Bull. Aust. Math. Soc. 107 (2023), 40–52 doi[:10.1017/S0004972722000624](http://dx.doi.org/10.1017/S0004972722000624)

TIGHT UNIVERSAL SUMS OF *m*-GONAL NUMBER[S](#page-0-0)

JANGWON J[U](https://orcid.org/0000-0002-9315-3174) $\textcolor{red}{\bullet}$ and MINGYU KIM $\textcolor{red}{\bullet}^{\textcolor{red}{\in}}$

(Received 6 April 2022; accepted 25 May 2022; first published online 13 July 2022)

Abstract

For a positive integer *n*, let $\mathcal{T}(n)$ denote the set of all integers greater than or equal to *n*. A sum of generalised *m*-gonal numbers *g* is called tight $T(n)$ -universal if the set of all nonzero integers represented by *g* is equal to $\mathcal{T}(n)$. We prove the existence of a minimal tight $\mathcal{T}(n)$ -universality criterion set for a sum of generalised *m*-gonal numbers for any pair (*m*, *n*). To achieve this, we introduce an algorithm giving all candidates for tight $\mathcal{T}(n)$ -universal sums of generalised *m*-gonal numbers. Furthermore, we provide some experimental results on the classification of tight $T(n)$ -universal sums of generalised *m*-gonal numbers.

2020 *Mathematics subject classification*: primary 11D09.

Keywords and phrases: sums of polygonal numbers, tight universal, escalation algorithm.

1. Introduction

A positive definite integral quadratic form

$$
f = f(x_1, x_2, \dots, x_k) = \sum_{1 \le i,j \le k} a_{ij} x_i x_j \quad (a_{ij} = a_{ji} \in \mathbb{Z})
$$

is called *universal* if it represents all positive integers. Lagrange's four-square theorem states that the quaternary quadratic form $x^2 + y^2 + z^2 + w^2$ is universal. Ramanujan [\[15\]](#page-12-0) found all diagonal quaternary universal quadratic forms. In 1993, Conway and Schneeberger announced the '15-Theorem' which says that a (positive definite integral) quadratic form representing all positive integers up to 15 actually represents every positive integer. Bhargava [\[1\]](#page-12-1) introduced an algorithm, called the escalation method, which yields the classification of universal quadratic forms (see also [\[4\]](#page-12-2)). The escalation method shows that if an integral quadratic form *f* represents nine integers $1, 2, 3, 5, 6, 7, 10, 14$ and 15, then *f* is universal. Kim *et al.* [\[10\]](#page-12-3) generalised this result and proved that for any infinite set *S* of quadratic forms of bounded rank, there is a finite subset S_0 of S such that any (positive definite integral) quadratic form

The research of the first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1F1A1064037). The research of the second author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C2010133).

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

[2] Tight universal sums 41

representing every form in S_0 represents all of *S*. Following [\[11\]](#page-12-4), we call such a set S_0 *an S-universality criterion set.* An *S*-universality criterion set S_0 is called *minimal* if no proper subset S_0' of S_0 is an *S*-universality criterion set.

For an integer $m \geq 3$, we define a polynomial $P_m(x)$ by

$$
P_m(x) = \frac{(m-2)x^2 - (m-4)x}{2}.
$$

An integer of the form $P_m(u)$ for some integer *u* is called a generalised *m*-gonal number. A polynomial of the form

$$
a_1 P_m(x_1) + a_2 P_m(x_2) + \cdots + a_k P_m(x_k)
$$

with positive integers a_1, a_2, \ldots, a_k is called *a sum of generalised m-gonal numbers* or *an m-gonal form*. In [\[9\]](#page-12-5), Kane and Liu proved that there is a constant γ_m such that if a sum of generalised *m*-gonal numbers represents all positive integers up to γ_m , then it represents all positive integers. By applying the escalation method to sums of generalised *m*-gonal numbers, they showed the existence of such a γ_m and found an asymptotic upper bound of γ_m in terms of *m*.

For each positive integer *n*, we define $\mathcal{T}(n)$ to be the set of all integers greater than or equal to *n*. An *m*-gonal form *g* is called *tight* $T(n)$ *-universal* if the set of all nonzero integers represented by g is equal to $\mathcal{T}(n)$. We introduce an algorithm giving all tight $T(n)$ -universal *m*-gonal forms and provide some experimental results from the algorithm. In Section [2,](#page-1-0) some basic notation and terminology will be given. In Section [3,](#page-2-0) we introduce an algorithm which gives the classification of tight $\mathcal{T}(n)$ -universal *m*-gonal forms for each given pair (m, n) . This algorithm is analogous to the escalation algorithm described by Bhargava and, when $n = 1$, it coincides with the algorithm for universal *m*-gonal forms in [\[9\]](#page-12-5). In Section [4,](#page-6-0) we provide some experimental results from the algorithm described in Section [3,](#page-2-0) including candidates for tight $\mathcal{T}(n)$ -universal *m*-gonal forms for $m = 7, 9, 10$ and 11.

2. Preliminaries

For $k = 1, 2, 3, \ldots$, we define a set $N(k)$ to be the set of all vectors of positive integers with length *k* and coefficients in ascending order, that is,

$$
\mathcal{N}(k) = \{ \mathbf{a} = (a_1, a_2, \dots, a_k) \in \mathbb{N}^k : a_1 \le a_2 \le \dots \le a_k \}.
$$

