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Abstract

In 2008, Tóth and Vető defined the self-repelling random walk with directed edges as a
non-Markovian random walk on Z: in this model, the probability that the walk moves
from a point of Z to a given neighbor depends on the number of previous crossings of the
directed edge from the initial point to the target, called the local time of the edge. Tóth
and Vető found that this model exhibited very peculiar behavior, as the process formed
by the local times of all the edges, evaluated at a stopping time of a certain type and suit-
ably renormalized, converges to a deterministic process, instead of a random one as in
similar models. In this work, we study the fluctuations of the local times process around
its deterministic limit, about which nothing was previously known. We prove that these
fluctuations converge in the Skorokhod M1 topology, as well as in the uniform topology
away from the discontinuities of the limit, but not in the most classical Skorokhod topol-
ogy. We also prove the convergence of the fluctuations of the aforementioned stopping
times.
Keywords: Self-interacting random walks; self-repelling random walk with directed
edges; local times; functional limit theorems; fluctuations
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1. Introduction and results

1.1. Self-interacting random walks

The study of self-interacting random walks began in 1983 in an article of Amit et al. [1].
Before [1], the expression ‘self-avoiding random walk’ referred to paths on graphs that do not
intersect themselves. However, these are not easy to construct step by step; hence one would
consider the set of all possible paths of a given length. Since one does not follow a single path
as it grows with time, this is not really a random walk model. In order to work with an actual
random walk model with self-avoiding behavior, the authors of [1] introduced the ‘true’ self-
avoiding random walk. This is a random walk on Z

d for which, at each step, the position of the
process at the next step is chosen randomly from among the neighbors of the current position,
depending on the number of previous visits to said neighbors, with lower probabilities for those
that have been visited the most. This process is a random walk in the sense that it is constructed
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step by step, but unlike most random walks in the literature, it is non-Markovian: at each step,
the law of the next step depends on the whole past of the process.

It turns out that the ‘true’ self-avoiding random walk is hard to study. This led to the intro-
duction by Tóth [13, 14, 15] of non-Markovian random walks with bond repulsion, for which
the probability of going from one site to another, instead of depending of the number of pre-
vious visits to the target, depends on the number of previous crossings of the undirected edge
between the two sites, which is called the local time of the edge, with lower probabilities for the
edges that have been crossed the most in the past. These walks are much easier to study, at least
on Z, because one can apply the Ray–Knight approach to them. This approach was introduced
by Ray and Knight in [11, 2], and was used for the first time for non-Markovian random walks
by Tóth in [13, 14, 15]. Since then, it has been applied to many other non-Markovian random
walks, such as a continuous-time version of the ‘true’ self-avoiding random walk in [18], edge-
reinforced random walks (see the corresponding part of the review [9] and references therein),
and excited random walks (see [4] and references therein). The Ray–Knight approach works
as follows: though the random walk itself is not Markovian, if we stop it when the local time
at a given edge has reached a certain threshold, then the local times on the edges will form a
Markov chain, which enables their analysis. Thanks to this approach, Tóth was able to prove
scaling limits for the local times process for many different random walks with bond repulsion
in his works [13, 14, 15]. The law of the limit depends on the random walk model, but it is
always a random process (the model studied by Tóth in [16] has a deterministic limit, but it
is not a random walk with bond repulsion, as it is self-attracting: the more an edge has been
crossed in the past, the more likely it is to be crossed in the future).

1.2. The self-repelling random walk with directed edges

In 2008, Tóth and Vető [17] introduced a process seemingly very similar to the aforemen-
tioned random walks with bond repulsion, in which the probability of going from one site to
another depends on the number of crossings of the directed edge between them, instead of the
crossings of the undirected edge. This process, called self-repelling random walk with directed
edges, is a nearest-neighbor random walk on Z defined as follows. For any set A, we denote by
|A| the cardinality of A. Let w : Z �→ (0, +∞) be a non-decreasing and non-constant function.
We will denote the walk by (Xn)n∈N. We set X0 = 0, and for any n ∈N, i ∈Z, we denote by
�±(n, i) = |{0 ≤ m ≤ n − 1 | (Xm, Xm+1) = (i, i ± 1)}| the number of crossings of the directed
edge (i, i ± 1) before time n, that is, the local time of the directed edge at time n. Then

P(Xn+1 = Xn ± 1) = w( ± (�−(n, Xn) − �+(n, Xn)))

w(�+(n, Xn) − �−(n, Xn)) + w(�−(n, Xn) − �+(n, Xn))
.

Using the local time of directed edges instead of that of undirected edges may seem like a
very small change in the definition of the process, but the behavior of the self-repelling random
walk with directed edges is actually very different from that of classical random walks with
bond repulsion. Indeed, Tóth and Vető [17] were able to prove that the local times process
has a deterministic scaling limit, which is in sharp contrast with the random limit processes
obtained for the random walks with bond repulsion on undirected edges [13–15] and even for
the simple random walk [2].

The result of [17] is as follows. For any a ∈R, we let a+ = max (a, 0). If for any n ∈N,
i ∈Z, we denote by T±

n,i the stopping time defined by T±
n,i = min{m ∈N | �±(m, i) = n}, then

T±
n,i is almost surely finite by Proposition 1 of [17], and we have the following.
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Theorem 1. ([17, Theorem 1].) For any θ > 0, x ∈R, we have that

sup
y∈R

∣∣∣∣ 1

N
�+ (

T±
�Nθ	,�Nx	, �Ny	

)
−

( |x| − |y|
2

+ θ

)
+

∣∣∣∣
converges in probability to 0 when N tends to +∞.

Thus the local times process of the self-repelling random walk with directed edges admits

the deterministic scaling limit y �→
( |x|−|y|

2 + θ
)

+, which has the shape of a triangle. This also

implies the following result on convergence to a deterministic limit for the T±
�Nθ	,�Nx	.

Proposition 1. ([17, Corollary 1].) For any θ > 0, x ∈R, we have that 1
N2 T±

�Nθ	,�Nx	 converges

in probability to (|x| + 2θ )2 when N tends to +∞.

The deterministic character of these limits makes the behavior of the self-repelling random
walk with directed edges very unusual, hence worthy of study. In particular, it is natural to
consider the possible fluctuations of the local times process and of the T±

�Nθ	,�Nx	 around their
deterministic limits. However, before the present paper, nothing was known about these fluctu-
ations. In this work, we prove convergence in distribution of the fluctuations of the local times
process and of the T±

�Nθ	,�Nx	. It happens that the limit of the fluctuations of the local times
process is discontinuous; therefore, before stating the results, we have to be careful about the
topology in which it may converge.

1.3. Topologies for the convergence of the local times process

For any interval I ⊂ R, let DI be the space of càdlàg functions on I, that is, the set of
functions I �→R that are right-continuous and have left limits everywhere in I. For any function
Z : I �→R, we denote by ‖Z‖∞ = supy∈I |Z(y)| the uniform norm of Z on I. The uniform norm
on I gives a topology on DI, but it is often too strong to deal with discontinuous functions.

For discontinuous càdlàg functions, the most widely used topology is the Skorokhod J1
topology, introduced by Skorokhod in [12] (see [10, Chapter VI] for a course), which is often
called ‘the’ Skorokhod topology. Intuitively, two functions are close in this topology if they
are close for the uniform norm after allowing some small perturbation of time. Rigorously, for
a < b in R, the Skorokhod J1 topology on D[a, b] is defined as follows. We denote by �a,b the
set of functions λ : [a, b] �→ [a, b] that are bijective, strictly increasing, and continuous (they
correspond to the possible perturbations of time), and we denote by Ida,b : [a, b] �→ [a, b] the
identity map, defined by Ida,b(y) = y for all y ∈ [a, b]. The Skorokhod J1 topology on D[a, b]
is defined through the following metric: for any Z1, Z2 ∈ D[a, b], we set

dJ1,a,b(Z1, Z2) = inf
λ∈�a,b

max
(‖Z1 ◦ λ − Z2‖∞, ‖λ − Ida,b‖∞

)
.

It can be proven rather easily that this is indeed a metric. We can then define the Skorokhod J1
topology on D(−∞, ∞) with the following metric: if for any sets A1 ⊂ A2 and A3 and any func-
tion Z : A2 �→ A3, we denote by Z|A1 the restriction of Z to A1, then for Z1, Z2 ∈ D(−∞, ∞),
we set

dJ1 (Z1, Z2) =
∫ +∞

0
e−a(dJ1,−a,a

(
Z1|[−a,a], Z2|[−a,a]

) ∧ 1
)
da.

The Skorokhod J1 topology is widely used to study the convergence of càdlàg functions.
However, when the limit function has a jump, which will be the case here, convergence in the
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Skorokhod J1 topology requires the converging functions to have a single big jump approxi-
mating the jump of the limit process. To account for other cases, like having the jump of the
limit functions approximated by several smaller jumps in quick succession or by a very steep
continuous slope, one has to use a less restrictive topology, such as the Skorokhod M1 topology.

The Skorokhod M1 topology was also introduced by Skorokhod in [12] (see [19,
Section 3.3] for an overview). For any a < b in R, the Skorokhod M1 distance on D[a, b] is
defined as follows: the distance between two functions will be roughly ‘the distance between
the completed graphs of the functions’. More rigorously, if Z ∈ D[a, b], we set Z(a−) = Z(a),
and for any y ∈ (a, b], we set Z(y−) = limy′→y,y′<y Z(y′). Then the completed graph of Z is

�Z = {(y, z) | y ∈ [a, b], ∃ ε ∈ [0, 1] such that z = εZ(y−) + (1 − ε)Z(y)}.
To express the ‘distance between two such completed graphs’, we need to define the parametric
representations of �Z (by abuse of notation, we will often write ‘the parametric representa-
tions of Z’). We define an order on �Z as follows: for (y1, z1), (y2, z2) ∈ �Z , we have (y1, z1) ≤
(y2, z2) when y1 < y2 or when y1 = y2 and |Z(

y−
1

) − z1| ≤ |Z(
y−

1

) − z2|. A parametric repre-
sentation of �Z is a continuous, surjective function (u, r) : [0, 1] �→ �Z that is non-decreasing
with respect to this order; thus intuitively, when t goes from 0 to 1, (u(t),r(t)) ‘travels through
the completed graph of Z from its beginning to its end’. A parametric representation of
Z always exists (see [19, Remark 12.3.3]). For Z1, Z2 ∈ D[a, b], the Skorokhod M1 dis-
tance between Z1 and Z2, denoted by dM1,a,b(Z1, Z2), is inf

{
max

(‖u1 − u2‖∞, ‖r1 − r2‖∞
)}

,
where the infimum is on the parametric representations (u1, r1) of Z1 and (u2, r2) of Z2. It can
be proven that this indeed gives a metric (see [19, Theorem 12.3.1]), and this metric defines the
Skorokhod M1 topology on D[a, b]. For any a > 0, we will denote dM1,−a,a by dM1,a for short.
We can now define the Skorokhod M1 topology in D(−∞, ∞) through the following metric:
for Z1, Z2 ∈ D(−∞, ∞), we set

dM1 (Z1, Z2) =
∫ +∞

0
e−a(dM1,a

(
Z1|[−a,a], Z2|[−a,a]

) ∧ 1
)
da.

It can be seen that the Skorokhod M1 topology is weaker than the Skorokhod J1 topology (see
[19, Theorem 12.3.2]), and thus less restrictive. Indeed, since the distance between two func-
tions is roughly ‘the distance between the completed graphs of the functions’, the Skorokhod
M1 topology will allow a function with a jump to be the limit of functions with steep slopes or
with several smaller jumps. For this reason, the Skorokhod M1 topology is often more suitable
when one is considering convergence to a discontinuous function.

1.4. Results

We are now ready to state our results on the convergence of the fluctuations of the local
times process. For any θ > 0, x ∈R, ι ∈ {+, −}, for any N ∈N

∗, we define functions Y−
N , Y+

N
as follows: for any y ∈R, we set

Y±
N (y) = 1√

N

(
�±(

T ι�Nθ	,�Nx	, �Ny	
)

− N

( |x| − |y|
2

+ θ

)
+

)
.

The functions Y±
N actually depend on ι, but to make the notation lighter, we do not write

this dependency explicitly. Moreover,
(
Bx

y

)
y∈R will denote a two-sided Brownian motion with

Bx
x = 0 and variance Var(ρ−), where ρ− is the distribution on Z defined later in (3). We prove
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the following convergence for the fluctuations of the local times process of the self-repelling
random walk with directed edges.

Theorem 2. For any θ > 0, x ∈R, ι ∈ {+, −}, the process Y±
N converges in distribution to(

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R in the Skorokhod M1 topology on D(−∞, +∞) when N tends to

+∞.

Therefore, the fluctuations of the local times process have a diffusive limit behavior.
However, it is necessary to use the Skorokhod M1 topology here, as the following result states
that convergence does not occur in the stronger Skorokhod J1 topology.

Proposition 2. For any θ > 0, x ∈R, ι ∈ {+, −}, the process Y±
N does not converge in

distribution in the Skorokhod J1 topology on D(−∞, +∞) when N tends to +∞.

We stress the fact that the use of the Skorokhod M1 topology is required only to deal with
the discontinuities of the limit process at −|x| − 2θ and |x| + 2θ . Indeed, if we consider the
process on an interval that does not include −|x| − 2θ or |x| + 2θ , it converges in the much
stronger topology given by the uniform norm, as stated in the following result.

Proposition 3. For any θ > 0, x ∈R, ι ∈ {+, −}, for any closed interval I ∈R that does
not contain −|x| − 2θ or |x| + 2θ , the process

(
Y±

N (y)
)

y∈I converges in distribution to(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈I in the topology on DI given by the uniform norm when N tends
to +∞.

Finally, we also prove the convergence of the fluctuations of T±
�Nθ	,�Nx	. For any σ 2 > 0, we

denote by N (
0, σ 2

)
the Gaussian distribution with mean 0 and variance σ 2, and we recall that

ρ− will be defined in (3). We then have the following.

Proposition 4. For any θ > 0, x ∈R, ι ∈ {+, −}, we have that

1

N3/2

(
T ι�Nθ	,�Nx	 − N2(|x| + 2θ )2

)
converges in distribution to N (0, 32

3 Var(ρ−)((|x| + θ )3 + θ3)) when N tends to +∞.

Remark 1. Instead of studying the fluctuations of �±
(

T ι�Nθ	,�Nx	, .
)

, it may seem more natural

to consider those of �±(N2, .). However, the Ray–Knight arguments that allow one to study

�±
(

T ι�Nθ	,�Nx	, .
)

completely break down for �±(N2, .), and it is not even clear whether these

two processes should have the same behavior.

Remark 2. Apart from the article of Tóth and Vető [17] that introduced the self-repelling
random walk with directed edges, there have been a few other works on this model. These
works were motivated by another important question, that of the existence of a scaling limit
for (Xn)n∈N, which means the convergence in distribution of the process

( 1
Nα X�Nt	

)
t≥0 for some

α. Obtaining such a scaling limit for the trajectory of the random walk is harder than obtaining
scaling limits for the local times. Indeed, for the random walks with bond repulsion with undi-
rected edges introduced by Tóth in [13–15], the scaling limits for the local times have been
known since the introduction of the models, but the scaling limits for the trajectories are not
known. Some results were proven by Kosygina, Mountford, and Peterson in [3], but they do
not cover all models. For the self-repelling random walk with directed edges, the behavior of
the scaling limit of the trajectory turns out to be surprising. Indeed, Mountford, Pimentel, and
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Valle proved in [7] that 1√
N

XN converges in distribution, but Mountford and the author showed

in [6] that
( 1√

N
X�Nt	

)
t≥0 does not converge in distribution, and that the trajectories of the walk

satisfy a more complex limit theorem, of a new kind.

1.5. Proof ideas

We begin by explaining why the limit of the local times process Y±
N is the process(

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R, and we describe the ideas behind the proofs of Theorem 2 and

Proposition 3. To show the convergence of the local times process, we use a Ray–Knight argu-

ment; that is, we notice that
(
�−

(
T ι�Nθ	,�Nx	, i

))
i

is a Markov chain. Moreover, as long as

�−
(

T ι�Nθ	,�Nx	, i
)

is not too low, the quantities

�− (
T ι�Nθ	,�Nx	, i + 1

)
− �− (

T ι�Nθ	,�Nx	, i
)

will roughly be independent and identically distributed (i.i.d.) random variables, in the
sense that they can be coupled with i.i.d. random variables with a high probability of
being equal to them. This coupling was already used in [17] to prove the convergence of
1
N �+

(
T±

�Nθ	,�Nx	, �Ny	
)

to its deterministic limit (for a given y, the coupling makes this conver-

gence a law of large numbers). However, when �−
(

T ι�Nθ	,�Nx	, �Ny	
)

is too low, the coupling

fails and the �−
(

T ι�Nθ	,�Nx	, �Ny	 + 1
)

− �−
(

T ι�Nθ	,�Nx	, �Ny	
)

are no longer i.i.d. We have to

prove that this occurs only around |x| + 2θ and −|x| − 2θ , and most of our work is dealing with
what happens there. To show that it occurs only around |x| + 2θ and −|x| − 2θ , we control the
amplitude of the fluctuations to prove that the local times are close to their deterministic limit.
This limit is large inside (−|x| − 2θ, |x| + 2θ ), so we can use the coupling inside this inter-

val; thus the �−
(

T ι�Nθ	,�Nx	, �Ny	 + 1
)

− �−
(

T ι�Nθ	,�Nx	, �Ny	
)

are roughly i.i.d. there, and

hence the fluctuations will converge to a Brownian motion by Donsker’s invariance principle.
When we are close to |x| + 2θ (the same reasoning works for −|x| − 2θ ), the deterministic
limit will be small, and hence the local times will also be small; tools from [17] then allow
us to prove that they reach 0 quickly. Once they reach 0, we notice that for y ≥ |x| + 2θ , if

�−
(

T ι�Nθ	,�Nx	, �Ny	
)

= 0, then the walk X did not go from �Ny	 to �Ny	 + 1 before time

T ι�Nθ	,�Nx	, so it did not go to �Ny	 + 1 before time T ι�Nθ	,�Nx	; hence �−
(

T ι�Nθ	,�Nx	, j
)

= 0 for

any j ≥ �Ny	. Therefore, once the local times process reaches 0, it stays there. Consequently,

we expect �−
(

T ι�Nθ	,�Nx	, �Ny	
)

to be 0 when y > |x| + 2θ , and thus to have no fluctua-

tions when y > |x| + 2θ ; similar statements hold when y < −|x| − 2θ . This is why our limit

is
(

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R.

