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Abstract

The Dehn quandle of a closed orientable surface is the set of isotopy classes of nonseparating simple
closed curves with a natural quandle structure arising from Dehn twists. In this paper, we consider the
finiteness of some canonical quotients of these quandles. For a surface of positive genus, we give a precise
description of the 2-quandle of its Dehn quandle. Further, with some exceptions for genus more than 2,
we determine all values of n for which the n-quandle of its Dehn quandle is finite. The result can be
thought of as the Dehn quandle analogue of a similar result of Hoste and Shanahan for link quandles
[‘Links with finite n-quandles’, Algebr. Geom. Topol. 17(5) (2017), 2807–2823]. We also compute the
size of the smallest nontrivial quandle quotient of the Dehn quandle of a surface. Along the way, we
prove that the involutory quotient of an Artin quandle is precisely the corresponding Coxeter quandle,
and also determine the smallest nontrivial quotient of a braid quandle.
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1. Introduction

The Dehn quandle of a group with respect to a subset is the union of conjugacy classes
of elements of the set equipped with the operation of conjugation. It turns out that
these are precisely the quandles that embed into their enveloping groups, and many
well-known classes of quandles satisfy this property [9]. The first is the class of free
quandles, where a free quandle on a set is simply the union of conjugacy classes of
the free generating set in the corresponding free group. The second interesting class
of examples, which is also the focus of this paper, is given by surfaces. Let Mg be
the mapping class group of a closed orientable surface Sg of genus g ≥ 1, andDns

g the
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2 N. K. Dhanwani and M. Singh [2]

set of isotopy classes of nonseparating simple closed curves on Sg. It is well known
that Mg is generated by Dehn twists along finitely many simple closed curves from
Dns

g [12, Theorem 4.1]. The binary operation α ∗ β = τβ(α), where α, β ∈ Dns
g and τβ

is the Dehn twist along β, turns the set Dns
g into a quandle called the Dehn quandle

of the surface Sg. In fact, Dns
g can be viewed as a subquandle of the conjugation

quandle of Mg, by identifying the isotopy class of a nonseparating simple closed
curve with the isotopy class of its corresponding Dehn twist. These quandles originally
appeared in the work of Zablow [29, 30]. It turns out that two surfaces of genus more
than two are homeomorphic if and only if their Dehn quandles are isomorphic [9,
Proposition 6.5]. A homology theory based on Dehn quandles of surfaces has been
derived in [31] and it has been shown that isomorphism classes of Lefschetz fibrations
over a disk correspond to quandle homology classes in dimension two. In a related
direction, the papers [19, 27, 28] considered a quandle structure on the set of isotopy
classes of simple closed arcs on an orientable surface with at least two punctures,
referred as the quandle of cords. In the case of a disk with n punctures, this quandle
is simply the Dehn quandle of the braid group Bn on n strands with respect to its
standard set of generators. It turns out that Dehn quandles of groups with respect
to their subsets include many well-known constructions of quandles from groups
including conjugation quandles of groups, free quandles, Coxeter quandles, Dehn
quandles of closed orientable surfaces, quandles of cords of orientable surfaces, knot
quandles of prime knots, core quandles of groups and generalised Alexander quandles
of groups with respect to fixed-point free automorphisms (see [9] for more details). A
presentation for the quandle of cords of the plane and the 2-sphere has been given in
[19]. Beyond these cases, not much was known about presentations of Dehn quandles
until the work [10], wherein two approaches to writing efficient presentations for
Dehn quandles using presentations of their underlying groups have been given. Several
computations of presentations have been given, including Dehn quandles of spherical
Artin groups, surface groups and mapping class groups of orientable surfaces for small
genera.

Since link quandles are always infinite except for the unknot and the Hopf link, it is
natural to explore finiteness of n-quandles of link quandles. It had been conjectured by
Przytycki that the n-quandle of an oriented link L in the 3-sphere is finite if and only
if the fundamental group of the n-fold cyclic branched cover of the 3-sphere, branched
over L, is finite. The conjecture has been proved by Hoste and Shanahan in [14],
wherein they use Dunbar’s classification [11] of spherical 3-orbifolds to determine
all links with a finite n-quandle for some n. In this paper, we consider the analogous
problem for Dehn quandles of surfaces. The two families of quandles have a rather
curious intersection. Thanks to the work of Niebrzydowski and Przytycki [23], where
they proved that the knot quandle of the trefoil is isomorphic to the Dehn quandle of
the torus, the problem can be thought of as a quandle analogue of [5, Problem 28],
which asks whether the normal closure of squares of Dehn twists in the mapping class
group of a closed orientable surface is of finite index. See also [13, 16] for further work
on the problem.
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[3] Finiteness of canonical quotients of Dehn quandles of surfaces 3

The paper is organised as follows. In Section 3, we establish some general results on
finiteness of n-quandles of Dehn quandles. We prove that if the n-quandle of the Dehn
quandle of a group is finite, then a certain canonical quotient of the group is finite
(Theorem 3.4). We consider Dehn quandles of Artin groups in Section 4 and prove
that the involutory quandle of an Artin quandle is the corresponding Coxeter quandle
(Theorem 4.3). We also determine the size of the smallest nontrivial quandle quotient
of the Dehn quandle of the braid group with respect to its standard generating set
(Proposition 4.5). In Section 5, we discuss finiteness of n-quandles of Dehn quandles
of surfaces. For a closed orientable surface of positive genus, we give a precise
description of its 2-quandle (Theorem 5.4). Further, with some exceptions for genus
more than two, we determine all values of n for which the n-quandle of the Dehn
quandle is finite (Theorem 5.6). As a final result, we also determine the size of the
smallest nontrivial quandle quotient of the Dehn quandle of a surface (Proposition 5.8).

