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Abstract

The spherical functions of triangle buildings can be described in terms of certain two-dimensional orthog-
onal polynomials on Steiner's hypocycloid which are closely related to Hall-Littlewood polynomials.
They lead to a one-parameter family of two-dimensional polynomial hypergroups. In this paper we
investigate isotropic random walks on the vertex sets of triangle buildings in terms of their projections
to these hypergroups. We present strong laws of large numbers, a central limit theorem, and a local
limit theorem; all these results are well-known for homogeneous trees. Proofs are based on moment
functions on hypergroups and on explicit expansions of the hypergroup characters in terms of certain
two-dimensional Tchebychev polynomials.

2000 Mathematics subject classification: primary 60B15; secondary 60F05, 60F15, 33D52, 20E42,
43A62.
Keywords and phrases: triangle buildings, Hall-Littlewood polynomials, polynomial hypergroups,
isotropic random walks, law of large numbers, central limit theorem, local limit theorem.

1. Introduction

In this paper we transfer some limit theorems on isotropic random walks on homoge-
neous trees to triangle buildings, that is, thick locally finite buildings of type A2. To
explain the results of this paper, we first recapitulate a method to analyze isotropic
random walks on certain graphs; we then specialize this approach to homogeneous
trees and triangle buildings.

Let F be the vertex set of some locally finite, connected, and undirected graph,
which carries the usual metric d. Assume there exists a closed subgroup G of the
automorphism group of (F, d) (which carries the compact-open topology) such that G
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302 Marc Lindlbauer and Michael Voit [2]

acts transitively on F. Then G is a totally disconnected locally compact group, the
stabilizer He c G of any e € F is a compact open subgroup, and we may identify
the discrete spaces G/He = [gHe : g € G} and P. Moreover, the discrete orbit
space F"' := {He(x) : x € F] may be identified with the discrete double coset space
G//He := {HegHe : g € G}. Let coH, e M\G) be the normalized Haar measure
of He. Then the space

Mb(G\\He) := {/x € Af6(G) : o>H, *lx*coHr = /A]

of all //,,-biinvariant bounded signed measures on G is a Banach *-subalgebra of
Mb(G) with the convolution as product and the total variation norm as norm. More-
over, Mb(G\ \He) is isometrically isomorphic with the space Mb(G//He) of all bounded
signed measures on G//He ~ F"'. Via this isomorphism, Mb(G//He) receives a
canonical Banach *-algebra structure with a convolution which admits almost all
properties of a group convolution. More precisely, (G//He, *) is a discrete hyper-
group in the sense of Dunkl, Jewett, and Spector; for details on hypergroups see the
monograph [BH]. In particular, the convolution on Mb(G//He) is probability pre-
serving. The hypergroup structure on G//He can be used to analyze isotropic random
walks on F. A homogeneous Markov chain (Xn)n>0 on F starting at some vertex
e e T will be called an isotropic random walk if

(1.1) P(Xn+1 = x | Xn = y) = P(Xn+l = g(x) | Xn = g(y))

for all x, y e F, g e G, n > 0. As all Xn are uniformly distributed on all He-orbits,
no information on the distributions of (Xn)n>0 is lost under the projection

H'7T : F ~ G/He -> G//He ~ T

More precisely, (Yn := 7r(Xn))n>0 is a homogeneous Markov chain on G//He, and
there exists a unique probability measure /x 6 Ml(G//He) such that

(1.2) P(Yn+l=x\Yn = y) = ti*8y({x}) for x, y € G//He, n > 0,

where Sy denotes the point measure in y. In other words, (Yn)n>0 is a random walk on
the hypergroup G//He. Clearly, Yn has the distribution ii", the nth convolution power
of n with respect to *. If G//He admits 'sufficiently nice features', it will be possible
to derive limit theorems for {Yn)n>0, which can be regarded as limit theorems for
(X„)„>(>. In particular, if the convolution on G//He is commutative (that is, (G, He) is
a Gelfand pair), then one can use the spherical Fourier transform (that is, the Fourier
transform on the commutative hypergroup (G//He, *)) to obtain limit theorems for
(Yn)n>0. This is in particular the case for the examples considered in this paper.

Assume now that F is the vertex set of a homogeneous tree of valency q + 1 with
q > 1. Fix some e € F. Then two vertices x, y € F are contained in the same He-oxb\i
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if and only if d{x, e) = d(y, e) holds. We hence may identify G//He ~ FHt with
No = {0, 1,...}. Moreover, simple counting shows that the hypergroup convolution
of point measures on No is given by

(1-3) Sm * Sn — - 7&\m-n\ + / ~"TT " T$\m-n\+2k H T^m+n
(q + l)qmA"-1 f^ (q + l ) ^ " - * q + 1

for m, n e N; see [VI]. Notice that Sm * Sn are probability measures for all m, n € No

and q > 1. In particular, the convolution * is commutative, and the spherical functions
of f can be described in terms of Bernstein-Szego polynomials which are given by
Q(x) = 1 and, for n e N,

(1.4)

These polynomials are orthogonal on [—1, 1] with respect to the weight function

(1.5) wJx) := with xq := > 1;
x2-x2 2^/q

for details see [AW, BH, V1 ]. Notice that for q = 1 we have T ~ 2 and the C\ are the
Tchebychev polynomials of the first kind, that is, C,|(cos/) = rn(cosr) := cos(n/).
Moreover, (1.4) yields that

1 ' - ' • " (n >2,x e
(q + l)g"/2-'

where the Un(cost) := sin((n + l)r)/sin(r) are the Tchebychev polynomials of the
second kind; see [AW, L2]. Most data of the commutative hypergroup (No, *) can
now be determined in terms of Q : The dual space

No := {a 6 Cb(N0) : aK-valued and Sm * 8n(a) = a(m)a(n) for m, n e No}

(Cfe(N0) being the space of all bounded C-valued functions on No) is

No = [ax : x € [-xq,xq],ax(n) = Cq
n{x) forn € Ho],

after identification of [—xq, xq] and No, the Plancherel measure is wq(x)dk\{_ul](x)
with A.|[_U] the Lebesgue measure on [—1, 1] and wq as in (1.5). Moreover, xq

corresponds to the trivial character; for further details on polynomial hypergroups see
[BH]. One can now use Fourier analysis to derive limit theorems for random walks on
(No, *). In particular, moment functions in the sense of Zeuner [Zl, Z2] were used in
Voit [VI, V2, V3] to derive limit theorems for quite general polynomial hypergroups
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which cover the examples above. Similar limit theorems for homogeneous trees were
given earlier by Sawyer [Sa]. Moreover, using asymptotic results for Q at xq based
on (1.6), Lindlbauer [L2] gave a central limit theorem for random walks on (No, *)
together with Berry-Esseen type rates of convergence.

In this paper we transfer the Fourier analytic approach above to triangle buildings.
We do not need formal building theory here and refer to [B, CMSZ, R, T] for details.
Informally, a triangle building A is a simplicial complex consisting of vertices, edges,
and triangles, where any two triangles are connect by a gallery of triangles. The
vertices and edges form a graph which is assumed to be locally finite. Let F be the
set of vertices; then each v e F has a type r(v) € {0, 1, 2} where each triangle has a
vertex of each type. Thickness implies that each edg^ belongs to the same number of
triangles. We denote this number by q + 1 and call q the order of A. Unlike the tree
case, A is not determined uniquely by q; see Tits [T].