Since Proposition 3 only describes convergence away from −|x| − 2θ and |x| + 2θ , the
previous arguments are enough to prove it. To prove the convergence in the Skorokhod M1
topology on D(−∞, +∞) stated in Theorem 2, we need to handle what happens around −|x| −
2θ and |x| + 2θ with more precision. We first have to bound the difference between the local
times and the i.i.d. random variables of the coupling even where the coupling fails. Afterwards
comes the most important part of the paper: defining parametric representations of Y±

N and
of the sum of the i.i.d. random variables of the coupling, properly renormalized and set to 0
outside of [−|x| − 2θ, |x| + 2θ ), and then proving that they are close to each other. That allows
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us to prove that Y±
N is close in the Skorokhod M1 distance to a process that will converge

in distribution to
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R in the Skorokhod M1 topology, which lets us
complete the proof of Theorem 2.

To prove Proposition 2, that is, that Y±
N does not converge in the J1 topology, we first

notice that since the J1 topology is stronger than the M1 topology, if Y±
N did converge in the

J1 topology its limit would be
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R. However, this is not possible, as(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R has a jump at |x| + 2θ , while the jumps of Y±
N have typical size

of order 1√
N

, so the jump in
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R is approximated in Y±
N by either

a sequence of small jumps or a continuous slope, which prevents the convergence in the
Skorokhod J1 topology.

Finally, to prove Proposition 4 on the fluctuations of T ι�Nθ	,�Nx	, we use the fact that we have

T ι�Nθ	,�Nx	 =
∑
i∈Z

(
�+ (

T ι�Nθ	,�Nx	, i
)

+ �− (
T ι�Nθ	,�Nx	, i

))
.

It can be checked that
∣∣∣�+

(
T ι�Nθ	,�Nx	, i

)
− �−

(
T ι�Nθ	,�Nx	, i + 1

)∣∣∣ equals 0 or 1; hence it is

enough to control the �−
(

T ι�Nθ	,�Nx	, i
)

. By using the coupling for the

�−(
T ι�Nθ	,�Nx	, i + 1

)
− �−(

T ι�Nθ	,�Nx	, i
)

when �−
(

T ι�Nθ	,�Nx	, i
)

is high enough, and using our estimates on the size of the window in

which �−
(

T ι�Nθ	,�Nx	, i
)

is neither high enough nor 0, we can prove that T ι�Nθ	,�Nx	 is close

to the integral of the sum of the i.i.d. random variables of the coupling, which will yield the
convergence.

1.6. Organization of the paper

In Section 2, we define the coupling between the increments of the local time and i.i.d. ran-
dom variables and prove some of its properties. In Section 3, we control where the local times
hit 0, as well as where the local times are too low for the coupling of Section 2 to be useful. In
Section 4, we prove a bound on the Skorokhod M1 distance between Y±

N and the renormalized
sum of the i.i.d. random variables of the coupling set to 0 outside of [−|x| − 2θ, |x| + 2θ ), by
writing explicit parametric representations of the two functions. In Section 5, we complete the
proof of the convergence of Y±

N stated in Theorem 2 and Proposition 3. In Section 6 we prove
that, as claimed in Proposition 2, Y±

N does not converge in the J1 topology. Finally, in Section 7
we prove the convergence of the fluctuations of T±

�Nθ	,�Nx	 stated in Proposition 4.
In what follows, we set θ > 0, ι ∈ {+, −}, and x > 0 (the cases x < 0 and x = 0 can be dealt

with in the same way). To simplify the notation, we set TN = T ι�Nθ	,�Nx	. Moreover, for any
a, b ∈R, we set a ∨ b = max (a, b) and a ∧ b = min (a, b).

2. Coupling of the local times increments with i.i.d. random variables

Our goal in this section will be to couple the �±(TN, i + 1) − �±(TN, i) with i.i.d. random
variables and to prove some properties of this coupling. This part of the work is not very
different from what was done in [17], but we still recall the concepts and definitions from that
paper. If we fix i ∈Z and observe the evolution of (�−(n, i) − �+(n, i))n∈N, and if we ignore

https://doi.org/10.1017/apr.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.37


552 L. MARÊCHÉ

the steps at which �−(n, i) − �+(n, i) does not move (i.e. those at which the random walk is
not at i), then we obtain a Markov chain ξi whose distribution ξ has the following transition
probabilities: for all n ∈N,

P(ξ (n + 1) = ξ (n) ± 1) = w( ∓ ξ (n))

w(ξ (n)) + w(−ξ (n))
,

and ξi(0) = 0. Now, we set τi,±(0) = 0, and for any n ∈N, we define τi,±(n + 1) = inf{m >

τi,±(n) | ξi(m) = ξi(m − 1) ± 1}, so that τi,+(n) is the time of the nth upward step of ξi and
τi,−(n) is the time of the nth downward step of ξi. Then, since the distribution of ξ is symmet-
ric, the processes (ηi,+(n))n∈N = (−ξi(τi,+(n)))n∈N and (ηi,−(n))n∈N = (ξi(τi,−(n)))n∈N have the
same distribution, called η, and it can be checked that η is a Markov chain.

We are going to give an expression for �±(TN, i + 1) − �±(TN, i) depending on the ηi,−,
ηi,+. We assume N large enough (so that �Nx	 − 1 > 0). By definition of TN we have XTN =
�Nx	ι1. If i ≤ 0 we thus have XTN > i, which means the last step of the walk at i before TN was
going to the right, so the last step of ξi was a downward step, and by definition of �+(TN, i) we
have that ξi made �+(TN, i) downward steps; hence

�−(TN, i) − �+(TN, i) = ξi(τi,−(�+(TN, i))) = ηi,−(�+(TN, i)),

which yields �−(TN, i) − �+(TN, i) = ηi,−(�+(TN, i)). In addition, �−(TN, i) = �+(TN, i − 1);
hence

�+(TN, i − 1) = �+(TN, i) + ηi,−(�+(TN, i)).

If 0 < i < �Nx	 (for ι = −) or 0 < i ≤ �Nx	 (for ι = +), the last step of the walk at i was
also going to the right, so we also have �−(TN, i) − �+(TN, i) = ηi,−(�+(TN, i)). However,
�−(TN, i) = �+(TN, i − 1) − 1, so �+(TN, i − 1) = �+(TN, i) + ηi,−(�+(TN, i)) + 1. Finally, if
i ≥ �Nx	 (for ι = −) or i > �Nx	 (for ι = +), then the last step of the walk at i was going to the
left, so the last step of ξi was an upward step, and ξi made �−(TN, i) upward steps; therefore

�−(TN, i) − �+(TN, i) = ξi
(
τi,+

(
�−(

TN, i
))) = −ηi,+

(
�−(

TN, i
))

,

which yields �−(TN, i) − �+(TN, i) = −ηi,+
(
�−(

TN, i
))

. Moreover, �+(TN, i) = �−(TN, i + 1),
and hence �−(TN, i + 1) = �−(TN, i) + ηi,+

(
�−(

TN, i
))

.
We are going to use these results to deduce an expression for the �±(TN, i) which will

be very useful throughout this work. Defining χ (N) = �Nx	 if ι = − and χ (N) = �Nx	 + 1 if
ι = +, for i ≥ χ (N) we have

�−(TN, i) = �−(TN, χ (N)) +
i−1∑

j=χ (N)

ηj,+(�−(TN, j)),

and for i < χ (N) we have

�+(TN, i) = �+(TN, χ (N) − 1) +
χ (N)−1∑
j=i+1

(
ηj,−(�+(TN, j)) + 1{j>0}

)
.

Now, we remember that the definition of TN implies �ι(TN, �Nx	) = �Nθ	, so if ι = − we
have �−(TN, χ (N)) = �Nθ	 and �+(TN, χ (N) − 1) = �−(TN, χ (N)) = �Nθ	, while if ι = +
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we have �+(TN, χ (N) − 1) = �Nθ	 and �−(TN, χ (N)) = �+(TN, χ (N) − 1) − 1 = �Nθ	 − 1.
Consequently, we have the following:

If i ≥ χ (N), �−(TN, i) = �Nθ	 − 1{ι=+} +
i−1∑

j=χ (N)

ηj,+(�−(TN, j)).

If i < χ (N), �+(TN, i) = �Nθ	 +
χ (N)−1∑
j=i+1

(
ηj,−(�+(TN, j)) + 1{j>0}

)
.

(1)

We will also need to remember the following:

If i ≥ χ (N), �−(TN, i) − �+(TN, i) = −ηi,+
(
�−(

TN, i
))

.

If i < χ (N), �−(TN, i) − �+(TN, i) = ηi,−(�+(TN, i)).
(2)

To couple the �±(TN, i + 1) − �±(TN, i) with i.i.d. random variables, we need to understand
the ηi,+

(
�−(

TN, i
))

and the ηi,−(�+(TN, i)). The paper [17] proved that the following measure
ρ− is the unique invariant probability distribution of the Markov chain η:

∀i ∈Z, ρ−(i) = 1

R

�|2i+1|/2	∏
j=1

w(−j)

w(j)
with R =

∑
i∈Z

�|2i+1|/2	∏
j=1

w(−j)

w(j)
. (3)

We also denote by ρ0 the measure on 1
2 +Z defined by ρ0( · ) = ρ−

( · − 1
2

)
.

We are now in position to construct the coupling of the �±(TN, i + 1) − �±(TN, i) with
i.i.d. random variables (ζi)i∈Z. The idea is that η can be expected to converge to its invari-
ant distribution ρ−; hence when �±(TN, i) is large, ηi,∓

(
�±(TN, i)

)
will be close to a random

variable of law ρ−. More rigorously, we begin by defining an i.i.d. sequence (ri)i∈Z of random
variables of distribution ρ− so that if i ≥ χ (N), then P

(
ri �= ηi,+

(⌊
N1/6

⌋))
is minimal, and

if i < χ (N), then P
(
ri �= ηi,−

(⌊
N1/6

⌋))
is minimal. We can then define i.i.d. Markov chains

(η̄i,+(n))
n≥

⌊
N1/6

⌋ for i ≥ χ (N) and (η̄i,−(n))
n≥

⌊
N1/6

⌋ for i < χ (N) so that η̄i,±
(⌊

N1/6
⌋) = ri,

η̄i,± is a Markov chain of distribution equal to that of η, and if η̄i,±
(⌊

N1/6
⌋) = ηi,±

(⌊
N1/6

⌋)
,

then η̄i,±(n) = ηi,±(n) for any n ≥ ⌊
N1/6

⌋
. Since ρ− is invariant for η, if n ≥ ⌊

N1/6
⌋

, then
the η̄i,+(n) for i ≥ χ (N) and η̄i,−(n) for i < χ (N) have distribution ρ−. We define the random
variables (ζi)i∈Z as follows: for i ≥ χ (N) we set ζi = η̄i,+

(
�−(TN, i) ∨ ⌊

N1/6
⌋) + 1

2 , and for
i < χ (N) we set ζi = η̄i,−

(
�+(TN, i) ∨ ⌊

N1/6
⌋) + 1

2 . For i ≥ χ (N), (1) implies that �−(TN, i)
depends only on the ηj,+, χ (N) ≤ j ≤ i − 1, and hence is independent from η̄i,+, which implies
that ζi has distribution ρ0 and is independent from the ζj, χ (N) ≤ j ≤ i − 1. This together with
a similar argument for i < χ (N) implies that the (ζi)i∈Z are i.i.d. with distribution ρ0.

We will prove several properties of (ζi)i∈Z that we will use in the remainder of the proof. In
order to do that, we need the following lemma from [17].

Lemma 1. ([17, Lemma 1].) There exist two constants c̃ = c̃(w) > 0 and C̃ = C̃(w) < +∞ such
that for any n ∈N,

P(η(n) = i|η(0) = 0) ≤ C̃e−c̃|i| and
∑
i∈Z

|P(η(n) = i|η(0) = 0) − ρ−(i)| ≤ C̃e−c̃n.

Firstly, we want to prove that our coupling is actually useful: that the ζi are close to
the �±(TN, i + 1) − �±(TN, i). More precisely, we will show that except on an event of
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probability tending to 0, if �±(TN, i) is large then ζi = ηi,∓(�±(TN, i)) + 1/2, which (1) relates
to �±(TN, i + 1) − �±(TN, i). We define

B−
1 = {∃ i ∈ {−�2(|x| + 2θ )N�, . . . , χ (N) − 1}, �+(TN, i) ≥ ⌊

N1/6⌋
and ζi �= ηi,−(�+(TN, i)) + 1/2},

B+
1 = {∃ i ∈ {χ (N), . . . , �2(|x| + 2θ )N�}, �−(TN, i) ≥ ⌊

N1/6⌋
and ζi �= ηi,+

(
�−(

TN, i
)) + 1/2}.

(4)

Lemma 1 will allow us to prove the following.

Lemma 2. P
(B−

1

)
and P

(B+
1

)
tend to 0 when N → +∞.

Proof. By definition, for any i ∈ {−�2(|x| + 2θ )N�, . . . , χ (N) − 1} we have

ζi = η̄i,−
(
�+(TN, i) ∨ ⌊

N1/6⌋) + 1

2
,

which is η̄i,−(�+(TN, i)) + 1
2 when �+(TN, i) ≥ ⌊

N1/6
⌋

. Now, η̄i,− = ηi,− if η̄i,−
(⌊

N1/6
⌋) =

ηi,−
(⌊

N1/6
⌋)

; that is, ri = ηi,−
(⌊

N1/6
⌋)

. We deduce that

P
(B−

1

) ≤ P
(∃ i ∈ {−�2(|x| + 2θ )N�, . . . , χ(N) − 1}, ri �= ηi,−

(⌊
N1/6⌋)).

Now, for any i < χ (N), we have P
(
ri �= ηi,−

(⌊
N1/6

⌋))
minimal, and thus smaller than

C̃e−c̃
⌊

N1/6
⌋

by Lemma 1. Consequently, when N is large enough, we have P
(B−

1

) ≤ 3(|x| +
2θ )NC̃e−c̃

⌊
N1/6

⌋
, which tends to 0 when N → +∞. The proof for P

(B+
1

)
is the same. �

Unfortunately, the previous lemma does not allow us to control the local times when
�±(TN, i) is small. In order to do that, we show several additional properties. We have to control
the probability of

B2 ={∃ i ∈ {−�2(|x| + 2θ )N�, . . . , �2(|x| + 2θ )N�}, |ζi| ≥ N1/16}
∪ {∃ i ∈ {−�2(|x| + 2θ )N�, . . . , χ (N) − 1}, |ηi,−(�+(TN, i)) + 1/2| ≥ N1/16}
∪ {∃ i ∈ {χ (N), . . . , �2(|x| + 2θ )N�}, |ηi,+

(
�−(

TN, i
)) + 1/2| ≥ N1/16}.

Lemma 3. P(B2) tends to 0 when N tends to +∞.

Proof. It is enough to find some constants c > 0 and C < +∞ such that for any i ∈
{−�2(|x| + 2θ )N�, . . . , �2(|x| + 2θ )N�} we have

P
(|ζi| ≥ N1/16) ≤ Ce−cN1/16

,

for any i ∈ {−�2(|x| + 2θ )N�, . . . , χ (N) − 1} we have

P
(|ηi,−(�+(TN, i)) + 1/2| ≥ N1/16) ≤ Ce−cN1/16

,

and for all i ∈ {χ (N), . . . , �2(|x| + 2θ )N�} we have

P
(|ηi,+

(
�−(

TN, i
)) + 1/2| ≥ N1/16) ≤ Ce−cN1/16

.

https://doi.org/10.1017/apr.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.37


Fluctuations of the local times of the self-repelling random walk with directed edges 555

For all i ∈Z, ζi has distribution ρ0, which has exponential tails; hence there exist constants
c′ = c′(w) > 0 and C′ = C′(w) < +∞ such that for i ∈ {−�2(|x| + 2θ )N�, . . . , �2(|x| + 2θ )N�}
we have P

(|ζi| ≥ N1/16
) ≤ C′e−c′N1/16

. We now consider i ∈ {−�2(|x| + 2θ )N�, . . . , χ(N) − 1}
and P

(|ηi,−(�+(TN, i)) + 1/2| ≥ N1/16
)

(the P
(|ηi,+

(
�−(

TN, i
)) + 1/2| ≥ N1/16

)
can be dealt

with in the same way). Equation (1) implies that �+(TN, i) depends only on the ηj,− for j > i,
and hence is independent of ηi,−. This implies that

P
(|ηi,−(�+(TN, i)) + 1/2| ≥ N1/16) =

∑
k∈N

P
(|ηi,−(k) + 1/2| ≥ N1/16)

P
(
�+(TN, i) = k

)
.