2. Preliminaries

Throughout the paper, we consider right-distributive quandles. Recall that, a
quandle is a nonempty set Q equipped with a binary operation ∗ satisfying the
following axioms:

(i) x ∗ x = x for all x ∈ Q;
(ii) for each x, y ∈ Q, there exists a unique z ∈ Q such that x = z ∗ y;
(iii) (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ Q.

The second quandle axiom implies that there exists a dual binary operation ∗−1 on
Q such that

(x ∗ y) ∗−1 y = x = (x ∗−1 y) ∗ y

for all x, y ∈ Q. Topologically, the three quandle axioms correspond to the three
Reidemeister moves of planar diagrams of links in the 3-space. Though quandles are
ubiquitous, groups and knots are prominent sources of quandles. For instance, if G
is a group, then the binary operation x ∗ y = yxy−1 turns G into the quandle called
the conjugation quandle of G. Concerning knot theory, every link can be assigned a
quandle called the link quandle, which is a complete invariant of nonsplit links up
to weak equivalence. This fundamental result appeared independently in the works of
Joyce [17, 18] and Matveev [21], and has led to much of the recent work on the subject.

Morphisms and automorphisms of quandles are defined in the obvious way. Note
that the quandle axioms are equivalent to saying that for each y ∈ Q, the map
Sy : Q→ Q given by Sy(x) = x ∗ y is an automorphism of Q fixing y. The group Inn(Q)
generated by such automorphisms is called the group of inner automorphisms of Q.
The group Inn(Q) acts on the quandle Q and the corresponding orbits are referred
as connected components. For example, knot quandles are connected, whereas link
quandles of split links are not connected.
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The enveloping group Env(Q) of a quandle Q is the group with the set of generators
as {ex | x ∈ Q} and the defining relations as

ex∗y = eyexe−1
y

for all x, y ∈ Q. For example, the enveloping group of the link quandle of a link in the
3-space is the corresponding link group [17, 18]. The natural map

η : Q→ Env(Q)

given by η(x) = ex is a quandle homomorphism with Env(Q) viewed as the conjugation
quandle. The map η is not injective in general. In fact, Dehn quandles are precisely
those for which this map is injective [9, Proposition 3.9]. The functor from the category
of quandles to that of groups assigning the enveloping group to a quandle is left adjoint
to the functor from the category of groups to that of quandles assigning the conjugation
quandle to a group. Thus, enveloping groups play a crucial role in the understanding
of quandles themselves.

Using defining axioms [26, Lemma 4.4.7], any element of a quandle Q can be
written in a left-associated product of the form

((· · · ((a0 ∗ε1 a1) ∗ε2 a2) ∗ε3 · · · ) ∗εn−1 an−1) ∗εn an,

where ai ∈ Q and εi ∈ {1,−1}. For simplicity, we write the preceding expression as

a0 ∗ε1 a1 ∗ε2 · · · ∗εn an.

Let n ≥ 2 be an integer. A quandle Q is called an n-quandle if

x ∗ y ∗ y ∗ · · · ∗ y︸����������︷︷����������︸
n times

= x

for all x, y ∈ Q. Equivalently, a quandle is an n-quandle if and only if each basic inner
automorphism Sx has order dividing n. A 2-quandle is also called involutory. For
example, the core quandle of any group is involutory.

3. Finiteness of n-quandles of Dehn quandles

Let G be a group, A a nonempty subset of G, and AG the set of all conjugates of
elements of A in G. The Dehn quandleD(AG) of G with respect to A is defined as the
set AG equipped with the binary operation of conjugation, that is,

x ∗ y = yxy−1

for all x, y ∈ D(AG). The class of Dehn quandles contains many well-known construc-
tions of quandles from groups. Note that D(GG) is the conjugation quandle of G. If
F(S) is the free group generated by S, then D(SF(S)) is the free quandle on S. If (W, S)
is a Coxeter system, then D(SW) is the so called Coxeter quandle [2, 24]. Let Sg be a
closed orientable surface of genus g and Mg its mapping class group. If S is the set
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of Dehn twists about nonseparating simple closed curves, then D(SMg ) is the Dehn
quandle of the surface [19, 29, 30].

Given a quandle Q and an integer n ≥ 2, the n-quandle (Q)n of Q is defined as the
quotient of Q by the relations

x ∗n y := x ∗ y ∗ y ∗ · · · ∗ y︸����������︷︷����������︸
n times

= x

for all x, y ∈ Q. Note that there is a natural epimorphism π : Q→ (Q)n. Further, the
construction satisfies the universal property that for any quandle homomorphism
f : Q→ Y , where Y is an n-quandle, there exists a unique quandle homomorphism
f̄ : (Q)n → Y such that f̄ π = f . The construction is of particular interest from the
point of view of knot theory. Since link quandles are always infinite except for the
unknot and the Hopf link, it is interesting to explore finiteness of n-quandles of link
quandles. Using Thurston’s geometrisation theorem and Dunbar’s classification of
spherical 3-orbifolds, a complete classification of links whose n-quandles are finite
for some n has been given in [14].

We begin with the following general observation.

PROPOSITION 3.1. Let Q be a quandle with a presentation 〈S | R〉. Then, for each
n ≥ 2, (Q)n has a presentation 〈S | R ∪ T〉, where T = {x ∗n y = x | x, y ∈ S}.

