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Abstract

We introduce a test to assess mutual funds’ “conditional” performance that is based on
updated information and corrects data snooping bias. Ourmethod, named the functional false
discovery rate “plus” (fFDRþ), incorporates fund characteristics in estimating fund perfor-
mance free of data snooping bias. Simulations suggest that the fFDRþ controls well the ratio
of false discoveries and gains considerable power over prior methods that do not account for
extra information. Portfolios of funds selected by the fFDRþ outperform other tests not
accounting for information updating, highlighting the importance of evaluatingmutual funds
from a conditional perspective.

I. Introduction

It is well known that luck plays an important role inmutual funds’ performance
(Kosowski, Timmermann, Wermers, and White (2006)). In order to appropriately
assess fund performance, investors should rely on a multiple hypothesis testing
framework to correct for “data snooping” bias or “p-hacking,” a major challenge
to social science (Sullivan, Timmermann, andWhite (1999), (2001), White (2000),
Hansen (2005), Hsu, Taylor, and Wang (2016), and Chordia, Goyal, and Saretto
(2020)).
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Prior research has developed multiple hypothesis testing frameworks to cor-
rect such bias and control the number of false discoveries, which are, in our context,
seemingly profitable funds that are just due to luck. In particular, researchers
propose the concept of the false discovery rate (FDR) of Benjamini and Hochberg
(1995), Storey (2002), (2003), and Romano and Wolf (2005), that is, the ratio of
models that are mistakenly identified as having predictive power. One common
feature of the methodologies in this framework is that the rejection criterion only
depends on information of raw data and predictive models’ performance metrics.
This feature appears too restrictive or even unrealistic because, in economics and
finance research, the economic agents use all available and routinely updated
information in assessingmodels’ performance. Extra information sources can assist
researchers to more accurately estimate the FDR. Recently, Chen, Robinson, and
Storey (CRS) (2021) introduced the functional FDRmethod that embeds the role of
informative covariates (i.e., variables that carry extra information) in forming null
hypotheses. This advancement is important in the sense that it enables us to test the
“conditional” performance of predictive models, which is more consistent with the
rational expectation hypothesis.1 In the context of mutual funds, if we use prior
testing methods that do not account for extra information, we are testing an
unconditional zero hypothesis, which corresponds to investors not collecting exter-
nal information in assessing mutual fund performance. This approach appears
inappropriate because mutual funds and their managers are routinely reviewed by
investors based on updated information. In other words, a more suitable null
hypothesis for a mutual fund’s performance should be zero conditional on the
updated information set.

In this article, we introduce the functional FDR “plus” (fFDRþ) method.
Compared to the work of CRS, it has two distinguishing features in assessing
mutual fund performance. First, it allows us to focus on the right tail of the
distribution and detect the significantly outperforming funds, which is important
for investors (see Barras et al. (2010), hereafter BSW). Second, it is robust to cross-
sectional dependencies among performance measures, which are common for
mutual funds because their alphas are likely dependent due to common share-
holdings and herding in trading behavior (Wermers (1999)). Compared to all earlier
methods in the economics literature on control of the FDR, our fFDRþ method
incorporates extra information, has higher power, and controls for noise. In addi-
tion, it is easy to implement, does not rely on any strong assumptions, and can
handle any continuous fund characteristic.

In examining our method, we use simulated mutual fund performance similar
to BSW and Andrikogiannopoulou and Papakonstantinou (AP) (2019). We show
that, when an informative covariate (i.e., fund characteristics) is available, our
fFDRþ approach detects more true-positive-alpha funds under different alpha
distributions, balanced and unbalanced data, and both cross-sectional independence
and dependence in the error terms. The gap in power between the fFDRþ and prior

1Since White (2000), several multiple testing procedures have been proposed to correct for luck in
the past (Hansen (2005), Romano andWolf (2005), Barras, Scaillet, andWermers (2010), Hsu, Hsu, and
Kuan (2010), and Bajgrowicz and Scaillet (2012)); however, they only consider unconditional null
hypotheses.
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FDRmethods, depending on the distribution of the fund alpha population, can be up
to about 30%. Our approach is also robust to estimation errors in the covariates.

We then apply our method and construct portfolios in order to evaluate them
empirically in selecting outperforming mutual funds. In particular, we explore
ten fund characteristics as informative covariates: The first set contains six fund
attributes that have been shown in prior studies to convey information on mutual
fund performance, and the second set contains four new attributes that are inspired
by asset pricingmodels. The first set includes theR2 of the asset pricingmodel (e.g.,
Carhart 4-factor model) as suggested by Amihud and Goyenko (2013), the return
gap of Kacperczyk, Sialm, and Zheng (2008), the active weight of Doshi, Elkamhi,
and Simutin (2015), the fund size of Harvey and Liu (2017), the fund flow sug-
gested by Zheng (1999), and the expense ratio. The second set includes the Sharpe
ratio, the beta, and Treynor ratio based on the capital asset pricing model (CAPM),
and the idiosyncratic volatility of the Carhart 4-factor model (sigma).

We find that the set of mutual funds selected as outperformers by the fFDRþ is
usually larger and different from the one obtained by prior FDR methods. As
already discussed, earlier studies do not account for information other than mutual
funds’ returns and performance metrics; thus, their null hypotheses are uncondi-
tional and neglect investors’ time-varying expectation. The fact that our fFDRþ

discovers more outperforming funds suggests that, with more information input,
there may exist more profitable mutual funds than researchers have detected.

Based on the funds selected by the fFDRþ, we build portfolios that consis-
tently outperform the one generated by prior FDR methods. Our results highlight
the economic value of extra information. In particular, the fFDRþ portfolios based
on beta are found to be the best with annualized alphas of 1.1%, followed by the
fFDRþ portfolios based on expense ratio, R2, active weight, sigma, fund flow,
return gap, Treynor ratio, fund size, and Sharpe ratio, separately achieving annu-
alized alphas of at least 0.17%. We note that this profitability is persistent in our
sample and is even strengthened over the recent period prior to the COVID-19
pandemic, a finding that disagrees with part of the recent literature that suggests
otherwise (see Jones andMo (2021)). All our fFDRþ portfolios outperform the one
generated by prior FDRmethods and a set of portfolios created by single and double
sorting the covariates under study. This finding suggests that the relationship
between luck and funds’ performance with the mentioned fund characteristics is
nonlinear and that traditional portfolio approaches that do not control luck may be
inadequate.

In additional analysis, we also consider the fFDRþ portfolio based on various
ways of combining the 10 covariates, such as the first principal component of the
10 covariates (PC 1), the ordinary least squares (OLS), the least absolute shrinkage
and selection operator (LASSO) of Tibshirani (1996), and the ridge regression and
the elastic net of Zou andHastie (2005).We find that the ridge and elastic net deliver
the best performance with an annualized alpha of at least 0.86%. Investors may also
benefit from such combinations as they result in lower volatility in portfolio
performance. In fact, we find that our fFDRþ portfolios based on the combined
covariates gain the highest Sharpe ratio in the most recent decade. This is advan-
tageous as, in reality, investors do not know ex ante what covariate is the best.
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The literature on mutual funds’ performance has two main strands: one that
tries to model the distribution of mutual funds in terms of alphas and identify the
outperforming funds and managers and another that focuses on identifying covari-
ates that explain mutual funds’ performance.2 Consequently, to identify outper-
forming funds researchers simply rank the funds’ alphas and covariates.3 Our study
contributes to the mutual fund literature as follows: First, our fFDRþ approach
estimates the FDR as a function of a fund characteristic that is related to a fund’s
performance. By designing and implementing suitable Monte Carlo simulation
experiments, we illustrate that our fFDRþ approach actually controls for the
FDR and delivers higher power than its benchmark under cross-sectional depen-
dence and different distributions of the fund alpha population.4 In our empirical
analyses, fund portfolios based on the fFDRþ consistently dominate benchmark
portfolios in terms of generating positive alphas. Our simulations and empirical
evidence collectively highlight the importance of evaluating the conditional per-
formance of mutual funds and the persistence of outperforming funds identified by
the fFDRþ.

Second, our research adds to the mutual fund literature by exploring different
information contents of fund characteristics. Based on our fFDRþ, we construct
portfolios that persistently produce positive alphas for decades. Our portfolios
based on 4 new covariates perform well and outrank, in the context of our method,
those based on the traditional 6 covariates on several metrics and subsamples.
Finally, we move one step further and combine the 10 covariates into single ones
via linear combinations with the weights obtained from a principal component
analysis and shrinkage regression methods. We find that investors might benefit
from such combinations as they offer lower volatility in portfolio performance.

The rest of the article is organized as follows: In Section II, we introduce and
explain our methodology. In Section III, we provide a description of our data.
Section IV is devoted to our simulation experiment descriptions, whereas in
Section V, we present in detail our simulation results. Section VI focuses on the
empirical part of our analysis. Section VII concludes the article. All technical

2In one of the earliest studies, Jensen (1968) documents that themajority of active equitymutual fund
managers are unable to beat passive investment strategies’ net of fee. More recent research incorporates
cross-sectional information and assesses funds’ performance via a Bayesian approach with some prior
beliefs about the distribution of fund alphas. For example, Jones and Shanken (2005) assume that the
fund alpha population has a normal distribution and use the Gibbs sampling technique to estimate the
parameters of the distribution, whereas Harvey and Liu (2018) adopt a mixture of normals and introduce
an expectation maximization technique to estimate the weights and the parameters of the component
distributions. Others assess funds in different aspects such as the horizon of the return used to estimate
alpha (see, e.g., Bessembinder, Cooper, and Zhang (2023)).

