can
be obtained using weak lensing. Here, we use MCMC to estimate
the logarithm of the virial mass ( log10 M200) and the concentration
parameter c from synthetic lensing observations.

Variational inference and Metropolis–Hastings MCMC were
used to calculate the aforementioned lensing parameters. The
dataset used for this analysis was downloaded from this url. This
lensing catalogue has been randomly sampled from the shear map
of a simulated galaxy cluster using simulations done in Becker &
Kravtsov (2011), who used mock galaxy clusters from cosmologi-
cal simulations to study the bias and scatter in mass measurements
of clusters. These simulations were created using an Adaptive
Refinement Tree (Kravtsov, Klypin, & Khokhlov 1997) based on
the cosmological parameters from WMAP7 analysis (Komatsu
et al. 2011). More details on these simulations and the identifi-
cation of galaxy cluster halos can be found in Becker & Kravtsov
(2011). A corresponding cookbook for computing the cluster
masses using MCMC has also been made available here, wherein
more details of the equations used can be found, and which we
use for reconstructing the mass and concentration parameter.
We have used a Gaussian likelihood and uniform priors for the
concentration and logarithm of the mass.

For this example, we have used used pymc3 to run ADVI and
emcee to run MCMC experiments. MCMC took about 313 min

of clock time running in multi-threaded mode on 25 cores (cor-
responding to a total CPU time of 25× 313 min or about 5 d),
whereas ADVI took only 40 min running on a single core. We
also note that for this dataset we were unable to run MCMC using
PyMC3, as it ran out of memory because of the large datasize. The
credible intervals for the parameters for both MCMC and ADVI
can be found in Figure 3. The credible intervals using both the
techniques are in agreement with each other.

7. Conclusions

In this study, we have introduced variational inference, and out-
lined how it can be used for Bayesian and frequentist parameter
estimation bymaximising the posterior/frequentist likelihood.We
have also explained how this method can be used to compute the
Bayesian evidence (or marginal likelihood), which is needed for
Bayesian model comparison. Variational inference has a strong
theoretical foundation and with the rise of probabilistic program-
ming frameworks such as PyMC3, and the development of generic
Variational Inference methods such as ADVI, it presents a viable
alternative to sampling based approaches such as MCMC. We
have also introduced a approximation to evidence, called poste-
rior weighted importance sampling for evidence (PWISE) which
is used as a proxy for Bayesian evidence (or Marginal likelihood).

ADVI is a ‘black-box’ approach which automates the manual
steps required for traditional VI using variable transformation and
automatic differentiation techniques. As a proof of principle, we
apply ADVI to five problems in astrophysics and gravitation from
literature involving parameter estimation or model comparison.
These include assessment of significance of annual modulation in
COSINE-100 determination of orbital parameters from exoplanet
radial velocity data, tests of periodicities in themeasurements ofG,
looking for a turnover in spectral lag data from GRB 160625B, and
determination of galaxy cluster mass using synthetic weak lensing
observations.

The results obtained for both the parameter estimation prob-
lem problem were in agreement with the MCMC results. For
model comparison, both the methods point to the same qualita-
tive conclusion using Jeffreys scale. Furthermore, in many cases,
we obtained significant speedup when compared with MCMC
methods. This is especially important when dealing with large
datasets and highly complex models as the time required for
MCMC approach grows exponentially. On the other hand, varia-
tional inference reduces the problem to an optimisation problem,
which performs very well in these conditions, and hence the com-
putational cost does not scale with data size. The Markov Chains
guarantee producing (asymptotically) exact samples from the tar-
get density, but they do not scale very well with large datasets.
Variational inference therefore provides a viable alternative to
MCMC sampling by being significantly faster and given the proper
choice of variational distribution, only sacrificing slightly in accu-
racy. The variational inference algorithm is sensitive to the choice
of priors and they can be treated like another hyperparameter.

These five examples of parameter estimation/model com-
parison from different domains of astrophysics provide proof
of principles demonstration of application of variational infer-
ence to astrophysical problems, for which MCMC and nested
sampling techniques were previously used. The codes for all
the examples given here is available at https://github.com/geeta
krishna1994/varational-inference.
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Figure 3. Left : Credible intervals for parameter estimates using ADVI. Right: Credible intervals for parameter estimates using emcee MCMC sampler. The credible intervals were
plotted using Corner pythonmodule. Note thatM200 is expressed in terms of M�.
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A. Appendix

We derive the ELBO equation for the cosine-100 problem wrt one
parameter ‘C’. The variational distribution is isometric Gaussian
distribution and uniform priors on all the parameters. The likeli-
hood is Gaussian with a mean given by Equation (15).

ELBO=Eq(C,p0,p1,A,ω,t0)
[
log p

(
D|C, p0, p1,A,ω, t0

)]
−KL

(
q
(
C, p0, p1,A,ω, t0

) ||p (C, p0, p1,A,ω, t0))
=Eq(p0,p1,A,ω,t0)

[
Eq(C)

[
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(
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)
]

+ log
p (C)

q (C)

]]

−KL
(
q
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,

where B is a normalising constant for the Gaussian distribution
and Ti = p0 exp (− ln 2·ti

p1 )+A cosω(ti − t0).

Prior on C:
log p(C)=− log (Cmax − Cmin)

Variational Distribution of C (Gaussian):

log q(C)=− log
√
2πσ 2
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We can evaluate the expectation of the above term wrt q(C).
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