Now take two vertices u, v € F. Then there is a subcomplex A of A with u,veA
such that A is isomorphic to a euclidian plane tessellated regularly by equilateral
triangles. Moreover, there are unique m,n e No and rays (u0 = u, u\,... , «„) and
(u'o = u, u\,... , u'm) in A with d(un, v) = m, d(u'm, v) = n, and with r(«,+i) =
r(w,) + 1 (mod 3) and r(u'i+i) = r(«,) — 1 (mod 3) for i > 0. Furthermore, m and
n are independent of A. Hence, for u e F and m,n e No, the set Sn,m(«) consisting
of all v e F with the properties above is well defined. Moreover, v € 5n m(M) is
equivalent to u e Smn(v). Let Gtr be the group of all 'type-rotating' automorphisms
of F, that means for each g e G,r there is a cg e {0, 1, 2} with r(g(u)) = T(M) -I- cg

(mod 3) for all u € T. Then the stabilizer subgroup He of any fixed vertex e acts
on each Sn,m(e). If G,r acts transitively on T and He acts even transitively on each
Sn.m(e) (which is the case in the examples discussed below), then the results mentioned
above imply that isotropic random walks on F can be analyzed by considering their
projections which live on the associated hypergroup structures on

(1.7) Glr//Ht ~ [Sn,m(e) : n, m € No} ~ H\.

In [CM], it was shown that, with no assumptions on Glr and He, any triangle building
A gives rise to a hypergroup structure on Njj (the Am „ in [CM] correspond to (m, n) e
Ny). In this context, an isotropic random walk on the vertices is defined to be one for
which P(Xn+) = y \ Xn = x) =: pn(x, y) depends only on the 'coordinates' of y with
respect to x. That is, if y e Srs(x) and v e Srs(u), then pn(u, v) = pn(x, y). It was
checked in [CM, MZ] that these hypergroups are commutative, and their dual spaces,
Haar measures, and Plancherel measures were determined. We use these results to
derive limit theorems for random walks on these hypergroups. For this, we recapitulate
several results of [CM, MZ] in the next section in the language of hypergroups. In
particular, we identify the hypergroup characters as orthogonal polynomials in two
variables which are orthogonal with respect to certain measures on the compact region
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Z\ c C bounded by Steiner's hypocycloid. These polynomials are closely related
to the Hall-Littlewood polynomials studied in [Mac2], and it follows from a result
of Miller Maley [M] that the orthogonal polynomials above, which depend on the
parameter q, actually generate polynomial hypergroups for all q e R with q > 1. The
results of this paper therefore hold for all q e IR with q > 1 (where the limit case
q = 1 has to be treated separately sometimes).

In Section 3 we introduce 2-dimensional Tchebychev polynomials of the first and
second kind whose orthogonality measures are supported by Z\. These polynomials
are part of a more general class of ultraspherical polynomials studied by Koomwinder
[Kw]. We present expansions of our hypergroup characters in terms of these polyno-
mials. These expansions will be crucial for some asymptotic results which finally lead
to a central limit theorem in Section 6. Proofs of this central limit theorem as well as of
the strong laws of large numbers in Section 5 will be based in this paper on the concept
of moment functions on hypergroups developed by Zeuner [Zl, Z2]. We study these
moment functions in Section 4. In Section 5 we present a local central limit theorem
for random walks on triangle buildings; a similar result for homogeneous trees can be
found in [P]. We also mention a central limit theorem in [BG] for random walks on
H\ associated with disk polynomials.

We finally present examples of triangle buildings from [B, R] for illustration: Let q
be a prime power and F a local field with residual field of order q and valuation v. Let
6 :— {x e F : v(x) > 0} and co e G with v(co) = 1. Let L be a lattice in V := F \
that is, an ^-submodule of V of the form {^Li fl;Vi : a, G £?}, where {viy v2, v^} is
an F-basis of V. Lattices L, L' are called equivalent if L' = tL for some t e F. The
associated equivalence classes [L] will form the vertices of a building Af, where the
triangles consist of distinct vertices [Lj], [L2], [L3] satisfying L{ D L2 D L3 D coLx.
Then G := PGL(3, F) acts on AF by left multiplication in a type-rotating way,
and the stabilizer He of any vertex e 6 TF acts transitively on all Snm(e); see [CM,
Section 2]. Further examples of triangle buildings with prime power orders are given
in [CMSZ]. It is a long-standing open problem whether examples exist for q not a
prime power.

A major part of this paper consists of the thesis [LI]. The research for this
thesis was carried while the the first author held a research position at the GSF-
Forschungszentrum fur Umwelt und Gesundheit.

The authors would like to thank Don Cartwright and an anonymous referee for
some valuable hints. Don Cartwright in particular informed us about the connection
of the polynomials in this paper to the Hall-Littlewood polynomials, which leads to
the positivity results in Remark 2.3. After submission of the paper, we learned about
the paper [CW] which contains similar limit theorems for buildings of type An.
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2. Polynomial hypergroups associated with triangle buildings

Let A be a triangle building of order q. As explained in the introduction, this gives
rise to a hypergroup (NQ, *) which has the following properties by [CM]:

PROPOSITION 2.1. The commutative hypergroup (N^, *) has identity (0, 0) and in-
volution (m, n)~ = (/!, m)for m, n € No. The Haar measure a> with <w({(0, 0)}) = 1
is given by co({(m, n)}) = Nmn with

No.o := 1, Nm,0 := N0,m := (q2 + q + \)q2(»-x\

Nm,n := {q2 + q + \){q2 + q)q2(m+n-2) X (m, n > 1).

Moreover, the convolution of point measures on (NQ, *) satisfies

l " ' " q2+q + l
1

O(m.O) * O(l.O) = —^——

S(m.n) *

(2.1)

1 W

5(m,0) * 5(0,1, J T ((9 + ?)5(m,l) +

5<o.«) * 5(o,i, = ^ — — — r (q2&(o,n+D + (q

5(m.n) * 5(0,1, = 2 —7 (q 5(m „+!, + ^ 5 ( m + | „_), + 5(m_i,n))

for m, n > 1.

Induction on m + n shows that (2.1) determines the hypergroup convolution
uniquely, and that the Banach algebra Mb(Hl) of all bounded measures on N2, is
the closure of the subalgebra generated by 5(i,o, and <5(0,i,. Therefore, multiplicative
functions/ on (N2,, *), which satisfy

(«(«.-) * «(*./))(/") =f(m,n)-f(k, I) for all k,l,m,ne No,

are determined uniquely by their values at (1, 0) and (0, 1). It was in fact shown in
[CM, MZ] that for each z, w € C, there exists a (unique) multiplicative function fZiW

with

(2.2) f:.M,0)= 2 J ^ , z and fz,w(0, 1) = q w
q2 + q + 1 q2 + q + 1
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(where the normalization constant is irrelevant, but useful in view of later representa-
tions of these functions). By (2.1), the mappings

(z, w) H* fz.w(m, n) =: Cq
mn{z, w) (z, w e No)

satisfy the recurrence relations

Cm,nCi,o =
 2 I

(2.3) * +9

q + X (^+1.0 + (9 + DC-u) •

C + C n+l + Cm

.,-, + C J (m,« > 1).

Induction onm + n shows that for m, n e No, C* n is a polynomial in z, iy of degree
m + n having the form Cq

mn(z, w) = cq
mnz

mwn+pln(z, w) withdegp^,n < m + n- 1
and, form, n > 1,

1 1
ci _ ci — : ( ci —

The Cq
m „ were constructed in [CM]. To describe this construction, put

O I— \S = (•^1,^2)^3) ^ ^- • S1S2S3 ^ 1 | .

Then the continuous mapping

(2.4) T : S —*• C2, s h-> (z(i), w(*)) := (st + s2 + s3, i,"' + s2~*

is onto (notice that for z, m € >f the polynomial X3 — zX2 + wX — 1 € C[X] has
zeros su s2, 53 with s = (s l t ^2, ^3) € 5 and z = z(s) and w = w(s)). Moreover, let
S3 be the group of all permutations of {1, 2, 3},

( 2 5 ) K •=

and

/i<\ /- \ ^1 ~ s2/q\ (sx - s3/q\ (sz - s3/q\
(2.6) c(s{, s2, s3) := I I I I .