3For instance, Carhart (1997) constructs a portfolio by sorting mutual funds according to their past
performance (e.g., lagged 1-year return and 3-year past 4-factor model alpha). Kacperczyk et al. (2008)
discover that the return gap, defined as the difference between the fund’s reported return and the return
based on previous holdings, can predict the fund’s future performance. Similarly, Doshi et al. (2015)
present the active weight metric that conveys information about the fund’s future performance and
demonstrate predictability. Other researchers do multiple sorting on variables related to funds’ perfor-
mance. For example, Amihud and Goyenko (2013) show that a fund’s R2 can predict its performance.

4We consider a discrete distribution as in BSW, a mixture of discrete and normal distributions as in
AP, a single normal distribution as in Fama and French (2010) and Jones and Shanken (2005), and a
mixture of 2 normals studied in Harvey and Liu (2018).
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details, simulations, and robustness checks are provided in the Supplementary
Material.

II. Methods for Controlling Luck with Fund Characteristics

A. Functional False Discovery Rate (fFDR)

Throughout this article, we use mutual funds to represent predictive models.
We define funds’ performance based on their net return, that is, the return net of
trading costs, fees, and other expenses except loads and taxes. A fund is deemed
outperforming if it distributes to investors a net return that generates a positive
alpha (i.e., a part of a return series that is unexplained by systematic risk). If the
alpha is negative (zero), the fund is said to be underperforming (zero alpha).
These definitions of outperforming and underperforming funds coincide with
skilled and unskilled funds in BSW, respectively, and reflect the interest of
investors.5

Suppose that we are assessing m funds and each of them has a net return time
series. We also assume that there exists a continuous fund characteristic X , with
observed values x1,…,xmð Þ, that conveys information about the alpha of each fund.
Our fund characteristic corresponds to the informative covariate in the statistical
literature (e.g., CRS and Ignatiadis and Huber (2021)). Associated with X , we
define Z whose observed value for fund i is zi ¼ rank xið Þ=m, where rank xið Þ is the
ranking of xi in the set of observed values x1,…,xmð Þ. As X to Z is an one–one
mapping and we work based on Z, we call that the covariate from now on. We
introduce our notation by means of a single test, conditional on Z, for the alpha of a
mutual fund:

H0 : α¼ 0, H1 : α ≠ 0:(1)

We denote by h the status of the null hypothesis (i.e., h¼ 0 if the
hypothesis α¼ 0 is true and h¼ 1 if otherwise). In addition,P is the randomvariable
representation of the p-value of the test, Z, as mentioned previously, is the covariate
that is uniformly distributed on 0,1½ �, and T ¼ P,Zð Þ. We suppose that
hjZ¼ zð Þ�Bernoulli 1�π0 zð Þð Þ; that is, conditional on Z ¼ z, the fund possesses
a zero alpha with probability π0 zð Þ; this can be constant if Z does not convey any
information about the probability of the fund’s alpha being 0. The estimation
procedure for π0 zð Þ will be discussed later on. We require that under the true null,
Pjh¼ 0,Z¼ zð Þ is uniformly distributed on 0,1½ � regardless of the value of z; when

5We note that traditional approaches, such as the studies of Carhart (1997), Kosowski et al. (2006),
and Fama and French (2010), define fund skill by the alpha that the fund delivers to investor. However,
recent literature in mutual funds proposes differently. Berk and van Binsbergen (2015) provide con-
vincing arguments that ones should not use the net alpha nor the gross alpha that the fund delivers to
investors as a measure of skill. They show that the value added (i.e., the value that a mutual fund extracts
from capital markets) alwaysmeasures skill. Subsequently, other studies such as Barras, Gagliardini, and
Scaillet (2022) further separate the effects of scale from the measure of skill. Thereby, the skill is defined
as the gross alpha earned on the first dollar invested in the fund. More specifically, Barras et al. (2022)
model a time-varying gross alpha (the alpha calculated based on gross return) of a fund and express it as
a�bqt�1, where a and b are defined as skill and scale coefficients and the qt�1 is lagged fund size. In this
study, we consider the net alpha as a measurement of performance.
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the null hypothesis is false, the conditional density function of Pjh¼ 1,Z ¼ zð Þ is
f 1 :jzð Þ.

To assess the performance of m funds in terms of α within our framework, we
consider m conditional hypothesis tests like equation (1):

H0,i : αi ¼ 0, H1,i : αi ≠ 0, i¼ 1,…,m,(2)

where αi is the alpha of fund i. For each i, we have Ti ¼ Pi,Zið Þ, and we assume that
all the triples Ti,hið Þ are independent and each of them has the same distribution as
T ,hð Þ.6 Finally,we denote by f p,zð Þ the joint density function of P,Zð Þ.We thus have

ℙ h¼ 0jT ¼ p,zð Þð Þ¼ π0 zð Þ
f p,zð Þ≕r p,zð Þ(3)

as the posterior probability of the null hypothesis being true given that we observe
T ¼ p,zð Þ.7

To control the type I error, Storey (2003) introduces the “positive false dis-
covery rate”

pFDR¼E V

R

����R> 0

� �
,(4)

where R is the number of rejected hypotheses in m tests and V is the wrongly
rejected ones. CRS show that, with a fixed set Γ in 0,1½ �2, if we reject hypothesis
H0,i whenever Ti ∈Γ, then

pFDR Γð Þ¼ℙ h¼ 0jT ∈Γð Þ¼
Z
Γ
r p,zð Þdpdz:(5)

To maximize the number of rejections, we reject the hypotheses with the smallest
statistic r p,zð Þ. Thus, the significance region fΓθ : θ∈ ½0,1�g is defined as

Γθ ¼fðp,zÞ∈ ½0,1�2 : rðp,zÞ≤ θg,(6)

where a larger θ implies more rejected hypotheses. Finally, we recall from Storey
(2003) and CRS the definition of the q-value for the observed p,zð Þ:

q p,zð Þ¼ inf
Γτ j p,zð Þ∈Γτf g

pFDR Γτð Þ¼ pFDR Γr p,zð Þ
� �

:(7)

Given a target τ ∈ ½0,1�, a procedure that rejects a hypothesis if and only if its
q-value ≤ τ guarantees that pFDR is controlled at τ.

Empirically, let π̂0 zð Þ and f̂ p,zð Þ be the estimated functions π0 zð Þ and f p,zð Þ,
respectively.8 We calculate r̂ p,zð Þ¼ π̂0 zð Þ=f̂ p,zð Þ and estimate the q-value
function as

6In Sections IV.A and IV.B of the Supplementary Material, we show that this requirement can be
eased for a typically cross-sectional dependence in mutual fund data. We also note that the FDR
framework of Storey (2002) and the FDRþ of BSW also work outside the independent and identically
distributed framework (see Storey, Taylor, and Siegmund (2004), Bajgrowicz and Scaillet (2012).

7For more details about the role of Z�Uniformð0,1Þ and the derivation of equation (3), see CRS.
8See the Appendix for more details.
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q̂ pi,zið Þ¼ 1

#Si

X
k ∈ Si

r̂ pk ,zkð Þ,(8)

where Si ¼ jĵr pj,zj
� �

≤ r̂ pi,zið Þ
� �

and pi is the p-value of test i and #Si returns the
number of elements in the set Si.9 Then, given a target pFDR level τ ∈ ½0,1�, the null
hypothesis H0,i is rejected if and only if q̂ pi,zið Þ≤ τ. CRS call this procedure
functional FDR (fFDR).

B. The fFDRþ: Application in Selecting Outperforming Funds

By applying the fFDR methodology to mutual funds at a given target pFDR
level τ, we obtain a set that includes both significantly outperforming and under-
performing funds. To further improve mutual fund selection, we propose a fFDR-
based method that selects a group of significantly outperforming funds with control
of luck. In the following section, we introduce our fFDRþ and discuss its applica-
tion in a mutual fund context.

Consider a selection of Rþ outperforming funds including Vþ wrongly
selected zero-alpha or underperforming funds. We define the pFDR in those sig-
nificantly outperforming funds as

pFDRþ ¼E Vþ

Rþ

����Rþ > 0

� �
:(9)

For m tests, let Aþ be the set of hypotheses with positive estimated alpha (i.e.,
Aþ ¼ ijα̂i > 0f g), where α̂i is the estimated alpha of fund i. At a given target τ of
pFDRþ, by implementing the fFDR procedure to control pFDR at the target τ on the
funds in setAþ, we obtain all the funds with positive estimated alphas (referred to as
significant alphas).10 Hence, the fFDR selects positive-alpha funds with control of
pFDR at the given target; we call this procedure the functional FDR “plus”
(fFDRþ).

Different from our approach, BSW propose a procedure to estimate the FDR in
detecting outperformingmutual funds, namely the FDRþ, which utilizes onlyp-value
and alpha of funds. For the sake of space, we present details of the FDRþ and a
comparison between it and our fFDRþ in Section I of the Supplementary Material.

