DUALS OF BANACH SPACES OF ENTIRE FUNCTIONS

by J. M. ANDERSON and J. DUNCAN

(Received 26 October, 1988; revised 25 January, 1989)

1. Introduction. Let w be a strictly positive function on \mathbb{C} and let H_{∞}^{w} , respectively H_{0}^{w} , denote the Banach spaces of those entire functions $\varphi(z)$ with $|\varphi(z)| = O(w(z))$ and $|\varphi(z)| = o(w(z))$. In this generality, these spaces may contain only constants, but for many functions w(z) these will be interesting Banach spaces with norm

$$\|\varphi\|_{w} = \sup\{|\varphi(z)|/w(z): z \in \mathbb{C}\}.$$

We study two specific problems.

- (A) For which weight functions w is H_{∞}^{w} isomorphic, possibly isometrically, to $(H_{0}^{w})^{**}$?
- (B) For which weight functions w can the first dual $(H_0^w)^*$ be identified with a space of functions analytic on some subset of \mathbb{C} ?

Some answers to (A) were given about 20 years ago by J. Shapiro, A. Shields and G. D. Taylor; unpublished, but see [2] where (A) is studied by an abstract functional analytic approach. Problem (B) has been much discussed for functions analytic in the unit disk Δ , e.g. for Bloch functions in [1]. Our motivation for the study of these problems, however, comes from [4], where it is shown that the answer is "yes" to both problems for the following very special weight functions w.

Let K be a compact convex subset of the closed unit disk and set

$$w(\lambda) = \max\{|\exp \lambda z| : z \in K\}.$$

Although it rarely happens that $(H_0^w)^*$ is a Banach algebra under its natural pointwise product, it is for such a function w.

The results obtained are satisfactory only in the case of radial weights, i.e. $w(\lambda) = w(|\lambda|)$, where w grows faster than any polynomial. We give some partial results for the non-radial case and indicate where the difficulties arise.

2. The weight functions. Given any positive w on \mathbb{C} we define

$$\tilde{w}(\lambda) = \sup\{|\varphi(\lambda)| : \varphi \in H_{\infty}^{w}, \|\varphi\|_{w} \leq 1\}.$$

Clearly $\tilde{w} \leq w$ and $H_{\infty}^{\tilde{w}} = H_{\infty}^{w}$. It is clear also, from Montel's theorem, that for each $\lambda \in \mathbb{C}$ there exists $\varphi_{\lambda}(z) \in H_{\infty}^{w}$ with $\tilde{w}(\lambda) = |\varphi_{\lambda}(\lambda)|$. Also \tilde{w} is lower semicontinuous since it is the supremum of a family of continuous functions; frequently \tilde{w} is actually continuous.

We say that w is radial if $w(\lambda) = w(|\lambda|)$. It then follows that w is a strictly increasing function, unless H_{∞}^{w} contains only constants, and that $\log \tilde{w}(r)$ is a convex increasing function of $\log r$. Thus for radial functions a necessary condition that $w(\lambda) = \tilde{w}(\lambda)$ is that $\log w(t)$ be a convex increasing function of $\log t$. Perhaps this condition is also sufficient; some evidence for this is provided by [3]. For our results we might as well replace w by \tilde{w} ; so henceforth we assume that $w = \tilde{w} > 0$.

We wish to disregard the case when H_{∞}^{w} is finite dimensional. In the case of radial weights this means discarding weights such as $w(\lambda) = 1 + |\lambda|^{k}$, $k \in \mathbb{N}$, where H_{∞}^{w} is the space of all polynomials of degree at most k and H_{0}^{w} is the space of all polynomials of

Glasgow Math. J. 32 (1990) 215-220.

degree at most k-1. For this reason, when w is radial we assume that for 0 < t < 1,

$$\lim_{r \to \infty} w(tr)/w(r) = 0. \tag{2.1}$$

For non-radial transcendental weights $w(\lambda)$, the space H_{∞}^{w} may still be finite dimensional, e.g. if $w(\lambda) = (1 + |\lambda|^{k}) |\exp \lambda|$.