V Si-S2 ) V Si - S3 ) V S2-S?, )

The following was shown in [CM, Section 3].

https://doi.org/10.1017/S1446788700008995 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008995


308 Marc Lindlbauer and Michael Voit [8]

PROPOSITION 2.2. Letq > 1. Then there is a unique family (C^n)m n ofpolynomials
with deg C^ n = m + n which satisfies (2.3) and

The Cq
m n are given as follows:

(1) IfseS with Si ^ Sj for i ^ j , then

, w(s)) = —— > s^s "c(saU sa2, sa3).
H aeS,

(2) IfseS with s2 — 53 / slt then

), w(s)) = Kq-(m+n) t2 2)%
sm 1

l , ) - ^ + (*2.2 + (m+ n)~k2,2K'"
si J

with
± (q ± l)(s,q - sj)2

 = q(q+l)(s^ + sj)-2(q3 + l)Sls2

(st-SjV ' " • (^-^2)2

, r —(o - l)(siq - s2)(s2q - Si)
and k2,2 := .

to-^i)2

(3) Ifs € 5 with st = s2 = siy then

Cm,Ms), w(s)) = Ksr" Q(m, n)/(2qm+n)

with
Q(m, n) := (q - \fmn{m + n) + (q - \)2(q + \){m2 + 4mn + n2)

+ 3(q - \)(q + l)2(m + n) + 2(q + \)(q2 + q+\).

REMARKS 2.3. (1) For all indices q belonging to triangle buildings, (C* n)m,n>o
admit a product formula ClnCkl = Y,r.seNo

hlm.nuk.i).(r..s)Ch w i t h u n i 1 u e nonnega-
tive linearization coefficients which have the following interpretation in terms of an
underlying building F:

(2-7) *<U<u>,,,> = T 7 % - | - W « ) n S,.k(v)\

for any vertices M, V e F with u € S,,r(v); see Section 1 for the notation. Notice
that (2.7) is independent of the particular triangle building and depends on q only (see
[CM]); this means that all buildings of some fixed order q lead to the same hypergroup
structure on H\.
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(2) A comparison of Proposition 2.2 (1) with [Mac2, page 208] shows that for any
q e R with q > 1, the (C« n)mn>0 defined in Proposition 2.2 can be written in terms
of the Hall-Littlewood polynomials as C%,n(z(s), w(s)) - P(m+n,n,0)(si,s2, sy, \/q).
[Mac2, Chapter III.3] therefore shows that the linearization coefficients h1mn)(kl)(rs)

are certain Hall polynomials (in q) up to certain positive normalization constants; see
[Mac2, Chapter II] for an extensive discussion of these polynomials. It was shown by
Miller Maley [M] that the Hall polynomials are in fact polynomials in (q — 1) with
nonnegative integer coefficients which in particular implies that all /i*mi(1)i(ti/)i(riS) are
nonnegative for all q e K with q > 1. As all preceding results remain correct for all
q > 1, these polynomials define a polynomial hypergroup structure for each q € R
with q > 1. Without additional effort we therefore may assume from now on that
q > 1 holds (where sometimes the case q = 1 has to be excluded).

(3) For q = 1, the (C^ n)m,n>o and the associated hypergroup are related to the
building that belongs to a regular tessellation of the euclidian plane by regular triangles.
To be more precise, consider the discrete subgroup L = {m + ne27ri/3 : m,n e 1}
of (C, +) on which the dihedral group D3 generated by the reflections on the lines
R • 1, R • e2ni/3 and R • e4"'/3 acts as group of automorphisms. The semidirect product
G := L x D3 is a group of type-rotating automorphisms of the canonical graph
belonging to L with H := D3 as stabilizer. Therefore, the associated hypergroup
according to (1.7) is just G//H.

We next present N2, and the Plancherel measure for q > 1.

THEOREM 2.4. The dual space

U\:= [a € Cb(H
2

0) : (<5(m,n) * 8ia,b)-)(a) = a(m, n) a(b, a) Vm,n,a,be Ho)

is given by N^ = [fzj : z € Zq], where Zq is the compact closed region in C bounded
by the closed Jordan curve yq(t) := e2" + (q + q~l)e~", t 6 [0, 27r]. Moreover, the
mapping I : Zq —>• NQ, Z I-> fz.z is a homeomorphism {where H\ carries the topology
of pointwise convergence). If one identifies H\ and Zq (which we shall do from now
on), then the Plancherel measure n on Nj; associated with co is the probability measure
dn(z) = Rq(z)dz\z,< where dz^s the usual Lebesgue measure o n C ~ K2,

* W

q\q + l)(q2 + q + 1)V4(;3 + ? ) - z2? - \%ZZ + 27

and Z\ C Zq is the compact region bounded by Steiner's hypocycloid.

PROOF. By (2.1) and (2.2), a multiplicative function fzw on N2, satisfies

/((«,#!)-)=/((if, m))=/((m,n))
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for m, n e Ho if and only if w = z holds. It was shown in [MZ] (see also below) that

(2.8) M := {z e C : fzj bounded on N*} -ZqDZx.

This implies Njj = {fz%z : z € Zq}. As the mapping / is injective by (2.2), surjective
by (2.8), and continuous with a compact range, / is a homeomorphism. Finally, the
Plancherel measure n was determined in [CM, Proposition 5.2] (notice that the proof
there carries over to the case q > 1). Finally, n is a probability measure due to the
normalization a>((0, 0)) = 1. •

We here notice that the identity character 1 6 Nj is given by 1 = f^^ with
zq := (q2 + q + l)/q, which belongs to the boundary\)f Zq.

As the proof of (2.8) in [MZ] is quite long, we give a compact proof. According to
[CMS, page 230], the subset

SSym : = is = (si,s2, s3) € C 3 : sxs2s3 = l,si+s2+h = s;1 + s~] + s~1}

of S can be described as follows:

LEMMA 2.5. Ssym = H} U H2 with

Hi := {(«"' , <?"\ «-«

e~" r^e'

: i?,, i?2 € [0, In}},
10) : a e 53) r > 0, & G [0, 2;r]}.H2 := [o (ea\ re

Moreover, we have the following description of the set M.

LEMMA 2.6. If Sq : = {s e Ssym : q~l < \si\ < q for i = 1 ,2 ,3}, then M =

[st + s2 + S3 : s € Sg}.

PROOF. Let s e Sq. If s> ^ Sj for / ^ j , then by Proposition 2.2 (1), z(s) :—
si + s2 + s3 satisfies

sup ClJz(s),z(s)) < sup <oo

and hence Z(J ) e A/. The other cases follow similarly. To check the reverse inclusion,
consider 5 e 5sym \ 5,,. By Lemma 2.5 and symmetry, we may assume that |$i| = 1,
|i21 > <? and |s3| < \/q. Then, by Proposition 2.2 (1),

CmQ(z(s),z{s)) oo

as m —> oo since c(s2, s\, s3) + c(s2, Si, st) ^ 0. Thus z(s) & M. •
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To complete the proof of (2.8), we claim that for r > 1 the set

Z r : = [si +s2 + s3: (sus2, s3) 6 Sr]

is the compact closed region in C bounded by the closed Jordan curve

Yr{t) := e2il + (r + r " 1 ) ^ " (t € [0, 2TT]).

For this, use Lemma 2.5 and write Zr = Z\ U Z1 with

K = {si + s2 + s3 : (su s2, s3) G Sr n //,}

where, by the definition of H2, Z
2
r = {ys(t) '• s e ] l , r], t e [0, 2n]}. It can be checked

(see [CM, Proposition 4.5]) that Z\ is the compact closed region in C bounded by the
hypocycloid yt. As for r > s > 1, ys is a Jordan curve contained in the interior of yr,
(2.8) follows.