PROOF. Let n ≥ 2 and X be the quandle with presentation 〈S | R ∪ T〉. First, we claim
that X is an n-quandle. Consider elements x ∈ X and y ∈ S. We write x = a1 ∗ε1 a2 ∗ε2

· · · ∗εl−1 al, where ai ∈ S and εi ∈ {1,−1}. By right distributivity, we obtain

x ∗ y = (a1 ∗ y) ∗ε1 (a2 ∗ y) ∗ε2 · · · ∗εl−1 (al ∗ y)

and a repeated application of the property further gives

x ∗n y = (a1 ∗n y) ∗ε1 (a2 ∗n y) ∗ε2 · · · ∗εl−1 (al ∗n y) = a1 ∗ε1 a2 ∗ε2 · · · ∗εl−1 al = x,

which is desired.
Now take x, y ∈ X, and use induction on the word length of y. When y is of word

length one, we are in the preceding case. We assume that y = a1 ∗ε1 a2 ∗ε2 · · · ∗εk−1 ak,
where k > 1. Then we write y = y1 ∗εk−1 ak, where y1 := a1 ∗ε1 a2 ∗ε2 · · · ∗εk−2 ak−1 is of
word length less than k. By the induction hypothesis, the assertion holds for all words
of length less than k. Then, using [26, Lemma 4.4.7],

x ∗n y = x ∗n (y1 ∗εk−1 ak)

= (x ∗−εk−1 ak ∗ y1 ∗εk−1 ak) ∗n−1 (y1 ∗εk−1 ak)

= (x ∗−εk−1 ak ∗2 y1 ∗εk−1 ak) ∗n−2 (y1 ∗εk−1 ak)

= ((x ∗−εk−1 ak) ∗n y1) ∗εk−1 ak

= (x ∗−εk−1 ak) ∗εk−1 ak, by induction hypothesis
= x.
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Thus, X is an n-quandle, proving our claim. Finally, it follows from the universal
property that (Q)n � X. �

COROLLARY 3.2. If the n-quandle of a quandle is finite for some integer n ≥ 2, then
its d-quandle is also finite for each divisor d of n.

The presentation of the enveloping group of a quandle can be reduced substantially
[26, Theorem 5.1.7].

COROLLARY 3.3. Let Q = 〈S | R〉 be a quandle presentation. Then

Env((Q)n) = 〈S̃ | R̃ ∪ T̃〉 � Env(Q)/〈〈T̃〉〉,

where S̃ = {ex | x ∈ S}, T̃ = {en
xeye−n

x e−1
y | x, y ∈ S} and R̃ consists of relations of R with

each x ∗ y replaced by eyexe−1
y .

Given a quandle Q, define a map ν : Q→ N ∪ {0} by setting

ν(x) =

⎧⎪⎪⎨⎪⎪⎩order of Sx if order of Sx is finite,
0 if order of Sx is infinite.

Consider the subgroup Z(Q) = 〈eν(x)
x | x ∈ Q〉 of Env(Q). It follows from the con-

struction of Z(Q) that it is a central subgroup of Env(Q) [3, Lemma 2.1]. Let
F(Q) = Env(Q)/Z(Q) be the corresponding quotient group. It is known that if Q is
a finite quandle, then F(Q) is a finite group [3, Proposition 3.1].

THEOREM 3.4. Let G be a group generated by a set S and Gn = G/〈〈sn | s ∈ S〉〉. Then
there exists a surjective group homomorphism F((D(SG))n)→ Gn. In particular, if
(D(SG))n is finite, then Gn is finite.

PROOF. It follows from [9, Theorem 3.6] that the map Φ : Env(D(SG))→ G, given
by Φ(ex) = x, is a surjective homomorphism. By Corollary 3.3, we have a surjective
homomorphism Φ̃ : Env((D(SG))n)→ Hn, where Hn = G/〈〈xnyx−ny−1 | x, y ∈ S〉〉. This,
in turn, gives a surjective homomorphism

Φ̄ : F((D(SG))n)→ Hn/〈〈xn | x ∈ S〉〉.

The assertion now follows from the fact that Hn/〈〈xn | x ∈ S〉〉 � Gn. �

4. Involutory quotients of Artin quandles

Recall that an Artin group A is a group with a presentation

A = {s1, s2, . . . , sn | (sisj)mij = (sjsi)mij , where mij ∈ {2, 3, . . .} ∪ {∞}},

where (sisj)mij is the word sisjsisjsi · · · of length mij if mij < ∞ and there is no relation
of type (sisj)mij = (sjsi)mij if mij = ∞. We set S = {s1, s2, . . . , sn}. The corresponding
Coxeter group W is the quotient of A by imposing additional relations s2

i = 1 for all
si ∈ S.

https://doi.org/10.1017/S144678872400003X Published online by Cambridge University Press

https://doi.org/10.1017/S144678872400003X


[7] Finiteness of canonical quotients of Dehn quandles of surfaces 7

To distinguish the presentation of A from that of its corresponding Coxeter group
W, we write the presentation of W without using bold letters. More precisely,

W = {s1, s2, . . . , sn | s2
i = 1, (sisj)mij = (sjsi)mij , where mij ∈ {2, 3, . . .} ∪ {∞}}.

Setting S = {s1, s2, . . . , sn}, the pair (W, S) is referred to as a Coxeter system and
elements of W that are conjugates of elements of S are called reflections. Following [9],
Dehn quandles of Artin and Coxeter groups with respect to their standard generating
sets are referred to as Artin and Coxeter quandles, respectively. In this section, we
prove that the involutory quandle of an Artin quandle is the corresponding Coxeter
quandle.