3. The duality. We recall the reasoning of [4] for the case $w(\lambda) = \exp(|\lambda|)$. Here H_0^w is a closed subspace of C_0^w and $(C_0^w)^* \approx M^w$, the space of regular Borel measures μ on $\mathbb C$ for which

$$||\mu|| = \int_{\mathbb{C}} w |d\mu| < \infty.$$

Thus $(H_0^w)^* \approx M^w/(H_0^w)^{\perp}$. This abstract identification of $(H_0^w)^*$ is similar to that for $(\text{lip }\alpha)^*$ obtained in [5]. The "concrete" identification of $(H_0^w)^*$ is obtained as follows. For the closed unit disk $\bar{\Delta}$ let A^w denote the set of those functions $f: \bar{\Delta} \to \mathbb{C}$ of the form

$$f(z) = \int_{\Gamma} \exp(z\lambda) \, d\mu(\lambda) \qquad (z \in \bar{\Delta}), \tag{3.1}$$

for some $\mu \in M^w$. The formula

$$\langle \varphi, f \rangle = \int_{\mathbb{C}} \varphi \, d\mu, \tag{3.2}$$

where f is given by (3.1), gives a pairing between H_{∞}^{w} and A^{w} . This involves showing that $\mu \in (H_{\infty}^{w})^{\perp}$ if and only if $\mu \perp \exp(z\lambda)$, $z \in \bar{\Delta}$. It is then routine to check that $(A^{w})^{*} \approx H_{\infty}^{w}$ and $(H_{0}^{w})^{*} \approx A^{w}$.

For the rest of this section we assume only that w is strictly positive even though we occasionally mention the implication of w being radial. Choose any $\chi(z) \in H_{\infty}^{w}$ with $\|\chi\|_{w} = 1$ and define $K = K(\chi)$ by

$$K = \{ z \in \bar{\Delta} : |\chi(z\lambda)| \le w(\lambda) \text{ for all } \lambda \in \mathbb{C} \}.$$
 (3.3)

Clearly K is a closed subset of $\bar{\Delta}$ and when w is radial we have $K = \bar{\Delta}$. In §4 we shall further restrict our choice of χ . As in (3.1) we let A^w denote the set of functions $f: K \to \mathbb{C}$ of the form

$$f(z) = \int_{\Omega} \chi(z\lambda) \, d\mu(\lambda) \qquad (z \in K),$$

for some $\mu \in M^{w}$. We then say that μ represents f. Let

$$Z = \{ \mu \in M^w : \mu \text{ represents } 0 \}.$$

Then Z is a closed subspace of M^w and $A^w \approx M^w/Z$. Thus for ||f|| we take

$$||f|| = \inf\{||\mu|| : \mu \text{ represents } f\}.$$

Now f is continuous on K and analytic on K^0 ; because each function

$$f_n(z) = \int_{|\lambda| \le n} \chi(z\lambda) \, d\mu(\lambda)$$

is analytic on K^0 (= Δ when w is radial) and $f_n \rightarrow f$ locally uniformly in K^0 .

We now show how (3.2) gives a well-defined pairing. To this end, set

$$B^{w} = \left\{ \varphi \in H_{\infty}^{w} : \int_{\mathbb{C}} \varphi \, d\mu = 0 \text{ for all } \mu \in Z \right\},\,$$

so that (3.2) gives a well-defined pairing on (B^w, A^w) .

THEOREM 1. $(A^w)^*$ is isometrically isomorphic to B^w .

Proof. For $\varphi \in B^w$ set $\Gamma_{\varphi}(f) = \langle \varphi, f \rangle$, where $f \in A^w$. Then $|\Gamma_{\varphi}(f)| \leq ||\varphi|| \, ||\mu||$ for any μ that represents f. Thus $|\Gamma_{\varphi}(f)| \leq ||\varphi|| \, ||f||$ so that $\Gamma_{\varphi} \in (A^w)^*$ with $||\Gamma_{\varphi}|| \leq ||\varphi||$. Evidently the map $\varphi \to \Gamma_{\varphi}$ is linear. To show that $||\Gamma_{\varphi}|| \geq ||\varphi||$ we choose, for each $\lambda \in \mathbb{C}$, the mass μ_{λ} to be the point measure at λ . Let μ_{λ} represent f_{λ} so that, in fact

$$f_{\lambda}(z) = \chi(\lambda z)$$
 $(z \in K)$.

Then $||f_{\lambda}|| \leq w(\lambda)$ and hence

$$\|\Gamma_{\varphi}\| \ge \sup_{\lambda} |\Gamma_{\varphi}(w(\lambda)^{-1} f_{\lambda})|$$

$$= \sup_{\lambda} w(\lambda)^{-1} |\langle f_{\lambda}, \varphi \rangle|$$

$$= \sup_{\lambda} w(\lambda)^{-1} |\varphi(\lambda)| = \|\varphi\|,$$

as required.