REMARK 2.7. (1) Let q > 1 and p > 2. Then a character/2 l e K 2 belongs to
Z / ( N Q , a)) if and only if z € Zq\-vP holds. This follows readily from Proposition 2.1
and the methods in the proof of Lemma 2.6; this was already observed in [MZ] for
prime powers q.
(2) Let q > 1. Then the character/3 3 belongs to Z/(N^ct>) for all p > 2 and

is positive and in the support of the Plancherel measure. Therefore, by [BH, Theo-
rem 2.5.6], Nj; has the Kunze-Stein property for any p > 2. This fact was derived in
a different way in [MZ].

REMARK 2.8. (1) (2.1) and induction yield, for m, n,k,l € No,

supp(5(m n) * <$(/U)) C {(M, v)eMl: u — v = m-n + k-l mod 3}.

This means that Lo := [(m, n) e No : m = n mod 3} is a supernormal subhyper-
group of NQ in the language of hypergroups; see [BH].
(2) (2.3) and induction imply that for all m, n e No and z e C,

cln (e*"'^-2"'3!) = e
2"("-")i/3Cln (z,z);

see [CM, Section 3]. This equation is obviously connected with the supernormality

of Lo.

Finally, we introduce the Fourier transform of measures /x e Mb(Hl) by

, n))) (z £ Zq ~ \%2).

As IQn(z-^)l - 1 forz 6 Zq, the function jx is continuous on Zq with ||/x||oo < ||/x||.
For further basic properties of the Fourier transform on commutative hypergroups we
refer to [BH].
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3. Expansions into generalized Tchebychev polynomials

Here we expand the polynomials C* „ in terms of certain Tchebychev polynomi-
als (Tmj,)mn^0 and (Um,n)m,n>0 of the first and second kind respectively which are
orthogonal polynomials with respect to certain canonical measures on the region Zj
bounded by Steiner's hypocycloid. We define these polynomials according to [Kw].
Each z € Z, can be written as z = z(s, t) := e's + e'" + e«-*+'> (s, t e [0, 2n]). For
m,n € No, put

e± /„ f\ . _ i(ms+nt) _£ eH(m+n)s-nt) . i(-(m+n)s+mt)

_j_ ei(-ns-ml) • ei(ns-(m+n)l) _^ g/(-BiJ+>n+n)0 / ft > 1)

<o(*. 0 : = eiml + e-ml + ̂ -"+m'\ e+m(s, t) = < 0 ( / , s), (m > 1)

<o(*. 0 : = ! a n d eo,m = eZ.o = 0- (»« > 0).

In [Kw], Koornwinder derived the following result:

PROPOSITION 3.1. For all m,n e No r/iere exist unique polynomials Tm,n, Um,n e
C[z, z] such that for all z = z(s, t) in the interior ofZx

rm,n (z, z) = €+ n(s, o W {/„,„ (z, z) = f
eu(s,t)

holds with e^fis, t) ^ 0. The polynomials have the form Tmjl(z, z) — zmz" +rcmn and
Um,n(z, z) = zmz" + nm,n with nm.n, nm,n e C[z, z] of degree at most m + n - 1. 77ie
(^m,n(z, z))m.n>o and {Um,n(z, z))m.n>o are orthogonal polynomials with respect to the
measures R{(z)dz\z, and Ri(z)~idz\zl respectively on Z, with Rx as in Theorem 2.4.

REMARK 3.2. (1) By Weyl's character formula for 5 f/(3) (see, for instance, [Si,
Theorem IX.9.1]), we may regard {Um,„ : m, n > 0} as the set of all characters of
5 f/(3), where the character associated with Um,n at some element of 5 f/(3) with eigen-
values e", e~", e'u~s) for s, t e [0, 2n] is given by Umn(z(s, t), z(s, t)). In particular,
the Um_n admit a product formula with nonnegative linearization coefficients which
corresponds to the decomposition of tensor products of the associated irreducible
unitary representations.

(2) By Proposition 2.2 (1), the polynomials Cx
mn and Tmn are related by Cx

mn =
Tm,n/6, C]

m0 = 7m,0/3, Qm = T0,m/3, Qo = 7o,o (m, n > 1).

We now turn to the expansion of Cm n in terms of Tmn forq> 1.

PROPOSITION 3.3. The connection coefficients Am,n.r,.y = hmnrs(q) of

r..veNo
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satisfy hm,n,r,s > 0.

A similar positivity result for quite general one-dimensional orthogonal polynomi-
als was given by [LR]. Proposition 3.3 follows from the following trivial observation
and Lemma 3.5 below.

REMARK 3.4. Consider the polynomial p(s\,S2,s3) := ^/aeS}s^ls
l
a2s^3 with

0 < m < I < k. Then, for s . i e l and (su s2, s3) := (eis, <r ' \ e*-"^),

Therefore, for each symmetric polynomial p e C[s\, s2, s^] with nonnegative coeffi-
cients there exist n0 6 N and coefficients hkj > 0 (0 < k, I < n0) with

pie", e-u, ei(-'+") = J ^ At./7i,,(z(j, f), zUTO), Vs, r e

Proposition 3.3 is now a consequence of the following lemma, which is Proposi-
tion 3.5 in [CM]. Note that the proof there needs correcting: the numerators saix and
saix in the expression for F(x, y) in line 3 of the proof there should be 1. The lemma
also follows from [CMS, Proposition 3.1].

LEMMA 3.5. Let q > 1. Form, n G No, the rational function

S = {s e C3 : s{s2s3 = 1) - • C, m Cq
mn{s{ +s2+ s3, s;1 + s~l + s~l)

is a symmetric polynomial in S\, s2, 53 with nonnegative coefficients.

REMARK 3.6. (1) For m, n e No and s e S with s, ^ s; for j ^ j ,

(3.1) C. n (s ) := g

is a polynomial in q of the form C£ n(s) = Yl]=oxj (Q ~ I)7'' where the jr( = x"'"(s)

are symmetric rational functions in s\, s2, 53. It can be checked (see [CM]) that these
functions are polynomials in s\, s2, 53 with nonnegative coefficients (which leads to a
further proof of Lemma 3.5). In particular, it is easy to see that JC™1" = YLa es, snt"s"2

andx?'n = E t c E;=O E*=O *r"'+ys2
+"kh+k~J • In particular,

( ), z(s,

implies that/zm,n,m,n >
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(2) Each x € K with x > 3 can be written as x = x(r) = 1 + r + r"1 with r € R,
r > 1; in this case,

(3.2) Tm,n(*(/•),*(/•)) = rm + — + r" + - + rm+n + - i - > 0.

Proposition 3.3 hence yields C%n(x,x) > 0 for <7 > 1 and JC G R with x > 3.
Moreover, (3.3) implies that for r; € [0, In q] and m,n € Mo,

As Cm n(x(q), x(q)) = 1 for m, n e No, we obtain for m,n e No,

(3.3) C* n (x(e»/q),x(e»/q)) > <r(m+n)* X(T? € [0,

(3) The definition of the Tm ,„ shows that |Tm ,n(z, z)| < r m n (3 , 3) for all m, n G No,
z € Zi. It follows from Proposition 3.3 that for all q > 1,

(3-4) |C* n(z, z)| < ^ , , ( 3 , 3) for all m, n 6 No, z 6 Z,.

(4) Computing r m n ( 3 , 3) and C«_B(3, 3) (see Proposition 2.2 (3)), we see that for

each q > 1 there is a polynomial 2* G K[*. ^

^ w ^ ) for W , W € N O .

In Section 7 we need the following technical results about the hmnkf.

LEMMA 3.7. Le/ q > 1 am/ m, n G No wi/li m > n.

(1) If(m,n) G Lo. rt^w /im.n.o.o > 0. Moreover, if(m,n) € Lo \ {(0,0)}, then

hm,n,\.\ > 0.
(2) Ifm — n = 1 mod 3, then hmn\a > 0. Moreover, if additionally (m,n) ^

(1,0), then hm,n,0,2 > 0 .