To prove the result, we must first understand centralisers of Coxeter generators, for
which we follow [4]. Let (W, S) be a Coxeter system and 
 the labelled graph with
vertex set S such that there is an edge between s and s′ with label mss′ whenever mss′ <
∞. Let 
odd be the subgraph of 
 consisting of only odd labelled edges. It is easy to
see that connected components of 
odd correspond to conjugacy classes of reflections
in W. For each s ∈ S, let 
odd

s denote the connected component of 
odd containing s.
Let (W, S) be a Coxeter system and γ = (t0, t1, . . . , tn) an edge-path in 
odd with the

edge joining ti−1 and ti labelled 2li + 1. We set

pγ := (t1t0)l1 (t2t1)l2 · · · (tntn−1)ln

if n > 0 and pγ = 1 if n = 0. If u is a vertex of 
 such that there is an edge joining u
and tn with even label 2λ, then we define

rγ,u := pγ (utn)λ−1u p−1
γ .

Henceforth, the notation rγ,u means that the vertex u is joined to the end point of γ by
an even labelled edge. We need the following results [4, Corollaries 6 and 8]. See also
[6, 7, 15].

THEOREM 4.1. Let (W, S) be a Coxeter system, s ∈ S and CW(s) the centraliser
of s in W.

(1) Let WΩ be the subgroup of CW(s) generated by all the reflections it contains
except s. Let ΓΩ be the subgroup of W generated by elements pγ, where γ is an
edge-loop in 
odd based at s. Then CW(s) = 〈s〉 × (WΩ � ΓΩ).

(2) Let Z be a set of edge-loops in 
odd
s generating the fundamental group π1(
odd, s).

Then {pγ | γ ∈ Z} generates ΓΩ.
(3) Let Y be the set consisting of one edge-path δt in 
odd

s from s to t for each vertex
t ∈ 
odd

s , and let X be the set of vertices u of 
 such that there is an even labelled
edge joining u to the end point of some δt. Then {pγ | γ ∈Z} and {rδt ,u | δt ∈Y , u ∈X}
together generate WΩ � ΓΩ.

Let ν : A→ W be the natural surjection given by ν(s) = s. Clearly, ker(ν) is
normally generated by {s2 | s ∈ S}.

LEMMA 4.2. The restriction map CA(s)→ CW(s) is surjective for each s ∈ S.
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PROOF. Let s ∈ S be fixed such that ν(s) = s. Let γ = (t0, t1, . . . , tn) be an
edge-path in 
odd with the edge joining ti−1 and ti labelled 2li + 1, and let
pγ = (t1t0)l1 (t2t1)l2 · · · (tntn−1)ln be the corresponding element. Let pγ = (t1t0)l1

(t2t1)l2 · · · (tntn−1)ln denote the lift of pγ in A. If we set p̄γ = (tn−1tn)ln (tn−2tn−1)ln−1 · · ·
(t0t1)l1 , then it follows that ν(p̄γ) = p−1

γ . It is easy to see that the identities

pγtn = t0pγ and p̄γt0 = tnp̄γ

hold in A. Thus, if γ is an edge loop based at s, then both pγ and p̄γ commute with s.
Similarly, let δt be a edge-path in 
odd

s from s to t and u a vertex of 
 that is joined to
the end point of δt with an edge labelled 2λ. If we set rδt ,u = pδt (ut)λ−1u p̄δt , then we
can see that

rδt ,us = pδt (ut)λ−1u p̄δt s

= pδt (ut)λ−1u t p̄δt

= pδt t (ut)λ−1u p̄δt

= spδt (ut)λ−1u p̄δt

= srδt ,u,

and hence rδt ,u commutes with s. By Theorem 4.1, the group CW(s) is generated
by {s, pγ, rδt ,u}. Since each generator has a pre-image under ν that lies in CA(s), the
assertion follows. �

We now prove the main result of this section.

THEOREM 4.3. The involutory quandle of an Artin quandle is the corresponding
Coxeter quandle, that is, (D(SA))2 � D(SW).

PROOF. The surjection ν : A→ W induces a surjective quandle homomorphism
ν̃ : D(SA)→ D(SW). Since (D(SA))2 is involutory, ν̃ descends to a surjective quandle
homomorphism

ν : (D(SA))2 → D(SW).

If π : D(SA)→ (D(SA))2 is the natural surjection, then ν π = ν̃. We claim that
ν is an isomorphism. Suppose that ν̃(x) = ν̃(y) for some x, y ∈ D(SA). Since ν̃
preserves orbits (under action of the inner automorphism group), it follows that x
and y must be in the same orbit. Thus, we can write x = sεk

ik
· · · sε1

i1
ss−ε1

i1
· · · s−εk

ik
and

y = sδr
jr
· · · sδ1

j1
ss−δ1

j1
· · · s−δr

jr
for some s, sit , sjt ∈ S and εt, δt ∈ {1,−1}. Now ν̃(x) = ν̃(y)

implies that ν(s−δ1
j1
· · · s−δr

jr
sεk

ik
· · · sε1

i1
) commutes with ν(s) = s. In view of Lemma 4.2,

the short exact sequence 1→ ker(ν)→ A
ν→ W → 1 induces a short exact sequence

1→ ker(ν) ∩ CA(s)→ CA(s)→ CW(s)→ 1.
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[9] Finiteness of canonical quotients of Dehn quandles of surfaces 9

FIGURE 1. Arcs ci,j on the disc for n = 6.