Therefore the first part of Lemma 1 implies that

P
(|ηi,−(�+(TN, i)) + 1/2| ≥ N1/16) ≤

∑
k∈N

2C̃ec̃/2

1 − e−c̃
e−c̃N1/16

P
(
�+(TN, i) = k

)

= 2C̃ec̃/2

1 − e−c̃
e−c̃N1/16

,

which is enough. �
We will also need the following, which is a fairly standard result on large deviations.

Lemma 4. For any α > 0, ε > 0, P
(

max0≤i1≤i2≤�Nα�
∣∣∣∑i2

i=i1
ζi

∣∣∣ ≥ Nα/2+ε
)

tends to 0 when

N → +∞.

Proof. Let 0 ≤ i1 ≤ i2 ≤ �Nα�, and let us study P

( ∣∣∣∑i2
i=i1

ζi

∣∣∣ ≥ Nα/2+ε
)

. We know the ζi,

i ∈Z, are i.i.d. with distribution ρ0, and it can be checked that ρ0 is symmetric with respect to
0, so from that and the Markov inequality we get

P

⎛
⎝

∣∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣∣ ≥ Nα/2+ε

⎞
⎠ ≤ 2P

⎛
⎝ i2∑

i=i1

ζi ≥ Nα/2+ε

⎞
⎠

= 2P

⎛
⎝exp

⎛
⎝ 1

Nα/2

i2∑
i=i1

ζi

⎞
⎠ ≥ exp (Nε)

⎞
⎠ ≤ 2e−Nε

E

⎛
⎝exp

⎛
⎝ 1

Nα/2

i2∑
i=i1

ζi

⎞
⎠

⎞
⎠

≤ 2e−Nε
i2∏

i=i1

E

(
exp

(
1

Nα/2
ζi

))
.

(5)

Now, if ζ has distribution ρ0, we can write

exp

(
1

Nα/2
ζ

)
= 1 + 1

Nα/2
ζ + 1

2

(
1

Nα/2
ζ

)2

exp

(
1

Nα/2
ζ ′

)

with |ζ ′| ≤ |ζ |. Since ρ0 is symmetric with respect to 0, we have E(ζ ) = 0; therefore

E

(
exp

(
1

Nα/2
ζ

))
= 1 +E

(
1

2

(
1

Nα/2
ζ

)2

exp

(
1

Nα/2
ζ ′

))

≤ 1 + 1

2Nα
E

(
ζ 2 exp

(
1

Nα/2
|ζ |

))
.
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Moreover, ρ0 has exponential tails; hence there exist constants C < +∞ and c > 0 such that
E
(
ζ 2ec |ζ |) ≤ C. When N is large enough, 1

Nα/2 ≤ c; therefore

E

(
exp

( 1

Nα/2
ζ
))

≤ 1 + C

2Nα
≤ exp

( C

2Nα

)
.

Together with (5), this yields

P

⎛
⎝

∣∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣∣ ≥ Nα/2+ε

⎞
⎠ ≤ 2e−Nε

e(i2−i1+1) C
2Nα ≤ 2e−Nε

e
(
�Nα�+1

)
C

2Nα ≤ 2eCe−Nε

when N is large enough. We deduce that when N is large enough,

P

⎛
⎝ max

0≤i1≤i2≤�Nα�

∣∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣∣ ≥ Nα/2+ε

⎞
⎠ ≤ (�Nα� + 1)22eCe−Nε

,

which tends to 0 when N tends to +∞. �
We also prove an immediate application of Lemma 4, which we will use several times. If

we define

B−
3 =

⎧⎨
⎩ max

−�(|x|+2θ)N	−N3/4≤i1≤i2≤−�(|x|+2θ)N	+N3/4

∣∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣∣ ≥ N19/48

⎫⎬
⎭ ,

B+
3 =

⎧⎨
⎩ max

�(|x|+2θ)N	−N3/4≤i1≤i2≤�(|x|+2θ)N	+N3/4

∣∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣∣ ≥ N19/48

⎫⎬
⎭ ,

we have the following lemma.

Lemma 5. P
(B−

3

)
and P

(B+
3

)
tend to 0 when N tends to +∞.

Proof. Since the (ζi)i∈Z are i.i.d.,

P
(B+

3

) = P
(B−

3

) = P

⎛
⎝ max

0≤i1≤i2≤2�N3/4�

∣∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣∣ ≥ N19/48

⎞
⎠ ,

which is smaller than P

(
max0≤i1≤i2≤�N37/48�

∣∣∣∑i2
i=i1

ζi

∣∣∣ ≥ N19/48
)

when N is large enough.

Moreover, Lemma 4, used with α = 37/48 and ε = 1/96, yields that the latter probability tends
to 0 when N tends to +∞. �

3. Where the local times approach 0

The aim of this section is twofold. Firstly, we need to control the place where �−(TN, i)
hits 0 when i is to the right of 0, as well as the place where �+(TN, i) hits 0 when i is to
the left of 0. Secondly, we have to show that even when �±(TN, i) is close to 0, the local
times do not stray too far away from the coupling. For any N ∈N, we define I+ = inf{i ≥
χ (N) | �−(TN, i) = 0} and I− = sup{i < χ (N) | �+(TN, i) = 0}. We notice that �+(TN, I−) = 0,
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and from the definition of TN we have �+(TN, i) > 0 for any 0 ≤ i ≤ χ (N) − 1; hence I− < 0.
We first state an elementary result that we will use many times in this work.

Lemma 6. For any i ≥ I+ or i ≤ I− we have �±(TN, i) = 0.

Proof. Since �+(TN, I−) = 0 and the random walk is at �Nx	ι1 > 0 at time TN , the ran-
dom walk did not reach I− before time TN ; thus �±(TN, i) = 0 for any i ≤ I−. Moreover,
�−(TN, χ (N)) > 0 by definition of TN , so I+ > χ (N); thus XTN < I+, and hence �−(TN, I+) = 0
implies that the random walk did not reach I+ before time TN . Thus �±(TN, i) = 0 for any
i ≥ I+. �

We will also need the auxiliary random variables Ĩ+ = inf{i ≥ χ (N) | �−(TN, i) ≤ ⌊
N1/6

⌋}
and Ĩ− = sup

{
i < χ (N) | �+(TN, i) ≤ ⌊

N1/6
⌋}

.

3.1. Place where we hit 0

We have the following result on the control of I+ and I−.

Lemma 7. For any δ > 0, P
(|I− + (|x| + 2θ )N| ≥ Nδ+1/2

)
and P(|I+ − (|x| + 2θ )N| ≥

Nδ+1/2) tend to 0 when N tends to +∞.

Proof. The idea is to control the fluctuations of the local times around their deterministic
limit: as long as �±(TN, i) is large, the �±(TN, i + 1) − �±(TN, i) will be close to the i.i.d.
random variables of the coupling, so the fluctuations of �±(TN, i) around its deterministic limit
are bounded and �±(TN, i) can be small only when the deterministic limit is small, that is,
around −(|x| + 2θ )N and (|x| + 2θ )N. We spell out the proof only for I−, as the argument for
I+ is similar.

The fact that P
(
I− + (|x| + 2θ )N ≤ −Nδ+1/2

)
tends to 0 when N tends to +∞ comes from

the inequalities (51) and (53) in [17], so we only have to prove that P(I− + (|x| + 2θ )N ≥
Nδ+1/2) tends to 0 when N tends to +∞. Since I− ≤ Ĩ−, it is enough to prove that P(Ĩ− + (|x| +
2θ )N ≥ Nδ+1/2) tends to 0 when N tends to +∞. Since by Lemma 2 we have that P

(B−
1

)
tends

to 0 when N tends to +∞, it is enough to prove that P(Ĩ− + (|x| + 2θ )N ≥ Nδ+1/2,
(B−

1

)c)
tends to 0 when N tends to +∞.

We now assume N is large enough, Ĩ− + (|x| + 2θ )N ≥ Nδ+1/2, and
(B−

1

)c. Then
there exists i ∈ {�−(|x| + 2θ )N + Nδ+1/2�, . . . , χ(N) − 1} such that �+(TN, i) ≤ ⌊

N1/6
⌋

and
�+(TN, j) >

⌊
N1/6

⌋
for all j ∈ {i + 1, . . . , χ(N) − 1}. Thus, by (1) we get

�Nθ	 +
χ (N)−1∑
j=i+1

(
ηj,−(�+(TN, j)) + 1{j>0}

) = �+(TN, i) ≤ ⌊
N1/6⌋.

Furthermore, for all j ∈ {i + 1, . . . , χ(N) − 1}, since
(B−

1

)c occurs and �+(TN, j) >
⌊

N1/6
⌋

, we
have ηj,−(�+(TN, j)) + 1/2 = ζj. We deduce that

�Nθ	 +
χ (N)−1∑
j=i+1

(
ζj + 1{j>0} − 1{j≤0}

2

)
≤ �N1/6	;

thus
χ (N)−1∑
j=i+1

ζj + �Nθ	 +
χ (N)−1∑
j=i+1

1{j>0} − 1{j≤0}
2

≤ �N1/6	.
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Moreover, since i ∈ {�−(|x| + 2θ )N + Nδ+1/2�, . . . , χ(N) − 1}, we have

χ (N)−1∑
j=i+1

1{j>0} − 1{j≤0}
2

= 1

2
(χ (N) − 1 + i)

≥ 1

2

(
Nx − 2 − (|x| + 2θ )N + Nδ+1/2)

= −θN + 1

2
Nδ+1/2 − 1.

This yields
∑χ (N)−1

j=i+1 ζj + �Nθ	 − θN + 1
2 Nδ+1/2 − 1 ≤ ⌊

N1/6
⌋

; hence

χ (N)−1∑
j=i+1

ζj ≤ −1

2
Nδ+1/2 + ⌊

N1/6⌋ + 2 ≤ −N(1+δ)/2

since N is large enough. Consequently, when N is large enough,

P
(
Ĩ− + (|x| + 2θ )N ≥ Nδ+1/2,

(B−
1

)c)
≤ P

⎛
⎝∃ i ∈ {�−(|x| + 2θ )N + Nδ+1/2�, . . . , χ(N) − 1},

χ (N)−1∑
j=i+1

ζj ≤ −N(1+δ)/2

⎞
⎠ .

Since the ζi, i ∈Z, are i.i.d., when N is large enough this yields

P
(
Ĩ− + (|x| + 2θ )N ≥ Nδ+1/2,

(B−
1

)c) ≤ P

⎛
⎝ max

0≤i1≤i2≤�N1+δ/2�

∣∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣∣ ≥ N(1+δ)/2

⎞
⎠ ,

which tends to 0 when N tends to +∞ by Lemma 4 (applied with α = 1 + δ/2 and ε = δ/4).
This shows that P

(
I− + (|x| + 2θ )N ≥ Nδ+1/2

)
converges to 0 when N tends to +∞, which

completes the proof of Lemma 7. �

3.2. Control of low local times

We have to show that even when �±(TN, i) is small, the local times are not too far from the
random variables of the coupling. In order to do that, we first prove that the window where
�±(TN, i) is small but not zero—that is, between Ĩ+ and I+ and between I− and Ĩ−—is small.
Afterwards, we will give bounds on what happens inside. We begin by showing the following
easy result.

Lemma 8. P(Ĩ− ≥ 0) tends to 0 when N → +∞.

Proof. Let N be large enough. If Ĩ− ≥ 0, there exists i ∈ {0, . . . , �Nx	} such that �+(TN, i) ≤⌊
N1/6

⌋
. Since N is large enough, this implies �+(TN, i) ≤ Nθ/2; therefore

sup
y∈R

∣∣∣∣ 1

N
�+(

TN, �Ny	) −
( |x| − |y|

2
+ θ

)
+

∣∣∣∣ ≥ θ/2.
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Moreover, by [17, Theorem 1], supy∈R
∣∣ 1

N �+(
TN, �Ny	) −

( |x|−|y|
2 + θ

)
+
∣∣ converges in prob-

ability to 0 when N tends to +∞; hence we deduce that

P

(
sup
y∈R

∣∣∣∣ 1

N
�+(

TN, �Ny	) −
( |x| − |y|

2
+ θ

)
+

∣∣∣∣ ≥ θ/2

)

tends to 0 when N → +∞. Therefore P(Ĩ− ≥ 0) tends to 0 when N → +∞. �
In order to control I+, I−, Ĩ+, and Ĩ−, we will use the fact that the local times behave as the

Markov chain L from [17], defined as follows. We consider i.i.d. copies of the Markov chain η

starting at 0, called (ηm)m∈N. For any m ∈N, we then set L(m + 1) = L(m) + ηm(L(m)). We let
τ = inf{m ∈N | L(m) ≤ 0}. The following was proven in [17].

Lemma 9. ([17, Lemma 2].) There exists a constant K < +∞ such that for any k ∈N we have
E(τ |L(0) = k) ≤ 3k + K.

Since the local times will behave as L, Lemma 9 implies that if the local time starts out
small, then the time at which it reaches 0 has small expectation and hence is not too large. This
will help us to prove the following control on the window where �±(TN, i) is small but not
zero.

Lemma 10. P
(
I+ − Ĩ+ ≥ N1/4

)
and P

(
Ĩ− − I− ≥ N1/4

)
tend to 0 when N → +∞.

Proof. Let N be large enough. We deal only with P
(
Ĩ− − I− ≥ N1/4

)
, since P

(
I+ − Ĩ+ ≥

N1/4
)

can be dealt with in the same way and with simpler arguments. Thanks to Lemma 8, it is
enough to prove that P

(
Ĩ− − I− ≥ N1/4, Ĩ− < 0

)
tends to 0 when N → +∞. Moreover, if Ĩ− <

0, thanks to (1), for any i < Ĩ− we get �+(TN, i) = �+(TN, Ĩ−) + ∑Ĩ−
j=i+1 ηj,−(�+(TN, j)), which

allows us to prove that (�+(TN, Ĩ− − i))i∈N is a Markov chain with the transition probabilities
of L. Therefore, recalling the notation just before Lemma 9, we have

P

(
Ĩ− − I− ≥ N1/4, Ĩ− < 0

)

=
�N1/6	∑

k=0

P

(
Ĩ− − I− ≥ N1/4, Ĩ− < 0

∣∣�+(TN, Ĩ−) = k
)
P

(
�+(TN, Ĩ−) = k

)

=
�N1/6	∑

k=0

P

(
τ ≥ N1/4

∣∣∣ L(0) = k
)
P

(
�+(TN, Ĩ−) = k

)

≤
�N1/6	∑

k=0

1

N1/4
E(τ |L(0) = k)P(�+(TN, Ĩ−) = k).

By Lemma 9 we deduce that

P

(
Ĩ− − I− ≥ N1/4, Ĩ− < 0

)
≤ 1

N1/4

�N1/6	∑
k=0

(3k + K)P(�+(TN, Ĩ−) = k)

≤ 3N1/6 + K

N1/4
≤ 4N−1/12,

since N is large enough; hence P(Ĩ− − I− ≥ N1/4, Ĩ− < 0) tends to 0 when N → +∞, which
completes the proof. �
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We are now going to prove that even when �±(TN, i) is small, the local times are not too
far from the random variables of the coupling. More precisely, for any n ∈N, we define the
following events:

B−
4 =

⎧⎨
⎩∃ i ∈ {I−, . . . , χ(N) − 1},

∣∣∣∣∣∣
χ (N)−1∑
j=i+1

(
ηj,−

(
�+(

TN, j
)) + 1/2

) −
χ (N)−1∑
j=i+1

ζj

∣∣∣∣∣∣ ≥ N1/3

⎫⎬
⎭ ,

B+
4 =

⎧⎨
⎩∃ i ∈ {χ (N), . . . , I+},

∣∣∣∣∣∣
i−1∑

j=χ (N)

(ηj,+(�−(TN, j)) + 1/2) −
i−1∑

j=χ (N)

ζj

∣∣∣∣∣∣ ≥ N1/3

⎫⎬
⎭ .

Lemma 11. P
(B−

4

)
and P

(B+
4

)
tend to 0 when N tend to +∞.