Put $\mathcal{N} = \bigcup_{k=1}^{\infty} \mathcal{N}(k)$. For two vectors $\mathbf{a} \in \mathcal{N}(k)$ and $\mathbf{b} \in \mathcal{N}(s)$ with $k \leq s$, we write

$$
a \leq b \quad (a < b)
$$

if the sequence $(a_i)_{1 \le i \le k}$ is a (proper) subsequence of $(b_i)_{1 \le i \le s}$, where

$$
a = (a_1, a_2,..., a_k)
$$
 and $b = (b_1, b_2,..., b_s).$

$$
J. Ju and M. Kim
$$

Given a vector $\mathbf{a} \in \mathcal{N}(k)$ and a positive integer *a*, we define a vector $\mathbf{a} * a$ by

$$
\mathbf{a} * a = (a_1, a_2, \dots, a_i, a, a_{i+1}, a_{i+2}, \dots, a_k) \in \mathcal{N}(k+1),
$$

where *i* is the maximum index satisfying $a_i \le a$, that is, $\mathbf{a} \cdot a$ is the vector in $\mathcal{N}(k+1)$ with coefficients a_1, a_2, \ldots, a_k and a . For $\mathbf{a} \in \mathcal{N}(k)$ and $\mathbf{b} = (b_1, b_2, \ldots, b_s) \in \mathcal{N}(s)$, we define **a** ∗ **b** to be the vector

$$
\mathbf{a} * b_1 * b_2 * \cdots * b_s \in \mathcal{N}(k+s).
$$

We identify $N(1)$ with N, so that, for example, $3 \times 7 \times 2 \times 5$ denotes the vector $(2, 3, 5, 7) \in \mathcal{N}(4)$. Let *S* be a set of nonnegative integers containing 0 and 1 and let *n* be a positive integer. For a vector $\mathbf{a} = (a_1, a_2, \dots, a_k) \in \mathcal{N}(k)$, we define

 $R_S(\mathbf{a}) = \{a_1s_1 + a_2s_2 + \cdots + a_ks_k : s_i \in S\}$ and $R'_S(\mathbf{a}) = R_S(\mathbf{a}) - \{0\}.$

Let \mathcal{GP}_m be the set of generalised *m*-gonal numbers, that is,

$$
\mathcal{GP}_m = \{P_m(u) : u \in \mathbb{Z}\}.
$$

Then an *m*-gonal form

$$
a_1 P_m(x_1) + a_2 P_m(x_2) + \cdots + a_k P_m(x_k)
$$
 $(a_1 \le a_2 \le \cdots \le a_k)$

corresponds to the pair $(\mathcal{GP}_m, \mathbf{a})$, where $\mathbf{a} = (a_1, a_2, \dots, a_k) \in \mathcal{N}(k)$. A pair $(\mathcal{GP}_m, \mathbf{a})$ (**will also be called a** *k***-ary** *m***-gonal form. Let** *n* **be a positive integer.** An *m*-gonal form (GP_m , **a**) is called $T(n)$ -universal if $R'_{GP_m}(\mathbf{a}) \supseteq T(n)$ and *tight* $\widetilde{T}(\mathbf{a})$ $\mathcal{T}(n)$ -universal if $R'_{\mathcal{GP}_m}(\mathbf{a}) = \mathcal{T}(n)$. A tight $\mathcal{T}(n)$ -universal *m*-gonal form $(\mathcal{GP}_m, \mathbf{a})$ is called *new* if $R'_{\mathcal{GP}_m}(\mathbf{\tilde{b}})^m \subseteq \mathcal{T}(n)$ for every vector $\mathbf{b} \in \mathcal{N}$ satisfying $\mathbf{b} \prec \mathbf{a}$. When $n = 1$, we use the expression 'universal' along with 'tight $\mathcal{T}(1)$ -universal' to follow the convention.

LEMMA 2.1. *Let m be an integer greater than or equal to* 3 *and n be a positive integer. Then there exists a vector* **a** *such that* $R'_{\mathcal{GP}_m}(\mathbf{a}) = \mathcal{T}(n)$ *.*

PROOF. Let $\mathbf{b} = (n, n, \dots, n) \in \mathcal{N}(m)$ be the vector of length *m* with every coefficient equal to *n*. By Fermat's polygonal number theorem,

$$
R_{\mathcal{GP}_m}(\textbf{b})=\{nu: u\in \mathbb{Z}_{\geq 0}\}.
$$

From this, one may easily deduce that

$$
R'_{\mathcal{GP}_m}(\mathbf{b} * (n+1) * (n+2) * \cdots * (2n-1)) = \mathcal{T}(n).
$$

This completes the proof. \Box

3. An algorithm for tight $\mathcal{T}(n)$ -universal sums of *m*-gonal numbers

We introduce an algorithm which gives all new tight $\mathcal{T}(n)$ -universal *m*-gonal forms. Let *m* be an integer ≥ 3 and *n* be a positive integer. For $\mathbf{a} \in \mathcal{N}$, we denote by $\Psi(\mathbf{a})$

the set of integers in $\mathcal{T}(n)$ which are not represented by the *m*-gonal form $(\mathcal{GP}_m, \mathbf{a})$, that is,

$$
\Psi(\mathbf{a})=\Psi_{m,n}(\mathbf{a})=\mathcal{T}(n)-R_{\mathcal{GP}_m}'(\mathbf{a}).
$$

We define a function $\psi = \psi_{m,n} : \mathcal{N} \to \mathcal{T}(n) \cup \{\infty\}$ by

$$
\psi(\mathbf{a}) = \begin{cases} \min(\Psi(\mathbf{a})) & \text{if } \Psi(\mathbf{a}) \neq \emptyset, \\ \infty & \text{otherwise.} \end{cases}
$$

For a vector **a** with $\psi(\mathbf{a}) < \infty$, we define the set $\mathcal{E}(\mathbf{a})$ by

$$
\mathcal{E}(\mathbf{a}) = \{ g \in \mathbb{Z} : n \le g \le \psi(\mathbf{a}) - n \} \cup \{ \psi(\mathbf{a}) \}.
$$

Note that if $\psi(\mathbf{a}) < 2n$, then $\mathcal{E}(\mathbf{a}) = {\psi(\mathbf{a})}$. For $k = 1, 2, 3, \dots$, we define subsets $E(k)$, $U(k)$, $NU(k)$ and $A(k)$ of $N(k)$ recursively as follows. Put $E(1) = \{(n)\}\$. Define

$$
U(k) = \{ \mathbf{a} \in E(k) : \psi(\mathbf{a}) = \infty \}.
$$

Let *NU*(*k*) be the set of all vectors **a** in *U*(*k*) such that $\mathbf{b} \notin \bigcup_{i=1}^{k-1} U(i)$ for every $\mathbf{b} \in \mathcal{N}$ satisfying $\mathbf{b} \prec \mathbf{a}$. Let $A(k) = E(k) - U(k)$ and

$$
E(k+1) = \bigcup_{\mathbf{a}\in A(k)} \{\mathbf{a} * g : g \in \mathcal{E}(\mathbf{a})\}.
$$

The algorithm terminates once $A(k) = \emptyset$.