PROOF. By Remark 3.6 (1) it suffices to check that the corresponding coefficients
in x™'" are positive, and this follows from Remark 3.6 (1) and Remark 3.4. •

We next turn to expansions in terms of the Um,„.

PROPOSITION 3.8. For q > 1, the polynomials Cq
m n satisfy

CU = Uo.o, Cf.o = 2+
q
 + 1 £/,.o, Cf., = 4 ^ 3 tfu - 9(9 + 1)].

q , = ^ k 3 ^ . . - ^ 2 ( f / i . o + t/0.2)], Cq
20 = -Aq2(q+ l)U2,0-q(q+ l)U0A],

a ' <i

Cli = —A<!3V2.2 - <12(UXO + f/0.3 + £/,.,) +qUu - 1].
9
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Moreover, for m, n > 3,

,,o - q(q + 1)0,-2,1 + (q

u + 4 t / m _ 3 , 2 -

PROOF. The cases m, n < 2 can be checked directly. For general m,n e No,
consider s, t e [0, n] such that (su s2, s3) := (e's, e~'', e~i(s~')) satisfies st ^ Sj for
i ^ j . The function Cq

mn defined in (3.1) is a polynomial in q with

Cq
mn(su s2, si) = do + xiq + a2q

2 + a3q
3,

where the coefficients a( = a" "(s, t) are given as follows. If m, n > 3, then

V = ~7 H T 7} 7 = -Um~2,n-2\Z{S, t),Z(s, t)j.
(s2 - s i ) ( s 3 ~ Si)(s3 -s2) V /

We omit the arguments of £/„,„. A similar computation shows that a™2 = £/m_2,o,
a™1 = 0, and a^'° = f/m_3 0 for m > 3. Moreover, for m, n > 3,

— s2)
e~+ln_2(s, t) + e~n(s, t)

eu(s,t)

= U * + 0" i + U i i

and, similarly, a"'2 = £/m_i,i + C/m_3.2 as well as aj"'' = Un-3,i anda^'0 = —Um-2.\ +
f/m-3,o- Furthermore, for w, n > 2,

\ s 2 n ( o * ) * ^ i 5 is s i "™f~ ^~ s i s oS I —I— s \ s )

(S2 — -Sl)(*3 -Si)(Si ~S2)

~ eiA(s,t)
/ / / \ TI i 71 \
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and, similarly, <£•' = -f/m_2,2 - I/»-i.o anda2
m0 = Um,0 - £4,-2,1- Finally,

m.n

for all m, n. Putting all results together, we obtain the proposition. •

4. Moment functions

Moment functions on commutative hypergroups are K-valued functions with addi-
tive properties similar to the multiplicativity of characters; they generalize the func-
tions* i-> x" on (K, + ) . As shown in [BH, VI, V2, Zl , Z2], they provide a useful tool
in probability theory. In many cases, they can be constructed as directional derivatives
in the dual space at the identity character 1. We thus need a suitable parameterization
of some neighborhood of 1 in the dual which will be identified with Zq according Sec-
tion 2. We restrict our attention to the case q > 1 (q — 1 must be treated separately).
In contrast to previous parameterizations we now consider the mapping

I : C2 -* C, (f, r)) H» e2* + e-1'* (g" + e-"1)

which maps {(£, rj) e C2 : £, Re r) e [0, 2n], | Im rj\ € [ - In q, In q]} onto a neigh-
bourhood of 1 according to Section 2, where 1 corresponds to zq = 1 + q + \/q =
z(0, i ln(^)). We are now ready to define moment functions.

DEFINITION 4.1. For r, s,m,n e No and f, IJ e C, let

, dr+s /
<pr.s.s.i(m, n) := ir+s J^S"-- \z(-x' y^' ^x' •

The moment function mrjl of index (r, s) e N2, is now defined by

m,iS(m, n) : = <pr.x,o,i\n<,(m, n).

EXAMPLE 4.2. A short calculation using the explicit form of Cu0 and C0A shows
that tfio.i and m,i0 are given by

W|,0(w, ri) = m — n-\—

3q2

(q2 - \)(q2 + q + 1) Vgm+2n q2m+"

t
{q2 - \){q2 + q + \) \qm+2n q2m+"
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The expansion of the Cmn in terms of the Tm ,„ in Section 3 leads to the following
representation of the moment functions.

LEMMA 4.3. For all m,n 6 No there exist real numbers dm^nki >; 0 with

k,leZ,\k\+m<2(m+n)

such that for all r, s € No,

mr,s(m, n) = ^ dmn<uk
rls.

<UeZ,|*|+|/|<2(m+n)

PROOF. Fix m, n e No. Proposition 3.3 and the explicit representation of the
Tchebychev polynomials of the first kind in Section 3 imply that there exist constants
cm,n.k,i > 0 such that for all £, r\ G C

Cm.n (z(£, IJ), zfTn)) =

As Cmn (z9, zq) = 1, the constants dm,n,u := cm^kJq
l > 0 satisfy (*) and

(4.1)

The lemma now follows by differentiation. D

We next collect some properties of the moment functions. We in particular obtain
that the pairs (mo,i, m^) and (m, 0, wi2,0) form pairs of moment functions in the sense
of Zeuner [Z2]; see [BH, Section 7.2].

PROPOSITION 4.4. 77ie mr,, have the following properties for r, s G No:

(1) Forallm,n,k,l e No,

same binomial formula holds for the moment functions mo,r-

(2) m\ 0 < m r 0 a n ^ OTQ.1 - mo,r-

(3) / /£ G R and rj e C WJ7/I Im(rj) e [0, ln^], //ien (pr,s.s.n(m, n) < (2(m + n))r + v

andmrs(m, n) < (2(w + n)) '+ s .
(4) For eac/i r e N , there is a constant C = C{q, r) such that for all m,n e No,

mo.r(m, n) > C(m + n)r.
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(5) For m,n,r € Mo, the function ifrr-mn(r)) := ¥>o,r,o,i>j(m> n) IS nonnegative and
increasing on [0, In q] and satisfies for 0 < r)\ < r)2 < Inq

m0Am,n)-}lfrmn(T]i) < mo<r(m, n) - r/frmn(r)2)

Inq-rii ~ lnq-T)2

PROOF. (1) This follows immediately from the multiplicativity of the hypergroup
characters and the Leibniz rule for derivatives.
(2) This follows from Lemma 4.3 and Jensen's inequality.
(3) This follows from (4.1) in the proof of Lemma 4.3.
(4) This follows from Part (2) together with the explicit representation of mOi in

Example 4.2.
(5) Write C* „ as a nonnegative linear combination of the Tkj as in Proposi-

tion 3.3. Differentiation and the definition of the Tkt then show that \j/ is a non-
negative linear combination of nonnegative, increasing and convex functions. As
\jf(\nq) = mo,r(m, n), the lemma is clear.

•
In the next section we shall use the moment functions above in order to introduce

a concept of modified moments of probability measures on N^. As a preparation we
need some further technical results. The following result is a consequence of Parts (3)
and (4) of Proposition 4.4.

COROLLARY 4.5. Let /z € M'(Nj-). Then for any s > 1, JN2m0,sdfi < oo holds if

and only iffNi(m + n)sd/j.(m, n) < oo holds.