As shown in AP, the FDRþ relies on an overconservative estimate of the null
proportion and utilizes only p-values and the estimated alphas. On the other hand,
our fFDRþ additionally uses a fund characteristic and expresses the null proportion
as a function of it, while accounting for the joint distribution of the p-value and the
fund characteristic. As documented in CRS, this results in a better estimate of FDR,

9The #Si is the number of discoveries given θ¼ r̂ðpj,zjÞ, while the numerator is the expected number
of false discoveries. This estimation is proposed by Newton, Noueiry, Sarkar, and Ahlquist (2004) and
Storey, Akey, and Kruglyak (2005) and subsequently adopted in CRS.

10In doing so, we assume that the number of funds that are outperforming but exhibit a negative
estimated alpha is negligible. This is sensible as in practice we will not select those funds anyway. In
BSW, as discussed in Section I of the Supplementary Material, having a positive estimated alpha is a
necessary condition for a fund to be selected as outperformer.
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in terms of both bias and variance, and an increased power in detecting outperform-
ing funds. We are illustrating the prominent power of the fFDRþ via a set of
simulation studies in the following sections. In the empirical section, we will show
the actual profitability that the fund characteristics can bring to investors while
controlling for luck.

III. Data

We use monthly mutual fund data from Jan. 1975 to Dec. 2022 collected from
the CRSP database. As CRSP reports funds at the share class level, we use
MFLINKS to acquire fund data at the portfolio level. For a fund at a given point
in time with multiple share classes, we average the share classes’ net return
weighted by the total net asset (TNA) value at the beginning of the month.11 The
TNA at the fund level is estimated by the sum of the share classes’ TNA. We omit
the following month return after a missed return observation as CRSP fills this with
the accumulated returns since the last nonmissing month. To obtain the holdings
data of the funds, whichwill be used to calculate our covariates, wemerge theCRSP
and Thomson/CDA databases by utilizing MFLINKS. The holdings database pro-
vides us with stock identifiers, which we use to link the funds’ position with the
CRSP equity files. From this equity database, we obtain information such as the
price and number of shares outstanding of the stocks that the funds hold on their
reported portfolio date. We use these to calculate the return gap and the active
weight, which are described in more detail later.

We consider only funds with an investment objective belonging to the cate-
gories growth, aggressive growth, and growth and income. Both CRSP and CDA
provide this information; CDA is more consistent over time; hence, we choose that.
As the funds’ investment objective can change, we collect all the funds in these
categories. To obtain a precise 4-factor alpha estimate, we select only funds with at
least 60 monthly observations. Overall, we gather a sample of 2,291 funds, which
provides the empirical metrics for our simulation study.

In the empirical part, when calculating the related covariates, we additionally
require each fund to hold at least 10 stocks; this is consistent with Kacperczyk et al.
(2008) andDoshi et al. (2015) and is needed here as we use the return gap and active
weight from their studies as 2 of our covariates. The number of funds used when
constructing our covariate-based portfolios varies over years andwill be reported in
detail in the empirical section.

IV. Simulation Setup

In this section, we present the details of our simulation design consisting of the
choice of the model, the distributions of the alpha population, the data-generating
process, and the metrics that we will use to gauge the performance of the methods.

11Since 1991, we use the monthly TNA of the fund’s share classes. Before 1991, most of the funds
report their TNA on a quarterly basis. For this, we follow Amihud and Goyenko (2013) to fill in the
missing TNA of each fund (at the share class level) by its most recently available one.
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A. The Model

Following the majority of the existing literature on mutual fund performance,
we use the 4-factor model of Carhart (1997) to compute a fund’s performance:

ri,t ¼ αiþbirm,tþ sirsmb,tþhirhml,tþmirmom,tþ εi,t, i¼ 1,…,m,(10)

where ri,t is the excess net return of fund i over the risk-free rate (i.e., the 1-month
treasury bill rate), rm,t is the market’s excess return on the CRSP New York Stock
Exchange (NYSE)/American Express (AMEX)/National Association of Securities
Dealers Automated Quotations (NASDAQ) value-weighted market portfolio, rsmb,t
is the Fama–French small minus big factor, rhml,t is the highminus low factor, rmom,t
is the momentum factor, and εi,t is the noise of fund i at time t. All factors and the
1-month treasury bill rate are obtained from French’s website.

Our simulations are designed similarly to BSW and AP in terms of the data-
generating process accounting, in addition, for an informative covariate and considering
more distribution types of the fund alpha population.WhereasBSWandAP focus on the
estimated proportions of the outperforming, underperforming, and zero-alpha funds, we
consider the performance of the FDRþ and fFDRþ. More specifically, for a given fund
alpha distribution,we first generate in each iteration the true fund alpha population and a
covariate that conveys information about the alpha of each fund. Second, we simulate
the Fama–French factors (factor loadings) by drawing from a normal distribution with
parameters equal to their sample counterparts (obtained fromestimations ofmodel (10)).
Next, the noise is generated under both cross-sectional independence and dependence.
In the first case, the noise is drawn cross-sectionally independent from a normal
distribution (i.e., εit �N 0,σ2ε

� �
), where, as in Barras, Scaillet, and Wermers (2019),

σε is set equal to the median of its real-data counterpart (i.e., approximately 0.0183 for
our sample). The results under this assumption are reported in the Section IV.B. In the
dependent case, the noise is generated as in BSWand the simulation results are deferred
to Section IV.A of the Supplementary Material. The simulated data are then used to
generate the net return for each fund.12 Subsequently, by carrying out regression (10) of
the generated net return on the simulated Fama–French factors, we estimate the alpha
and calculate the related p-values for the tests for equation (2). Finally, based on these
estimated alphas, p-values, and the covariate, we implement the fFDRþ and FDRþ, for
a given FDR target, to identify the significantly outperforming funds.We estimate the
actual FDR of the fFDRþ and check whether it meets the given target. We then
compare the two methods in terms of power, defined as the expected ratio of the
number of true-positive-alpha funds detected to the total number of true-positive-
alpha funds in the population.

B. The Distribution of Fund Alphas

We consider 3 different types for the distribution of fund alphas: a discrete, a
discrete–continuous mixture, and a continuous. A covariate Z conveys information
about the alpha of each fund in the population;more specifically, a fundwithZ¼ z has

12We consider both balanced and unbalanced panel data. For the interest of space, the simulation
results of the unbalanced panel data case are deferred to Section IV.B of the Supplementary Material.
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a probability π0 zð Þ of being zero alpha. Also, without loss of generality, we assume
that, for nonzero-alpha funds, their covariates and alphas are positively correlated.13

First, in the discrete type, we draw alphas from 3 mass points �α∗ < 0, 0, and
α∗ > 0 with probabilities π�, π0, and πþ. Thus,

α� π�δα¼�α∗ þπ0δα¼0þπþδα¼α∗ :(11)

We consider 5 values for α∗ ∈ 1:5,2,2:5,3,3:5f g (the values are annualized and in %)
togetherwith 6 combinations of the proportions πþ,π0,π�ð Þ based onπþ ∈ 0:1,0:13f g,
π�=πþ ∈ 1:5,3,6f g, and π0 ¼ 1�π��πþ (i.e., a total of 30 cases).14

In the mixed discrete–continuous distribution, we draw alphas from 2 compo-
nents including the mass point 0 and the normal distributionN 0,σ2ð Þwith, respec-
tively, probabilities π0 ∈ 0,1ð Þ and 1�π0. We have, therefore, that

α� π0δα¼0þ 1�π0ð ÞN 0,σ2
� �

:(12)

We consider 5 values for σ ∈ 1,2,3,4,5f g (the values are annualized and in %)
and the same 6 π0 values as in the discrete distribution earlier.

Finally, in the continuous case, we draw alphas from a mixture of two normal
distributions N μ1,σ

2
1

� �
and N μ2,σ

2
2

� �
with, respectively, probabilities π1 ∈ ½0,1�

and π2 ¼ 1�π1, i.e.,

α� π1N μ1,σ
2
1

� �
þπ2N μ2,σ

2
2

� �
:(13)

When π1 and π2 are positive, we have indeed a mixture; we adopt from Harvey and
Liu (2018) π1 ¼ 0:3 and π2 ¼ 0:7, and to point up the performance of our method,
we consider 15 combinations based on ðμ1,μ2Þ∈ fð�2:3, �0:7Þ, �2,�0:5ð Þ,
ð�2:5,0Þg and ðσ1,σ2Þ∈ fð1,0:5Þ, 1:5,0:6ð Þ, 2,1ð Þ, 2:5,1:25ð Þ, ð3,1:5Þg (the
values of the pairs are annualized and in %).15

In equation (13), π0 ¼ 0, whereas in equations (11) and (12), π0 > 0. When
π0 > 0, we study an up-and-down shape of π0 zð Þ. Specifically, to guarantee
π0 zð Þ∈ 0,1½ � for all z, we choose

π0ðzÞ¼ minf1, maxðf ðzÞ,0Þg∈ ½0,1�,
where

f zð Þ¼ 3:5 z�0:5ð Þ3�0:5 z�0:5ð Þþ c(14)

and c is chosen to satisfy
R 1
0 π0 zð Þdz¼ π0. This way we are able to investigate the

effect of π0 on the power of the methods by varying c while keeping the shape of
π0 zð Þ roughly unchanged.16

13If the correlation is negative, we use �Z instead.
14The chosen πþ values are close to those used in the recent literature: πþ ¼ 10:6% (see Harvey and

Liu (2018)) and πþ ¼ 13% (see Andrikogiannopoulou and Papakonstantinou (2016)). The ratio π�=πþ ¼
6 is studied in AP. Aiming to extend the range of our study, we consider also the ratios 1.5 and 3.