THEOREM 3.1. With the notation given above, for a vector $\mathbf{a} \in \mathcal{N}(k)$, a k-ary m-gonal *form* (\mathcal{GP}_m , **a**) *is new tight* $\mathcal{T}(n)$ *-universal if and only if* $\mathbf{a} \in \text{NU}(k)$ *.*

PROOF. The 'if' part is clear by construction. To prove the 'only if' part, let $\mathbf{a} \in \mathcal{N}(k)$ be a vector such that $(\mathcal{GP}_m, \mathbf{a})$ is tight $\mathcal{T}(n)$ -universal. Since $R'_{\mathcal{GP}_m}(\mathbf{a}) = \mathcal{T}(n)$, it clearly follows that $a_{i_1} = n$, where we put $i_1 = 1$. Note that the set $R_{\mathcal{GP}_m}^{\sigma} (a_{i_1})$ does not contain any positive integer less than *n* and it does contain 0 and all integers from *n* to $\psi(a_{i_1}) - 1$. From this and $\psi(a_{i_1}) \in \mathcal{T}(n) = R'_{\mathcal{GP}_m}(\mathbf{a})$, one may easily deduce that there must be an index *is* different from *i*, such that must be an index i_2 different from i_1 such that

$$
a_{i_2} \in \mathcal{E}(a_{i_1}) = \{n, n+1, n+2, \ldots, \psi(a_{i_1})-n\} \cup \{\psi(a_{i_1})\}.
$$

Thus $a_{i_1} * a_{i_2} \le a$, where $a_{i_1} * a_{i_2} \in E(2)$. Note that $\psi(a_{i_1}) \in R'_{GP_m}(a_{i_1} * a_{i_2})$. Assume R' (*a*₁ * *a*₁) $\subset T(n)$ so that $\psi(a_{i_1} * a_{i_2}) \subset \infty$ One may easily show that there should $R'_{\mathcal{GP}_m}(a_{i_1} * a_{i_2}) \subsetneq \mathcal{T}(n)$ so that $\psi(a_{i_1} * a_{i_2}) < \infty$. One may easily show that there should be an index i_3 different from both i_1 and i_2 such that

$$
a_{i_3} \in \mathcal{E}(a_{i_1} * a_{i_2}) = \{n, n+1, n+2, \ldots, \psi(a_{i_1} * a_{i_2}) - n\} \cup \{\psi(a_{i_1} * a_{i_2})\}
$$

in a similar manner. We have $a_{i_1} * a_{i_2} * a_{i_3} \in E(3)$ by construction. Note that

$$
\psi(a_{i_1} * a_{i_2} * \cdots * a_{i_j}) < \infty
$$

for every $j = 1, 2, ..., k - 1$ since otherwise, $(\mathcal{GP}_m, \mathbf{a})$ cannot be new. Repeating this, we arrive at

$$
\mathbf{a} = a_{i_1} * a_{i_2} * \cdots * a_{i_k} \in E(k)
$$

Since (\mathcal{GP}_m , **a**) is new tight $\mathcal{T}(n)$ -universal, one may easily see that $\mathbf{a} \in \mathbb{N}U(k)$. This completes the proof. \Box

Although the proof of the following lemma appeared in the proof of [\[9,](#page-12-5) Lemma 2.1], we provide it for completeness. For two positive integers *d* and *r*, we define a set

$$
\mathcal{AP}_{d,r} = \{ dg + r : g \in \mathbb{N} \cup \{0\} \} \, (\subseteq \mathbb{N}).
$$

LEMMA 3.2. With the notation given above, there is a positive integer $l = l(m, n)$ *depending on m and n such that* $A(l) = \emptyset$ *.*

PROOF. Let *t* be a positive integer greater than 4 and let $\mathbf{a} = (a_1, a_2, \dots, a_t)$ be a vector in $A(t) = E(t) - U(t)$ so that ψ (**a**) < ∞. Note that, for any Z-lattice *L* of rank ≥ 4 with $Q(\text{gen}(L)) \subsetneq \mathbb{N},$

$$
\mathbb{N} - Q(\text{gen}(L)) = \bigcup_{i=1}^{\nu'_1} \mathcal{AP}_{d'_i, r'_i}
$$

for some positive integers v'_1 , d'_i and r'_i with $r'_i < d'_i$ by the results in [\[14\]](#page-12-6). From this and

13. Theorem 4.91 (see also [51), one may easily deduce that [\[3,](#page-12-7) Theorem 4.9] (see also [\[5\]](#page-12-8)), one may easily deduce that

$$
\mathcal{T}(n)-R'_{\mathcal{GP}_m}(\mathbf{a})=\bigcup_{i=1}^{\nu_1}\mathcal{AP}_{d_i,r_i}\cup\{e_1,e_2,\ldots,e_{\nu_2}\}\
$$

for some nonnegative integers v_1 , v_2 not both 0 and some positive integers d_i , r_i , e_i with $e_j \notin \bigcup_{i=1}^{y_1} \mathcal{AP}_{d_i, r_i}$ for all $j = 1, 2, ..., y_2$. Suppose that g_1 is a positive integer with $n \leq g_i \leq \mu(\mathbf{a}) - n$ or $g_1 = \mu(\mathbf{a})$ so that $\mathbf{a} * g_1 \in F(t+1)$ If *n* ≤ *g*₁ ≤ ψ (**a**) − *n* or *g*₁ = ψ (**a**) so that **a** * *g*₁ ∈ *E*(*t* + 1). If

$$
Q(\text{gen}(\langle a_1, a_2, \ldots, a_t \rangle)) \subset Q(\text{gen}(\langle a_1, a_2, \ldots, a_t, g_1 \rangle)),
$$

then

$$
\mathcal{T}(n)-R'_{\mathcal{GP}_m}(\mathbf{a}*g_1)=\bigcup_{w=1}^{\nu_3}\mathcal{AP}_{d_{i_w},r_{i_w}}\cup\{e'_1,e'_2,\ldots,e'_{\nu_4}\},\
$$