Proof. The idea of the argument is that when �±(TN, i) is large, ηi,∓(�±(TN, i)) + 1/2 = ζi

thanks to Lemma 2; that the window where �±(TN, i) is small is bounded by Lemma 10; and
that inside this window the ηi,∓(�±(TN, i)) + 1/2, ζi are also bounded by Lemma 3. We spell
out the proof only for P

(B−
4

)
, since the proof for P

(B+
4

)
is the same. By Lemma 7, we have that

P(I− ≤ −2(|x| + θ )N) tends to 0 when N tends to +∞. Furthermore, Lemma 10 implies that
P
(
Ĩ− − I− ≥ N1/4

)
tends to 0 when N tends to +∞. In addition, by Lemmas 2 and 3 we have

that P
(B−

1

)
and P(B2) tend to 0 when N tends to +∞. Consequently, it is enough to prove

that for N large enough, if
(B−

1

)c and (B2)c occur, if Ĩ− − I− < N1/4, and if I− > −2(|x| +
θ )N, then

(B−
4

)c occurs. We assume
(B−

1

)c, (B2)c, Ĩ− − I− < N1/4, and I− > −2(|x| + θ )N.
Since

(B−
1

)c occurs and Ĩ− ≥ I− > −2(|x| + θ )N, we get ζi = ηj,−(�+(TN, j)) + 1/2 for any
i ∈ {Ĩ− + 1, . . . , χ (N) − 1}. Therefore, if i ∈ {Ĩ−, . . . , χ(N) − 1} we get

χ (N)−1∑
j=i+1

(
ηj,−

(
�+(

TN, j
)) + 1/2

) −
χ (N)−1∑
j=i+1

ζj = 0,

and for i ∈ {I−, . . . , Ĩ− − 1} we have∣∣∣∣∣∣
χ (N)−1∑
j=i+1

(
ηj,−

(
�+(

TN, j
)) + 1/2

) −
χ (N)−1∑
j=i+1

ζj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

Ĩ−∑
j=i+1

(
ηj,−

(
�+(

TN, j
)) + 1/2

) −
Ĩ−∑

j=i+1

ζj

∣∣∣∣∣∣
≤

Ĩ−∑
j=i+1

(|ηj,−(�+(TN, j)) + 1/2| + |ζj|
) ≤ 2(Ĩ− − I−)N1/16,

since
(B−

2

)c occurs, i + 1 ≥ I− > −2(|x| + θ )N, and by definition Ĩ− ≤ χ (N) − 1 ≤ 2(|x| +
θ )N. Moreover, we assumed Ĩ− − I− < N1/4, which implies∣∣∣∣∣∣

χ (N)−1∑
j=i+1

(
ηj,−

(
�+(

TN, j
)) + 1/2

) −
χ (N)−1∑
j=i+1

ζj

∣∣∣∣∣∣ ≤ 2N1/4N1/16 = 2N5/16 < N1/3

when N is large enough. Consequently, for any i ∈ {I−, . . . , χ (N) − 1} we have∣∣∣∣∣∣
χ (N)−1∑
j=i+1

(
ηj,−

(
�+(

TN, j
)) + 1/2

) −
χ (N)−1∑
j=i+1

ζj

∣∣∣∣∣∣ < N1/3;

therefore
(B−

4

)c occurs, which completes the proof. �
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4. Skorokhod M1 distance

The goal of this section is to prove that when N is large, Y±
N is close in the Skorokhod M1

distance to the function YN defined as follows. For any N large enough, for y ∈R, we set

YN(y) = 1√
N

χ (N)−1∑
i=�Ny	+1

ζi

if y ∈
[
−|x| − 2θ,

χ (N)
N

)
,

YN(y) = 1√
N

�Ny	−1∑
i=χ (N)

ζi

if y ∈
[

χ (N)
N , |x| + 2θ

)
, and YN(y) = 0 otherwise. We want to prove the following proposition.

Proposition 5. P
(
dM1

(
Y±

N , YN
)
> 3N−1/12

)
tends to 0 when N tends to +∞.

If we denote by B the event

B−
1 ∪B+

1 ∪B2 ∪B−
3 ∪B+

3 ∪B−
4 ∪B+

4 ∪ {|I− + (|x| + 2θ )N| ≥ N3/4}
∪ {|I+ − (|x| + 2θ )N| ≥ N3/4},

it will be enough to prove the following proposition.

Proposition 6. When N is large enough, for all a > 0 with |(|x| + 2θ ) − a| > N−1/8, we have
that Bc ⊂ {

dM1,a
(
Y±

N |[−a,a], YN |[−a,a]
) ≤ 2N−1/12

}
.

Proof of Proposition 5 given Proposition 6. We assume Proposition 6 holds. Then,
when N is large enough, if Bc occurs, for all a > 0 with |(|x| + 2θ ) − a| > N−1/8 we have
dM1,a

(
Y±

N |[−a,a], YN |[−a,a]
) ≤ 2N−1/12, which yields that

dM1

(
Y±

N , YN
) =

∫ +∞

0
e−a(dM1,a

(
Y±

N |[−a,a], YN |[−a,a]
) ∧ 1

)
da

≤
∫ +∞

0
e−a2N−1/12da + 2N−1/8

= 2N−1/12 + 2N−1/8 ≤ 3N−1/12.

This implies that P
(
dM1

(
Y±

N , YN
)
> 3N−1/12

) ≤ P(B) when N is large enough. In addition,

P(B) ≤ P
(B−

1

) + P
(B+

1

) + P(B2) + P
(B−

3

) + P
(B+

3

) + P
(B−

4

) + P
(B+

4

)
+ P

(|I− + (|x| + 2θ )N| ≥ N3/4) + P
(|I+ − (|x| + 2θ )N| ≥ N3/4).

Applying Lemmas 2, 3, 5, 7, and 11 implies that P(B) tends to 0 when N tends to +∞; hence
P
(
dM1

(
Y±

N , YN
)
> 3N−1/12

)
tends to 0 when N tends to +∞, which is Proposition 5. �

The remainder of this section is devoted to the proof of Proposition 6. The first thing we do

is show that between (−(|x|+2θ)N)∨I−
N and ((|x|+2θ)N)∧I+

N , the functions Y±
N and YN are close in

uniform distance, which is the following lemma.
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Lemma 12. When N is large enough, if (B2)c,
(B−

4

)c
, and

(B+
4

)c
occur, we have the following:

if I+ < (|x| + 2θ )N, then for any

y ∈
[

(−(|x| + 2θ )N) ∨ I−

N
,

((|x| + 2θ )N) ∧ I+

N

]

we have
∣∣Y±

N (y) − YN(y)
∣∣ ≤ N−1/12. If I+ ≥ (|x| + 2θ )N, then we have

∣∣Y±
N (y) − YN(y)

∣∣ ≤
N−1/12 for y ∈

[
(−(|x|+2θ)N)∨I−

N ,
((|x|+2θ)N)∧I+

N

)
.

Proof of Lemma 12. Writing down the proof is only a technical matter, as the meaning of(B±
4

)c is that the local times are close to the process formed from the random variables of the
coupling. The event (B2)c is there to ensure that the difference terms that appear will be small.
We spell out the proof only for Y−, as the proof for Y+ is similar. We assume (B2)c,

(B−
4

)c,
and

(B+
4

)c. Then if

y ∈
[
χ (N)

N
,

((|x| + 2θ )N) ∧ I+

N

]
(
if I+ ≥ (|x| + 2θ )N we exclude the case y = ((|x|+2θ)N)∧I+

N

)
, we have y ∈ [χ (N)

N , |x| + 2θ
)
, so

∣∣Y−
N (y) − YN(y)

∣∣ = 1√
N

∣∣∣∣�−(
TN, �Ny	) − N

( |x| − |y|
2

+ θ

)
+

−
�Ny	−1∑
i=χ (N)

ζi

∣∣∣∣;
thus by (1) we obtain that

∣∣Y−
N (y) − YN(y)

∣∣ is equal to

1√
N

∣∣∣∣∣∣�Nθ	 − 1{ι=+} +
�Ny	−1∑
i=χ (N)

ηi,+
(
�−(

TN, i
)) − N

( |x| − |y|
2

+ θ

)
+

−
�Ny	−1∑
i=χ (N)

ζi

∣∣∣∣∣∣
≤ 1√

N

∣∣∣∣∣∣
�Ny	−1∑
i=χ (N)

ηi,+
(
�−(

TN, i
)) + �Ny	 − χ (N)

2
−

�Ny	−1∑
i=χ (N)

ζi

∣∣∣∣∣∣ + 3√
N

= 1√
N

∣∣∣∣∣∣
�Ny	−1∑
i=χ (N)

(
ηi,+

(
�−(

TN, i
)) + 1/2

) −
�Ny	−1∑
i=χ (N)

ζi

∣∣∣∣∣∣ + 3√
N

.

Now, y ∈ [χ (N)
N ,

((|x|+2θ)N)∧I+
N

]
implies �Ny	 ∈ {χ (N), . . . , I+}; thus

(B+
4

)c yields
∣∣Y−

N (y) −
YN(y)

∣∣ ≤ 1√
N

N1/3 + 3√
N

≤ N−1/12 when N is large enough. We now consider the case y ∈[ (−(|x|+2θ)N)∨I−
N ,

χ (N)
N

)
. Then y ∈ [−|x| − 2θ,

χ (N)
N

)
, and hence

∣∣Y−
N (y) − YN(y)

∣∣ = 1√
N

∣∣∣∣∣∣�−(
TN, �Ny	) − N

( |x| − |y|
2

+ θ

)
+

−
χ (N)−1∑

i=�Ny	+1

ζi

∣∣∣∣∣∣ .

Now, (2) yields |�−(
TN, �Ny	) − �+(

TN, �Ny	)| = |η�Ny	,−
(
�+(

TN, �Ny	))|, which is smaller
than N1/16 + 1/2 thanks to (B2)c. We deduce that

∣∣Y−
N (y) − YN(y)

∣∣ ≤ 1√
N

∣∣∣∣∣∣�+(
TN, �Ny	) − N

( |x| − |y|
2

+ θ

)
+

−
χ (N)−1∑

i=�Ny	+1

ζi

∣∣∣∣∣∣ + N1/16 + 1/2√
N

;
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thus (1) implies that
∣∣Y−

N (y) − YN(y)
∣∣ is smaller than

1√
N

∣∣∣∣∣∣�Nθ	 +
χ (N)−1∑

i=�Ny	+1

(
ηi,−

(
�+(

TN, i
)) + 1{i>0}

)

−N

( |x| − |y|
2

+ θ

)
+

−
χ (N)−1∑

i=�Ny	+1

ζi

∣∣∣∣∣∣ + N1/16 + 1/2√
N

≤ 1√
N

∣∣∣∣∣∣
χ (N)−1∑

i=�Ny	+1

(
ηi,−

(
�+(

TN, i
)) + 1{i>0}

) + �Ny	 + 1 − χ (N)

2
−

χ (N)−1∑
i=�Ny	+1

ζi

∣∣∣∣∣∣ + N1/16 + 3√
N

≤ 1√
N

∣∣∣∣∣∣
χ (N)−1∑

i=�Ny	+1

(
ηi,−

(
�+(

TN, i
)) + 1/2

) −
χ (N)−1∑

i=�Ny	+1

ζi

∣∣∣∣∣∣ + N1/16 + 3√
N

.

Furthermore, y ∈
[

(−(|x|+2θ)N)∨I−
N ,

χ (N)
N

)
implies �Ny	 ∈ {I−, . . . , χ (N) − 1}; hence

(B−
4

)c

yields ∣∣Y−
N (y) − YN(y)

∣∣ ≤ 1√
N

N1/3 + N1/16 + 3√
N

≤ N−1/12

when N is large enough. Consequently, for any y ∈ [ (−(|x|+2θ)N)∨I−
N ,

((|x|+2θ)N)∧I+
N

]
we have∣∣Y−

N (y) − YN(y)
∣∣ ≤ N−1/12, which completes the proof of Lemma 12. �

We now prove Proposition 6. Let a > 0 be such that |(|x| + 2θ ) − a| > N−1/8. We will prove
that when N is large enough, Bc ⊂ {

dM1,a
(
Y±

N |[−a,a], YN |[−a,a]
) ≤ 2N−1/12

}
, and the threshold

for N given by the proof will not depend on the value of a. There will be two cases depending
on whether a is smaller than |x| + 2θ or not.

4.1. Case a ∈ (
0, |x| + 2θ − N−1/8)

This is the easier case. Indeed, the interval [−a, a] will then be contained in[
(−(|x|+2θ)N)∨I−

N ,
((|x|+2θ)N)∧I+

N

)
, inside which Y±

N and YN are close for the uniform norm by

Lemma 12. We may then define parametric representations
(
u±

N , r±
N

)
and (uN, rN) of Y−

N |[−a,a]

and YN |[−a,a] ‘following the graphs of Y±
N |[−a,a] and YN |[−a,a] together’ so that u±

N (t) = uN(t)
for all t ∈ [0, 1], and ∥∥r±

N − rN
∥∥∞ ≤ sup

y∈[−a,a]

∣∣Y±
N (y) − YN(y)

∣∣
(an explicit construction of these representations can be found in the first arXiv version of this
paper [5]). We deduce that

dM1,a
(
Y±

N |[−a,a], YN |[−a,a]
) ≤ sup

y∈[−a,a]

∣∣Y±
N (y) − YN(y)

∣∣.
Moreover, if Bc occurs, since a ∈ (

0, |x| + 2θ − N−1/8
)
, for any y ∈ [−a, a] we have

y ∈ (−|x| − 2θ + N−1/8, |x| + 2θ − N−1/8
)
; thus −(|x| + 2θ )N + N3/4 ≤ Ny ≤ (|x| + 2θ )N −
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(a) (b)

(d)(c)

FIGURE 1. The successive steps of the parametric representations of Y−
N |[−a,a] and YN |[−a,a] if I+ ≤

�(|x| + 2θ )N	. At each step, the parts of the graphs through which the parametric representations travel
are thickened.

N3/4, which implies I− < Ny < I+, and hence y ∈ ( (−(|x|+2θ)N)∨I−
N ,

((|x|+2θ)N)∧I+
N

)
. So

by Lemma 12 we have
∣∣Y±

N (y) − YN(y)
∣∣ ≤ N−1/12. Consequently, if Bc occurs, then

dM1,a
(
Y±

N |[−a,a], YN |[−a,a]
) ≤ N−1/12.

4.2. Case a > |x| + 2θ + N−1/8

This is the harder case, as we have to deal with what happens around |x| + 2θ and −|x| − 2θ .
We write down only the proof for Y−

N , since the proof for Y+
N is similar (one may remember

that (2) allows us to bound the �−(TN, i) − �+(TN, i) when (B2)c occurs, and hence when
Bc occurs). Once again, we will define parametric representations

(
u−

N , r−
N

)
and (uN, rN) of

Y−
N |[−a,a] and YN |[−a,a]. The definition will depend on whether I+ ≤ �(|x| + 2θ )N	 or not, and

also on whether I− ≥ −�(|x| + 2θ )N	 or not. We explain it for abscissas in [0,a] depending
on whether I+ ≤ �(|x| + 2θ )N	 or not; the constructions for abscissas in [−a, 0] are similar,
depending on whether I− ≥ −�(|x| + 2θ )N	 or not.

We first assume I+ ≤ �(|x| + 2θ )N	. Between 0 and I+
N , as in the case a ∈ (0, |x| + 2θ −

N−1/8), the parametric representations will follow the completed graphs of Y−
N and YN in par-

allel (see Figure 1(a)). The next step, once
(
u−

N , r−
N

)
has reached

(
I+
N , Y−

N

(
I+
N

))
, is to freeze

it there while (uN, rN) follows the graph of YN from
(

I+
N , YN

(
I+
N

))
to (|x| + 2θ, YN((|x| +

2θ ))−) (see Figure 1(b)). For y ≥ I+
N we have �−(

TN, �Ny	) = 0 (see Lemma 6); thus YN(y) =
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(a)

(c)

(b)

(d)

FIGURE 2. The successive steps of the parametric representations of Y−
N |[−a,a] and YN |[−a,a] if I+ >

�(|x| + 2θ )N	. At each step, the parts of the graphs through which the parametric representations travel
are thickened.

−N
( |x|−|y|

2 + θ
)

+, and hence Y−
N : [ I+

N , |x| + 2θ ] �→R is affine. Therefore, the following

step is to simultaneously move
(
u−

N , r−
N

)
from

(
I+
N , Y−

N

(
I+
N

))
to (|x| + 2θ, Y−

N (|x| + 2θ )) =
(|x| + 2θ, 0) and (uN, rN) from (|x| + 2θ, YN((|x| + 2θ )−)) to (|x| + 2θ, 0) (see Figure 1(c));
here the two parametric representations will remain close. After this step, both parametric
representations are at (|x| + 2θ, 0), and they will go together to (a,0) (see Figure 1(d)).

We now assume I+ > �(|x| + 2θ )N	. We also assume I+
N ≤ a

(
if I+

N > a, we may choose
anything for

(
u−

N , r−
N

)
, (uN, rN); this will not happen if Bc occurs

)
. Between 0 and |x| + 2θ ,

the parametric representations will follow the completed graphs of Y−
N and YN in parallel (see

Figure 2(a)). Once the abscissa |x| + 2θ is reached, the next step is to move
(
u−

N , r−
N

)
from

(|x| + 2θ, Y−
N (|x| + 2θ )) to

(
I+
N , Y−

N

(
I+
N

))
, which is

( I+
N , 0

)
, and at the same time to move

(uN, rN) from (|x| + 2θ, YN(|x| + 2θ )) to (|x| + 2θ, 0) (see Figure 2(b)). We will prove the two
representations are close by controlling the local times. At the next step we freeze

(
u−

N , r−
N

)
at( I+

N , 0
)

while (uN, rN) goes from (|x| + 2θ, 0) to
( I+

N , 0
)

(see Figure 2(c)). After this step, both

parametric representations are at
( I+

N , 0
)
, and they will go together from

( I+
N , 0

)
to (a,0) (see

Figure 2(d)). Again, a more rigorous definition of the parametric representations is available in
the first arXiv version of this paper [5].

We can now bound the Skorokhod M1 distance between Y−
N |[−a,a] and YN |[−a,a]. From its

definition, we have

dM1,a
(
Y−

N |[−a,a], YN |[−a,a]
) ≤ max

(‖u−
N − uN‖∞, ‖r−

N − rN‖∞
)
;
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hence we only have to prove that Bc ⊂ {max
(‖u−

N − uN‖∞, ‖r−
N − rN‖∞

) ≤ 2N−1/12} when N

is large enough. We are going to break down
{

max
(‖u−

N − uN‖∞, ‖r−
N − rN‖∞

) ≤ 2N−1/12
}

into three events. We may write{
max

(‖u−
N − uN‖∞, ‖r−

N − rN‖∞
) ≤ 2N−1/12}

=
{

between
(−(|x| + 2θ )N) ∨ I−

N
and

((|x| + 2θ )N) ∧ I+

N
,

‖u−
N − uN‖∞, ‖r−

N − rN‖∞ ≤ 2N−1/12
}

∩
{

between
((|x| + 2θ )N) ∧ I+

N
and a, ‖u−

N − uN‖∞, ‖r−
N − rN‖∞ ≤ 2N−1/12

}

∩
{

between − a and
(−(|x| + 2θ )N) ∨ I−

N
, ‖u−

N − uN‖∞, ‖r−
N − rN‖∞ ≤ 2N−1/12

}
.