15Our choices are intended to be wide enough to encompass the cases of Harvey and Liu (2018):
π1,π2ð Þ¼ 0:283,0:717ð Þ, μ1,μ2ð Þ¼ �2:277,�0:685ð Þ, and σ1,σ2ð Þ¼ 1:513,0:586ð Þ. In Section IV.C of
the Supplementary Material, we additionally present results of the case π2 ¼ 0, i.e., when the mixture
becomes a single normal distribution.

16In Section IV.D of the Supplementary Material, we show that the alternative choices of a decreas-
ing function π0 zð Þ with f zð Þ¼�1:5 z�0:5ð Þ3þ c, an increasing function π0 zð Þ with
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Suppose the distribution of alpha and the form of π0 zð Þ are determined. We
enerate the covariate vector z1,z2,…,zmð Þ with each element drawn from the
uniform distribution 0,1½ � and assign them to the funds satisfying the descriptions
mentioned at the beginning of this section. The noise in equation (10) is generated
cross-sectionally independent or dependent. In the former case, it is drawn from a
normal distributionN 0,σ2ε

� �
, where, as in Barras et al. (2019), σε is set equal to the

median of its real-data counterpart (i.e., approximately 0.0182 for our sample). For
each replication, we implement the fFDRþ and FDRþ and compute the rate of
falsely selected funds among those classified as outperformers and the rate of truly
outperforming funds detected. The 2 metrics are averaged across 1,000 replications
to obtain estimates for the actual FDR and the power of each procedure.17

V. Analysis of False Discovery Rate and Power

We set the number of funds for simulations at 2,000, which is close to our
sample of 2,291 funds. We demonstrate the ability of the fFDRþ to control FDR for
balanced panel data, where the number of observations per fund is equal to
284, under cross-sectional independence. For the interest of space, we refer to
Sections IV.A and IV.B of the Supplementary Material for the results under cross-
sectional dependence as well as the unbalanced panel data cases. We then compare
the powers of the fFDRþ and the FDRþ in controlling the FDR at the 10% level; we
extend to higher levels and highlight the differences between the two procedures. In
each simulation study, we analyze the relationship between the powers of the
two methods: i) the proportion of zero-alpha funds in the sample and ii) the
magnitude and proportion of positive-alpha funds in the sample. We also study
the impact of the number of funds in the sample and the number of observations per
fund on the power. Finally, we examine the impact of estimation errors in the
covariates, in the power of our procedure.

In general, the fFDRþ controls well the FDR at any given targets. When the
FDR target is set at 10%, the fFDRþ detects more positive-alpha funds than the
FDRþ with a difference in power up to 30%, depending on cases and parameters of
the distributions.18 When we raise the FDR target to higher levels, the difference is
even higher in favor of the fFDRþ. The results are consistent regardless of the
number of funds in the sample, the structure of the panel data, and the dependence of
the cross-sectional error terms.

In an empirical setting, the fund characteristics are estimated quantities. This is
translated to an estimation noise that may affect the power of our procedure. Our
simulations reveal that our method is robust in terms of power up to moderate-to-
high estimation noise.

f zð Þ ¼ 1:5 z� 0:5ð Þ3 þ c, or a constant function π0 zð Þ¼ c result in some discrepancies, without affect-
ing, though, our main conclusions.

17We refer to Section II of the Supplementary Material for a detailed description of the simulation
procedure.

18In Section Vof the Supplementary Material, we additionally study the fFDRþ with the use of an
non-informative covariate, which is a covariate generated randomly and independently from the tests.
We find that the fFDRþ controls well for FDR and its power is similar to that of the FDRþ.
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A. False Discovery Rate Control of the fFDRþ

For varying targets of FDR ∈ 5%,10%,…,90%f g, we implement the simu-
lation procedure in Section IV with balanced panel data. Figures 1, 2, and 3 exhibit
our results for the generated data under cross-sectional independence.

In Figure 1, we show our results for the discrete distribution (11) for
varying α∗. Graphs A–C correspond to πþ ¼ 0:1, whereas Graphs D–F corre-
spond to πþ ¼ 0:13. From left to right, the ratio π�=πþ increases from 1.5 to
6 (with the null proportion π0 decreasing accordingly). For example, Graph A
exhibits the actual FDR (vertical axis) and the given targets of FDR (horizontal
axis) with the alphas drawn from a discrete population of which 75%, 10%, and
15% are, respectively, zero-, positive-, and negative-alpha funds. A point on or
below the 45° line indicates that the fFDRþ controls FDR well for the given
level; this is the case for α∗ ¼ 1:5 at all FDR targets. For α∗ ¼ 3:5, FDR is slightly
not met for targets in the interval (0.1, 0.8). In general, we witness slight failure
of the fFDRþ to control for FDRwhen α∗ is abnormally high. In the last case with
smallest π0, FDR is controlled well. In Figure 2, we study the case of the fund
alpha population described by the mixed discrete–continuous distribution (12).
We organize our results based on the same null proportions π0 as in Figure 1 and
present these for varying σ. We observe that the FDR target is slightly unmet
only for extreme values of σ when the null proportion is very high and this effect

FIGURE 1

Performance of the fFDRþ for Discrete Distribution of α

Figure 1 shows the performance of the fFDRþ in terms of FDR control when alphas are drawn from a discrete distribution. The
simulated data are balanced panels with cross-sectional independence.
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is alsomilder compared to the discrete distribution cases. Finally, in Figure 3, we
report the results for the continuous distribution (13) for varying μ or μ1,μ2ð Þ and
σ or σ1,σ2ð Þ. We find that the fFDRþ controls FDR well at all targets.

FIGURE 2

Performance of the fFDRþ for Discrete and Normal Distribution Mixture of α

Figure 2 shows the performance of the fFDRþ in terms of FDR control when alphas are drawn from a mixture of discrete and
normal distributions. The simulated data are balanced panels with cross-sectional independence.
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FIGURE 3

Performance of the fFDRþ for Continuous Distribution of α

Figure 3 shows the performance of the fFDRþ in terms of FDR control when alphas are drawn from a continuous distribution,
which is a mixture of 2 normals. The simulated data are balanced panels with cross-sectional independence.
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In summary, our simulations are based on proposed fund alpha distributions
from the recent literature, from the least realistic cases, with all the outperforming
and underperforming funds assumed to have the same mass alpha value, to more
realistic ones, where the alpha is drawn from a continuous distribution, in which no
fund has exact 0 but rather mostly negative alpha. Our results suggest that, for the
continuous distribution, the proposed fFDRþ approach controls well for FDR at
any given target. In Section III of the Supplementary Material, we show that the
variance of the estimated actual FDR of the fFDRþ is smaller than that of the FDRþ.
This means that the reported estimated actual FDR curves of the fFDRþ are less
varying than those of the FDRþ. In other words, if the estimated actual FDR of the
two methods is the same and lies below or on the 45° line, there is less chance that
the actual FDR of the fFDRþ lies above the 45∘ line than that of the FDRþ.

In Sections IV.A and IV.B of the Supplementary Material, we repeat the
exercise for balanced data under cross-sectional dependence and unbalanced data
under both cross-sectional independence and dependence. Our findings remain
robust.

B. Power Analysis

Next, we study the power of our fFDRþ approach in detecting truly positive-
alpha funds, calculated as described in Section IV, and compare it with the FDRþ of
BSW for FDR control at 10%. Although the magnitude of our results varies with
different FDR targets, our main conclusion of the power superiority of the fFDRþ

remains.
In Panel A of Table 1, we report the discrete distribution (11). For

πþ,π0,π�ð Þ¼ 10,75,15ð Þ% with highest π0 and smallest α∗ ¼ 1:5, both the
fFDRþ and FDRþ achieve similar powers (i.e., 1% and 0.6%, respectively). This
is expected in this particular case as the number and magnitude of the true-positive
alphas are small, while we are controlling for FDR at 10%.19 The superiority of the
fFDRþ is more perceptible and stabler for larger α∗. This discrepancy depends not
only on the magnitude and proportion of positive alphas but also on the proportion
of zero alphas. This is because both procedures use the null proportion (π0 in the
FDRþ and π0 zð Þ in the fFDRþ) to estimate FDR. With the same magnitude and
proportion of positive alphas, the small proportion of zero alphas implies the higher
power of both the fFDRþ and FDRþ. The effect of the null proportion on the gap of
the fFDRþ over the FDRþ is stronger when the magnitude of positive alphas is not
too high. The gap varies by case and may even exceed 30% (when
πþ ¼ 10%,π0 ¼ 30%, and α∗ ¼ 2:5).20

Panel B of Table 1 exhibits the power upshots for the case of the fund alpha
population described by the distribution mixture (12). This implies the dependence

19As will be shown later, with a higher FDR target (such as 30%), the power of the fFDRþ exceeds
that of the FDRþ by 6%. Considering a higher target than 10% is sensible for trading and diversification
purposes as otherwise very few or no outperforming funds are selected. In the study of BSW, the
estimated FDR in the empirical application is at least 41.5% on average (depending on portfolio).