where v_3 is an integer with

$$
0 \leq \nu_3 < \nu_1, \quad (i_1, i_2, \dots, i_{\nu_3}) < (1, 2, \dots, \nu_1),
$$

and v_4 is a nonnegative integer. When

$$
Q(\text{gen}(\langle a_1, a_2, \ldots, a_t \rangle)) = Q(\text{gen}(\langle a_1, a_2, \ldots, a_t, g_1 \rangle)),
$$

it follows that

$$
\mathcal{T}(n)-R'_{\mathcal{GP}_m}(\mathbf{a}*g_1)=\bigcup_{i=1}^{\nu_1}\mathcal{AP}_{d_i,r_i}\cup\{e_{j_1},e_{j_2},\ldots,e_{j_{\nu_5}}\},\,
$$

where v_5 is a nonnegative integer less than v_2 and $(j_1, j_2, \ldots, j_{v_5}) \prec (1, 2, \ldots, v_2)$.

Let **b** be a vector in $A(5) = E(5) - U(5)$. From what we observed above, we may define a positive integer $w = w(\mathbf{b})$ to be the maximal positive integer *w* satisfying

$$
b * g_1 * g_2 * \cdots * g_i \in A(5 + i) - U(5 + i), \quad g_i \in \mathcal{E}(b * g_1 * g_2 * \cdots * g_{i-1}),
$$

for every $i = 1, 2, \ldots, w - 1$. Since the set $E(5)$ is finite by construction, we may take *l* as

$$
l = 5 + \max\{w(\mathbf{b}) : \mathbf{b} \in E(5) - U(5)\}.
$$

This completes the proof. \Box

We now introduce our main result which gives a natural generalisation of the Conway–Schneeberger 15-Theorem to the case of tight $\mathcal{T}(n)$ -universal *m*-gonal forms.

THEOREM 3.3. *With the notation given above, there is a finite set CS*(*m*, *n*) *such that* $R'_{GP_m}(\mathbf{a}) = \mathcal{T}(n)$ *if and only if* $R'_{GP_m}(\mathbf{a}) \cap \{1, 2, ..., n-1\} = \emptyset$ *and* $CS(m, n) \subset R'_{GP_m}(\mathbf{a})$ for any vector $\mathbf{a} \in \mathbb{N}$ *for any vector* $\mathbf{a} \in \mathcal{N}$ *.*

PROOF. Using Lemma [3.2,](#page-4-0) we take the smallest positive integer *l* satisfying $A(l) = \emptyset$. Define a finite set

$$
CS(m, n) = \{n\} \cup \bigcup_{k=1}^{l-1} {\{\psi(\mathbf{a}) : \mathbf{a} \in A(k)\}}.
$$

Let $\mathbf{a} \in \mathcal{N}$ be a vector with $R'_{\mathcal{GP}_m}(\mathbf{a}) \cap \{1, 2, ..., n-1\} = \emptyset$ such that $R'_{\mathcal{GP}_m}(\mathbf{a}) \supseteq C S(m, n)$. From the condition that R'' $(\mathbf{a}) \supseteq C S(m, n)$ one may easily see that there *CS*(*m*, *n*). From the condition that $R_{\mathcal{GP}_{m}}^{n}(\mathbf{a}) \supset C S(m, n)$, one may easily see that there is a vector $\mathbf{b} \in \mathcal{N}$ with $\mathbf{b} \leq \mathbf{a}$ such that $\mathbf{b} \in U(k)$ for some k less than or equal to l. It follows that

$$
\mathcal{T}(n) = R'_{\mathcal{GP}_m}(\mathbf{b}) \subseteq R'_{\mathcal{GP}_m}(\mathbf{a}).
$$

This completes the proof. \Box

REMARK 3.4. In Theorem [3.3,](#page-5-0) the set $CS(m, n)$ is minimal in the sense that for any $g \in CS(m, n)$, there is a vector **b** $\in \mathcal{N}$ such that $R'_{\mathcal{GP}_m}(\mathbf{b}) = \mathcal{T}(n) - \{g\}$. To see this, we take **b** = **c** ∗ **d**, where ψ (**c**) = *g* and R'_{GP_m} (**d**) = $T''(g + 1)$. The existence of such vectors **c** and **d** follows from the definition of the set $CS(m, n)$ and I emma 2.1 vectors **c** and **d** follows from the definition of the set $CS(m, n)$ and Lemma [2.1,](#page-2-1) respectively.

In the spirit of Remark [3.4](#page-5-1) and [\[11\]](#page-12-4), we may call the set *CS*(*m*, *n*) a *minimal tight* T(*n*)*-universality criterion set for m-gonal forms*.

PROPOSITION 3.5. *Let m be an integer greater than or equal to* 3 *and different from* 5 *and let n be an integer greater than* 1*. With the notation given above:*

 $\{n, n+1, n+2, \ldots, 2n\} \subseteq CS(m, n);$

(ii) $E(k) = \{(n, n+1, n+2, \ldots, n+k-1)\}$ for $k = 1, 2, \ldots, n$;

(iii) $U(k) = \emptyset$ (*or equivalently,* $A(k) = E(k)$) *for* $k = 1, 2, \ldots, n$;

(iv) $E(n+1) = \{(n, n, n+1, n+2, \ldots, 2n-1), (n, n+1, n+2, \ldots, 2n-1, 2n)\}.$

PROOF. Note that $2 \notin \mathcal{GP}_m$ since $m \neq 5$. For $i = 1, 2, ..., n - 1$, one may easily show that $u(n) = n + 1$ and that $\psi(n) = n + 1$ and

$$
\psi(n, n+1, n+2, \dots, n+i) = n+i+1.
$$

The proposition follows directly from this. \Box

REMARK 3.6. Proposition $3.5(i)$ $3.5(i)$, (ii) and (iii) also hold for the case of pentagonal forms, that is, when $m = 5$. However, Proposition [3.5\(](#page-6-1)iv) is no longer true when $m = 5$. In fact, since $2 = P_5(-1) \in \mathcal{GP}_5$, we have

$$
2n \in R'_{GP_5}(n) \subset R'_{GP_5}(n, n+1, n+2, \dots, 2n-1),
$$

and thus we would have $\psi(n, n + 1, n + 2, ..., 2n - 1) > 2n$.