Consequently, to prove that Bc ⊂ {
max

(‖u−
N − uN‖∞, ‖r−

N − rN‖∞
) ≤ 2N−1/12

}
when N is

large enough and thus complete the proof of Proposition 6, we only have to prove the following
lemmas.

Lemma 13. We have Bc ⊂
{

between (−(|x|+2θ)N)∨I−
N and ((|x|+2θ)N)∧I+

N , ‖u−
N − uN‖∞, ‖r−

N −
rN‖∞ ≤ 2N−1/12

}
when N is large enough.

Lemma 14. We have Bc ∩ {I+ ≤ �(|x| + 2θ )N	} ⊂
{

between ((|x|+2θ)N)∧I+
N and a,

‖u−
N − uN‖∞, ‖r−

N − rN‖∞ ≤ 2N−1/12
}

and Bc ∩ {I− ≥ −�(|x| + 2θ )N	} ⊂ {
between −a

and (−(|x|+2θ)N)∨I−
N , ‖u−

N − uN‖∞, ‖r−
N − rN‖∞ ≤ 2N−1/12

})
when N is large enough.

Lemma 15. We have Bc ∩ {I+ > �(|x| + 2θ )N	} ⊂
{

between ((|x|+2θ)N)∧I+
N and a,

‖u−
N − uN‖∞, ‖r−

N − rN‖∞ ≤ 2N−1/12
}

and Bc ∩ {I− < −�(|x| + 2θ )N	} ⊂ {
between −a

and (−(|x|+2θ)N)∨I−
N , ‖u−

N − uN‖∞, ‖r−
N − rN‖∞ ≤ 2N−1/12

})
when N is large enough.

We now prove Lemmas 13, 14, and 15.

Proof of Lemma 13. We assume Bc occurs. In the part of the parametric representations

between (−(|x|+2θ)N)∨I−
N and ((|x|+2θ)N)∧I+

N , corresponding to Figures 1(a) and 2(a), we follow
the completed graphs of Y−

N and YN in parallel. Therefore u−
N (t) = uN(t) and

∣∣r−
N (t) − rN(t)

∣∣ ≤ sup

{∣∣Y−
N (y) − YN(y)

∣∣ : y ∈
[

(−(|x| + 2θ )N) ∨ I−

N
,

((|x| + 2θ )N) ∧ I+

N

]}
.

If (|x| + 2θ )N is not an integer or I+ < (|x| + 2θ )N, then by Lemma 12, this is smaller than
N−12 when N is large enough, and we are done. If (|x| + 2θ )N is an integer and I+ ≥ (|x| +
2θ )N, there is a small complication, since the parametric representations follow the graph of YN

until YN((|x| + 2θ )−), but should follow the graph of Y−
N until Y−

N (|x| + 2θ ). The solution is to
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freeze the representation of YN at YN((|x| + 2θ )−) while that of Y−
N goes from Y−

N ((|x| + 2θ )−)

to Y−
N (|x| + 2θ ). Then, between (−(|x|+2θ)N)∨I−

N and (|x| + 2θ )−, we have

∣∣r−
N (t) − rN(t)

∣∣ ≤ sup

{∣∣Y−
N (y) − YN(y)

∣∣ : y ∈
[

(−(|x| + 2θ )N) ∨ I−

N
, (|x| + 2θ )N

)}
≤ N−1/12

by Lemma 12 when N is large enough. Furthermore, when going from Y−
N ((|x| + 2θ )−) to

Y−
N (|x| + 2θ ), we have∣∣r−

N (t) − rN(t)
∣∣ ≤ ∣∣Y−

N ((|x| + 2θ )−) − YN((|x| + 2θ )−)
∣∣ + ∣∣Y−

N ((|x| + 2θ )−) − Y−
N (|x| + 2θ )

∣∣
≤ N−1/12 + ∣∣Y−

N ((|x| + 2θ )−) − Y−
N (|x| + 2θ )

∣∣
when N is large enough. In addition, when N is large enough, (1) yields

∣∣Y−
N (|x| + 2θ ) − Y−

N ((|x| + 2θ )−)
∣∣ = 1√

N

∣∣�−(
TN, (|x| + 2θ )N

) − �−(
TN, (|x| + 2θ )N − 1

)∣∣
= 1√

N

∣∣η(|x|+2θ)N−1,+
(
�−(

TN, (|x| + 2θ )N − 1
))∣∣

≤ N1/16 + 1/2√
N

since (B2)c occurs. This yields
∣∣r−

N (t) − rN(t)
∣∣ ≤ N−1/12 + N1/16+1/2√

N
≤ 2N−1/12 when N is

large enough, which completes the proof. �
Proof of Lemma 14. This lemma deals with the ‘right part’ of the parametric representa-

tions in the case I+ ≤ �(|x| + 2θ )N	, and with the ‘left part’ in the case I− ≥ −�(|x| + 2θ )N	,
corresponding to Panels (b), (c), and (d) of Figure 1. The idea of the argument is that in the
step corresponding to Figure 1(b), the representation of YN does not move much horizontally,
as I+

N is close to |x| + 2θ by Lemma 7, so it does not have time to move too much vertically.
In the step corresponding to Figure 1(c), the representations of Y−

N and YN will thus start from
points that are close and go to the same point, which means they stay close to each other.

We now give the rigorous argument. We spell out the proof only for Bc ∩ {I+ ≤ �(|x| +
2θ )N	}, as the other case is similar. Let us assume Bc occurs and I+ ≤ �(|x| + 2θ )N	. Firstly,
we notice that in the part of the parametric representations corresponding to Figure 1(d)
we have

(
u−

N (t), r−
N (t)

) = (
uN(t), rN(t)

)
, so we consider only the parts corresponding to

Figures 1(b) and 1(c). We first consider the case in which (|x| + 2θ )N is not an integer or
I+ < �(|x| + 2θ )N	. We begin by dealing with

∣∣u−
N (t) − uN(t)

∣∣. By the definition of our para-

metric representations,
∣∣u−

N (t) − uN(t)
∣∣ ≤ ||x∣∣ + 2θ − I+

N

∣∣. Furthermore, Bc occurs; thus we
have |I+ − (|x| + 2θ )N| < N3/4, and hence

∣∣u−
N (t) − uN(t)

∣∣ ≤ N−1/4.
We now deal with

∣∣r−
N (t) − rN(t)

∣∣. Remembering the definition of our parametric represen-
tations, we notice that in the part corresponding to Figure 1(c), r−

N and rN are affine functions,
so the maximum value of

∣∣r−
N (t) − rN(t)

∣∣ on this part is reached either at the beginning or at the
end of the part. Moreover, at the end of the part we have r−

N (t) = rN(t) = 0, so the maximum is
reached at the beginning. Therefore, if

∣∣r−
N (t) − rN(t)

∣∣ ≤ 2N−1/12 in the part corresponding to
Figure 1(b), then

∣∣r−
N (t) − rN(t)

∣∣ ≤ 2N−1/12 in the part corresponding to Figure 1(c), and this
completes the proof when (|x| + 2θ )N is not an integer or I+ < �(|x| + 2θ )N	.
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We thus have to study the part corresponding to Figure 1(b). By the definition of our
parametric representations,

∣∣r−
N (t) − rN(t)

∣∣ ≤ sup

{∣∣∣∣Y−
N

(
I+

N

)
− YN(y)

∣∣∣∣ : y ∈
[

I+

N
, |x| + 2θ

)}
,

so it is enough to prove that when N is large enough, sup
{∣∣∣Y−

N

(
I+
N

)
−

YN(y)| : y ∈
[

I+
N , |x| + 2θ

)}
≤ 2N−1/12. Moreover, for any y ∈

[
I+
N , |x| + 2θ

)
, we have∣∣∣∣Y−

N

(
I+

N

)
− YN(y)

∣∣∣∣ ≤
∣∣∣∣Y−

N

(
I+

N

)
− YN

(
I+

N

)∣∣∣∣ +
∣∣∣∣YN

(
I+

N

)
− YN(y)

∣∣∣∣ .

Since Bc occurs, we have that (B2)c,
(B−

4

)c, and
(B+

4

)c occur; hence Lemma 12 implies∣∣∣Y−
N

(
I+
N

)
− YN

(
I+
N

)∣∣∣ ≤ N−1/12 when N is large enough, and so

∣∣∣∣Y−
N

(
I+

N

)
− YN(y)

∣∣∣∣ ≤
∣∣∣∣YN

(
I+

N

)
− YN(y)

∣∣∣∣ + N−1/12 ≤ 1√
N

∣∣∣∣∣∣
�Ny	−1∑

i=I+
ζi

∣∣∣∣∣∣ + N−1/12.

We deduce that

sup

{∣∣∣∣Y−
N

(
I+

N

)
− YN(y)

∣∣∣∣ : y ∈
[

I+

N
, |x| + 2θ

)}
≤ sup

⎧⎨
⎩ 1√

N

∣∣∣∣∣∣
�Ny	−1∑

i=I+
ζi

∣∣∣∣∣∣ : y ∈
[

I+

N
, |x| + 2θ

)⎫⎬
⎭

+ N−1/12.

Furthermore, Bc occurs; hence |I+ − (|x| + 2θ )N| < N3/4, and thus

sup

{∣∣∣∣Y−
N

(
I+

N

)
− YN(y)

∣∣∣∣ : y ∈
[

I+

N
, |x| + 2θ

)}

≤ 1√
N

max
�(|x|+2θ)N	−N3/4≤i1≤i2≤�(|x|+2θ)N	

1√
N

∣∣∣∣∣∣
i2∑

i=i1

ζi

∣∣∣∣∣∣ + N−1/12.

Since Bc occurs,
(B+

3

)c occurs; hence

sup

{∣∣∣∣Y−
N

(
I+

N

)
− YN(y)

∣∣∣∣ : y ∈
[

I+

N
, |x| + 2θ

)}

≤ N19/48

√
N

+ N−1/12 = N−5/48 + N−1/12 ≤ 2N−1/12,

which is enough.
We now consider the case in which (|x| + 2θ )N is an integer and I+ = �(|x| + 2θ )N	.

Then the step corresponding to Figure 1(b) does not exist; we only have to deal with that
of Figure 1(c), which comes mostly from Lemma 12, as this lemma ensures Y−

N ((|x| + 2θ )−)
and YN((|x| + 2θ )−) are close (we will actually prove they are both close to 0). Since I+ =
�(|x| + 2θ )N	, we have u−

N (t) = uN(t). Moreover, �−(TN, �N(|x| + 2θ )	) = �−(TN, I+) = 0, so
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Y−
N (|x| + 2θ ) = 0, and hence r−

N (t) = 0. Furthermore, |rN(t)| ≤ |YN((|x| + 2θ )−)|. Therefore we
only have to prove that |YN((|x| + 2θ )−)| ≤ 2N−1/12 when N is large enough. In addition, Bc

occurs; thus by Lemma 12 we have |YN((|x| + 2θ )−) − Y−
N ((|x| + 2θ )−)| ≤ N−1/12 when N is

large enough. Moreover, by the definition of Y−
N and by (1), we have

Y−
N (|x| + 2θ ) = Y−

N ((|x| + 2θ )−) + 1√
N

η(|x|+2θ)N−1,+
(
�−(

TN, (|x| + 2θ )N − 1
))

,

and since B occurs, (B2)c occurs, which means we get

∣∣Y−
N (|x| + 2θ ) − Y−

N ((|x| + 2θ )−)
∣∣ ≤ 1√

N

(
N1/16 + 1/2

) ≤ N−1/4.

Since Y−
N (|x| + 2θ ) = 0, this yields

∣∣Y−
N ((|x| + 2θ )−)

∣∣ ≤ N−1/4, which implies
|YN((|x| + 2θ )−)| ≤ N−1/12 + N−1/4 < 2N−1/12. This is enough to complete the proof of
Lemma 14. �

Proof of Lemma 15. This lemma deals with the ‘right part’ of the parametric representations
in the case I+ > �(|x| + 2θ )N	, and with the ‘left part’ in the case I− < −�(|x| + 2θ )N	, corre-
sponding to Panels (b), (c), and (d) of Figure 2. We first give an idea of the argument. The most
important part of the proof is to deal with the step corresponding to Figure 2(b). In this step,
the function Y−

N (y) = 1√
N

�−(
TN, �Ny	) evolves as a sum of 1√

N
ηj,+(�−(TN, j)) by (1), which

is close to the sum of 1√
N

(
ζj − 1

2

)
as

(B+
4

)c occurs. Since the ζj are i.i.d. with mean 0, the sum

of 1√
N

ζj will be small, and the evolution of Y−
N will be close to that of a deterministic sum of

− 1
2
√

N
. Thus it reaches 0 at constant speed, which is also what our parametric representation

of YN does.
We now give the proof, beginning with the details of the argument to deal with Bc ∩

{I− < −�(|x| + 2θ )N	}. Let us assume Bc occurs and I− < −�(|x| + 2θ )N	. We first see
that I−

N ≥ −a, as since Bc occurs we have |I− + (|x| + 2θ )N| < N3/4, which implies I−
N >

−|x| − 2θ − N−1/4, and by assumption a > |x| + 2θ + N−1/8, so −a < −|x| − 2θ − N−1/8 <
I−
N , which implies I−

N ≥ −a. Moreover, in the part of the parametric representations correspond-
ing to Figure 2(d), we have

(
u−

N (t), r−
N (t)

) = (uN(t), rN(t)). We now consider the equivalent of

Figure 2(c). Then r−
N (t) = rN(t) = 0, and

∣∣u−
N (t) − uN(t)

∣∣ ≤ ∣∣ I−
N + (|x| + 2θ )

∣∣, which is strictly
smaller than 2N−1/12 since |I− + (|x| + 2θ )N| < N3/4. It remains to consider the equivalent of
Figure 2(b). Then

∣∣u−
N (t) − uN(t)

∣∣ ≤ ∣∣ I−
N + (|x| + 2θ )

∣∣, which is strictly smaller than 2N−1/12,
so we only have to prove

∣∣r−
N (t) − rN(t)

∣∣ ≤ 2N−1/12.
We are going to study

sup
y∈

[
I−
N ,−|x|−2θ

]
∣∣∣∣Y−

N (y) − Y−
N (−|x| − 2θ ) + �(|x| + 2θ )N	 − �Ny	

2
√

N

∣∣∣∣.

Let y ∈ [ I−
N , −|x| − 2θ

]
. By the definition of Y−

N we have

Y−
N (y) − Y−

N (−|x| − 2θ ) = 1√
N

(
�−(

TN, �Ny	) − �−(
TN, �−(|x| + 2θ )N	)).
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By (2) and since (B2)c occurs (remembering that �Ny	 ≥ I− ≥ −(|x| + 2θ )N − N3/4 ≥
−�2(|x| + 2θ )N�), we deduce that∣∣∣∣Y−

N (y) − Y−
N (−|x| − 2θ ) − 1√

N

(
�+(

TN, �Ny	) − �+(
TN, �−(|x| + 2θ )N	))∣∣∣∣

=
∣∣∣∣∣η�Ny	,−

(
�+(

TN, �Ny	)) − η�−(|x|+2θ)N	,−
(
�+(

TN, �−(|x| + 2θ )N	))√
N

∣∣∣∣∣ ≤ 2N1/16

√
N

.

In addition, (1) yields the following:

�+(
TN, �Ny	) − �+(

TN, �−(|x| + 2θ )N	)

=
χ (N)−1∑

i=�Ny	+1

(ηi,−(�+(TN, i)) + 1{i>0}) −
χ (N)−1∑

i=�−(|x|+2θ)N	+1

(ηi,−(�+(TN, i)) + 1{i>0})

=
χ (N)−1∑

i=�Ny	+1

(
ηi,−

(
�+(

TN, i
)) + 1/2

)

−
χ (N)−1∑

i=�−(|x|+2θ)N	+1

(
ηi,−

(
�+(

TN, i
)) + 1/2

) − �−(|x| + 2θ )N	 − �Ny	
2

.

Since
(B−

4

)c occurs, this yields∣∣∣∣�+(
TN, �Ny	) − �+(

TN, �−(|x| + 2θ )N	) + �−(|x| + 2θ )N	 − �Ny	
2

∣∣∣∣
≤

∣∣∣∣∣∣
χ (N)−1∑

i=�Ny	+1

ζi −
χ (N)−1∑

i=�−(|x|+2θ)N	+1

ζi

∣∣∣∣∣∣ + 2N1/3

=
∣∣∣∣∣∣
�−(|x|+2θ)N	∑

i=�Ny	+1

ζi

∣∣∣∣∣∣ + 2N1/3.