20As shown in Section IVof the Supplementary Material, the relevant reports vary slightly when the
simulated data are generated with alternative forms of π0 zð Þmentioned in footnote 16, with unbalanced
panel, or with cross-sectional dependence; however, the overall picture remains the same.
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of the proportion and magnitude of positive alphas on the proportion of zero-alpha
funds and the σ value for nonzero alphas. We expect a higher power for both
methods for a smaller zero-alpha proportion and/or a higher value of σ. We find
that the fFDRþ is more powerful than the FDRþ.More specifically, for the balanced
data under cross-sectional independence and π0 ¼ 75%, the power of the fFDRþ

(FDRþ) increases from 0.6% to 61.3% (0.3% to 52.9%) with increasing σ from 1 to
5. For given, say, σ¼ 2, the power of the fFDRþ (FDRþ) increases from 16.8% to
39.8% (9.2% and 23:5%) with reducing π0. The gap is generally evident for σ > 1
with power differences around 10%, but it can also reach up to 16%.

TABLE 1

Performance Comparison in Terms of Power (%)

Table 1 compares the power of the fFDRþ and FDRþ at FDR target of 10% when the alphas of 2,000 funds are drawn from a
discrete distribution (i.e., α� πþδα¼α∗ þπ0δα¼0þπ�δα¼�α∗ (Panel A)), a discrete–normal distribution mixture (i.e., α� π0δα¼0 þ
1�π0ð ÞN 0,σ2

� �
(Panel B)), and a mixture of two normal distributions (i.e., α� 0:3N μ1,σ21

� �
þ0:7N μ2,σ22

� �
(Panel C)) with

various setting of parameters. The simulateddata are abalancedpanelwith 284 observations per fundandare generatedwith
cross-sectional independence.

Panel A. Discrete Distribution

πþ ,π0,π�ð Þ Procedure α∗ ¼ 1:5 α∗ ¼ 2 α∗ ¼ 2:5 α∗ ¼ 3 α∗ ¼ 3:5

10,75,15ð Þ% fFDRþ 1 6.8 23.9 46.6 68.7
FDRþ 0.6 2.9 13.9 33.6 55.3

10,60,30ð Þ% fFDRþ 2 12.6 35.5 59.6 77.8
FDRþ 0.5 3.4 16.2 37.7 58.5

10,30,60ð Þ% fFDRþ 5.5 26 54 77.6 90.2
FDRþ 0.6 5.3 23.3 49.9 71.3

13,67:5,19:5ð Þ% fFDRþ 1.8 11.5 32.8 56.7 76.7
FDRþ 0.7 5 19.9 41.7 62.8

13,48,39ð Þ% fFDRþ 3.8 19.3 44.6 70 85.1
FDRþ 0.7 5.5 23.5 48.5 68.3

13,9,78ð Þ% fFDRþ 9.7 37.6 70.7 91.5 97.8
FDRþ 0.9 10 41 73.4 89.8

Panel B. Discrete–Normal Distribution Mixture

π0 Procedure σ¼1 σ¼ 2 σ¼ 3 σ¼ 4 σ¼5

75% fFDRþ 0.6 16.8 37.3 51.8 61.3
FDRþ 0.3 9.2 27.7 42.4 52.9

60% fFDRþ 1.8 22.6 44.2 58.1 67.2
FDRþ 0.4 12.3 32.8 47.5 57.8

30% fFDRþ 5.1 32.9 54.9 68.1 75.5
FDRþ 0.6 18.7 41.3 56.5 66.1

67:5% fFDRþ 1.1 20.1 40.9 55.3 64.2
FDRþ 0.3 11 30.4 45.3 55.7

48% fFDRþ 3.2 27.9 49.1 62.8 71.6
FDRþ 0.4 15.4 36.4 51.5 61.4

9% fFDRþ 7.5 39.8 62.2 74.6 81.4
FDRþ 0.9 23.5 48.7 63.9 73.1

Panel C. Mixture of Two Normal Distributions

σ1,σ2ð Þ

μ1,μ2ð Þ Procedure 1,0:5ð Þ 1:5,0:6ð Þ 2,1ð Þ 2:5,1:25ð Þ 3,1:5ð Þ

�2:3,�0:7ð Þ πþ ¼6% πþ ¼ 10:4% πþ ¼20:7% πþ ¼ 25:5% πþ ¼ 29:1%
fFDRþ 0.1 0.5 5.8 14.4 24.5
FDRþ 0 0 0.4 2.4 8.1

�2,�0:5ð Þ πþ ¼ 11:8% πþ ¼ 16:9% πþ ¼26:4% πþ ¼ 30:5% πþ ¼ 33:4%
fFDRþ 0.1 0.7 7 16.5 26.5
FDRþ 0 0 0.6 3.6 10.1

�2:5,0ð Þ πþ ¼ 35:2% πþ ¼ 36:4% πþ ¼38:2% πþ ¼ 39:8% πþ ¼ 41:1%
fFDRþ 0.5 1.1 9.9 19.3 29.4
FDRþ 0 0.1 1.1 5.1 12.7
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Finally, in Panel C of Table 1, we study the outcome from using the mixture of
normals as in equation (13), with π1 ¼ 0:3 and π2 ¼ 0:7 and nonpositive means
μ1,μ2ð Þ to limit the likelihood of a positive alpha. The proportion of positive alphas
ranges from 6% to 41.1%. For small σ1,σ2ð Þ values, the positive alphas are also
small in magnitude, and consequently, the power is negligible. When σ1,σ2ð Þ are
higher than (2,1), the power of both methods and their discrepancy increase
significantly and favorably for the fFDRþ reaching up to 16%.

Our analysis has shown that, when controlling for FDR at an as low level as
10%, both fFDRþ and FDRþ have good power for large (in magnitude) alphas.
When this happens, the gain in power of the fFDRþ over the FDRþ can vary
depending on the underlying fund alpha distribution: 10% to 16% (continuous
distribution) and 20% to 30% (discrete distribution). On the other hand, when the
zero-alpha proportion is high and the proportion and magnitude of positive alphas
are small, the power of both methods reduces.

Finally, we demonstrate in Section IV.A and IV.B of the Supplementary
Material that our conclusions are not affected by the data structure (balanced versus
unbalanced panel) or dependencies.

C. Power and FDR Trade-Off

In what follows, we study the impact on power when controlling for FDR
at different (higher than 10% level) targets. Our results show clear differences
between the fFDRþ and FDRþ and, in support of the former, even for cases of
negligible power for a 10% target. Constructing mutual fund portfolios at higher
FDR levels is sensible as otherwise wemay end up with empty portfolios. Investors
have to face a trade-off between the power in detecting outperforming funds and the
FDR threshold, which we will discuss next.

We focus on cases of very low power when the FDR is controlled at 10%. For
brevity, we present in Table 2 our results for only balanced data under cross-
sectional independence and FDR targets up to 90%, noting that these are largely
unchanged for unbalanced data. In particular, for the underlying discrete fund alpha
distribution, the fFDRþ gains rapidly increasing power with increasing FDR tar-
gets, peaking at 38% in excess of the FDRþ when the target is set at 70%. For the

TABLE 2

Power Comparison (in %) for Varying FDR Targets (%)

Table 2 presents some selected cases of low powers of the fFDRþ and FDRþ at FDR target of 10%. We consider a discrete
distribution: α� 0:75δα¼0þ0:1δα¼1:5 þ0:15δα¼�1:5; a discrete–normal mixture: α� 0:75δα¼0þ0:2N 0,1:52

� �
; and a 2-normal

mixture: α�0:3N �2:3,12
� �

þ0:7N �0:7,0:52
� �

. The simulated data are balanced panels with cross-sectional
independence.

Distribution Procedure

FDR Target

10 20 30 40 50 60 70 80 90

Discrete fFDRþ 0.4 2.9 9 19.6 34 50.6 66 77.6 85.9
FDRþ 0.4 1.1 2.2 4.3 8.4 15.6 27.4 45.6 68.5

Mixture of discrete and normal fFDRþ 0.4 1.5 3.7 7.3 12.7 20.8 32.4 47.4 64.4
FDRþ 0.2 0.5 0.7 1.2 1.9 3.3 5.7 11.4 27.4

Mixture of normals fFDRþ 0 0.2 0.5 1.4 3.1 6.5 12.3 21.6 35.3
FDRþ 0 0 0 0.1 0.1 0.1 0.1 0.1 0.2
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continuous distribution, the power of the FDRþ changes very slowly and is per-
sistently negligible (mixture of normals) even for FDR controlled at 90%. On the
other hand, the fFDRþ detects abundant positive-alpha funds with a power that can
reach up to 35% in excess of the FDRþ (mixture of two normal distributions with
90% target).

In Section VI of the Supplementary Material, we conduct a set of simulations
to investigate the impact of varying number of observations T per fund and the
number of fundsm on the power. We see that the power of the fFDRþ increases at a
much faster pace, compared to the FDRþ, with increasing T , and slightly decreases
with rising m.

In Section VII, we design simulations to study the impact of using a covariate
with noise on the power of the fFDRþ by adding to the original covariate a noise
reflecting potential estimation biases. We see that the fFDRþ controls well for FDR
and the power of the fFDRþ is lower than that in Table 1, but still remarkably higher
than that of the FDRþ.21

Concluding this section, we recollect that the simulated power of the fFDRþ in
detecting outperforming funds is found to be larger than the FDRþs. This persists
for different fund alpha distributions, balanced and unbalanced data, and cross-
sectional dependence of error terms accounted for or not. This power advantage
depends on the magnitude and proportion of positive alphas as well as the propor-
tion of zero alphas in the population, the number of funds in the sample, estimation
errors in the covariates (fund characteristics), and the average number of observa-
tions per fund. Especially when the last factor is small, leading to a diminished
power for both procedures, we can recover that for the fFDRþ by uplifting the FDR
level. In our empirical application of SectionVI, we show how investors can benefit
from this.