Thus, we can write s−δ1
j1
· · · s−δr

jr
sεk

ik
· · · sε1

i1
= uv for some u ∈ ker(ν) = 〈〈s2 | s ∈ S〉〉 and

some v ∈ CA(s). Thus,

π(s−δ1
j1
· · · s−δr

jr
sεk

ik
· · · sε1

i1
s s−ε1

i1
· · · s−εk

ik
sδr

jr
· · · sδ1

j1
)

= π(uvsv−1u−1)

= π(usu−1), since v ∈ CA(s)

= π(s), since u ∈ ker(ν),

which shows that π(x) = π(y) and hence ν is an isomorphism. �

As a consequence of Propositions 3.1 and 4.3, we obtain a presentation of the
enveloping group of the Coxeter quandle, which extends [2, Proposition 3.3].

COROLLARY 4.4. Let (W, S) be a Coxeter system. Then Env(D(SW)) � A/N, where A
is the corresponding Artin group and N = 〈〈 s2

i sjs−2
i s−1

j | si, sj ∈ S〉〉.

Our next result gives the size of the smallest nontrivial quandle quotient of the
Dehn quandle of the braid group with respect to its standard generating set. The proof
is essentially rephrasing [20, Lemma 8] in the language of quandles.

PROPOSITION 4.5. Let n ≥ 5 and f : D(SBn )→ Q be a surjective quandle homomor-
phism onto a quandle with at least two elements. Then, |Q| ≥ n(n − 1)/2 and the bound
is sharp.

PROOF. We view the braid group Bn as the mapping class group of the disc D2 with n
marked points. Consider the set {ci,j | 1 ≤ i < j ≤ n} of n(n − 1)/2 arcs on D2 as shown
in Figure 1 for n = 6. Let σi,j denote the isotopy class of the (anti-clockwise) half Dehn
twist along the arc ci,j and let X = {σi,j | 1 ≤ i < j ≤ n}. Then Bn is generated by the sub-
set S = {σ1,2,σ2,3, . . . ,σn−1,n} of X. Note that all the elements of X are conjugate to each
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other in Bn and hence lie inD(SBn ). Let f : D(SBn )→ Q be a surjective quandle homo-
morphism onto a quandle with at least two elements. Then we have the following cases:

Case (1): Suppose that f is not injective on S, that is, f (σi,i+1) = f (σj,j+1) for some
i � j. Since n ≥ 5, by construction of X, we can choose an arc ck,k+1 such that it has
exactly one end point in common with precisely one of ci,i+1 or cj,j+1 and no end point
in common with the other. Without loss of generality, we can assume that ck,k+1 and
cj,j+1 have one end point in common, while ck,k+1 and ci,i+1 are disjoint. Then, the half
Dehn twists satisfy the relations

σk,k+1σj,j+1σk,k+1 = σj,j+1σk,k+1σj,j+1 and σk,k+1σi,i+1 = σi,i+1σk,k+1.

Applying f to the preceding relations and using the equality f (σi,i+1) = f (σj,j+1), we
obtain f (σk,k+1) = f (σi,i+1). Proceeding in this manner, we show that f is constant on
S. Since S also generates D(SBn ) as a quandle [9, Proposition 3.2], it follows that f is
constant onD(SBn ), which is a contradiction. Hence, f is injective on S.

Case (2): Suppose that f is not injective on X. There are two possibilities here.

Subcase (2a): Suppose that f (σi,i+1) = f (σk,l) where {i, i + 1} � {k, l} as sets. Since
n ≥ 5, we can choose an arc cr,r+1 such that it has exactly one end point in common
with precisely one of ci,i+1 or ck,l, and no end point in common with the other. If cr,r+1
and ci,i+1 have one end point in common, then as in Case (1), we obtain f (σi,i+1) =
f (σr,r+1). Similarly, if cr,r+1 and ck,l have one end point in common, then as in Case (1),
we get f (σi,i+1) = f (σr,r+1). Again, proceeding as in Case (1) leads to a contradiction.

Subcase (2b): Suppose that f (σi,j) = f (σk,l) where {i, j} � {k, l}. Since n ≥ 5, we can
choose an arc cr,r+1 such that it has exactly one end point in common with precisely
one of ci,j or ck,l, and no end point in common with the other. Proceeding as before,
we deduce that f (σi,j) = f (σk,l) = f (σr,r+1), which is Subcase (2a).

Hence, it follows that the map f must be injective on the set X, and therefore
|Q| ≥ n(n − 1)/2. For sharpness of the bound, consider the surjective group
homomorphism Bn → Σn, where Σn is the symmetric group on n symbols. The group
homomorphism induces a surjective quandle homomorphism D(SBn )→ D(TΣn ),
where T = {(i, i + 1) | 1 ≤ i ≤ n − 1} is the image of S. Since |D(TΣn )| = n(n − 1)/2,
the assertion follows. �

REMARK 4.6. It follows from Theorem 4.3 that D(TΣn ) is precisely the 2-quandle
of D(SBn ). It is intriguing to know the smallest quandle quotients of general Artin
quandles.

5. Finiteness of n-quandles of Dehn quandles of surfaces

In this main section, we consider finiteness of n-quandles of Dehn quandles of
closed orientable surfaces. For each genus, with some exceptions, we determine all
values of n for which the n-quandle of the Dehn quandle of the surface Sg is finite. We
also determine the explicit structures of their 2-quandles.
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FIGURE 2. Surface of genus g with curves ai, bi and ci.

