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1. Introduction. Let w be a strictly positive function on C and let HZ, respectively
HQ, denote the Banach spaces of those entire functions <p(z) with |<p(z)| = O(w(z)) and
\<p(z)\ = o(w(z)). In this generality, these spaces may contain only constants, but for
many functions w(z) these will be interesting Banach spaces with norm

\\<p\\w = Sup{\<p(z)\/w(z):zeC}.

We study two specific problems.
(A) For which weight functions w is HZ isomorphic, possibly isometrically, to

(HZ)**?
(B) For which weight functions w can the first dual (H%)* be identified with a space

of functions analytic on some subset of C?
Some answers to (A) were given about 20 years ago by J. Shapiro, A. Shields and

G. D. Taylor; unpublished, but see [2] where (A) is studied by an abstract functional
analytic approach. Problem (B) has been much discussed for functions analytic in the unit
disk A, e.g. for Bloch functions in [1]. Our motivation for the study of these problems,
however, comes from [4], where it is shown that the answer is "yes" to both problems for
the following very special weight functions w.

Let K be a compact convex subset of the closed unit disk and set

w(A) = max{|exp Az|:z BK}.

Although it rarely happens that (//£)* is a Banach algebra under its natural pointwise
product, it is for such a function w.

The results obtained are satisfactory only in the case of radial weights, i.e.
w(A) = w(|A|), where w grows faster than any polynomial. We give some partial results
for the non-radial case and indicate where the difficulties arise.

2. The weight functions. Given any positive w on C we define

*(A) = sup{|<p(A)|:<pe/C \\tp\\w*l}.

Clearly w ̂  w and HZ = HZ- It is clear also, from Montel's theorem, that for each A e C
there exists (p\(z) e HZ with w>(A) = |<PAWI- Also w is lower semicontinuous since it is the
supremum of a family of continuous functions; frequently w is actually continuous.

We say that w is radial if w(A) = w(|A|). It then follows that w is a strictly increasing
function, unless HZ contains only constants, and that log»v(r) is a convex increasing
function of log r. Thus for radial functions a necessary condition that w(A) = vv(A) is that
logw(f) be a convex increasing function of logt. Perhaps this condition is also sufficient;
some evidence for this is provided by [3]. For our results we might as well replace w by w;
so henceforth we assume that w = w > 0.

We wish to disregard the case when HZ is finite dimensional. In the case of radial
weights this means discarding weights such as »v(A) = 1 + |A|*, k e N, where HZ is the
space of all polynomials of degree at most k and H% is the space of all polynomials of

Glasgow Math. J. 32 (1990) 215-220.

https://doi.org/10.1017/S0017089500009241 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009241


216 J. M. ANDERSON AND J. DUNCAN

degree at most k — 1. For this reason, when w is radial we assume that for 0 < t < 1,

limw(tr)/w(r) = O. (2:1)

For non-radial transcendental weights H'(A), the space HZ may still be finite dimensional,
e.g. if w(A) = (1 + |A|*) |exp A|.

3. The duality. We recall the reasoning of [4] for the case M>(A) = exp(|A|). Here HQ
is a closed subspace of Cfi and (Co)* = MW, the space of regular Borel measures /JonC
for which

||/*|| = Jiv|d/i|<<».

Thus (HO
V)*~MW/(HO

V)±. This abstract identification of (//£)* is similar to that for
(lip a)* obtained in [5]. The "concrete" identification of (Ho)* is obtained as follows. For
the closed unit disk A let A1" denote the set of those functions / : A-» C of the form

/(z)=fexp(zA)^(A) (zeA), (3.1)
Jc

for some /x e Mw. The formula

(<p,f)=\ cpdn, (3.2)
Jc

where/is given by (3.1), gives a pairing between HZ and Aw. This involves showing that
fi e (HZ)X if and only if /j, ± exp(zA), z eA . It is then routine to check that (Aw)* = HZ

For the rest of this section we assume only that w is strictly positive even though we
occasionally mention the implication of w being radial. Choose any x(z)e H™ w'th
HzIL = land define K = K(X) by

K = {z 6 A: \%{zX)\ ^ w(k) for all A e C}. (3.3)

Clearly K is a closed subset of A and when w is radial we have K = A. In §4 we shall
further restrict our choice of %. As in (3.1) we let Aw denote the set of functions/: K—> C
of the form

f(z)=\X(z\)dlt(k) (zeK),
Jc

for some fi e Mw. We then say that fi represents f. Let

Z = {jU € Mw: /x represents 0}.

Then Z is a closed subspace of Mw and Aw « Mw/Z. Thus for | |/ | | we take

Il/H =inf{||/u|[:// represents/}.

Now / is continuous on K and analytic on K°; because each function

/n(z)=[ *(zA)4i(A)

is analytic on K° (=A when w is radial) and / „ - » / locally uniformly in K°.
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We now show how (3.2) gives a well-defined pairing. To this end, set

Bw = I(p eHZ: [ q>d\i = 0 for all fiezi,

so that (3.2) gives a well-defined pairing on (Bw, Aw).