VI. Empirical Results

A. The FDRþ and fFDRþ Portfolios

In this section, we illustrate how the fFDRþ helps identify outperforming
mutual funds using a portfolio approach following BSW. We use as covariates
six fund characteristics including the R2 of Amihud and Goyenko (2013), the fund
size of Harvey and Liu (2017), the return gap of Kacperczyk et al. (2008), the active
weight of Doshi et al. (2015), the fund flow, and the expense ratio. For the interest of
space, we refer the details of the construction of the 6 covariates to Section VIII of
the Supplementary Material. In addition to the aforementioned well-known covari-
ates, we propose 4 new covariates that are based on asset pricing models and are
available for all funds in our sample. These are the Sharpe ratio, the beta and
Treynor ratio obtained from the CAPM, and the idiosyncratic volatility (sigma)
of the Carhart 4-factor model. The Sharpe and Treynor ratios are risk-adjusted
performance measures of funds, whereas the beta and sigma reflect systematic and
idiosyncratic risk, respectively. These metrics reveal aspects of the past mutual

21In Section V of the Supplementary Material, we further show that if a non-informative is used
instead, the fFDRþ controls well FDR and gains the same power as the FDRþ.
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funds’ performance and, thus, may assist in identifying outperforming and under-
performing funds. Asset pricing metrics are regularly used by wealth managers and
academics in the fields of trading, asset pricing, and investors’ performance, but are
overlooked in the mutual funds’ literature.22

Similar to BSW, at the end of year t, we select a group of funds to invest in year
tþ1 based on historical information from the last 5 years (t�4 to t). In order to
implement the fFDRþ and FDRþ, we require the observed values of the covariates
of each fund, the estimated alpha, and the p-value of each test. We execute, first, the
Carhart 4-factor model over the 5-year period to estimate the alpha.23

The informative value of the return gap, activeweight, fund flow, and fund size on
funds’ performance is persistent: The choice between using themost recent (final-year)
observations for these covariates or their average values over the whole in-sample
(5 years) is of less importance, as demonstrated by our robustness check in Section XI
of the SupplementaryMaterial.24 Although the predictability of the covariatesmay last
for a long horizon of up to 5 years, we expect their informative values to decrease with
time; hence, forming portfolios based on their recent realizations is preferred to their
average values of the whole last 5 years’ time. Because of this, return gap, active
weight, fund flow, fund size, and expense ratio are calculated based on data in the final
year of the in-sample (i.e., we use the exposure of the fund flow in year t for the fund
flow and the value at the end of year t for the fund size, whereas for the active weight
and the return gapwe use their average exposures in year t). TheR2, Sharpe ratio, beta,
sigma, and Treynor ratio are based on the whole 5 years. We note that each of the
covariates is converted into interval 0,1½ � via the formula described in Section II.A.

We calculate our p-values in a similar fashion to BSW. For the funds that suffer
from heteroscedasticity or autocorrelation, we calculate the t-statistics based on the
heteroscedasticity and autocorrelation-consistent standard deviation estimator of
Newey and West (1987).25 For each fund, we implement 1,000 bootstrap replica-
tions to estimate the distribution of the t-statistic and subsequently calculate the
bootstrapped p-value for the fund.26

As required by our method, the p-values of any truly zero-alpha funds, given a
covariate value, should be uniformly distributed. Although it is difficult for us to
validate this requirement in reality as we never know which funds are truly zero
alpha, it appears intuitive for us to assume that this condition is satisfied. Consider,
for example, the R2. We expect the truly zero-alpha funds to invest randomly in the

22For instance, Clifford, Fulkerson, Jame, and Jordan (2021) study the relationship between idio-
syncratic volatility and mutual funds’ flows, but they do not focus on using this fund characteristic as a
factor for fund selection.

23In Section IX of the Supplementary Material, we further validate the performance of the methods
with the use of simulated data (i.e., the return and 10 covariates) resembling the real sample.

24Readers may refer to Kacperczyk et al. (2008), Doshi et al. (2015), Zheng (1999), and Harvey and
Liu (2017) for the studies of the persistence of the return gap, active weight, fund flow, and fund size,
respectively. It should also be noted that in our fFDR framework, all covariates are transformed to
uniform with only the ranking of the covariates across the fund counting.

25We check heteroscedasticity, autocorrelation, and autoregressive conditional heteroscedasticity
(ARCH) effect by using the White, Ljung–Box, and Engle tests, respectively. We see that half of the
funds in our sample suffer from at least one of the mentioned effects.

26The bootstrapping procedure may result in duplicated bootstrapped p-values. For this, we use an
adequate number of replications to reduce that effect and obtain good estimates of π0 zð Þ and f p,zð Þ.
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stock market; thus, they should possess an R2 value of roughly equal to 1. Condi-
tional on a specific R2 value that a truly zero-alpha fund could have (i.e., close to 1),
if the fund is truly zero alpha, then its p-value should follow a uniform distribution
like any usual true null hypothesis test.27

Next, we describe the selection process of outperforming funds to invest in
year tþ1 given a FDR target τ in 0,1ð Þ. First, we recall the relevant selection
process for BSW’s “FDRτ” portfolio. For each γ on the grid 0:01,0:02,…,0:6f g, we
calculate the dFDRþ

γ given by equation (4) in the Supplementary Material. Then, we

find γ∗ such that dFDRþ
γ∗ is closest to τ; this is the significant threshold for BSW’s

portfolio that is, all the positively estimated alpha funds in the in-sample window
with p-values ≤ γ∗ will be included in the FDRτ portfolio. This guarantees the
nonempty property of the portfolio but does not always meet the FDR target τ,

thereby dFDRþ
γ∗ may be much higher than τ.

Second, we select outperforming funds for a fFDR-based portfolio, namely
“fFDRτ.” To establish comparable fFDRτ and FDRτ portfolios, we implement the
fFDRþ (with a particular covariate) to control pFDRþ at a target τ∗ that reflects the
FDR level controlled by the FDRτ portfolio but has to be less than 1.28 As the FDR

of the FDRτ portfolio is controlled at level dFDRþ
γ∗ , which may be greater than 1 or

less than τ, we set τ∗ ¼ τ if dFDRþ
γ∗ ≤ τ < 1 and τ∗ ¼ dFDRþ

γ∗ if τ < dFDRþ
γ∗ < 1.

29 IfdFDRþ
γ∗ ≥ 1, we just select all the funds in the FDRτ portfolio.

Similar to BSW, for both fFDRτ and FDRτ portfolios, we invest equally in the
selected funds in the following year. If a selected fund does not survive for a month
during the year, then its weights are redistributed to the remaining (surviving) funds.
As aforementioned, at the beginning of each year we select funds into a portfolio by
using the previous 5 consecutive years as in-sample. To be eligible for this, a fund
needs to have 60 observations in the in-sample. We start constructing our portfolios
from Dec. 1981.

B. Performance Comparison

In this section, we assess the portfolios’ performance based on their alphas.We
demonstrate the advantage of the fFDRþ in picking outperforming funds and the

27Indeed, the p-value of each test i is defined as pi ¼ 1�F jtijð Þ, where FðjtijÞ ¼
PðjT ij< jtijjαi ¼ 0Þ and T i is the conventional t statistic of test i and ti is its estimated value. If
hypothesis αi ¼ 0 is true, conditional on a specific covariate value, the p-value of test i is uniformly
distributed since ℙ Pi < pið Þ¼ℙ 1�F jT ijð Þ < pið Þ¼ℙ jT ij >F�1 1�pið Þ

� �
¼ 1�

ℙ jT ij<F�1 1�pið Þ
� �

¼ 1�F F�1 1�pið Þ
� �

¼ pi:
28If we implement the fFDRþ and FDRþ to strictly control FDR at a target, say, τ¼ 10% or τ¼ 20%,

both result in empty portfolios for many years. With BSW’s FDRτ portfolios, the problem is solved. In

BSW’s study, for the FDR10% portfolio, the empirical dFDRþ
γ∗ is always greater than 10% with an

average of 41.5%. For our data, among the 38 times of portfolio construction, with target τ¼ 20% (10%)

the dFDRþ
γ∗ is less than τ on 8 (0) occasions and greater than 1 on 5 occasions for both targets.

29We could have set τ∗ ¼ dFDRþ
γ∗ for both cases. However, it seems fairer to set τ∗ ¼ τ if dFDRþ

γ∗ ≤ τ
since both portfolios initially aim to control FDR at τ.
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efficient use of the information contained in fund characteristics. We estimate the
alpha evolution and the average alphas of our fFDRτ portfolios based on the
10 covariates and compare them with those of the FDRτ portfolio. We also explore
the performance of the fFDRτ portfolios after linearly combining the 10 covariates
and using their first principal component, an OLS regression, a LASSO, a ridge
regression, and an elastic net.

We focus on portfolios with small FDR targets of τ¼ 10%. We repeat all
estimations with τ¼ 20% in Section X of the Supplementary Material. Our results
remain unchanged for all exercises.

1. The Alpha Evolution

For each portfolio, we obtain its alpha evolution by calculating the Carhart
4-factor alpha using its returns from Jan. 1982 up to the end of each month from
Dec. 1991 onward. In addition to the aforementioned portfolios, we construct
2 naive benchmark equal-weighted portfolios, without control for the FDR: one
that simply includes all the mutual funds in the in-sample window to be invested in
the following year and another that contains only those with positive estimated
alphas. We name these 2 portfolios equal weight and equal weight plus.