As we also have

∣∣Y−
N (y) − Y−

N (−|x| − 2θ ) − 1√
N

(
�+(

TN, �Ny	) − �+(
TN, �−(|x| + 2θ )N	))∣∣ ≤ 2N1/16

√
N

,

this implies

sup
y∈

[
I−
N ,−|x|−2θ

]
∣∣∣∣Y−

N (y) − Y−
N (−|x| − 2θ ) + �(|x| + 2θ )N	 − �Ny	

2
√

N

∣∣∣∣

≤ max
I−+1≤i≤�−(|x|+2θ)N	

1√
N

∣∣∣∣∣∣
�−(|x|+2θ)N	∑

j=i

ζj

∣∣∣∣∣∣ + 2N1/16

√
N

+ 2N1/3

√
N

.

https://doi.org/10.1017/apr.2023.37 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.37


Fluctuations of the local times of the self-repelling random walk with directed edges 571

Moreover, Bc occurs, and hence |I− + (|x| + 2θ )N| < N3/4 and
(B−

3

)c occurs; therefore we

obtain that sup
y∈

[
I−
N ,−|x|−2θ

] ∣∣∣Y−
N (y) − Y−

N (−|x| − 2θ ) + �(|x|+2θ)N	−�Ny	
2
√

N

∣∣∣ is smaller than the

quantity

max
−�(|x|+2θ)N	−N3/4≤i≤�−(|x|+2θ)N	

1√
N

∣∣∣∣∣∣
�−(|x|+2θ)N	∑

j=i

ζj

∣∣∣∣∣∣ + 2N1/16

√
N

+ 2N1/3

√
N

≤ N19/48

√
N

+ 2N1/16

√
N

+ 2N1/3

√
N

≤ 2N−5/48

when N is large enough. This yields sup
y∈

[
I−
N ,−|x|−2θ

] ∣∣Y−
N (y) − Y−

N (−|x| − 2θ ) +
�(|x|+2θ)N	−�Ny	

2
√

N

∣∣ ≤ 2N−5/48 when N is large enough.
We also need an explicit expression for the parametric representations. Assume the

part of [0,1] devoted to the equivalent of Figure 2(b) in the parametric representations is
[aN, a′

N]. We set φ equal to the affine function mapping aN to − 2I−
N and a′

N to −(|x| + 2θ )N.
Then, if φ(t) belongs to some

[ 2i
N , 2i+1

N

)
with i ∈ {I−, . . . , −�(|x| + 2θ )N	 − 1}, we set(

u−
N (t), r−

N (t)
) = (

φ(t) − i
N , Y−

N

(
φ(t) − i

N

))
, while if φ(t) belongs to some

[ 2i+1
N , 2i+2

N

]
for

i ∈ {I−, . . . , −�(|x| + 2θ )N	 − 1}, we set

(
u−

N (t), r−
N (t)

) =
(

i + 1

N
, (−Nφ(t) + 2i + 2)Y−

N

((
i + 1

N

)−)
+ (Nφ(t) − 2i − 1)Y−

N

(
i + 1

N

))
.

In addition, we set (uN(t), rN(t)) = (−|x| − 2θ, φ̂(φ(t))), where φ̂ is the affine function mapping
−|x| − 2θ − �(|x|+2θ)N	+1

N to YN(−|x| − 2θ ) and 2I−
N to 0.

We recall that it is enough to prove
∣∣r−

N (t) − rN(t)
∣∣ < 2N−1/12. We are going to study∣∣r−

N (t) − Y−
N (−|x| − 2θ ) +

√
N

4 φ(t) − �−(|x|+2θ)N	
2
√

N

∣∣. We first suppose that φ(t) ∈ [ 2i
N , 2i+1

N

)
with

i ∈ {I−, . . . , −�(|x| + 2θ )N	 − 1}. In this case, r−
N (t) = Y−

N

(
φ(t) − i

N

)
and

∣∣φ(t)
2 − 1

N �N
(
φ(t) −

i
N

)	∣∣ = ∣∣φ(t)
2 − i

N

∣∣ ≤ 1
2N ; hence∣∣∣∣∣r−
N (t) − Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
=

∣∣∣∣∣Y−
N

(
φ(t) − i

N

)
− Y−

N (−|x| − 2θ ) + �N
(
φ(t) − i

N

)	 − �−(|x| + 2θ )N	
2
√

N

+
N
2 φ(t) − �N

(
φ(t) − i

N

)	
2
√

N

∣∣∣∣∣
≤

∣∣∣∣∣Y−
N

(
φ(t) − i

N

)
− Y−

N (−|x| − 2θ ) + �N
(
φ(t) − i

N

)	 − �−(|x| + 2θ )N	
2
√

N

∣∣∣∣∣
+

√
N

2

∣∣∣∣φ(t)

2
− 1

N

⌊
N

(
φ(t) − i

N

)⌋∣∣∣∣
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is smaller than 2N−5/48 + 1
4
√

N
, which implies

∣∣∣∣r−
N (t) − Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣ ≤ 2N−5/48 + 1

4
√

N
.

We now consider the case φ(t) ∈ [ 2i+1
N , 2i+2

N

]
with i ∈ {I−, . . . , −�(|x| + 2θ )N	 − 1}. We

temporarily denote Nφ(t) − 2i − 1 by ε for short, with ε ∈ [0, 1]. Then we have r−
N (t) =

(1 − ε)Y−
N

(( i+1
N

)−) + εY−
N

( i+1
N

)
,
∣∣φ(t)

2 − i
N

∣∣ ≤ 1
N , and

∣∣φ(t)
2 − i+1

N

∣∣ ≤ 1
2N . Therefore,∣∣∣∣∣r−

N (t) − Y−
N (−|x| − 2θ ) +

√
N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
=

∣∣∣∣∣(1 − ε)

(
Y−

N

((
i + 1

N

)−)
− Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

)

+ ε

(
Y−

N

(
i + 1

N

)
− Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

)∣∣∣∣∣
≤ (1 − ε)

∣∣∣∣∣Y−
N

((
i + 1

N

)−)
− Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
+ ε

∣∣∣∣∣Y−
N

(
i + 1

N

)
− Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
≤ (1 − ε)

∣∣∣∣∣Y−
N

((
i + 1

N

)−)
− Y−

N (−|x| − 2θ ) + i − �−(|x| + 2θ )N	
2
√

N

∣∣∣∣∣
+ ε

∣∣∣∣Y−
N

(
i + 1

N

)
− Y−

N (−|x| − 2θ ) + i + 1 − �−(|x| + 2θ )N	
2
√

N

∣∣∣∣
+ (1 − ε)

∣∣∣∣∣
√

N

4
φ(t) − i

2
√

N

∣∣∣∣∣ + ε

∣∣∣∣∣
√

N

4
φ(t) − i + 1

2
√

N

∣∣∣∣∣
≤ (1 − ε) sup

y∈
[

I−
N ,−|x|−2θ

]
∣∣∣∣Y−

N (y) − Y−
N (−|x| − 2θ ) + �Ny	 − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣
+ ε sup

y∈
[

I−
N ,−|x|−2θ

]
∣∣∣∣Y−

N (y) − Y−
N (−|x| − 2θ ) + �Ny	 − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣
+ (1 − ε)

√
N

2

∣∣∣∣φ(t)

2
− i

N

∣∣∣∣ + ε

√
N

2

∣∣∣∣φ(t)

2
− i + 1

N

∣∣∣∣
≤ sup

y∈
[

I−
N ,−|x|−2θ

]
∣∣∣∣Y−

N (y) − Y−
N (−|x| − 2θ ) + �Ny	 − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣ + 1

2
√

N

≤ 2N−5/48 + 1

2
√

N
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thanks to our bound on the supremum. Since this was also true for φ(t) ∈ [ 2i
N , 2i+1

N

)
with i ∈

{I−, . . . , −�(|x| + 2θ )N	 − 1}, we have∣∣∣∣r−
N (t) − Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣ ≤ 2N−5/48 + 1

2
√

N
.

The latter expression yields

∣∣r−
N (t) − rN(t)

∣∣ ≤
∣∣∣∣rN(t) − Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣ + 2N−5/48 + 1

2
√

N

=
∣∣∣∣φ̂(φ(t)) − Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣ + 2N−5/48 + 1

2
√

N
,

where φ̂ is the affine function mapping −|x| − 2θ − �(|x|+2θ)N	+1
N to YN(−|x| − 2θ ) and 2I−

N to
0. Therefore it is enough to prove∣∣∣∣∣φ̂(φ(t)) − Y−

N (−|x| − 2θ ) +
√

N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣∣ ≤ N−1/12 + 1

2
√

N

to complete the proof. Now, φ̂(φ(t)) − Y−
N (−|x| − 2θ ) +

√
N

4 φ(t) − �−(|x|+2θ)N	
2
√

N
is an affine

function of φ(t), so it is enough to prove the bound for φ(t) = −|x| − 2θ − �(|x|+2θ)N	+1
N

and for φ(t) = 2I−
N . We first consider φ(t) = 2I−

N . By Lemma 6, �−(TN, I−) = 0. Moreover,

I− < −�(|x| + 2θ )N	, and hence Y−
N

( I−
N

) = 0. We deduce that∣∣∣∣∣φ̂(φ(t)) − Y−
N (−|x| − 2θ ) +

√
N

4
φ(t) − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
=

∣∣∣∣∣−Y−
N (−|x| − 2θ ) +

√
N

4

2I−

N
− �−(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
=

∣∣∣∣Y−
N

(
I−

N

)
− Y−

N (−|x| − 2θ ) + I− − �−(|x| + 2θ )N	
2
√

N

∣∣∣∣
≤ sup

y∈
[

I−
N ,−|x|−2θ

]
∣∣∣∣Y−

N (y) − Y−
N (−|x| − 2θ ) + �Ny	 − �−(|x| + 2θ )N	

2
√

N

∣∣∣∣ ≤ 2N−5/48,

which is enough. We now consider φ(t) = −|x| − 2θ − �(|x|+2θ)N	+1
N . Then

∣∣∣φ̂(φ(t)) −
Y−

N (−|x| − 2θ ) +
√

N
4 φ(t) − �−(|x|+2θ)N	

2
√

N

∣∣∣ is equal to

∣∣YN(−|x| − 2θ ) − Y−
N (−|x| − 2θ )

+
√

N

4

(
−|x| − 2θ − �(|x| + 2θ )N	 + 1

N

)
− �−(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
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≤ |YN(−|x| − 2θ ) − Y−
N (−|x| − 2θ )|

+
∣∣∣∣ 1

4
√

N
(−(|x| + 2θ )N − �(|x| + 2θ )N	 − 1 − 2�−(|x| + 2θ )N	

∣∣∣∣
≤ |YN(−|x| − 2θ ) − Y−

N (−|x| − 2θ )| + 1

2
√

N
≤ N−1/12 + 1

2
√

N

by Lemma 12, which completes the proof for Bc ∩ {I− < −�(|x| + 2θ )N	}.
The argument to show that Bc ∩ {I+ > �(|x| + 2θ )N	} ⊂ {

between ((|x|+2θ)N)∧I+
N and a,

‖u−
N − uN‖∞, ‖r−

N − rN‖∞ ≤ 2N−1/12
}

is similar and simpler, except for the end of the
argument, which we give here. In a similar way as in the previous case, we must bound∣∣∣∣∣YN((|x| + 2θ )−) − Y−

N (|x| + 2θ ) +
√

N

4

(
|x| + 2θ + �(|x| + 2θ )N	

N

)
− �(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
≤ ∣∣YN((|x| + 2θ )−) − Y−

N (|x| + 2θ )
∣∣ +

∣∣∣∣ (|x| + 2θ )N − �(|x| + 2θ )N	
4
√

N

∣∣∣∣
≤ ∣∣YN((|x| + 2θ )−) − Y−

N ((|x| + 2θ )−)
∣∣ + ∣∣Y−

N ((|x| + 2θ )−) − Y−
N (|x| + 2θ )

∣∣ + 1

4
√

N
;

hence Lemma 12 yields∣∣∣∣∣YN((|x| + 2θ )−) − Y−
N (|x| + 2θ ) +

√
N

4

(
|x| + 2θ + �(|x| + 2θ )N	

N

)
− �(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
≤ N−1/12 + ∣∣Y−

N ((|x| + 2θ )−) − Y−
N (|x| + 2θ )

∣∣ + 1

4
√

N
.

In addition, the definition of Y−
N and (1) yield that if (|x| + 2θ )N is not an integer, then

Y−
N ((|x| + 2θ )−) = Y−

N (|x| + 2θ ), while if (|x| + 2θ )N is an integer, then

∣∣Y−
N ((|x| + 2θ )−) − Y−

N (|x| + 2θ )
∣∣ = 1√

N

∣∣�−(
TN, (|x| + 2θ )N − 1

) − �−(
TN, (|x| + 2θ )N

)∣∣
= 1√

N

∣∣η(|x|+2θ)N−1,+
(
�−(

TN, (|x| + 2θ )N − 1
))∣∣

≤ N1/16 + 1/2√
N

,

since (B2)c occurs. In all cases we obtain
∣∣Y−

N ((|x| + 2θ )−) − Y−
N (|x| + 2θ )

∣∣ ≤ N1/16+1/2√
N

;
therefore,∣∣∣∣∣YN((|x| + 2θ )−) − Y−

N (|x| + 2θ ) +
√

N

4

(
|x| + 2θ + �(|x| + 2θ )N	

N

)
− �(|x| + 2θ )N	

2
√

N

∣∣∣∣∣
≤ N−1/12 + N1/16 + 1/2√

N
+ 1

4
√

N
,

which is a bound small enough to complete the proof of the lemma. �
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5. Convergence of the local times process: proof of Theorem 2 and Proposition 3

5.1. Proof of Theorem 2

Our aim is to prove that Y±
N converges in distribution to

(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R in the
Skorokhod M1 topology on D(−∞, +∞) when N tends to +∞. Proposition 5 yields that
Y±

N is close to the function YN defined by YN(y) = 1√
N

∑χ (N)−1
i=�Ny	+1 ζi if y ∈ [−|x| − 2θ,

χ (N)
N

)
,

YN(y) = 1√
N

∑�Ny	−1
i=χ (N) ζi if y ∈ [χ (N)

N , |x| + 2θ
)
, and YN(y) = 0 otherwise. One has the feeling

that by Donsker’s invariance principle, YN should converge to
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R,
and so we should be able to conclude quickly, but rigorously proving the convergence in
the Skorokhod M1 topology on D(−∞, +∞) is harder than it looks. We are instead going
to use a similar argument with a new process Y ′′

N which will be ‘like YN , but continuous in
[−|x| − 2θ, |x| + 2θ )’. We define it as follows. We first set a process Y ′

N thus: if Ny ∈Z, then

Y ′
N(y) = 1√

N

∑χ (N)−1
i=Ny+1 ζi if y ∈ (−∞,

χ (N)
N

)
and Y ′

N(y) = 1√
N

∑Ny−1
i=χ (N) ζi if y ∈ [χ (N)

N , +∞)
; in

between, Y ′
N is linearly interpolated. We then define Y ′′

N by Y ′′
N(y) = Y ′

N(y)1{y∈[−|x|−2θ,|x|+2θ)}
for any y ∈R. Then Y ′′

N will converge to
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R and be close to YN , as
stated in the following two lemmas.

Lemma 16. Y ′′
N converges to

(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R in distribution when N tends to +∞
for the Skorokhod M1 topology in D(−∞, ∞).

Lemma 17. P
(
dM1

(
Y±

N , Y ′′
N

)
> N−7/16

)
tends to 0 when N tends to +∞.

Given these two lemmas, the proof of Theorem 2 is fairly standard. One may for example
look at the end of the proof of the Donsker invariance principle in [8] (here Y ′′

N converges to the
desired distribution instead of having it outright, but this convergence yields that the probability
that Y ′′

N is in a closed set has the right limit). Thus we only have to prove Lemmas 16 and 17. In
order to do this, we first need two easy lemmas which will also be used later in this work. If we
denote by C[−|x| − 2θ, |x| + 2θ ] the space of continuous functions [−|x| − 2θ, |x| + 2θ ] �→
R, then since the (ζi)i∈Z are i.i.d. with law ρ0, which is symmetric and so has zero mean,
Donsker’s invariance principle yields the following.

Lemma 18. Y ′
N |[−|x|−2θ,|x|+2θ] converges in distribution to Bx|[−|x|−2θ,|x|+2θ] when N tends to

+∞ for the topology defined on C[−|x| − 2θ, |x| + 2θ ] by the uniform norm.

The following lemma is also easy to prove.

Lemma 19. If (B2)c occurs, then sup{|YN(y) − Y ′′
N(y)| : y ∈ [−|x| − 2θ, |x| + 2θ )} ≤ N−7/16.

Proof. By the definition of YN and Y ′′
N , we have

sup
{∣∣YN(y) − Y ′′

N(y)
∣∣ : y ∈ [−|x| − 2θ, |x| + 2θ )

}
≤ 1√

N
sup{|ζi| : − (|x| + 2θ )N ≤ i ≤ (|x| + 2θ )N},

which is smaller than N1/16√
N

= N−7/16 if (B2)c occurs. �

We also need the following technical lemma in order to deduce results on the Skorokhod
M1 topology from Lemmas 18 and 19.
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Lemma 20. Let N > 0, and let Z1, Z2 ∈ D(−∞, +∞) be functions whose possible discontinu-
ities belong to 1

NZ. Then

dM1

((
Z1(y)1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R,

(
Z2(y)1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R

)
≤ sup{|Z1(y) − Z2(y)| : y ∈ [−|x| − 2θ, |x| + 2θ )}.

Proof. Lemma 20 can be proved by writing, for each a �= |x| + 2θ , parametric represen-
tations of the two processes on [−a, a] ‘following their completed graphs together’ (one
can find an explicit construction of such representations in the first arXiv version of this
paper [5]). �

Lemma 20 will allow us to deduce Lemma 16 from Lemma 18, and Lemma 17 from
Lemma 19 and Proposition 5, which will complete the proof of Theorem 2.

Proof of Lemma 16. Let f : D(−∞, +∞) �→R be bounded and continuous with respect
to the Skorokhod M1 topology on D(−∞, +∞). We need to prove that E

(
f
(
Y ′′

N

))
converges

to E
(
f
((

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R

))
when N tends to +∞. We define g : C[−|x| − 2θ, |x| +

2θ ] �→R by g(Z) = f
((

Z(y)1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R
)

for any Z ∈ C[−|x| − 2θ, |x| + 2θ ].