4. Some experimental results

We provide some experimental results based on the escalation algorithm for tight $\mathcal{T}(n)$ -universal *m*-gonal forms introduced in Section [3.](#page-2-0) We first note that, in practice, we use the set

$$
\Psi(\mathbf{a}) = \Psi_{m,n}(\mathbf{a}) = \{u \in \mathcal{T}(n) : u \leq 10^6\} - R'_{\mathcal{GP}_m}(\mathbf{a})
$$

instead of the original definition $\Psi(\mathbf{a}) = \mathcal{T}(n) - R'_{\mathcal{GP}_m}(\mathbf{a})$ in the algorithm so that

$$
\{u \in \mathbb{N} : n \le u \le 10^6\} \subset R'_{\mathcal{GP}_m}(\mathbf{a}) \quad \text{for all } \mathbf{a} \in \bigcup_{k=1}^{\infty} U(k).
$$

In Table [1,](#page-7-0) we give the sets $CS(m, n)$ for some pairs (m, n) . In the table, the pair (m, n) is marked with \dagger when the tight $\mathcal{T}(n)$ -universal *m*-gonal forms are already completely classified so that the set $CS(m, n)$ in the table has been proved to be equal to the set $CS(m, n)$ in the algorithm in Section [3.](#page-2-0)

For the classification of tight $T(n)$ -universal *m*-gonal forms, we refer the reader to [\[1\]](#page-12-1) for $(m, n) = (4, 1)$, [\[2\]](#page-12-9) for $(m, n) = (3, 1)$, [\[8\]](#page-12-10) for $(m, n) = (8, 1)$, [\[6\]](#page-12-11) for $(m, n) =$ (5, 1), [\[13\]](#page-12-12) for $m = 4$ and $n \ge 2$, and [\[12\]](#page-12-13) for the others. The tight universal *m*-gonal forms are classified for $m = 4, 3$, and tight $\mathcal{T}(n)$ -universal octagonal forms for all $n \geq 2$

m	\boldsymbol{n}	CS(m, n)
3	1^{\dagger}	$\{1, 2, 4, 5, 8\}$
	2^{\dagger}	$\{2, 3, 4, 8, 10, 16, 19\}$
	3^{\dagger}	$\{3, 4, 5, 6, 16\}$
	$>4^{\dagger}$	${n, n+1, n+2, \ldots, 2n}$
4	1^{\dagger}	$\{1, 2, 3, 5, 6, 7, 10, 14, 15\}$
	2^{\dagger}	$\{2, 3, 4, 6, 9, 10, 13, 15, 17, 23\}$
	3^{\dagger}	$\{3, 4, 5, 6, 13, 14, 18, 25, 35, 46\}$
	$\geq 4^{\dagger}$	${n, n+1, n+2, \ldots, 2n}$
5	1^{\dagger}	$\{1, 3, 8, 9, 11, 18, 19, 25, 27, 43, 98, 109\}$
	$\overline{2}$	$\{2, 3, 9, 53, 77, 141\}$
	$\overline{3}$	$\{3, 4, 5, 22, 47, 52, 62\}$
	$4 \leq n \leq 6$	${n, n+1, n+2, \ldots, 2n-1}$
	$>7^{\dagger}$	${n, n+1, n+2, \ldots, 2n-1}$
7	$\mathbf{1}$	$\{1, 2, 3, 5, 6, 9, 10, 15, 16, 19, 23, 31, 131\}$
	$\overline{2}$	$\{2, 3, 4, 6, 9, 10, 13, 15, 18, 27, 30, 32, 50\}$
	3	$\{3, 4, 5, 6, 13, 14, 18\}$
	$4 \leq n \leq 10$	${n, n+1, n+2, \ldots, 2n}$
	$\geq 11^{\dagger}$	${n, n+1, n+2, \ldots, 2n}$
8	1^{\dagger}	$\{1, 2, 3, 4, 6, 7, 9, 12, 13, 14, 18, 60\}$
	$\overline{2}$	$\{2, 3, 4, 6, 8, 9, 11, 12, 14, 18\}$
	3	$\{3, 4, 5, 6, 13, 14, 16, 17, 21, 22, 27, 36\}$
	$\overline{4}$	$\{4, 5, 6, 7, 8, 23, 28\}$
	$5 \leq n \leq 10$	${n, n+1, n+2, \ldots, 2n}$
	$\geq 11^{\dagger}$	${n, n+1, n+2, \ldots, 2n}$
9	1	$\{1, 2, 3, 4, 5, 7, 8, 10, 11, 14, 16, 17, 20, 22, 23, 29, 32, 34, 69\}$
	$\overline{2}$	$\{2, 3, 4, 6, 8, 9, 10, 11, 13, 14, 16, 17, 19, 23, 25, 28, 34, 37, 58\}$
	3	$\{3, 4, 5, 6, 13, 14, 16, 17, 19, 20, 21, 25, 26, 28, 38, 46, 53\}$
	$\overline{4}$	$\{4, 5, 6, 7, 8, 23, 25, 27, 28, 32, 33\}$
	$5 \leq n \leq 12$	${n, n+1, n+2, \ldots, 2n}$
	$>13^{+}$	${n, n+1, n+2, \ldots, 2n}$
≥ 10	$> 2m - 5^{\dagger}$	${n, n+1, n+2, \ldots, 2n}$

TABLE 1. $CS(m, n)$ for some pairs (m, n) .

are treated in [\[7\]](#page-12-14). In this spirit, we provide the candidates for tight $\mathcal{T}(n)$ -universal pentagonal forms in the cases of $n = 2, 3$ $n = 2, 3$ $n = 2, 3$ in Tables 2 and [3,](#page-8-1) respectively. Note that there is exactly one candidate for tight $T(n)$ -universal pentagonal forms for each $n = 4, 5, 6$, which is $(\mathcal{GP}_5, (n, n+1, n+2, \ldots, 2n-1)).$