PROPOSITION 4.6. Let fx e M'(Ng) andN e N. Then

(4.2) / (m + n)N dfi(m, n) < oo

holds if and only if the function (£, ??) i-» p.(z(t;, ??)) is N-times continuously partially
differentiable for (£, rj) € K x [z € C : Im(z) 6 [0, Ing]}. Moreover, if one of these
conditions holds, then

( 4 - 3 )

PROOF. If (4.2) holds, then Proposition 4.4 (3), the dominated convergence theo-
rem, and induction on r and s yield that the mapping above is Af-times continuously
partially differentiable and that (4.3) holds. Assume now that the mapping above is
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Af-times continuously partially differentiable. Using induction, we may assume, by
Corollary 4.5, that for 0 < s < N - 1,

/ mo^m,
Jt»l

n)dfx(m, n) < oo

with
ds „ f

-—fi(z(O, ir})) = I <po%s#tndii
df) Jhi2

for X] € [0, In q\. By Proposit ion 4.4 (5) we have

—'• \ twO/v( /n ,n) for r] 'f Inq,
\nq-r)

where m,n e No. Hence, by monotone convergence,

d ( ds

mo,N(m, n) dfi(m, n) = — —-

where the right-hand side is finite. This completes the proof. •

5. Strong laws of large numbers

Assume again that q > 1 holds. Based on the moment functions we first introduce
modified moments of N^-valued random variables. We then use these modified
moments to derive some strong laws of large numbers. For practical reasons, it
suffices to consider modified moments of order at most two, that is, modified (two-
dimensional) expectations and variances.

DEFINITION 5.1. Let X be an N^-valued random variable defined on some proba-
bility space (£2, £/, P) with distribution \i € M ' ( N Q ) . We say that the first moments
of X and /A exist if JN2(m + n) d[i(m, n) < oo holds. Denoting the usual expectation
by E, we then put \

and E2(X) := E2(/x) := E(mo,i(X)). Moreover, if/N2(m + n)2dix(m, n) < oo, then
we say that the second moments exist and put

:= E(m2.0(X)) - E,(X)2

and

V2(X) :=
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The following properties of the modified moments follow from Section 4.

LEMMA 5.2. Let iix, /x2 e Af'(N^) having first moments.

(1) E,(/x, * fi2) = £,-(/*,) + E,-(Mi)/or i = 1, 2.
(2) If the second moments of \i\, /z2 exist, then, for i = 1,2, V,(/i, * /x2) =

PROOF. Part (1) and the addition formula in (2) follow from Proposition 4.4 (1).
The nonnegativity of the modified variance is a consequence of Proposition 4.4 (2)
and Jensen's inequality. •

We now study random walks on our hypergroup structures on NQ which are not
necessarily homogeneous in time. For this, let (vn)n>i C M ' ( N Q ) be a sequence
of probability measures. Consider an associated Markov chain (5n)n>0 on NQ with
So = (0, 0) and the transitions

P(Sn = (k, l)\Sn-t = (a, b)) = vn* «<„.»,({(*, /)}). (n e N, it, I, a, be No) .

(Notice that such random walks may be regarded as projections of isotropic random
walks on the associated buildings for prime powers q.) The following result is an
analogue of Kolmogorov's strong law of large numbers.

THEOREM 5.3. Assume that (vn)n>, and (Sn)n>0 are as above with finite second
moments. If(rn)neM C ]0, oof satisfies lim^oo rn = oo and

A 1

then
1 / /E,(5n) + E2(5n) E2(SJ-E,(5n)\\

-1- 7rn{Sn~\ 2 ' 2 j j = 0 a-s-
PROOF. Proposition 4.4 ensures that the pairs of moment functions (m0 i, m02)

(;«i 0, m2,0) satisfy the conditions of [BH, Theorem 7.3.1] (see also [72]). This implies
that with probability one,

lim -—(mi.0(SH) - E , (5J) = 0 and lim - — (m0 , (5J - E2(5J) = 0.

On the other hand, Section 4 implies that the functions mo,(m, n) — (m + n) and
mi 0(m, n) — (m — n) are bounded by a constant independent of m, n. The theorem
now follows after a linear transformation. •
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If the random walk is stationary, the above conclusions together with [BH, Theo-
rem 7.3.24] (see also [Z2]) lead to the following strong law.

THEOREM 5.4. Let (Sn)n>0 be a stationary random walk on N2 associated with v e
A/'CNQ). Assume there exists a constant X e [1, 2[ with fHi(m + n)k dv(m, n) < oo.
Then the modified expectations E|(v) and E2(i>) exist, and

/E2(v) + E,(v) E2(v)-E,(v)
- " ( 2 ' 2

In particular, for A. = 1,

lim SJn = - (E2(v) + E,(v), E2(v) - E,(v)).
n—*oo 2

The following theorem shows that this is no longer true if the first moments of v do
not exist.

THEOREM5.5. Let(Sn)n>0beahomogeneousrandomwalkonMlwith$.2(Si) = oo.
Then, for all a > 0, P({Sn/n e [0,a]2 infinitely often}) = 0.

For the proof we need the following technical observation.

LEMMA 5.6. There exists a constant x0 € ]0, ln(g)[ such that for all x e [0, x0],
z(x) := 1 + e'/q + q/e* and m,n € No,

CIM*), z(x)) > C+ 1(Z(JC), z{x)) and

ClMx),z(x))>Cq
m+Xn(z{x),z{x)).

PROOF. By symmetry it suffices to check the second inequality. By Proposi-
tion 2.2 (1) and a straightforward computation we have

x,q / e e \ ,x,qf_
' yq2n+m ^ q2m+n J ~*~ *2 q2(m+n)

— + + K —,—:
\x qm emxq"J gXim+n)

with K defined in (2.5) and with

. „ (e* — l)2(e2x — a)

q(q - e*)2(q2 - e^) ' 2 ( 9 - ê
2 ^ (q2 -x,q . \^ l/\1 ^ /Vf *• I ,x,q ,

3 "~ q2{q - e*)2{q2 - e2*) ' 4 ' q*(q - ex)2{q2 - e2")'
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We now regard (5.1) as a function of m e OS. It hence suffices to prove

for m > 0 and x sufficiently small. On the other hand,

e(m+n

is equal to

where k\-q, kx-q, ln(e'/q2) < 0 holds for* e [0, Qnq)/2]. Therefore,

(5.2) ^^-^-Cq
mn(z(x),z(x)) < kxq(-\n(q) + ln(ex/q2))-xkx"

Kq5 dm

+ kx
2

q We*/q'Ke2*/q2)m+n ~ #'(ln(?) + x)

As ln(e* /q2)kx
2

q{e2x /q2)m+" < 0, the claim follows if we prove that

kxq ( - ln(9) + In(e7?2)) - * # ' - ^?( lnto) + x)

is negative. For this, we multiply this term by q*(q — e?Y(q2 — e2*) and denote this
term by fq{x). A simple calculation shows that/,(O) = 0 with

/,'(0) := to2 - l)to - D(( ln^to 2 + Aq + 1) - (q2 - 1)(1 + q + q2)).

As /9'(0) < 0 for q > 1, the claim follows. •

PROOF OF THEOREM 5.5. By the Borel-Cantelli lemma it suffices to show that for
any a > 0, £ ~ , P([SJn. € [0,a]2}) < oo. Let Z(JJ) = 1 + e ' / 9 + q/e* be
given as Lemma 5.6. As the \j/Om-n defined in Proposition 4.4 (5) are convex, and as
Cm,n(z(ri), zljjj) = ^/Omn(\n(q) — rf), monotone convergence implies

d— E(q, (z(n),z(i>)))\
dr\ V ' \ //\ri=o

= - lim E I
ijtlniy \ I n g —

= -E 2 (5 , ) = -oo.
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As (de-(a+l)"/dri)\n=o = -(a + 1), we find some r?0 e ]0, ln^t with

Moreover, Lemma 5.6 together with (3.3) imply

P{{Sn/n e [0,a]2}) < P({C£

Hence, J^^l, P({Sn/n € [0, a]2}) < oo, which completes the proof. •

6. A central limit theorem

We keep the setting of the last section with q > 1. Let (Sn)n>o = (Xn, Yn)n>0 be
a stationary random walk on N2, (with N0-valued components (Xn)n>0 and (Kn)n>0)
which is associated with some distribution v e M ' ( N Q ) . We prove the following
central limit theorem.