We then have E
(
f
(
Y ′′

N

)) =E
(
g
(
Y ′

N |[−|x|−2θ,|x|+2θ]
))

and E
(
f
((

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R

)) =
E
(
g
(
Bx|[−|x|−2θ,|x|+2θ]

))
; hence it is enough to prove that E

(
g
(
Y ′

N |[−|x|−2θ,|x|+2θ]
))

con-
verges to E

(
g
(
Bx|[−|x|−2θ,|x|+2θ]

))
when N tends to +∞. Furthermore, Lemma 18 yields that

Y ′
N |[−|x|−2θ,|x|+2θ] converges in distribution to Bx|[−|x|−2θ,|x|+2θ] when N tends to +∞ for the

topology defined on C[−|x| − 2θ, |x| + 2θ ] by the uniform norm. Consequently, we only have
to prove that g is continuous for this topology.

Let (Zk)k∈N be a sequence in C[−|x| − 2θ, |x| + 2θ ] converging uniformly to
Z ∈ C[−|x| − 2θ, |x| + 2θ ] when k tends to +∞. Then Lemma 20 states that for all
k ∈N,

dM1

((
Zk(y)1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R,

(
Z(y)1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R

)
≤ sup{|Zk(y) − Z(y)| : y ∈ [−|x| − 2θ, |x| + 2θ )} ≤ ‖Zk − Z‖∞.

Since the latter tends to 0 when k tends to +∞, (Zk(y)1{y∈[−|x|−2θ,|x|+2θ)})y∈R converges to(
Z(y)1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R when k tends to +∞ with respect to the Skorokhod M1 topology

on D(−∞, +∞). Since f is continuous with respect to this topology, (g(Zk))k∈N converges
to g(Z) when k tends to +∞. Consequently g is continuous for the topology defined on
C[−|x| − 2θ, |x| + 2θ ] by the uniform norm, which completes the proof. �

Proof of Lemma 17. We have

P
(
dM1

(
Y±

N , Y ′′
N

)
> 4N−1/12) ≤ P

(
dM1

(
Y±

N , YN
)
> 3N−1/12) + P

(
dM1

(
YN, Y ′′

N

)
> N−7/16)

when N is large enough. By Lemmas 19 and 20 we have P
(
dM1

(
YN, Y ′′

N

)
> N−7/16

) ≤ P(B2).
Therefore P

(
dM1

(
Y±

N , Y ′′
N

)
> 4N−1/12

) ≤ P
(
dM1

(
Y±

N , YN
)
> 3N−1/12

) + P(B2), which tends to
0 when N tends to +∞ by Proposition 5 and Lemma 3. �

5.2. Proof of Proposition 3

Our goal is to prove that for any closed interval I ∈R that does not contain −|x| − 2θ or
|x| + 2θ , the process

(
Y±

N (y)
)

y∈I converges in distribution to
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈I in the
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topology on D I given by the uniform norm when N tends to +∞. We first assume I = [a, b]
or I = [a, +∞) with a > |x| + 2θ (the case I = [a, b] or I = (−∞, b] with b < −|x| − 2θ can
be dealt with in the same way). We are going to prove that outside an event of small proba-
bility,

(
Y±

N (y)
)

y∈I = 0 = (
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈I . For any y ≥ (|x| + 2θ ) ∨ I+
N , by Lemma 6

we have �±(
TN, �Ny	) = 0, and thus Y±

N (y) = 0. We deduce that as soon as I+
N ≤ a, we have(

Y±
N (y)

)
y∈I = 0 = (

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈I . In addition, when N is large enough we have

a ≥ |x| + 2θ + N−1/4. Therefore, when N is large enough,

P
((

Y±
N (y)

)
y∈I �= (

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈I

) ≤ P
(|I+ − (|x| + 2θ )N| ≥ N3/4),

which tends to 0 when N tends to +∞ by Lemma 7. This yields that
(
Y±

N (y)
)

y∈I converges in

distribution to
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈I

)
in the topology on D I given by the uniform norm.

We now deal with the case I = [a, b] with −|x| − 2θ < a < b < |x| + 2θ . The idea is that we
will be far from the problems at −|x| − 2θ and |x| + 2θ , so that Y±

N will be close to Y ′
N in all I,

and Y ′
N converges to the right limit, which means Y±

N does as well. We first prove the following
lemma.

Lemma 21. For any −|x| − 2θ < a < b < |x| + 2θ , we have that P
(‖Y±

N |[a,b] − Y ′
N |[a,b]‖∞ >

2N−1/12
)

tends to 0 when N tends to +∞.

Proof. We assume (B2)c,
(B−

4

)c, and
(B+

4

)c occur, as well as |I− + (|x| + 2θ )N| < N3/4,

|I+ − (|x| + 2θ )N| < N3/4. When N is large enough, we have a ≥ −|x| − 2θ + N−1/4 > I−
N

and b ≤ |x| + 2θ − N−1/4 < I+
N , so [a, b] ⊂ ( I−

N , I+
N

)
. Therefore, for any y ∈ [a, b], Lemma 12

yields
∣∣Y±

N (y) − YN(y)
∣∣ ≤ N−1/12, and Lemma 19 gives

∣∣YN(y) − Y ′
N(y)

∣∣ ≤ N−7/16. Hence
we get

∣∣Y±
N (y) − Y ′

N(y)
∣∣ ≤ 2N−1/12, and we deduce

∥∥Y±
N |[a,b] − Y ′

N |[a,b]
∥∥∞ ≤ 2N−1/12. This

implies

P
(∥∥Y±

N |[a,b] − Y ′
N |[a,b]

∥∥∞ > 2N−1/12)
≤ P

(B2 ∪B−
4 ∪B+

4 ∪ {|I− + (|x| + 2θ )N| ≥ N3/4} ∪ {|I+ − (|x| + 2θ )N| ≥ N3/4}),
which tends to 0 when N tends to +∞ thanks to Lemmas 3, 7, and 11. �

Moreover, for any −|x| − 2θ < a < b < |x| + 2θ , by Donsker’s invariance principle, Y ′
N |[a,b]

converges in distribution to Bx|[a,b] when N tends to +∞ for the topology defined on D[a, b]
by the uniform norm. The proof of Proposition 3 from this is standard, as was the proof of
Theorem 2 from Lemmas 16 and 17.

6. No convergence in the Skorokhod J1 topology: proof of Proposition 2

In this section, our aim is to prove that Y±
N does not converge in distribution in the Skorokhod

J1 topology on D(−∞, +∞) when N tends to +∞. We will first prove that if Y±
N converges

in the Skorokhod J1 topology, then the limit has to be the same as in the Skorokhod M1 topol-
ogy, that is,

(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R, by Theorem 2 (this will be Lemma 22). Afterwards,

we will prove that Y±
N does not converge in distribution in the Skorokhod J1 topology to(

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R, by finding some closed set � such that lim supN→+∞ P

(
Y±

N ∈
�
)
> P

((
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R ∈ �
)
, which is enough by the portmanteau theorem.
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Lemma 22. If Y±
N converges in distribution in the Skorokhod J1 topology on D(−∞, +∞)

when N tends to +∞, the limit is
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R.

Proof. The idea is that the Skorokhod J1 topology is stronger than the Skorokhod M1
topology. We assume Y±

N converges in distribution to some Z in the Skorokhod J1 topol-
ogy on D(−∞, +∞) when N tends to +∞. It can be proven that for any a > 0 we have
dM1,a ≤ dJ1,−a,a. Indeed, this is Theorem 12.3.2 of [19], whose proof is in the internet supple-
ment of that book (just replace the points of discontinuity of x1 with their image by λ−1). This
implies dM1 ≤ dJ1 . Therefore, a function g : D(−∞, +∞) �→R that is bounded and continuous
for the Skorokhod M1 topology is also continuous for the Skorokhod J1 topology. We deduce
that E

(
g
(
Y±

N

))
converges to E(g(Z)) when N tends to +∞; thus Y±

N converges in distribution
to Z in the Skorokhod M1 topology when N tends to +∞. By Theorem 2, the limit has to be(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R.

We now define our closed set �. The idea behind this definition is that with high proba-
bility, Bx

|x|+2θ is at some distance from 0; hence, at some point around |x| + 2θ , Y±
N will be

close to Bx
|x|+2θ , and therefore at some distance from 0. Furthermore, at |x| + 2θ the process(

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R will jump directly from Bx

|x|+2θ to 0, while Y±
N , which can make

only jumps of order 1√
N

, will have to cross the distance separating Bx
|x|+2θ from 0 without any

big jumps. Therefore, if δ1 > 0 is much smaller than Bx
|x|+2θ , then Y±

N (y) will enter the inter-

val [δ1, 2δ1] for y near |x| + 2θ , while
(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R will not. We thus set � to
be roughly ‘the function enters [δ1, 2δ1] around |x| + 2θ ’. More rigorously, by the definition
of Bx, the random variable Bx

|x|+2θ has distribution N (0, 2θ ), which means there exists δ1 > 0

such that P
(∣∣Bx

|x|+2θ

∣∣ ≤ 4δ1
) ≤ 1/8. Moreover, Bx is continuous; hence there exists 0 < δ2 < θ

such that P
(∃ y ∈ [|x| + 2θ − δ2, |x| + 2θ

]
,
∣∣Bx

y

∣∣ ≤ 3δ1
) ≤ 1/4. We then define

� = {Z ∈ D(−∞, +∞) | ∃y ∈ [|x| + 2θ − δ2, |x| + 2θ + δ2],

|Z(y)| ∈ [δ1, 2δ1] or |Z(y−)| ∈ [δ1, 2δ1]}

(the inclusion of Z(y−) is necessary for � to be closed). Then P
((

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R ∈

�
) ≤ 1/4. We will prove the following two lemmas.

Lemma 23. When N is large enough, P
(
Y±

N ∈ �
) ≥ 1/2.

Lemma 24. � is closed in the Skorokhod J1 topology on D(−∞, +∞).

With these two lemmas, the proof of Proposition 2 becomes easy.

Proof of Proposition 2. Lemma 23 yields lim supN→+∞ P
(
Y±

N ∈ �
) ≥ 1/2, and the defini-

tion of � ensures that P
((

Bx
y1{y∈[−|x|−2θ,|x|+2θ)}

)
y∈R ∈ �

) ≤ 1/4; hence lim supN→+∞ P
(
Y±

N ∈
�
)
> P

((
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R ∈ �
)
. Since Lemma 24 yields that � is closed in

the Skorokhod J1 topology on D(−∞, +∞), the portmanteau theorem implies that Y±
N

does not converge in distribution in the Skorokhod J1 topology on D(−∞, +∞) to(
Bx

y1{y∈[−|x|−2θ,|x|+2θ)}
)

y∈R when N tends to +∞. Hence Lemma 22 yields that Y±
N does not

converge in distribution in the Skorokhod J1 topology on D(−∞, +∞) when N tends to +∞,
which is Proposition 2. �
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Thus it remains only to prove Lemmas 23 and 24.

Proof of Lemma 23. The idea is that with good probability, when y is a bit smaller than
|x| + 2θ , we have that Y±

N (y) is of the same order as Bx
|x|+2θ , and is thus away from 0, while

when y is a bit larger than |x| + 2θ , we have Y±
N (y) = 0, so, since YN can only make jumps of

order 1√
N

, it will enter [δ1, 2δ1].

We now give the rigorous argument. We begin by assuming that
∣∣Y±

N (|x| + 2θ − δ2)
∣∣ > 3δ1

(that is, YN(y) is indeed away from 0 when y is a bit smaller than |x| + 2θ ), that (B2)c occurs,
and that |I+ − (|x| + 2θ )N| < N3/4; and we prove that when N is large enough, Y±

N ∈ �. We

first show that Y±
N (|x| + 2θ + δ2) = 0. When N is large enough, I+

N ≤ |x| + 2θ + N−1/4 ≤ |x| +
2θ + δ2. Moreover, Lemma 6 implies �±(

TN, �Ny	) = 0 for any y ≥ I+
N , and hence for y = |x| +

2θ + δ2. This yields Y±
N (|x| + 2θ + δ2) = 0. Moreover, we assumed

∣∣Y±
N (|x| + 2θ − δ2)

∣∣ > 3δ1.
Equations (1) and (2) yield that the jumps of Y±

N in [|x| + 2θ − δ2, |x| + 2θ + δ2] are either
1√
N

ηi,+
(
�−(

TN, i
))

(if we are dealing with Y−
N ) or 1√

N
ηi+1,+(�−(TN, i + 1)) (if we are dealing

with Y+
N ), with i ∈ {�(|x| + 2θ − δ2)N	, . . . , �(|x| + 2θ + δ2)N	 − 1}. Since (B2)c occurs, the

jumps of Y±
N in [|x| + 2θ − δ2, |x| + 2θ + δ2] have size at most 1√

N

(
N1/16 + 1/2

)
, which tends

to 0 when N tends to +∞. Therefore, when N is large enough, there exists y ∈ [|x| + 2θ −
δ2, |x| + 2θ + δ2] such that |Y±

N (y)| ∈ [δ1, 2δ1]; hence Y±
N ∈ �. Consequently, when N is large

enough, if
∣∣Y±

N (|x| + 2θ − δ2)
∣∣ > 3δ1, (B2)c, and |I+ − (|x| + 2θ )N| < N3/4 then Y±

N ∈ �. This
implies that

P
(
Y±

N �∈ �
) ≤ P

(∣∣Y±
N (|x| + 2θ − δ2)

∣∣ ≤ 3δ1
) + P(B2) + P

(|I+ − (|x| + 2θ )N| ≥ N3/4).
In addition, Lemma 3 and Lemma 7 yield respectively that P(B2) and P

(|I+ − (|x| + 2θ )N| ≥
N3/4

)
tend to 0 when N tends to +∞. Therefore, it is enough to prove that P

(∣∣Y±
N (|x| + 2θ −

δ2)
∣∣ ≤ 3δ1

) ≤ 3/8 when N is large enough to deduce that P(Y±
N �∈ �) ≤ 1/2 when N is large

enough and complete the proof of Lemma 23.
We now prove that P

(∣∣Y±
N (|x| + 2θ − δ2)

∣∣ ≤ 3δ1
) ≤ 3/8 when N is large enough, by

noticing that Y±
N (|x| + 2θ − δ2) is close to Y ′

N(|x| + 2θ − δ2), which will converge in distri-
bution to Bx

|x|+2θ−δ2
when N tends to +∞. Lemma 21 implies that P

(‖Y±
N |[0,|x|+2θ−δ2] −

Y ′
N |[0,|x|+2θ−δ2]‖∞ > 2N−1/12

)
tends to 0 when N tends to +∞; hence P

(∣∣Y±
N (|x| + 2θ −

δ2) − Y ′
N(|x| + 2θ − δ2)

∣∣ > 2N−1/12
)

tends to 0 when N tends to +∞, which implies Y±
N (|x| +

2θ − δ2) − Y ′
N(|x| + 2θ − δ2) converges in probability to 0 when N tends to +∞. In addition,

Lemma 18 states that Y ′
N |[−|x|−2θ,|x|+2θ] converges in distribution to Bx|[−|x|−2θ,|x|+2θ] when N

tends to +∞ for the topology defined on C[−|x| − 2θ, |x| + 2θ ] by the uniform norm; hence
Y ′

N(|x| + 2θ − δ2) converges in distribution to Bx
|x|+2θ−δ2

when N tends to +∞. Therefore,

Slutsky’s theorem yields that Y±
N (|x| + 2θ − δ2) converges in distribution to Bx

|x|+2θ−δ2
when

N tends to +∞. Moreover, we defined � so that P(∃ y ∈ [|x| + 2θ − δ2, |x| + 2θ ], |Bx
y| ≤

3δ1) ≤ 1/4; hence P
(∣∣Bx

|x|+2θ−δ2

∣∣ ≤ 3δ1
) ≤ 1/4. This implies that when N is large enough,

P
(∣∣Y±

N (|x| + 2θ − δ2)
∣∣ ≤ 3δ1

) ≤ 3/8. �
Proof of Lemma 24. Let (ZN)N∈N be a sequence of elements of � converging to Z in the

Skorokhod J1 topology on D(−∞, +∞); we will prove that Z ∈ �. By taking a subsequence,
we may assume dJ1 (Z, ZN) < e−|x|−2θ−δ2−1/N for any N ∈N

∗. Then for any N ∈N
∗, some

aN > |x| + 2θ + δ2 + 1 such that dJ1,−aN ,aN

(
Z|[−aN ,aN ], ZN |[−aN ,aN ]

) ≤ 1/N will exist. Indeed,
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if this were not the case, for some N we would have

dJ1 (Z, ZN) =
∫ +∞

0
e−a(dJ1,−a,a

(
Z|[−a,a], ZN |[−a,a]

) ∧ 1
)
da

≥
∫ +∞

|x|+2θ+δ2+1
e−a 1

N
da = e−|x|−2θ−δ2−1/N,

which does not happen. For all N ∈N
∗, since dJ1,−aN ,aN

(
Z|[−aN ,aN ], ZN |[−aN ,aN ]

) ≤
1/N, there exists λN ∈ �−aN ,aN with ‖Z|[−aN ,aN ] ◦ λN − ZN |[−aN ,aN ]‖∞ ≤ 2/N and ‖λN −
Id−aN ,aN ‖∞ ≤ 2/N. Moreover, ZN ∈ �; hence there exists yN ∈ [|x| + 2θ − δ2, |x| + 2θ + δ2]
such that |ZN(yN)| ∈ [δ1, 2δ1] or |ZN

(
y−

N

)| ∈ [δ1, 2δ1]. We now define y′
N as follows: if

|ZN(yN)| ∈ [δ1, 2δ1] we set y′
N = yN . Otherwise, since |ZN

(
y−

N

)| ∈ [δ1, 2δ1], we can take
some y′

N in
[
yN − 1

N , yN
]

such that
∣∣ZN

(
y′

N

)∣∣ ∈ [δ1 − 1/N, 2δ1 + 1/N]. In both cases,
we have y′

N ∈ [|x| + 2θ − δ2 − 1/N, |x| + 2θ + δ2] and
∣∣ZN

(
y′

N

)∣∣ ∈ [δ1 − 1/N, 2δ1 + 1/N].
Furthermore, ‖λN − Id−aN ,aN ‖∞ ≤ 2/N; hence |λN

(
y′

N

) − y′
N | ≤ 2/N, and thus λN

(
y′

N

) ∈
[|x| + 2θ − δ2 − 3/N, |x| + 2θ + δ2 + 2/N]. In addition,

∥∥Z
(
λN

(
y′

N

)) − ZN
(
y′

N

)∥∥∞ ≤ 2/N;
hence

∣∣Z(
λN

(
y′

N

))∣∣ ∈ [δ1 − 3/N, 2δ1 + 3/N]. By taking a subsequence, we may assume that
λN

(
y′

N

)
converges to some y∞ ∈ [|x| + 2θ − δ2, |x| + 2θ + δ2]. In addition, Z is càdlàg, so

there is a subsequence of
(
Z
(
λN

(
y′

N

))
N∈N∗ that converges to either Z(y∞) or Z

(
y−∞

)
. Since∣∣Z(

λN
(
y′

N

))∣∣ ∈ [δ1 − 3/N, 2δ1 + 3/N], we have |Z(y∞)| or
∣∣Z(

y−∞
)∣∣ in [δ1, 2δ1]. Therefore

Z ∈ �, which completes the proof. �

7. Convergence of the stopping time: proof of Proposition 4

We want to prove Proposition 4, that is, the convergence in distribution of 1
N3/2

(
TN −

N2(|x| + 2θ )2
)

to the law N (
0, 32

3 Var(ρ−)
(
(|x| + θ )3 + θ3

))
when N tends to +∞. In order

to do that, we will prove that 1
N3/2

(
TN − N2(|x| + 2θ )2

)
is close to 2

∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy (where

Y ′
N was defined at the beginning of Section 5.1), then that 2

∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy converges to the
desired distribution.