THEOREM 1. (Aw)* is isometrically isomorphic to Bw.

Proof. For q> e Bw set T<p(f)= (<p,f), where / eAw. Then \rv(f)\ ^ \\q>\\ \\n\\ for
any n that represents/. Thus |r , ,(/) | ^ ||cp|| \\f\\ so that Tve(Aw)* with | | r j | ^ \\q>\\.
Evidently the map q>—*TV is linear. To show that \\TV\\ ^ \\cp\\ we choose, for each A e C,
the mass fik to be the point measure at A. Let (ix represent fx so that, in fact

(zeK).

Then ||/A|| ^ w(A) and hence

= supw(A)-1|(A, <p)\

= supw(A)-1|<p(A)| =
A.

as required.
To prove that T is onto we fix T e (Aw)* and let g>(A) = T(fx), where A e C. Suppose

that the entire function fx(z) = #(Az) has expansion

/*(*)= ia«AV (zeK).

Let M(Z) be the identity function, u(z) = z for zeK, and note that the function

«„!*" = (i/2*o f rn-lxte)dz

belongs to A*. For |A| < R the series S flnA"z" converges to /^(z) in Aw and hence

n=0

Thus (p is entire and since |(p(A)| ̂  | | r | | ||/A|| ^ | | r | | w(A) we have that tpeHZ. Suppose
now that

y(zA) dju(A) = 0 (z e /L).
Jc

Then

since JcA(z) ^'(A) is zero for z e K, as may be seen by applying point-evaluation
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functional. Hence q>eBw. Finally, if / eAw is represented by n, we have

rv(/) =

so that T is onto, as required.

4. Radial weights. The reasoning above includes the case of non-radial weights.
For some w and x> the set K need not be all of A. It can have empty interior and we may
even have K = {1}, for example, with w(A) = (1 + |A|*) |exp A| and #(A) = exp A. The set
K need not be connected; with the w above and with #(A)= ^ exp A we obtain
K = {0, 1}. We do not know whether it is possible to choose % so that K is convex. We
consider now the case of radial weights; non-radial weights are discussed in §5.

THEOREM 2. Let w be radial and satisfy (2.1). For suitable choice of x we have
HZ = BW = (AW)*.

Proof. Since, by assumption, log w(r) = log w(r) is a positive unbounded convex
oo

function of log r, it is possible to construct a function x(z) = E anz" in HZ with an ¥= 0,
n=0

n ^ 0 (see [3, Theorem 2] where a more precise result is proved). Suppose that q> eHZ
and let ju represent 0, so that

1X(zX)dfi(k) = O (zeA).

For z e A set

g(z)=f

so that g is analytic for z e A. It is easy to justify repeated differentiation at z = 0; indeed
since <p e HZ we have a bound

|Ay">(A)|=iMnw(2A) (AeC).

Thus, for |z| ^ 1/2, for example, we have

and so, in particular,

This holds for all <p e HZ. We take <p(z) = x(z) to obtain, for all n § 0,
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Hence g(z) = 0 for \z\ < 1 and, by continuity,

completing the proof.
We now consider (H%)*.

THEOREM 3. Let w be radial and satisfy (2.1). Then (//£)* = Aw.

Proof. Let B% = Bw D H%. When w is radial Bw = HZ and so B% = H%. Since B% is a
subspace of Co we have the usual isometric isomorphism (using the notation of §3)

(BST = (CST/(Bo)x = MW/(B%)X.

Since Aw = Mw/Z and, obviously Z c (BS)X, the theorem is proved once we show that
(B^y c Z. Suppose, then, that (i e Mw with J c <p d[i = 0 for all q> e B£- We need to show
that

1 (4.1)

for each z e AT = A, where ^Z(A) = ^(zA). But %z e BJ" and so (4.1) holds for all z e A and
the result follows by continuity.

In the non-radial case we may still get that {H%)*=AW and (AW)* = HZ. For
example, it is clear that the arguments in Theorems 2 and 3 hold for any weight w with a
radial minorant (i.e. w(A)^»v1(A) for AeC with Wj radial and positive). For other
non-radial cases special conditions or special methods involving the Borel transform or
Paley-Wiener theorem are required; see [4] for details.

5. Concluding remarks. In the case of radial weights, the approximation condition
of [2] yields immediately that (HIS)** ~ HZ. The methods of the present paper give the
isometric result. In the radial case the method is independent of the choice of % provided
that x"(0) ¥=0, « ^ 0 . Of course, the set K can vary with %.

There are non-radial weight functions for which (H%)**=tHZ, though the problem
becomes finite-dimensional. Take tv(A) = (1 + |A|*) |exp A| and x(A) = expA. Then K =
{1} and Aw, Bw are both 1-dimensional with BZ={0}. Clearly dim H% = k and

The results are also very sensitive to a change in weight function. Suppose that
wn(A)—*w(k) uniformly on compact subsets of C. We may have (Ho")** = HZ" but
(//£)** * HZ, or we may have that (//£")** # HZ" but (H%)** = HZ.

The problems and ideas of the present work have counterparts in C". However the
essential difficulties remain and so we do not consider the matter further.
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