5.1. 2- and 3-quandles of Dehn quandles of surfaces. Let Sg be a closed oriented
surface of genus g ≥ 1 and

Ψ :Mg → Sp(2g,Z)

the symplectic representation of the mapping class group Mg of Sg. For an integer
n ≥ 2, let ψn : Sp(2g,Z)→ Sp(2g,Zn) be the mod n reduction homomorphism and

Ψn := ψnΨ :Mg → Sp(2g,Zn)

the mod n reduction of the symplectic representation. Given a simple closed curve a
in Sg, let τa denote the (right-hand) Dehn twists about a. Consider the surface Sg with
curves ai, bi, ci as in Figure 2.

LEMMA 5.1. Let p be a prime and g ≥ 1. Then, an element A ∈ Sp(2g,Zp) lies in the
centraliser of Ψp(τa1 ) if and only if A has first column (a, 0, 0, . . . , 0) and second row
(0, a, 0, 0, . . . , 0), where a ≡ ±1 (mod p).

PROOF. Let Ei,j denote the elementary matrix with (i, j)-entry as 1 and each other entry
as 0. Observe that Ψp(τa1 ) = I2g − E1,2. If A ∈ Sp(2g,Zp) commutes with Ψp(τa1 ), then
it follows from elementary linear algebra that A has first column (a, 0, 0, . . . , 0) and
second row (0, a, 0, 0, . . . , 0) for some a ∈ Z×p . Since AtJA = J, where J represents
the symplectic form, we obtain a2 ≡ 1 (mod p). Since a2 ≡ 1 (mod p) if and only if
a ≡ ±1 (mod p), the assertion follows. Conversely, any symplectic matrix of this form
commutes with Ψp(τa1 ). �

LEMMA 5.2. Let p be a prime and g ≥ 1. Then the centraliser of Ψp(τa1 ) in Sp(2g,Zp)
is generated by Ψp(S) ∪ {−I2g}, where

S = {τa1 , τa2 , . . . , τag , τb2 , . . . , τbg , τc1 , τc2 , . . . , τcg−1}.

PROOF. For g = 1, a direct computation shows that the centraliser of Ψp(τa1 ) in
Sp(2,Zp) is generated by Ψp(τa1 ) ∪ {−I2g}. We assume that g ≥ 2. Clearly, Ψp(S) ∪
{−I2g} is a subset of the centraliser of Ψp(τa1 ) in Sp(2g,Zp). If A = (Ai,j) lies in
the centraliser of Ψp(τa1 ) in Sp(2g,Zp), then Lemma 5.1 implies that A1,1 = ±1.
Multiplying A by −I2g, we can assume that A1,1 = 1. It remains to prove such an A can
be written as a product of elements from Ψp(S). Consider the curves d1, d2, . . . , dg−1 as
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FIGURE 3. Surface of genus g with curves di.

shown in Figure 3. For each 1 ≤ i ≤ g − 1, let Mi := Ψp(τdiτ
−1
a1
τ−1

ai+1
). Then, we can see

that

Mi = I2g + E2i+1, 2 + E1, 2i+2.

Let Ni := Ψp(τai+1τbi+1τai+1 )−1Mi Ψp(τai+1τbi+1τai+1 ). Then, a direct computation shows
that

Ni = I2g − E2i+2, 2 + E1, 2i+1.

Now, consider the matrix

B :=
( g−1∏

i=1

NA2(g−i)+2,2

g−i M−A2(g−i)+1,2

g−i

)
A,

where a matrix raised to the power by the entry Ai,j represents the same matrix raised
to the power by a representative of Ai,j in the subset {0, 1, 2, . . . , p − 1} of integers.
By the choice of matrices Mi and Ni, it follows that the second column of B is
(B1,2, 1, 0, 0, . . . , 0). Next, take

C := Ψp(τa1 )B1,2 B.

It is easy to see that the first two columns of C are (1, 0, 0, . . . , 0) and (0, 1, 0, . . . , 0),
respectively. Since C is symplectic, it has the form

C =
[

I2 O2,2g−2
O2g−2,2 D

]
,

where Om,n is the m × n null matrix and D ∈ Sp(2g − 2,Zp). Note that Sp(2g − 2,Zp)
is generated by Ψ2({τa2 , . . . , τag , τb2 , . . . , τbg , τc2 , . . . , τcg−1}). We claim that each τdi can
be written as a product of elements from S, which would complete the proof. Since
d1 = c1, the claim follows when g = 2.

Let Mg(−→α ) be the subgroup of Mg consisting of all elements that preserve a
nonseparating simple closed curve α with orientation. LetMg,α be the mapping class
group of the surface Sg,α (which is homeomorphic to a surface of genus g − 1 and two
boundary components) obtained by cutting the surface Sg along the curve α and then
taking its closure. Let {δ1, δ2} be the two boundary components of Sg,α. Then, by [25,
Lemma 1.20], there is a short exact sequence of groups

1→ 〈τδ1τ
−1
δ2
〉 → Mg,α →Mg(−→α )→ 1,
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where 〈τδ1τ
−1
δ2
〉 � Z. Applying this result to the oriented curve a1 and using the

generating set forMg,a1 (see [12, Corollary 4.16 and Figure 4.10]),

Mg(−→a1) = 〈τa1 , τa2 , . . . , τag , τb2 , . . . , τbg , τc1 , τc2 , . . . , τcg−1〉.