THEOREM 6.1. If v has second moments, then

4 (XH - n & + M) /2, yB - n (M - /*) /2)

m distribution to the two-dimensional normal distribution N(0, S ) wi?/z the
positive semidefinite covariance matrix

ff2*—a,2 or2

V,(u) (i = 1,2), anrf)S := E(m u (v)) .

In the proof we use the notations C^n(z) := Cq
mn{z,~z) and z(§, rj) := e2'* +

'f (g'i + e~'n) from Section 4. We need the following result.

LEMMA 6.2. Forx, y € IR wi7/i |JC| + |>| -»• 0,

sup \Cm,n(U-x, i\nq - y)) - e«(«->*+<«+")»| = O(|JC| + \y\).
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PROOF. Put st := e~2ix, s2 := qe*x+y) and s3 := ei(x~y)/q. Then

z(—x, ilnq — y) = s: + s2 + s3,

and the assertion follows readily from Proposition 2.2 (1); notice that five of the six
summands there have order O(\x\ + \y\) independent of m, n for q > 1, and that the
sixth summand

R(m,n) :=
qm+n

satisfies supmneNo \R(m, n) - e«('n-'»*+('»+»W\ = 0{\x\ + \y\). D

PROOF OF THEOREM 6.1. We shall prove that for all x, y e K,

n—*oo V /

with £ = (^_ îM2
 0~^2Y In fact, (6.1) together with Levy's continuity theorem

imply that

(Xn -Yn-

tends in distribution to Af (0, S), and that 2 is positive semidefinite. The theorem now
follows after a linear transformation.

We now turn to the proof of (6.1). Lemma 6.2 implies that

lim E (\cs(z( - x/VH, ilnq- y/V^)) - g'(w.-»i)x/^+«x.+i'.)j'/VS)h = 0 .
n—*-oo \ I I /

Therefore, it suffices to prove that for all x, y e IR,

lim e-«"- '+"^)VSE tCsm (z (-2x/y/n, ilnq- y/y/n))) = e-^
x-y)tu'y)'.

ft—+0O

By the multiplicativity of the Fourier transform, this is equivalent to

(6.2) lim e -«""+«»^E (Cs, (z (-2x/y/n, ilnq- y/y/n)))" = g-i<*-»£(*.»'_

In order to check (6.2), we first notice that for n -*• oo,

Moreover, Taylor's formula and Proposition 4.6 imply that

J2n J
Equation (6.2) is now clear, and the proof of the theorem is complete. •
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REMARK 6.3. With some additional technical effort, the methods above can be used
to derive Berry-Esseen-type orders for the convergence in the central limit theorem. In
the case of certain one-dimensional polynomial hypergroups, such qualitative results
can be found in [L2] and [VI].

7. A local central limit theorem

In this section we derive a local central limit theorem. More precisely, for v e
' (NQ) we search for sequences (cn = cn(v))neN C ]0, oo[ such that

exists for (r, s) e N2, and is positive at least for one (r, s) e N2,. As Lo = {(m, n) €
NQ : m = n mod 3} is supernormal in N2,, a nontrivial limit above cannot exist for
v e M'(N2) with supp v c L, := {(m, n) e N2 : m - n = / mod 3} for / = 1, 2.
Moreover, the case supp v c Lo has to be treated separately. Therefore, the conditions
of the local limit theorem below are quite natural.

In this section we use the parameterization z(s, t) := e's + e~" + g~'(l~° (s, t 6
[—n, n]) for the support Z\ of the Plancherel measure on H\. Notice that 3 = z(0, 0)
corresponds to the unique positive character in Z\.

THEOREM 7.1. Let v e M'(N2) with v £ <5(0,0). Then the mapping (s,t) i-»-
v(z(s, t)) is infinitely often differentiate at (0, 0) and admits a Taylor expansion with

with constants a = a(v) = y(z(0, 0)) > 0 and K — K(V) < 0. Moreover, if

g"(g+l) (g2 + g + l ) p /"» 2
c = cw •= (,-imr' L Le

x (4s6 - I2s{t - 3s412 + 26s3P - 3s214 - \2sts + 4t6) ds dt,

then the following holds:

(i) If sappv is not contained in L,for i — 0, 1, 2, then for all (r, s) € N,2,

n4 / \
lim —v"({(r, s)}) = Ca>^2([(r, s)})C^ I z(0, 0), z(0, 0) I.

(ii) //supp v C Lo, then for all (r, s) € Lo,

Jlun ^vn({(r,s))) = 3CoN2o({(r,s)})Cl (z (0 ,0) ,z (0 ,0) ) .
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The proof of Theorem 7.1 follows the ideas of the proof of a corresponding local
limit theorem for homogeneous trees in [P]. We use the following notation: For a
domain E C K2 a n d / € C(N)(E), put

(sds + tdt)Nf(s, ok,*, := J2

The proof of Theorem 7.1 will be decomposed into the following steps:

(A) Find a finite set 5 C Z, with 3 € 5 such that for all z € Z, \ S, |0(z)| < 0 (3).
(B) In a neighbourhood U c [—n, n]2 of (0, 0) one has the Taylor expansion

v(z(s, 0 ) = 0(3) + (sds + tdt)2v(z(s, O)l(o.o) + O ((\s\ + \t\)3)

(C) Apply the inversion formula for the Fourier transform on N2,.

Step (A) is decomposed in some lemmata. The first one is obvious.

LEMMA 7.2. Let n e N and z,, ... , zn 6 C. Then | ^ " = i z'\ = E"=i l-z*I
//arg(z,) = arg(zy) for all i,j e { 1 , . . . , n}.

LEMMA 7.3. Let v e M](M2
0) with v ^ Vo- Then, for all z 6 Z, \ {3e2A;r'/3 : )fc =

0, 1,2}, |0(z)| < 0(3). Moreover, if supp v <£ LJor i = 0, 1, 2, f/je/i |0(3<?±2jr'/3)| <
0(3). Otherwise, |0(3e±2"'v3)| = 0(3).

PROOF. Let z e Z, \ {3e2tjr'v3 : A: = 0, 1, 2}. We prove that

(7-2) |C^ n (z ,z ) | < C*n(3,3) for (m, n) ^ (0,0).

The first statement is then clear. To prove (7.2) for (m, n) ^ (0, 0), consider the TLJ

appearing in the expansion of Proposition 3.3. If (m,n) e Lo then, by Lemma 3.7(1),
71, , appears. Therefore, as \TmM(z,z)\ < rm n(3 ,3) for m,n e No and z 6 Z1; it
suffices to check

(7.3) |7V,(z ,z) |< 7,.,(3,3).

According to Section 2, we write z = z(s, /) = e'v + e~" + e~'{s~') with s , ( e [0, 27r].
As T\,i(z(5, f), zC*.')) is equal to

and as | r u ( z ( j , t), z(s, 0)1 = 7*,,,(z(0, 0), z(0, 0)) = 6, Lemma 7.2 implies that
s, t e 2n/3 • 1 and s + t e n • 1. Hence, s = 2n - t = &7r/3 for it e (0, 1, 2), that is,
we obtain the three exceptional points, and (7.3) and thus (7.2) are clear. If (m,n) € L\,
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then by Lemma 3.7 (2), T\ 0 appears with a positive coefficient, and it suffices to check
|r,.0(z, z)\ < r,.0(3, 3). As r,.0(z(j, 0 , z ( * , 0 ) = 2(e" + e~" + e'u~s)), we again
obtain the three exceptional points above which proves (7.2) in this case. The case
(m, n) e L2 follows by synimetry. This completes the proof of the first statement.