To prove that Γ is onto we fix $T \in (A^w)^*$ and let $\varphi(\lambda) = T(f_\lambda)$, where $\lambda \in \mathbb{C}$. Suppose that the entire function $f_\lambda(z) = \chi(\lambda z)$ has expansion

$$f_{\lambda}(z) = \sum_{n=0}^{\infty} a_n \lambda^n z^n \qquad (z \in K).$$

Let u(z) be the identity function, u(z) = z for $z \in K$, and note that the function

$$a_n u^n = (1/2\pi i) \int_{|\zeta|=R} \zeta^{-n-1} \chi(z\zeta) d\zeta$$

belongs to A^w . For $|\lambda| < R$ the series $\sum a_n \lambda^n z^n$ converges to $f_i(z)$ in A^w and hence

$$\varphi(\lambda) = \sum_{n=0}^{\infty} a_n T(u^n) \lambda^n.$$

Thus φ is entire and since $|\varphi(\lambda)| \le ||T|| \, ||f_{\lambda}|| \le ||T|| \, w(\lambda)$ we have that $\varphi \in H_{\infty}^{w}$. Suppose now that

$$\int_{\mathbb{C}} \chi(z\lambda) \, d\mu(\lambda) = 0 \qquad (z \in K).$$

Then

$$\int_{\mathbb{C}} \varphi \, d\mu = \int_{\mathbb{C}} T(f_{\lambda}) \, d\mu(\lambda) = T\left(\int_{\mathbb{C}} f_{\lambda} \, d\mu(\lambda)\right) = 0,$$

since $\int_{\mathbb{C}} f_{\lambda}(z) d\mu(\lambda)$ is zero for $z \in K$, as may be seen by applying point-evaluation

functionals. Hence $\varphi \in B^w$. Finally, if $f \in A^w$ is represented by μ , we have

$$\Gamma_{\varphi}(f) = \int_{\mathbb{C}} \varphi \, d\mu = \int_{\mathbb{C}} T(f_{\lambda}) \, d\mu(\lambda) = T\left(\int_{\mathbb{C}} f_{\lambda} \, d\mu(\lambda)\right) = Tf$$

so that Γ is onto, as required.

4. Radial weights. The reasoning above includes the case of non-radial weights. For some w and χ , the set K need not be all of $\bar{\Delta}$. It can have empty interior and we may even have $K = \{1\}$, for example, with $w(\lambda) = (1 + |\lambda|^k) |\exp \lambda|$ and $\chi(\lambda) = \exp \lambda$. The set K need not be connected; with the w above and with $\chi(\lambda) = \lambda^k \exp \lambda$ we obtain $K = \{0, 1\}$. We do not know whether it is possible to choose χ so that K is convex. We consider now the case of radial weights; non-radial weights are discussed in §5.

Theorem 2. Let w be radial and satisfy (2.1). For suitable choice of χ we have $H_{\infty}^{w} = B^{w} = (A^{w})^{*}$.

Proof. Since, by assumption, $\log w(r) = \log \tilde{w}(r)$ is a positive unbounded convex function of $\log r$, it is possible to construct a function $\chi(z) = \sum_{n=0}^{\infty} a_n z^n$ in H_{∞}^w with $a_n \neq 0$, $n \geq 0$ (see [3, Theorem 2] where a more precise result is proved). Suppose that $\varphi \in H_{\infty}^w$ and let μ represent 0, so that

$$\int_{\mathbb{C}} \chi(z\lambda) \, d\mu(\lambda) = 0 \qquad (z \in \bar{\Delta}).$$

For $z \in \bar{\Delta}$ set

$$g(z) = \int_{\mathbb{C}} \varphi(z\lambda) \, d\mu(\lambda),$$

so that g is analytic for $z \in \Delta$. It is easy to justify repeated differentiation at z = 0; indeed since $\varphi \in H_{\infty}^{w}$ we have a bound

$$|\lambda^n \varphi^{(n)}(\lambda)| \le M_n w(2\lambda) \qquad (\lambda \in \mathbb{C}).$$

Thus, for $|z| \le 1/2$, for example, we have

$$g^{(n)}(z) = \int_{\mathbb{C}} \lambda^n \varphi^{(n)}(z\lambda) \, d\mu(\lambda)$$

and so, in particular,

$$g^{(n)}(0) = \varphi^{(n)}(0) \int_{\mathbb{C}} \lambda^n \, d\mu(\lambda).$$

This holds for all $\varphi \in H_{\infty}^w$. We take $\varphi(z) = \chi(z)$ to obtain, for all $n \ge 0$,

$$g^{(n)}(0) = n! a_n \int_{\mathbb{C}} \lambda^n d\mu(\lambda) = 0.$$

Hence $g(z) \equiv 0$ for |z| < 1 and, by continuity,

$$0 = g(1) = \int_{\mathbb{C}} \varphi(\lambda) \ d\mu(\lambda),$$

completing the proof.