We present all the alpha evolution in Figure 4. It is obvious that the FDR10%
portfolio gains higher alphas than the equal-weighted portfolio and that all the
fFDR10% portfolios outperform the FDR10%. Ultimately, at the end of 2022, the
fFDR10% portfolio with the beta covariate is found to be the best with annualized
alpha of about 1.1%, followed by the fFDR10% portfolios with the expense ratio,
R2, active weight, sigma, return gap, fund flow, Treynor ratio, fund size, and Sharpe
ratio covariates achieving annualized alphas of at least 0.17%. By contrast, the
portfolio FDR10%, without using the information of fund characteristics, winds up
with a small negative alpha of�0.05%. It is noteworthy that the performance of the

FIGURE 4

Alpha Evolution of fFDR10% and FDR10% Portfolios over Time

Figure 4 presents the evolution of annualized alphas (in %) of the 10 fFDR10% portfolios corresponding to the 10 covariates,
the FDR10% portfolio of BSW, and the 2 equal-weighted portfolios.
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fFDR10% and FDR10% portfolios is affected by the COVID-19 pandemic period,
which is marked by shaded area. Prior to the event, we observe that all portfolios
seem to rebounce and gain alphas ranging from 0.53% to 1.58% for the fFDR10%
portfolios and 0.32% for the FDR10% one. For this reason, in the following, we
report results of 2 samples: one ends in 2019 and one ends in 2022.

2. The Average Alpha

The alpha evolution in the Section VI.B.1 is calculated based on the portfolio
returns from the start of 1982 up to a time point of interest. This may represent
limited information in the case of investors with a different investment period of,
say, 5 or 10 years. For this, in Panel A of Table 3, we report the average alpha that
investors will gain if they invest for n∈ 5,10,15,20,30,35,40,41f g consecutive
years: For each portfolio, we calculate its “n-year” alpha based on the portfolio
returns over a period of 12n consecutive months, and we repeat by shifting every
time 1 month forward and eventually present the average alpha. We report the
fFDR10% portfolio for each fund characteristic and the portfolio FDR10%. We
note that the last case, n¼ 41, corresponds to the alphas for the whole period from
Jan. 1982 to Dec. 2022, and, in this case, alphas are presented as the rightmost
points in Figure 4. Panel B of Table 3 reports similar metrics but for period from
1982 to the end of 2019 and n∈ 5,10,15,20,30,35,38f g.

TABLE 3

Comparison of Portfolios’ Alphas (in %) for Varying Time Lengths of Investing

In Table 3, we consider 11 portfolios including 10 fFDR10% portfolios corresponding to the 10 covariates and the FDR10%
portfolio of BSW. We compare the average alphas of the portfolios that are kept in periods of exactly n consecutive years. For
example, considern¼ 5. For eachportfolio, wecalculate the alpha for the first 5 years basedon theportfolios’ returns fromJan.
1982 to Dec. 1986. Then, we roll forward by a month and calculate the second alpha. The process is repeated, and the last
alpha is estimated based on the portfolios’ returns from Jan. 2018 to Dec. 2022. The average of these alphas is presented in
the first rows in Panel A of the table. Panel B reports similar metrics with the use of portfolios’ return series from Jan. 1982 to
Dec. 2019.

n

fFDR10%

FDR10%R2
Fund
Size

Active
Weight

Return
Gap

Fund
Flow Expense Sharpe Treynor Beta Sigma

Panel A. Whole Sample

5 0.95 0.10 0.78 0.57 0.19 1.37 �0.03 0.10 1.13 0.59 �0.06
10 0.88 0.01 0.72 0.41 0.30 1.07 0.08 0.18 1.25 0.49 �0.21
15 0.98 0.04 0.75 0.35 0.35 0.93 0.20 0.29 1.33 0.53 �0.23
20 1.21 0.26 0.93 0.50 0.50 0.96 0.39 0.44 1.45 0.80 �0.03
25 1.13 0.20 0.81 0.43 0.45 0.87 0.38 0.44 1.44 0.67 �0.06
30 0.88 0.10 0.62 0.33 0.36 0.74 0.29 0.36 1.30 0.41 �0.20
35 0.77 0.07 0.67 0.38 0.28 0.94 0.22 0.27 1.12 0.25 �0.23
40 0.76 0.12 0.65 0.22 0.24 0.90 0.17 0.22 1.01 0.26 �0.16
41 0.84 0.20 0.73 0.31 0.33 0.94 0.17 0.24 1.11 0.34 �0.05

Panel B. Sample Period Prior to Dec. 2019

5 1.08 0.16 0.94 0.70 0.26 1.33 0.03 0.17 1.29 0.68 �0.01
10 1.13 0.23 0.91 0.56 0.48 1.12 0.30 0.40 1.55 0.72 0.02
15 1.38 0.43 1.07 0.67 0.64 1.18 0.51 0.59 1.58 0.97 0.16
20 1.52 0.61 1.22 0.80 0.77 1.21 0.65 0.72 1.70 1.16 0.30
25 1.27 0.41 0.91 0.56 0.60 0.95 0.51 0.59 1.62 0.85 0.12
30 1.08 0.30 0.78 0.51 0.51 0.85 0.44 0.52 1.54 0.55 �0.02
35 0.86 0.12 0.84 0.51 0.28 1.05 0.17 0.23 1.19 0.28 �0.21
38 1.29 0.57 1.05 0.62 0.70 1.39 0.53 0.60 1.58 0.72 0.32
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In both panels of Table 3, we find that the fFDR10% portfolios outperform the
FDR10% portfolio for all considered covariates and for all n. Although these results
should be interpreted with caution (some covariates were not well known in the
literature at the start of our sample, such as the active weight and the fund size,
which were published in 2015 and 2017, respectively), they do indicate the stability
of our approach for different investment horizons.

C. Combined Covariates

So far, we have considered the effect from the information brought in by each
single covariate. In what follows, we explore the effect from combining the infor-
mation from the different fund characteristics and the potential consequent perfor-
mance improvement. More specifically, we create a new covariate given by the
linear combination of the underlying fund characteristics. More specifically, for
each fund i at time t, we have

NEW_COVARIATEt,i ¼ c1,tR
2
t,iþ c2,tACTIVE_WEIGHTt,i

þ c3,tRETURN_GAPt,iþ c4,tFUND_SIZEt,i

þ c5,tFUND_FLOWt,iþ c6,tEXPENSE_RATIOt,i

þc7,tSHARPE_RATIOt,iþ c8,tTREYNOR_RATIOt,i

þc9,tSIGMAt,iþ c10,tBETAt,i:

(15)

We consider two approaches to estimate the coefficients c1,t,…,c10,t in equa-
tion (15). First, we use as our new covariate the first principal component of all
ten (standardized) fund characteristics. By transforming the fund characteristics
into their principal components, their information about the performance of a fund
is preserved and conveyed. We use the first principal component as it captures most
of the variation of the covariates. Second, we use a linear model that regresses the
fund returns for year k on the observed value of the covariates in year k�1, where
k ∈ t, t�1, t�2, t�3f g. Then, we predict the return for year tþ1 based on the
estimated regression model and the covariates in year t. This is equivalent to using
equation (15) with the regression’s estimated coefficients as the c1,t,…,c10,t.
Thereby, we consider 4 linear regression models including the OLS, the LASSO
of Tibshirani (1996), and the ridge regression and the elastic net of Zou and Hastie
(2005).30

Figure 5 exhibits the performance of the fFDRτ portfolios with the newly
created covariates in terms of the alpha evolution.31 We find that the portfolios
based on the combined covariate obtained from the ridge and elastic net perform
best among the combined covariates at τ¼ 10%.

In Table 4, we show the average n-year alphas of the fFDR10% portfolios from
Jan. 1982 to Dec. 2022 (Panel A) and to Dec. 2019 (Panel B). The elastic net
performs also better for all time lengths except the longest ones of each considering

30For eachmethod (except OLS), the covariates are standardized before being used in the estimation.
We use cross-validation to determine the parameters in the LASSO, ridge, and elastic net methods.

31There are a few years where LASSO and the elastic net shrink all the regression coefficients to 0. In
these cases, the new covariate is equal to 0 for all funds, and to avoid an empty portfolio, we simply select
all the funds in the FDRτ portfolio.