Since each τdi preserves the curve a1 with orientation, the claim follows. �

Using Lemma 5.2 and choosing the hyperelliptic involution as a pre-image of −I2g,
the short exact sequence

1→ ker(Ψp) −→Mg
Ψp−→ Sp(2g,Zp)→ 1

induces the following short exact sequence at the level of centralisers.

COROLLARY 5.3. For each prime p and each g ≥ 1, there is a short exact sequence of
groups

1→ ker(Ψp) ∩ CMg (τa1 )→ CMg (τa1 )→ CSp(2g,Zp)(Ψp(τa1 ))→ 1. (5-1)

We briefly recall from [9, Section 7] the construction of the projective primitive
homological quandle Pg,n of the surface Sg, where g ≥ 1 and n ≥ 2. Let P′g denote the
set of all primitive elements in H1(Sg,Z) and P′g,n denote the set of all primitive ele-
ments in H1(Sg,Zn). The algebraic intersection number î(−,−) gives a skew-symmetric
(in fact, symplectic) bilinear form on the Z-module H1(Sg,Z). For x, y ∈ P′g, the binary
operation

x ∗ y := x + î(x, y)y

gives a quandle structure on P′g. Similarly, reduction modulo n defines a quandle
structure on P′g,n.

Let Pg := P′g/Z2 and Pg,n := P′g,n/Z2 be quotients under the natural involutory
action of Z2 = {1,−1}. It is clear that quandle structures descend to quandle structures
onPg andPg,n. Further, reduction modulo n gives a surjective quandle homomorphism
P′g → P′g,n, which further induces a surjective quandle homomorphism Pg → Pg,n.
The quandles Pg and Pg,n are called projective primitive homological quandles of Sg.
Note that Pg,2 is an involutory quandle of order 22g − 1.

Recall from [12, Proposition 6.2] that a nonzero element of H1(Sg,Z) is primitive
if and only if it is represented by an oriented simple closed curve. For the isotopy
class a of an oriented simple closed curve in Sg, we denote by [a] ∈ H1(Sg,Z) its
homology class. Since Dns

g consists of isotopy classes of unoriented simple closed
curves, there are two choices for the homology class [a] ∈ P′g for each a ∈ Dns

g . We
choose [a] such that the entry in its first nonzero coordinate (from left) is positive. This
gives a surjectionDns

g → P′g given by a �→ [a]. Composing the surjectionsDns
g → P′g,

P′g → Pg and Pg → Pg,n gives a surjection

φ : Dns
g → Pg,n,
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which is a quandle homomorphism due to [9, Theorem 7.1]. Let (Dns
g )n denote the

n-quandle of the Dehn quandleDns
g and

π : Dns
g → (Dns

g )n

the natural quotient map.

THEOREM 5.4. Let Dns
g be the Dehn quandle of the closed orientable surface Sg of

genus g ≥ 1. Then the following assertions hold:

(1) (Dns
g )2 � Pg,2 for each g ≥ 1;

(2) (Dns
2 )3 � P2,3.

PROOF. Let φ : Dns
g → Pg,2 be the surjective quandle homomorphism as discussed

above. Since (Dns
g )2 is involutory, φ induces a surjective quandle homomorphism

φ : (Dns
g )2 → Pg,2

such that φ π = φ. We claim that φ is an isomorphism. Suppose that φ(x) = φ(y) for
x, y ∈ Dns

g . It suffices to prove that π(x) = π(y). We identify elements of Dns
g with

corresponding Dehn twists in Mg with the quandle operation as conjugation. Since
Dns

g is a connected quandle, we have x = τa1 ∗ε1 τz1 ∗ε2 τz2 ∗ · · · ∗εk τzk and y = τa1 ∗δ1

τw1 ∗δ2 τw2 ∗ · · · ∗δr τwr for some zi, wj ∈ Dns
g and εi, δj ∈ {1,−1}, where a1 denotes the

usual curve (see Figure 2). Since φ(x) = φ(y), we have

φ(τεk
zk
· · · τε2

z2
τε1

z1
τa1τ

−ε1
z1
τ−ε2

z2
· · · τ−εk

zk
) = φ(τδr

wr
· · · τδ2

w2
τδ1

w1
τa1τ

−δ1
w1
τ−δ2

w2
· · · τ−δr

wr
).

It follows from [9, Proposition 7.6(ii)] that φ is simply the restriction of Ψ2 :Mg →
Sp(2g,Z2). Thus, the preceding equation can be written as

Ψ2(τεk
zk
· · · τε2

z2
τε1

z1
τa1τ

−ε1
z1
τ−ε2

z2
· · · τ−εk

zk
) = Ψ2(τδr

wr
· · · τδ2

w2
τδ1

w1
τa1τ

−δ1
w1
τ−δ2

w2
· · · τ−δr

wr
),

which implies that Ψ2(τ−δ1
w1 τ

−δ2
w2 · · · τ

−δr
wr τ

εk
zk · · · τ

ε2
z2τ

ε1
z1 ) commutes with Ψ2(τa1 ). Using

Corollary 5.3, we can write τ−δ1
w1 τ

−δ2
w2 · · · τ

−δr
wr τ

εk
zk · · · τ

ε2
z2τ

ε1
z1 = uv such thatΨ2(u) = I2g and

v commutes with τa1 (by choosing an appropriate section to (5-1)). By [16, Proposition
2.1], we know that ker(Ψ2) is generated by squares of Dehn twists along nonseparating
curves. Thus,

π(τa1 ∗ε1 τz1 ∗ε2 τz2 ∗ · · · ∗εk τzk ∗−1 ∗−δrτwr ∗ · · · ∗−δ2 τw2 ∗−δ1 τw1 )