For any integer $m \geq 3$ and a positive integer *n*, we define $\gamma_{m,n}$ to be the maximum element in the set $CS(m, n)$, as in the proof of Theorem [3.3.](#page-5-0) By Theorem [3.3,](#page-5-0)

a_1	a ₂	a_3	a_4	Conditions on a_k (3 \leq k \leq 4)
		a_3		$6 \le a_3 \le 9, a_3 \neq 8$
$\mathcal{D}_{\mathcal{L}}$	3	3	a_4	$3 \le a_4 \le 77, a_4 \ne 6, 7, 9, 76$
$\mathcal{D}_{\mathcal{L}}$		4	a_4	$4 \le a_4 \le 141, a_4 \ne 6, 7, 9, 140$
\mathcal{D}			a_4	$5 \le a_4 \le 53$, $a_4 \ne 6, 7, 9, 52$

TABLE 2. Candidates for new tight $\mathcal{T}(2)$ -universal pentagonal forms $(\mathcal{GP}_5, (a_1, a_2, \ldots, a_k))$.

TABLE 3. Candidates for new tight $\mathcal{T}(3)$ -universal pentagonal forms $(\mathcal{GP}_5, (a_1, a_2, \ldots, a_k))$.

a_1	a ₂	a_3	a_4	a ₅	Conditions on a_k (4 \leq k \leq 5)
	4	4			
	4		a_4		$6 \le a_4 \le 22$, $a_4 \ne 10$, 15, 20, 21
	4		5	a ₅	$a_5 = 5$, 10, 15, 20, 21, 62 or 23 $\le a_5 \le 59$
	4		10	a ₅	$a_5 = 10, 15, 20, 21, 47$ or $23 \le a_5 \le 44$
	4			a,	$a_5 = 15, 20, 21, 52$ or $23 \le a_5 \le 49$

TABLE 4. γ_m for $3 \le m \le 11$.

	m 3^{\dagger} 4^{\dagger} 5^{\dagger} 7 8^{\dagger} 9 10 11			
	γ_m 8 15 109 131 60 69 46 45			

TABLE 5. Candidates for new universal heptagonal forms $(\mathcal{GP}_7, (a_1, a_2, \ldots, a_k))$.

a_1	a_2	a ₃	a_4	a ₅	a ₆	a ₇	Conditions on a_k (4 \leq $k \leq 7$)
$\mathbf{1}$	1	1	a_4				$a_4 = 2, 4$
$\mathbf{1}$	1	2	a_4				$2 \le a_4 \le 5$
1	1	\mathfrak{Z}	a_4				$a_4 = 4, 7$
$\mathbf{1}$	2	$\mathfrak{2}$	a_4				$a_4 = 3, 4, 7$
1	$\mathbf{2}$	3	a_4				$a_4 = 4, 5$
$\mathbf{1}$	$\overline{2}$	4	a_4				$4 \le a_4 \le 12, a_4 \ne 6, 9$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	a ₅			$a_5 = 1, 3, 5$
$\mathbf{1}$	1	$\mathbf{1}$	3	a_5			$3 \le a_5 \le 17, a_5 \ne 4, 7$
$\mathbf{1}$	1	3	3	a ₅			$5 \le a_5 \le 11, a_5 \ne 6, 7$
$\mathbf{1}$	$\mathbf{1}$	3	5	a ₅			$5 \le a_5 \le 16, a_5 \ne 7$
$\mathbf{1}$	1	3	6	a_5			$6 \le a_5 \le 14, a_5 \ne 7$
1	1	3	8	a ₅			$8 \le a_5 \le 16$
$\mathbf{1}$	\overline{c}	\overline{c}	\overline{c}	a ₅			$2 \le a_5 \le 34, a_5 \neq 3, 4, 7$
$\mathbf{1}$	$\overline{2}$	\overline{c}	5	a ₅			$5 \le a_5 \le 22, a_5 \ne 7$
1	$\mathfrak{2}$	\overline{c}	6	a ₅			$6 \le a_5 \le 22, a_5 \ne 7$
$\mathbf{1}$	\overline{c}	3	3	a ₅			$a_5 = 3$ or $6 \le a_5 \le 10$
$\mathbf{1}$	\overline{c}	3	6	a ₅			$6 \le a_5 \le 23$
$\mathbf{1}$	2	3	7	a ₅			$7 \le a_5 \le 17, a_5 \ne 15$
$\mathbf{1}$	$\overline{2}$	$\overline{4}$	6	a ₅			$a_5 = 6, 9$ or $13 \le a_5 \le 20$
$\mathbf{1}$	$\overline{2}$	4	9	a ₅			$a_5 = 9$ or $13 \le a_5 \le 29$
$\mathbf{1}$	$\overline{2}$	4	13	a ₅			$13 \le a_5 \le 69$
$\mathbf{1}$	$\overline{2}$	4	14	a ₅			$14 \le a_5 \le 34$
1	1	3	3	3	a ₆		$a_6 = 6$ or $12 \le a_6 \le 14$
$\mathbf{1}$	1	3	3	6	a ₆		$15 \le a_6 \le 17$
$\mathbf{1}$	$\mathfrak{2}$	3	7	15	a ₆		$a_6 = 15$ or $18 \le a_6 \le 32$
1	1	3	3	3	3	a ₇	$a_7 = 3, 15, 16, 17$

TABLE 6. Candidates for new universal nonagonal forms $(\mathcal{GP}_9, (a_1, a_2, \ldots, a_k))$.

if an *m*-gonal form *g* does not represent any integer less than *n* and does represent all integers from *n* to $\gamma_{m,n}$, then *g* is tight $\mathcal{T}(n)$ -universal. For $m = 3, 4, \ldots$, we define

$$
\gamma_m = \gamma_{m,1} = \max(C(m,1)).
$$

Now we consider universal *m*-gonal forms. In Table [4,](#page-8-2) γ_m is given for $3 \le m \le 11$ and the proved cases are marked †. We provide all candidates of new universal *m*-gonal forms, for $m = 7, 9, 10, 11$, in Tables [5–](#page-8-3)[8,](#page-11-0) since the universal *m*-gonal forms are of particular interest.