Now consider v with supp v (£ L, for i — 0, 1 or 2. Then take (m,, n\) and (w2, n2)
from supp v with (m^ — n,) ^ (m2 — n2) mod 3. Remark 2.8 (2) and Lemma 7.2
then yield for z := 3<?2/3;" that

j2 iB j(3, 3)v({(m2,

clear. The final statement follows from Remark 2.8 (2).

We next turn to Step (B) of the proof.

^ lCm,n(3' 3)l for a11 z S Z, and m, n € No, the second statement is

•

LEMMA 7.4. For each N 6 No there exists a constant K^ > 0 such that for all
m, n, k, I € No with k + I < N and all s, t e [0, 2n]

(7.4)

Moreover,

dsk8tl Cmn(z(s,t),z(s,t)) < KN.

3*+'
Cq

m,n (z (s, t), z(s, 0 ) |(o,o) = 0 for k +1=1.

PROOF. Remark 3.6 (4) implies that

3

dskdt'
Cq

m,n (z (s, t), z(s, o ) = I' ' IZ [S t) Z (s
'<J \

with 5^f . hmnjj < Qq{m, n)/qm+" where Qq is a polynomial. The definition of the
Tjj shows that

dsk8t>
TtJ (z(s, t), z(s,

Hence,
3*+'

dskdt<
amn(z(s,t),Z{s,t)) <6 2*

Qq(m,n)

As q > 1, the first part of the lemma follows. Finally, as

| - 7],, (Z(s, t), z(s, t)) I - A 7]v (z( s , / ) , z(s, t)) I = 0,
35 V /1(0,0) dt \ /1(0,0)

the second assertion is also clear. •
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We are now ready to derive the following Taylor formula.

PROPOSITION 7.5. Let v e M'(N2) with v ^ SOiO. Then a := O(z(0, 0)) > 0, and
there exists K < 0 such that

0 (Z(s, / ) ) = a + ^ (s2 -st + t2)+O ((\s\ + |f | )3) for s,t-*O.

PROOF. Remark 3.6 (2) yields a > 0, and by Lemma 7.4 there is a constant K > 0
such that for all m, n, k, I e MQ with k + / < 3,

n (z(s, t), z(s, < K.

Dominated convergence hence implies that the derivatives

^ 7 0 ( ^ ' ' ) )

exist for k + I < 3 with

As Lemma 7.4 leads to

— V (Z(S, 0 ) 1(0.0) = — V (Z (S, t)) |(0,0) = 0,
as dt

we obtain

0 (z(s, 0 ) = v (z (0, 0)) + ( 5 3 J + tdd)2 v (z (s, r)) |(o,o) + O ((1*1 + \tI)3) .

A simple calculation gives for 7^ (z) := 7]; (z, z)

d2 , , 32

— 7;v (z(s, 0 ) 1,0,0, = - 4 (i2 + (/ + y 2 ) = —2TQ (z(s, t)) |(0,0,
and

a2

— 7],; (Z(j, r)) 1,0.0, = 2 (i2 + ij +j2).

Hence, by Proposition 3.3,

d2
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with

o2 2

1(0.0) =*«.„ = - 2 ^ 7 C m . « (z (*, 0 , Z(*. *)) 1(0.0,-

Therefore, as v ^ <5o,o, K := /N2 Kn,mdv{m, n) < 0 with

32 92 3

* = T7 v (zCs, 0)1(0,0) = T 7 U ( Z ( 5 ' 0)1(0,0) = - 2 — — 0(z(s, 0)1(0,0)-

The lemma now follows from the Taylor expansion above. •

We now turn to Step (C) of the proof.

LEMMA 7.6. Let v e M1 (N2,), n e N, and let the function c be given as in (2.6).
Then the n-fold convolution power ofv is given by

£ £ s-ftcm

/or r, / e No, where u> denotes the Haar measure.

PROOF. The inversion formula (see [BH, Theorem 2.2.36]) yields

i/»({(r, /)}) = co({{r, /)}) I vn(x + iy)Crl{x + iy,x- iy)R(x + iy)d{x,y)

with R as in Theorem 2.4. The transformation

x = cos(.y) + cos(r) + cos(.s — t), y = sin(s) — sin(f) — sin(s - 0*

and a short computation as in [CM, Section 5] now yield the lemma. •

We now complete the proof of Theorem 7.1. Let v, K, O, and C be given as there
where C < oo obviously holds. Let n e N and I, r e Mo. Consider the points
(s,, /,) = (0, 0), (52, h) = (2TT/3, - 2 T T / 3 ) and (s3, f3) = ( - 2 T T / 3 , 2TT/3). For e > 0

and/ = 1,2,3, let

t/,,f := (Cs, 0 e [-7T, n]2 : \s - st\ < e, \t - r,| < e}

and

C/<:=[-7r,7r]2\(i/l.fUf/2,<UC/3,f)-
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If w(s, t) := \k(eis, e~u, e~i(s~°)\~2, the integral in Lemma 7.6 is given by

/ f vn(z(s, t))CrJ (z(s, t), z(s, t)) w(s, t) ds dt
J -71 J-Tt ^ '

We now check Part (1) of the theorem. Assume that supp v is not contained all L,.
According to Lemma 7.3 there is a constant r)\ < \ J with v(z(s,t)) < T)\ for all
(s,t) € U(. Hence, |/4(«)| < rf and limn_>O0/i

4op"'l/4(/i) = 0. Lemma 7.3 also
implies

n4 n4

lim —/3(«) = lim —I2(n) = 0.
n-»oo a" n-t-oo a"

In order to handle l\ (n), we observe that s2 — st + t2 > 0 and conclude that we find
an € > 0 such that for K < 0 as in Proposition 7.5 and all \s\ + \t\ < e,

(7.5) 1 + ^ - (s2 - st + t2) + O {{\s\ + \t\f) <l + £-(s
2-st + t2)

la 4cr

Hence, by Proposition 7.5,

Moreover, the function w above is C°°, and a computation shows that

= 0 fo r^ + / < 5 ,

and that g(s, t) := (6\)~l(sds + tdt)6w(s, Olco.oj satisfies

(7.6) g(s, 0 = (—— ) (4s6-l2sst-3s4t2 + 26s3t3-3s2t4-

A Taylor expansion at (0, 0) thus implies

(7.7) w ( s , t ) = g ( s , t ) + O ( ( \ s \ + \ t \ ) 1 ) .
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Using the transformation s \-> s/<Jn and t t-* t/s/n and the abbreviation Crl{z) :=
Cq

rl{z, z), we may write

= I [ hn(s,t)gn(s,t)Cq
J(z(~,-^))dsdt

with

hn{s, t) := ![_«,„

Equation (7.5) yields that

\hH(s,t)\ =

a

(\s\

and Mm^oohnis, t) = e£(s2-u'2+'2) = : h(s, t). Moreover, (7.6) and (7.7) imply that
there is a constant K > 0 with

\gn(s,t)\ =
1

6! (0,0)

Therefore, / ^ / ^ e«
f/4<')(52-«+'2) (s + f )* ds dt < 00 and the dominated convergence

theorem lead to
/•OO /»0O

lim o-"n*h (n) = Crl (z (0, 0)) / h(s, t)g (s, t) ds dt.
n^°° v ' J-00J-00

This implies the first part of the theorem.
Now assume that (r, /) e Lo — and supp v C Lo. In this case, the arguments at the

end of the proof of Lemma 7.3 show that

vn(z(-2/3n + s, 2/3TT + t))Cq
rl(z(-2/3n + s, 2/3n + t))

= v"(z(s,t))Cq
rl(z(s,t)).

Moreover, w(—2/3n + s, 2/3n + t) = w(s, t) implies I2(n) = lt(n). In a similar
way, we have /3(n) = I\(n). As the limits for /|(/i) and /4(n) are the same as in the
previous case, the second part of Theorem 7.1 follows readily.
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