= π(τa1 ∗ v ∗ u)

= π(τa1 ∗ u), since v commutes with τa1

= π(τa1 ) ∗ π(u)

= π(τa1 ),

which implies that π(x) = π(y). This completes the proof of assertion (1).
For assertion (2), we claim that a kernel of Ψ3 :M2 → Sp(4,Z3) is generated by

cubes of Dehn twists along nonseparating curves. Let N = 〈〈τ3
a1
〉〉 be the normal closure
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inM2 of the set of cubes of Dehn twists along all nonseparating simple closed curves
on S2. By [16, Proposition 2.1], ker(Ψ) ≤ N. Let M = 〈〈I4 + 3E1,2〉〉 be the normal
closure of I4 + 3E1,2 in Sp(4,Z) and ψ3 : Sp(4,Z)→ Sp(4,Z3) be the mod 3 reduction
homomorphism. By [22, Hilfssatz 9.2], ker(ψ3) = M. Hence, it follows that

N/ker(Ψ) � Ψ(N) = M = ker(ψ3).

This gives

M2/N � (M2/ker(Ψ))/(N/ker(Ψ)) � Sp(4,Z)/ker(ψ3) � Sp(4,Z3).

Since Ψ3 = ψ3Ψ, the preceding isomorphism is, in fact, induced by Ψ3. Hence, it
follows that ker(Ψ3) = N = 〈〈τ3

a1
〉〉. The proof of assertion (2) now follows analogously

to that of assertion (1). �

REMARK 5.5. Lemma 5.2 is inspired by [1, 8], wherein similar arguments have
been used to understand the stabiliser of a homological vector in the mapping class
group Mg, which also preserves the fibre over that homological vector under the
homomorphism φ : Dns

g → Pg,n.

5.2. n-quandles of Dehn quandles of surfaces. We now present our main result,
which can be thought of as the Dehn quandle analogue of a similar result of Hoste and
Shanahan [14] for link quandles.

THEOREM 5.6. LetDns
g be the Dehn quandle of the closed orientable surface of genus

g ≥ 1. Then the following assertions hold:

(1) (Dns
1 )n is finite if and only if n = 2, 3, 4, 5;

(2) (Dns
2 )n is finite if and only if n = 2, 3;

(3) if g ≥ 3, then (Dns
g )n is finite for n = 2 and infinite for n � 2, 3, 4, 6, 8, 12.

PROOF. It follows from [23] thatDns
1 � Q(31), the knot quandle of the trefoil knot 31.

Further, it follows from [14, Section 5] that (Q(31))n is finite if and only if n = 2, 3, 4, 5,
which proves assertion (1).

By Theorem 5.4, we obtain that (Dns
2 )n is finite for n = 2, 3. LetMb

g be the mapping
class group of the surface Sb

g of genus g with b ≥ 0 boundary components and let
(Mb

g)n be the quotient of Mg by the normal closure of n th powers of Dehn twists
along nonseparating simple closed curves. We avoid writing b in the notation whenever
b = 0. It is proved in [16, Theorem 4] that (Mb

2)n is infinite for b ≥ 0 and n > 3. Taking
b = 0, it follows from Theorem 3.4 that (Dns

2 )n is infinite for n > 3, which proves
assertion (2).

Assume that g ≥ 3. By Theorem 5.4, (Dns
g )2 is finite. However, [13, Corollary 1.2]

gives that (Mg)n is infinite for n � 2, 3, 4, 6, 8, 12. Thus, Theorem 3.4 implies that
(Dns

g )n is infinite for n � 2, 3, 4, 6, 8, 12. �

REMARK 5.7. We do not know whether (Dns
g )n is finite for g ≥ 3 and n = 3, 4, 6, 8, 12.
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We conclude with a bound on the size of the smallest nontrivial quandle quotient
of the Dehn quandle of a surface. The proof is based on [20, Lemma 11].

PROPOSITION 5.8. Let g ≥ 1 and f : Dns
g → Q be a surjective quandle homomor-

phism onto a quandle with at least two elements. Then, |Q| ≥ 22g − 1 and the bound is
sharp.

PROOF. By [9, Theorem 7.1], there is a surjective quandle homomorphism from Dns
g

onto the projective primitive homological quandle Pg,2 of order 22g − 1. It follows
from [12, Proposition 6.2] that a nonzero element of H1(Sg,Z2) is primitive if and
only if it is represented by an oriented simple closed curve on Sg. Following [20,
Section 5], we suitably choose simple closed curves on Sg such that they represent all
primitive vectors in H1(Sg,Z2). Let X be the set of isotopy classes of (right) Dehn twists
about these suitably chosen curves. Viewing Dns

g as a subquandle of the conjugation
quandle ofMg, let f : Dns

g → Q be a surjective quandle homomorphism. Suppose that
f (τα) = f (τβ) for some τα, τβ ∈ X with τα � τβ. Then, by the construction of X, one
can find a simple closed curve γ such that τγ commutes with precisely one of τα or τβ
and satisfies the braid relation with the other. Without loss of generality, suppose that

τγτατγ = τατγτα and τγτβ = τβτγ.

Applying f to the preceding relations and using the equality f (τα) = f (τβ), we obtain
f (τα) = f (τγ). Proceeding in this manner, we show that f is constant on X. Since
X also generates Dns

g as a quandle [9, Proposition 3.2], it follows that f is constant
on Dns

g , which is a contradiction. Hence, f must be injective on X, and therefore
|Q| ≥ 22g − 1. �
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