a_1	a_2	a_3	a_4	a ₅	a ₆	a ₇	a_8	Conditions on a_k (4 \leq k \leq 8)
$\mathbf{1}$	1	$\mathbf 1$	4					
$\mathbf{1}$	$\mathbf{1}$	\overline{c}	a_4					$2 \le a_4 \le 5$
1	\overline{c}	\overline{c}	a_4					$3 \le a_4 \le 4$
1	$\mathfrak{2}$	3	a_4					$a_4 = 4, 6$
1	2	4	a_4					$a_4 = 4, 5, 8$
1	1	$\mathbf{1}$	$\mathbf{1}$	a_5				$a_5 = 2, 3, 5$
1	1	1	\overline{c}	6				
1	1	1	3	a ₅				$5 \le a_5 \le 16$
$\mathbf{1}$	1	3	3	a_5				$a_5 = 5, 8$
1	1	3	$\overline{4}$	a_5				$4 \le a_5 \le 16$
1	1	3	5	a_5				$5 \le a_5 \le 24$
1	1	3	6	a_5				$7 \le a_5 \le 11, a_5 \ne 9$
$\mathbf{1}$	\overline{c}	\overline{c}	\overline{c}	a_5				$a_5 = 2$ or $5 \le a_5 \le 8$
1	$\overline{2}$	\overline{c}	5	a_5				$6 \le a_5 \le 13$
1	$\overline{2}$	\overline{c}	6	a_5				$7 \le a_5 \le 19, a_5 \ne 14$
1	$\overline{2}$	3	3	a_5				$3 \le a_5 \le 11, a_5 \ne 4, 6, 8$
1	\overline{c}	3	5	a_5				$5 \le a_5 \le 16, a_5 \ne 6$
$\mathbf{1}$	$\overline{2}$	3	7	a_5				$7 \le a_5 \le 26$
1	$\overline{2}$	3	8	a ₅				$8 \le a_5 \le 16, a_5 \ne 12, 15$
1	$\overline{2}$	4	6	a ₅				$6 \le a_5 \le 23, a_5 \neq 8$
1	\overline{c}	4	7	a ₅				$7 \le a_5 \le 39, a_5 \neq 8$
1	1	$\mathbf 1$	$\mathbf{1}$	1	a ₆			$a_6 = 1, 6$
1	1	1	3	3	a ₆			$a_6 = 3, 17, 18, 19$
1	1	3	3	3	a_6			$4 \le a_6 \le 12, a_6 \ne 5, 6, 8$
1	1	3	3	4	a ₆			$17 \le a_6 \le 19$
1	1	3	3	6	a_6			$a_6 = 6,9$ or $12 \le a_6 \le 15$
$\mathbf{1}$	1	3	3	$\boldsymbol{7}$	a ₆			$7 \le a_6 \le 19, a_6 \ne 8$
1	1	3	3	9	a ₆			$9 \le a_6 \le 18$
1	1	3	6	6	a ₆			$a_6 = 9$ or $12 \le a_6 \le 18$
1	1	3	6	9	a ₆			$a_6 = 9$ or $12 \le a_6 \le 24$
1	$\,1$	3	6	12	a_6			$12 \le a_6 \le 24$
$\mathbf{1}$	\overline{c}	\overline{c}	5	5	a_6			$a_6 = 5$ or $14 \le a_6 \le 18$
1	\overline{c}	\overline{c}	6	6	\mathfrak{a}_6			$a_6 = 6$, 14 or $20 \le a_6 \le 25$
1	\overline{c}	\overline{c}	6	14	a ₆			$a_6 = 14$ or $20 \le a_6 \le 39$
1	\overline{c}	3	3	8	a ₆			$12 \le a_6 \le 19, a_6 \ne 13, 14, 16$
1	\overline{c}	3	8	12	a_6			$12 \le a_6 \le 46, a_6 \ne 13, 14, 16$
1	$\overline{2}$	3	8	15	a ₆			$15 \le a_6 \le 34, a_6 \ne 16$
1	$\,1$	3	3	\mathfrak{Z}	\mathfrak{Z}	a ₇		$a_7 = 6, 13, 14, 15$
1	$\mathbf{1}$	3	3	3	6	a ₇		$16 \le a_7 \le 18$
1	$\mathbf{1}$	3 3	6	6	6	a ₇		$a_7 = 6$ or $19 \le a_7 \le 24$
1	1		3	3	3	\mathfrak{Z}	a_8	$a_8 = 3, 16, 17, 18$

TABLE 7. Candidates for new universal decagonal forms $(\mathcal{GP}_{10}, (a_1, a_2, ..., a_k))$.