22 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109024000097  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109024000097


FIGURE 5

Alpha Evolution of the fFDR10% Portfolios with Combined Covariates

Figure 5 shows the alpha evolution of the fFDR10% portfolios with each using a covariate obtained from either the principal
component method or regression method; for the former, the covariate is the first principal component (PC 1) of the
5 covariates, whereas for the latter the new covariate is a linear combination of the 5 underlying covariates with the weights
obtained based on one of the OLS, LASSO, ridge, and elastic net regressions.
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TABLE 4

Average n-Year Alpha of the fFDR10% Portfolios with Combined Covariates

Table 4 displays the average n-year alpha (annualized and in%) of the fFDR10% portfolios, which use covariates obtained by
the first principal component (PC 1), theOLS, LASSO, ridge, and elastic net (see descriptions in Figure 5). The average n-year
alpha of each portfolio is calculated as per the description in Table 3.

n OLS Ridge LASSO Elastic Net PC 1

Panel A. Whole Sample

5 0.49 1.07 0.89 1.14 0.89
10 0.55 1.05 0.82 1.15 0.95
15 0.68 1.03 0.80 1.18 0.96
20 0.90 1.19 0.96 1.31 1.07
25 0.83 1.10 0.86 1.24 1.02
30 0.68 0.97 0.70 1.07 0.92
35 0.69 0.99 0.69 1.02 0.97
40 0.51 0.84 0.55 0.82 0.71
41 0.55 0.89 0.61 0.86 0.69

Panel B. Sample Period Prior to Dec. 2019

5 0.61 1.24 1.05 1.33 1.03
10 0.70 1.23 1.00 1.38 1.05
15 0.92 1.35 1.13 1.49 1.17
20 1.09 1.52 1.30 1.66 1.28
25 0.87 1.27 1.03 1.42 1.09
30 0.77 1.16 0.87 1.24 1.03
35 0.72 1.15 0.84 1.15 1.00
38 0.81 1.20 0.89 1.17 0.99
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the full sample periods. However, the best combined covariate does not beat the
beta under the fFDR framework (as shown in Table 3).32

D. Comparison with Single- and Double-Sorting Portfolios

We also compare the performance of the portfolios formed in the fFDR frame-
work with a traditional sorting portfolio formation. If a covariate has a highly linear
relationshipwith the performance ofmutual funds, then forming a portfolio based on
sorting the funds on the covariate should be sufficient. We construct single- and
double-sorting portfolios similar to Kacperczyk et al. (2008) and Doshi et al. (2015),
and Amihud and Goyenko (2013), respectively. For the interest of space, we present
the results in Section XV of the Supplementary Material. Thereby, the portfolios
based on the fFDR gain positive alphas and beat the corresponding sorted portfolios
in most cases. These results further validate the advantage of our method in exploit-
ing the nonlinear relationship of fund characteristics, luck, and funds’ performance.
The inability of the traditional sorted portfolios that dominate the related literature to
reflect the predictive value of the covariates under study is thus noteworthy.

In Section XVI of the Supplementary Material, we further examine a combi-
nation of the FDRþ procedure and covariates via constructing FDR10% portfolios
in each quintile based on the covariates. We see that such combination cannot
substitute our fFDRþ approach.

As further robustness checks, in Section XVII of the Supplementary Material,
we demonstrate that our findings are robust with respect to a data subset where we
require a minimum of 15 million in TNA for a fund to be considered.

In Section XVIII of the Supplementary Material, we construct a similar set of
portfolios, namely fFDR�τ, that aim to select underperforming funds. We see that
these portfolios successfully pick the unprofitable funds and are consistently beaten
by the equal-weighted portfolios.

VII. Concluding Discussion

In this article, we introduce the fFDRþ, a novel multiple hypothesis testing
framework that incorporates fund characteristics to assess the conditional perfor-
mance of mutual funds by controlling data snooping bias. We conduct simulation
experiments to assess how well our method performs in controlling FDR and raising
power compared to prior FDRmethods.We then construct empirical portfolios based
on our new method and use ten fund characteristics as informative covariates. We
study six characteristics, which, based on earlier contributions, convey information
about mutual funds’ performance and propose four new ones based on asset pricing

32In Section XII of the Supplementary Material, we provide a detailed comparison of all the fFDRτ
portfolios in regard to several trading metrics, whereas in Section XIII of the same appendix the
performance in terms of wealth evolution is presented. In Section XIVof the Supplementary Material,
we further partition our sample into 4 nonoverlapping subperiods including the first 3 decades 1982–
1991, 1992–2001, and 2002–2011 and the remainder. Overall, we see that all portfolios perform well in
terms of alpha in the first 2 subperiods and then decline in the third subperiod. Two-thirds of the fFDRþ

portfolios rebound in the remaining period up to 2019, but all portfolios are decreasing if the pandemic
years are included. In terms of Sharpe ratio, however, all portfolios gain the highest reports in the final
subperiod.
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models. We show how the admixture of control for FDR and incorporated charac-
teristics advances the generation of more positive and higher alphas than a portfolio
that controls FDR only or a portfolio based on sorting on the covariate and the past
funds’ performance.

The implications of our study are both methodological and empirical. The
methodological literature in the field of selecting outperforming mutual funds is rich
and expanding—such as Kosowski et al. (2006), Andrikogiannopoulou and Papakon-
stantinou (2016), Harvey and Liu (2020), and Grønborg, Lunde, Timmermann, and
Wermers (2021))—all these have their merits and present promising empirical find-
ings. In our study, we focus on FDR, while we defer an examination of their power
relative to ours to future research.Nevertheless,weought to note 3main distinguishing
features of our method. First, it allows the use of more data in the form of fund
characteristics, while the vast majority of others are limited to funds’ past returns and
their cross dependencies. Second, it is simple to implement and computationally less
intensive than some of the most recent ones (e.g., the double bootstrap of Harvey and
Liu (2020)). Third, our work can be extended to other problems in which statistical
power weighs more than conservatism (i.e., the FDR threshold is higher), such as in
the selection of hedge funds and bond funds or the assessment of trading strategies.

The empirical implications of our study are also of interest to academics and
practitioners. We demonstrate that the 6 traditional mutual fund characteristics can offer
important information. However, the relationship between these covariates, luck, and
funds’ performance is nonlinear. To fully exploit them, one should rely on powerful
methods that control luck andnoise.Ourmethod ensures thatwealso introduce four new
characteristics and find that their information in our context is important and surpasses
that of traditional ones, a finding that is expected to be of interest to investmentmanagers
who are concerned with portfolio performance in a timely manner.

As with any methodological approach, there are caveats with our fFDR
procedure. In particular, this requires large data sets and gains higher power as
the FDR threshold increases (see Section V.C). This implies that our approach
should not be applied in problems that require a small FDR target (i.e., when the risk
of a false discovery can lead to disastrous outcomes). As in our context of mutual
funds’ performance, it is difficult to explore covariates that seem promising (see,
e.g., the list of covariates studied in Jones and Mo (2021)) but with limited data
availability.

Appendix. Estimating π0 zð Þ and f p,zð Þ
Let pi,zið Þf gmi¼1 be the collection of p-value and covariate realizations of the

different funds under consideration, with zif gmi¼1 transformed into uniform distribution
0,1½ � (see Section II.A). We create fund bins Kbf gnb¼1, where Kb contains a fund i if
zi ∈ b�1ð Þ=n,b=nð �, and for each binKb, we estimate a common π0 zð Þ for all the funds i
in the bin. For some common λ∈ 0,1ð Þ, we estimate the π0 zð Þ in each bin b by

π̂0,bðλÞ¼
#fijpi > λ, zi ∈Kbg

ð1� λÞ#Kb
, b¼ 1,2,…,n:(16)
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We determine λ by minimizing the mean integrated square error (MISE):

MISE λð Þ¼BIAS2þVARIANCE¼Z 1

0
ϕ z,λð Þdz�π0

� �2

þ
Z 1

0
π̂0 z,λð Þ�ϕ z,λð Þ½ �2dz:

(17)

We estimate π0 using the smoothing spline method of Storey and Tibshirani ((2003),
Remark B).33 Similarly to CRS, we calculate π̂0 zi,λð Þ¼ π̂0,b λð Þ for each grid value
λ∈Λ¼ 0:4,0:5,…,0:9f g, i¼ 1,…,m and b¼ 1,2,…,n, the π̂0 zi,λð Þ, and, subsequently,R 1
0 π̂0 z,λð Þdz¼

Pm
i¼1π̂0 zi,λð Þ=m. The unknown ϕ z,λð Þ is estimated by

ϕ̂ λ,zð Þ¼ π̂0 z,Λminð Þ� cλ 1� π̂0 z,Λminð Þð Þ, where cλ is chosen such thatR 1
0 ϕ̂ λ,zð Þdz¼

R 1
0 π̂0 λ,zð Þdz. We then obtain the optimal λ∗ ¼ argmin λMISE λð Þ.

To estimate the joint density function f p,zð Þ, CRS use a local likelihood kernel
density estimation (KDE) method with a probit transformation (Geenens (2014)). Spe-

cifically, let Φ tð Þ¼ 1ffiffiffiffi
2π

p
R t
�∞e

�x2=2dx and Φ�1 be its inverse. Using z0i ¼Φ�1 zið Þ and

p0i ¼Φ�1 pið Þ, we obtain a “pseudo-sample” p0i,z
0
i

� �� �n

i¼1
; i.e., we transform the variables

p,zð Þ to p0,z0ð Þ; we denote by ~f p0,z0ð Þ the joint density function of p0,z0ð Þ, which CRS
estimate using the local likelihood KDE method.34 The bandwidth of the KDE is chosen
locally via a k-nearest-neighbor approach using generalized cross-validation; this step can
be implemented easily via the freely available R package locfit. The desired density

function is then estimated as f̂ p,zð Þ¼ ~f p0,z0ð Þ
ϕ p0ð Þϕ z0ð Þ , where ϕ xð Þ¼ 1ffiffiffiffi

2π
p e�x2=2:

Additionally, f p,zð Þ may be nonincreasing in p for each fixed z. CRS implement
one more step that modifies the f̂ p,zð Þ so that monotonicity is ensured. In our simula-
tions, we use all the aforementioned techniques. In the empirical part, the monotonicity
is switched off as this property is unknown in our data. For more details, readers are
referred to CRS and their R package fFDR, Geenens (2014), and the references therein.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109024000097.
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