We now consider $(H_0^w)^*$.

THEOREM 3. Let w be radial and satisfy (2.1). Then $(H_0^w)^* = A^w$.

Proof. Let $B_0^w = B^w \cap H_0^w$. When w is radial $B^w = H_\infty^w$ and so $B_0^w = H_0^w$. Since B_0^w is a subspace of C_0^w we have the usual isometric isomorphism (using the notation of §3)

$$(B_0^{\mathsf{w}})^* = (C_0^{\mathsf{w}})^*/(B_0^{\mathsf{w}})^{\perp} = M^{\mathsf{w}}/(B_0^{\mathsf{w}})^{\perp}.$$

Since A'' = M''/Z and, obviously $Z \subset (B_0'')^{\perp}$, the theorem is proved once we show that $(B_0'')^{\perp} \subset Z$. Suppose, then, that $\mu \in M''$ with $\int_{\mathbb{C}} \varphi \, d\mu = 0$ for all $\varphi \in B_0''$. We need to show that

$$\int_{\mathbb{C}} \chi_z(\lambda) \, d\mu(\lambda) = 0 \tag{4.1}$$

for each $z \in K = \bar{\Delta}$, where $\chi_z(\lambda) = \chi(z\lambda)$. But $\chi_z \in B_0^w$ and so (4.1) holds for all $z \in \Delta$ and the result follows by continuity.

In the non-radial case we may still get that $(H_0^w)^* = A^w$ and $(A^w)^* = H_\infty^w$. For example, it is clear that the arguments in Theorems 2 and 3 hold for any weight w with a radial minorant (i.e. $w(\lambda) \ge w_1(\lambda)$ for $\lambda \in \mathbb{C}$ with w_1 radial and positive). For other non-radial cases special conditions or special methods involving the Borel transform or Paley-Wiener theorem are required; see [4] for details.

5. Concluding remarks. In the case of radial weights, the approximation condition of [2] yields immediately that $(H_0^w)^{**} = H_\infty^w$. The methods of the present paper give the isometric result. In the radial case the method is independent of the choice of χ provided that $\chi^n(0) \neq 0$, $n \geq 0$. Of course, the set K can vary with χ .

There are non-radial weight functions for which $(H_0^w)^{**} \neq H_\infty^w$, though the problem becomes finite-dimensional. Take $w(\lambda) = (1 + |\lambda|^k) |\exp \lambda|$ and $\chi(\lambda) = \exp \lambda$. Then $K = \{1\}$ and A^w , B^w are both 1-dimensional with $B_0^w = \{0\}$. Clearly dim $H_0^w = k$ and dim $H_0^w = k + 1$.

The results are also very sensitive to a change in weight function. Suppose that $w_n(\lambda) \to w(\lambda)$ uniformly on compact subsets of \mathbb{C} . We may have $(H_0^{w_n})^{**} = H_{\infty}^{w_n}$ but $(H_0^{w_n})^{**} \neq H_{\infty}^{w_n}$, or we may have that $(H_0^{w_n})^{**} \neq H_{\infty}^{w_n}$ but $(H_0^{w_n})^{**} = H_{\infty}^{w_n}$.

The problems and ideas of the present work have counterparts in \mathbb{C}^n . However the essential difficulties remain and so we do not consider the matter further.

REFERENCES

- 1. J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
- 2. K-D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, preprint.

- 3. J. Clunie and T. Kovari, On integral functions having prescribed asymptotic growth, II, Canad. J. Math. 20 (1968), 7-30.
- 4. M. J. Crabb, J. Duncan and C. M. McGregor, Some extremal problems in the theory of numerical ranges, *Acta Math.* 128 (1972), 123-142.
- 5. L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970) 276-280.

MATHEMATICS DEPT. UNIVERSITY COLLEGE LONDON WC1E6BT, U.K.

DEPT. OF MATH. SCIENCES UNIVERSITY OF ARKANSAS FAYETTEVILLE, AR 72701 U.S.A.