a_1	a ₂	a_3	a_4	a ₅	a ₆	a ₇	a_8	Conditions on a_k (4 \leq k \leq 8)
$\mathbf{1}$	1	\overline{c}	a_4					$a_4 = 3, 4$
$\mathbf{1}$	$\overline{\mathbf{c}}$	\overline{c}	4					
1	\overline{c}	3	4					
1	\overline{c}	4	a_4					$4 \le a_4 \le 8$
1	1	1	1	a_5				$a_5 = 3, 4, 5$
1	1	1	\overline{c}	a ₅				$a_5 = 2, 5, 6$
1	1	1	3	a_5				$4 \le a_5 \le 7$
1	1	$\mathbf{1}$	4	a_5				$4 \le a_5 \le 18$
1	1	\overline{c}	2	a_5				$a_5 = 2, 5, 6, 7$
1	1	\overline{c}	5	a_5				$5 \le a_5 \le 20$
1	1	3	3	a ₅				$a_5 = 4, 5, 6, 9$
1	1	3	4	a_5				$a_5 = 5, 8, 9$
1	1	3	5	a_5				$6 \le a_5 \le 18$
1	$\mathbf{1}$	3	6	a ₅				$6 \le a_5 \le 13, a_5 \ne 10$
1	$\mathfrak{2}$	$\overline{\mathbf{c}}$	\overline{c}	a_5				$2 \le a_5 \le 9, a_5 \ne 4$
1	$\overline{\mathbf{c}}$	\overline{c}	3	a_5				$3 \le a_5 \le 9, a_5 \ne 4$
1	$\mathfrak{2}$	\overline{c}	5	a ₅				$5 \le a_5 \le 14$
1	$\mathfrak{2}$	\overline{c}	6	a_5				$6 \le a_5 \le 20, a_5 \ne 17$
1	\overline{c}	3	3	a_5				$5 \le a_5 \le 12, a_5 \ne 6, 9$
1	\overline{c}	3	5	a ₅				$5 \le a_5 \le 12$
1	\overline{c}	3	6	a_5				$7 \le a_5 \le 15$
1	$\mathfrak{2}$	3	7	a_5				$8 \le a_5 \le 38$
1	$\overline{2}$	4	9	a ₅				$9 \le a_5 \le 18$
1	1	1	1	1	a ₆			$a_6 = 2, 6$
1	1	$\mathbf{1}$	$\mathbf{1}$	\overline{c}	7			
1	1	1	3	3	a_6			$a_6 = 3, 8$ or $10 \le a_6 \le 21$
1	1	3	3	3	a_6			$a_6 = 3, 7, 8, 11, 12, 13$
1	1	3	3	7	a_6			$7 \le a_6 \le 20, a_6 \ne 9$
1	1	3	3	8	a_6			$8 \le a_6 \le 21, a_6 \ne 9$
1	1	3	3	10	a_6			$10 \le a_6 \le 20$
1	1	3	4	4	a_6			$4 \le a_6 \le 21, a_6 \ne 5, 8, 9$
1	1	3	4	6	a ₆			$a_6 = 10$ or $14 \le a_6 \le 27$
1	1	3	4	7	a_6			$a_6 = 7$ or $10 \le a_6 \le 17$
1	1	3	4	10	a_6			$10 \le a_6 \le 27$
1	1	3	5	5	a ₆			$a_6 = 5$ or $19 \le a_6 \le 23$
1	1	3	6	10	a ₆			$a_6 = 10$ or $14 \le a_6 \le 23$
1	\overline{c}	\overline{c}	6	17	a_6			$a_6 = 17$ or $21 \le a_6 \le 37$
1	$\mathfrak{2}$	3	3	3	a ₆			$a_6 = 9, 13, 14, 15$
1	\overline{c}	3	3	6	a ₆			$a_6 = 6, 16, 17, 18$
1	\overline{c}	3	3	9	a ₆			$a_6 = 9$ or $13 \le a_6 \le 21$
1	$\mathfrak{2}$	3	6	6	a_6			$a_6 = 6$ or $16 \le a_6 \le 21$
1	\overline{c}	3	7	7	a ₆			$a_6 = 7$ or $39 \le a_6 \le 45$
1	$\mathbf{1}$	1	1	1	1	a ₇		$a_7 = 1, 7$
1	1	3	3	3	10	a ₇		$21 \le a_7 \le 23$
1	\overline{c}	3	3	3	3	a ₇		$a_7 = 6, 16, 17, 18$
1	$\mathfrak{2}$	3	3	3	6	a ₇		$19 \le a_7 \le 21$
1	$\overline{2}$	$\overline{3}$	3	3	3	3	a ₈	$a_8 = 3, 19, 20, 21$

TABLE 8. Candidates for new universal hendecagonal forms $(\mathcal{GP}_{11}, (a_1, a_2, \ldots, a_k))$.

52 **J.** Ju and M. Kim [13]

References

- [1] M. Bhargava, 'On the Conway–Schneeberger fifteen theorem', *Contemp. Math.* 272 (2000), 27–38.
- [2] W. Bosma and B. Kane, 'The triangular theorem of eight and representation by quadratic polynomials', *Proc. Amer. Math. Soc.* 141(5) (2013), 1473–1486.
- [3] W. K. Chan and B.-K. Oh, 'Representations of integral quadratic polynomials', in: *Diophantine Methods, Lattices and Arithmetic Theory of Quadratic Forms*, Contemporary Mathematics, 587 (eds. W. K. Chan and R. Schulze-Pillot) (American Mathematical Society, Providence, RI, 2013), 31–46.
- [4] J. H. Conway, 'Universal quadratic forms and the fifteen theorem', *Contemp. Math.* 272 (2000), 23–26.
- [5] J. S. Hsia, Y. Kitaoka and M. Kneser, 'Representations of positive definite quadratic forms', *J. reine angew. Math.* 301 (1978), 132–141.
- [6] J. Ju, 'Universal sums of generalized pentagonal numbers', *Ramanujan J.* 51(3) (2020), 479–494.
- [7] J. Ju and M. Kim, 'Tight universal octagonal forms', Preprint, 2022, [arXiv:2202.09304.](https://arxiv.org/abs/2202.09304)
- [8] J. Ju and B.-K. Oh, 'Universal sums of generalized octagonal numbers', *J. Number Theory* 190 (2018), 292–302.
- [9] B. Kane and J. Liu, 'Universal sums of *m*-gonal numbers', *Int. Math. Res. Not. IMRN* 2020(20) (2020), 6999–7036.
- [10] B. M. Kim, M.-H. Kim and B.-K. Oh, 'A finiteness theorem for representability of quadratic forms by forms', *J. reine angew. Math.* 581 (2005), 23–30.
- [11] K. Kim, J. Lee and B.-K. Oh, 'Minimal universality criterion sets on the representations of binary quadratic forms', *J. Number Theory* 238 (2022), 37–59.
- [12] M. Kim, 'Tight universal triangular forms', *Bull. Aust. Math. Soc.* 105(3) (2022), 372–384.
- [13] M. Kim and B.-K. Oh, 'Tight universal quadratic forms', Preprint, 2021, [arXiv:2104.02440.](https://arxiv.org/abs/2104.02440)
- [14] O. T. O'Meara, 'The integral representations of quadratic forms over local fields', *Amer. J. Math.* 80 (1958), 843–878.
- [15] S. Ramanujan, 'On the expression of a number in the form $ax^2 + by^2 + cz^2 + du^2$ ', *Proc. Cambridge Phil. Soc.* 19 (1917), 11–21.

JANGWON JU, Department of Mathematics, University of Ulsan, Ulsan 44610, Korea e-mail: jangwonju@ulsan.ac.kr

MINGYU KIM, Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea e-mail: kmg2562@skku.edu