Proposition 7. We have that

P

(∣∣∣∣∣ 1

N3/2

(
TN − N2(|x| + 2θ )2) − 2

∫ |x|+2θ

−|x|−2θ

Y ′
N(y)dy

∣∣∣∣∣ > 5(|x| + 2θ )N−1/12

)

tends to 0 when N tends to +∞.

Proof. The result will come from the fact that TN can be written as the sum of the local
times, which is itself related to the integrals of Y−

N and Y+
N , which are close to YN by Lemma 12

and hence to Y ′
N by Lemma 19. It is enough to prove that if (B2)c,

(B−
4

)c, and
(B+

4

)c occur and
if |I− + (|x| + 2θ )N| < N5/8, |I+ − (|x| + 2θ )N| < N5/8, then∣∣∣∣∣ 1

N3/2

(
TN − N2(|x| + 2θ )2) − 2

∫ |x|+2θ

−|x|−2θ

Y ′
N(y)dy

∣∣∣∣∣ ≤ 5(|x| + 2θ )N−1/12,

since Lemma 3 implies that P(B2) tends to 0 when N tends to +∞, Lemma 11 implies that
P
(B−

4

)
and P

(B+
4

)
tend to 0 when N tends to +∞, and Lemma 7 implies that P

(|I− + (|x| +
2θ )N| ≥ N5/8

)
and P

(|I+ − (|x| + 2θ )N| ≥ N5/8
)

tend to 0 when N tends to +∞. We assume
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that (B2)c,
(B−

4

)c, and
(B+

4

)c occur and that |I− + (|x| + 2θ )N| < N5/8, |I+ − (|x| + 2θ )N| <
N5/8. Let us study TN .

In order to do this, we first need to prove an auxiliary result—more precisely, that the
following holds when N is large enough:

if |i − I+| ≤ N5/8 + 1 or |i − I−| ≤ N5/8 + 1,

then �+(TN, i) ≤ 4N11/16 and �−(TN, i) ≤ 4N11/16.
(6)

We prove (6) for the case |i − I−| ≤ N5/8 + 1, since the other case is similar. Let i ∈Z so that
|i − I−| < N5/8 + 1. We notice that since |I− + (|x| + 2θ )N| < N5/8 we have I−, i < 0 when N
is large enough, so (1) yields

|�+(TN, i) − �+(TN, I−)| ≤
∑

|j−I−|<N5/8+1

∣∣ηj,−
(
�+(

TN, j
))∣∣;

thus, since �+(TN, I−) = 0, we have

�+(TN, i) ≤
∑

|j−I−|<N5/8+1

∣∣ηj,−
(
�+(

TN, j
))∣∣.

In addition, we assumed (B2)c; hence

�+(TN, i) ≤
∑

|j−I−|<N5/8+1

(
N1/16 + 1/2

) ≤ 3N5/8N1/16 = 3N11/16

when N is large enough. Furthermore, (2) implies∣∣�−(TN, i) − �+(TN, i)
∣∣ = ∣∣ηi,−

(
�+(TN, i)

)∣∣ ≤ N1/16 + 1/2

thanks to (B2)c, and hence �−(TN, i) ≤ 3N11/16 + N1/16 + 1/2 ≤ 4N11/16 when N is large
enough, which completes the proof of (6).

We now write TN as the sum of the local times and relate 1
N3/2

(
TN − N2(|x| + 2θ )2

)
to

the integral of Y+ and Y−. We have TN = ∑
i∈Z (�+(TN, i) + �−(TN, i)). Moreover, Lemma 6

implies that for all i ≥ I+ and i ≤ I− we have �+(TN, i) = �−(TN, i) = 0. Consequently,

TN =
I+∨�(|x|+2θ)N	∑

i=I−∧(−�(|x|+2θ)N	)

(
�+(TN, i) + �−(TN, i)

)
.

We thus have∣∣∣∣∣ 1

N3/2

(
TN − N2(|x| + 2θ )2) −

∫ (I+∨(|x|+2θ)N)/N

(I−∧(−(|x|+2θ)N))/N

(
Y+

N (y) + Y−
N (y)

)
dy

∣∣∣∣∣
≤ 1

N3/2

(
�+(

TN, I+ ∨ �(|x| + 2θ )N	) + �−(
TN, I+ ∨ �(|x| + 2θ )N	)

+ �+(
TN, −�(|x| + 2θ )N	 − 1

) + �−(
TN, −�(|x| + 2θ )N	 − 1

))
.
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Since we assumed |I− + (|x| + 2θ )N| < N5/8 and |I+ − (|x| + 2θ )N| < N5/8, Equation (6)
yields ∣∣∣∣∣ 1

N3/2

(
TN − N2(|x| + 2θ )2) −

∫ (I+∨(|x|+2θ)N)/N

(I−∧(−(|x|+2θ)N))/N

(
Y+

N (y) + Y−
N (y)

)
dy

∣∣∣∣∣
≤ 1

N3/2
16N11/16 = 16N−13/16.

(7)

We now prove that ∫ (I+∨(|x|+2θ)N)/N

(I−∧(−(|x|+2θ)N))/N

(
Y+

N (y) + Y−
N (y)

)
dy

is close to 2
∫ |x|+2θ

−(|x|+2θ) YN(y)dy. We begin by considering

∫ (I+∨(|x|+2θ)N)/N

χ (N)/N

(
Y+

N (y) + Y−
N (y)

)
dy.

We first assume I+ ≥ (|x| + 2θ )N. Since we assumed that (B2)c,
(B−

4

)c, and
(B+

4

)c occur,
Lemma 12 yields∣∣∣∣∣

∫ (I+∨(|x|+2θ)N)/N

χ (N)/N

(
Y+

N (y) + Y−
N (y)

)
dy − 2

∫ |x|+2θ

χ (N)/N
YN(y)dy

∣∣∣∣∣
≤ 2

(
|x| + 2θ − χ (N)

N

)
N−1/12 +

∫ I+/N

|x|+2θ

|Y+
N (y) + Y−

N (y))|dy.

In addition, we know I+ − (|x| + 2θ )N ≤ N5/8 and (6); hence

∫ I+/N

|x|+2θ

|Y+
N (y) + Y−

N (y))|dy

≤ N−3/8 1√
N

(
max

�(|x|+2θ)N	≤i≤I+
�+(TN, i) + max

�(|x|+2θ)N	≤i≤I+
�−(TN, i)

)
≤ N−3/8N−1/28N11/16 = 8N−3/16.

We deduce that ∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

χ (N)/N

(
Y+

N (y) + Y−
N (y)

)
dy − 2

∫ |x|+2θ

χ (N)/N
YN(y)dy

∣∣∣∣∣
≤ 2

(
|x| + 2θ − χ (N)

N

)
N−1/12 + 8N−3/16.

We now assume I+ < (|x| + 2θ )N. In this case, we have∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

χ (N)/N

(
Y+

N (y) + Y−
N (y)

)
dy − 2

∫ |x|+2θ

χ (N)/N
YN(y)dy

∣∣∣∣∣
≤

∫ I+/N

χ (N)/N

∣∣Y+
N (y) + Y−

N (y) − 2YN(y)
∣∣dy +

∫ |x|+2θ

I+/N

∣∣Y+
N (y) + Y−

N (y)
∣∣dy +

∫ |x|+2θ

I+/N
|2YN(y)|dy.
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Moreover, Lemma 12 yields

∫ I+/N

χ (N)/N

∣∣Y+
N (y) + Y−

N (y) − 2YN(y)
∣∣dy ≤ 2

(
|x| + 2θ − χ (N)

N

)
N−1/12.

Furthermore, for y ≥ I+
N we have �±(

TN, �Ny	) = 0. Since |I+ − (|x| + 2θ )N| < N5/8, this
yields

∣∣Y±
N (y)

∣∣ ≤ 1
2 N1/8. Thus

∫ |x|+2θ

I+/N

∣∣Y+
N (y) + Y−

N (y)
∣∣dy ≤

∫ |x|+2θ

I+/N
N1/8dy ≤ N−3/8N1/8 = N−1/4.

We deduce that ∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

χ (N)/N

(
Y+

N (y) + Y−
N (y)

)
dy − 2

∫ |x|+2θ

χ (N)/N
YN(y)dy

∣∣∣∣∣
≤ 2

(
|x| + 2θ − χ (N)

N

)
N−1/12 + N−1/4 +

∫ |x|+2θ

I+/N
|2YN(y)|dy.

In addition, for any y ∈ [ I+
N , |x| + 2θ ], we have

|YN(y)| ≤
∣∣∣∣YN(y) − YN

(
I+

N

)∣∣∣∣ +
∣∣∣∣YN

(
I+

N

)
− Y−

N

(
I+

N

)∣∣∣∣ +
∣∣∣∣Y−

N

(
I+

N

)∣∣∣∣ .

Lemma 12 yields that
∣∣∣YN

(
I+
N

)
− Y−

N

(
I+
N

)∣∣∣ ≤ N−1/12, and since |I+ − (|x| + 2θ )N| < N5/8

we have ∣∣∣∣Y−
N

(
I+

N

)∣∣∣∣ =
∣∣∣∣ 1√

N

(
�±(TN, I+) − N

( |x| − |I+/N|
2

+ θ

)
+

)∣∣∣∣ ≤ 1

2
N1/8;

hence

|YN(y)| ≤
∣∣∣∣YN(y) − YN

(
I+

N

)∣∣∣∣ + N−1/12 + 1

2
N1/8 = 1√

N

∣∣∣∣∣∣
�Ny	−1∑

i=I+
ζi

∣∣∣∣∣∣ + N−1/12 + 1

2
N1/8

≤ 1√
N

�(|x|+2θ)N	−1∑
i=I+

|ζi| + N−1/12 + 1

2
N1/8 ≤ 1√

N
N5/8N1/16 + N−1/12 + 1

2
N1/8 ≤ 2N3/16

since (B2)c occurs. Thus∫ |x|+2θ

I+/N
|2YN(y)|dy ≤

∫ |x|+2θ

I+/N
4N3/16dy = N−3/84N3/16 = 4N−3/16.

We deduce that ∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

χ (N)/N

(
Y+

N (y) + Y−
N (y)

)
dy − 2

∫ |x|+2θ

χ (N)/N
YN(y)dy

∣∣∣∣∣
≤ 2

(
|x| + 2θ − χ (N)

N

)
N−1/12 + 5N−3/16.
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Consequently, in all cases,∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

χ (N)/N

(
Y+

N (y) + Y−
N (y)

)
dy − 2

∫ |x|+2θ

χ (N)/N
YN(y)dy

∣∣∣∣∣
≤ 2

(
|x| + 2θ − χ (N)

N

)
N−1/12 + 8N−3/16.

One can prove similarly that∣∣∣∣∣
∫ χ (N)/N

(I−∧(−(|x|+2θ)N))/N

(
Y+

N (y) + Y−
N (y)

)
dy − 2

∫ χ (N)/N

−(|x|+2θ)
YN(y)dy

∣∣∣∣∣
≤ 2

(
|x| + 2θ + χ (N)

N

)
N−1/12 + 8N−3/16.

We conclude that∣∣∣∣∣
∫ (I+∨(|x|+2θ)N)/N

(I−∧(−(|x|+2θ)N))/N

(
Y+

N (y) + Y−
N (y)

)
dy − 2

∫ |x|+2θ

−(|x|+2θ)
YN(y)dy

∣∣∣∣∣
≤ 4(|x| + 2θ )N−1/12 + 16N−3/16.

We are now in position to conclude. Indeed, the previous result and (7) imply that
when N is large enough, | 1

N3/2

(
TN − N2(|x| + 2θ )2

) − 2
∫ |x|+2θ

−(|x|+2θ) YN(y)dy| ≤ 16N−13/16 +
4(|x| + 2θ )N−1/12 + 16N−3/16. Moreover, (B2)c occurs, so Lemma 19 yields sup{∣∣YN(y) −
Y ′

N(y)
∣∣ : y ∈ [−|x| − 2θ, |x| + 2θ )} ≤ N−7/16; therefore∣∣∣∣∣

∫ |x|+2θ

−(|x|+2θ)
YN(y)dy −

∫ |x|+2θ

−(|x|+2θ)
Y ′

N(y)dy

∣∣∣∣∣ ≤ 2(|x| + 2θ )N−7/16.

We deduce that when N is large enough,∣∣∣∣∣ 1

N3/2

(
TN − N2(|x| + 2θ )2) − 2

∫ |x|+2θ

−(|x|+2θ)
Y ′

N(y)dy

∣∣∣∣∣
≤ 16N−13/16 + 4(|x| + 2θ )N−1/12 + 16N−3/16 + 4(|x| + 2θ )N−7/16

≤ 5(|x| + 2θ )N−1/12,

which completes the proof. �

Now that we know 1
N3/2

(
TN − N2(|x| + 2θ )2

)
is close to 2

∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy, we need

to prove that 2
∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy converges to the desired distribution. In order to do so,
we will use the convergence of Y ′

N to a Brownian motion as stated in Lemma 18; thus

2
∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy will converge to the integral of a Brownian motion. The law of the latter
is characterized by the following lemma, where we denote by (Bt)t∈R+ a standard Brownian
motion with B0 = 0. This lemma is quite standard (the interested reader can find a proof in the
first arXiv version of this paper [5]).

Lemma 25. For any y > 0, the integral
∫ y

0 Bzdz has distribution N
(

0,
y3

3

)
.
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We are now able to prove Proposition 4.

Proof of Proposition 4. Proposition 7 implies that the quantity 1
N3/2

(
TN − N2(|x| + 2θ )2

) −
2
∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy converges in probability to 0 when N tends to +∞. Hence, by Slutsky’s

theorem, to prove Proposition 4, it is enough to prove that 2
∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy converges

in distribution to N (
0, Var(ρ−) 32

3

(
(|x| + θ )3 + θ3

))
when N tends to +∞. In addition, by

Lemma 18, Y ′
N |[−|x|−2θ,|x|+2θ] converges in distribution to Bx|[−|x|−2θ,|x|+2θ] when N tends to

+∞, for the topology defined on C[−|x| − 2θ, |x| + 2θ ] by the uniform norm. The integral
between −|x| − 2θ and |x| + 2θ is continuous for this topology, so

∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy converges

in distribution to
∫ |x|+2θ

−|x|−2θ
Bx

ydy when N tends to +∞. Furthermore, Bx is a two-sided Brownian
motion with Bx

x = 0 and variance Var(ρ−), which means we can write∫ |x|+2θ

−|x|−2θ

Bx
ydy =

∫ x

−|x|−2θ

Bx
ydy +

∫ |x|+2θ

x
Bx

ydy

where
∫ x
−|x|−2θ

Bx
ydy and

∫ |x|+2θ

x Bx
ydy are independent. In addition,

∫ |x|+2θ

x Bx
ydy has

the distribution of
√

Var(ρ−)
∫ 2θ

0 Bydy, which we know is N
(

0, Var(ρ−) (2θ)3

3

)
by

Lemma 25, and
∫ x
−|x|−2θ

Bx
ydy has the distribution of

√
Var(ρ−)

∫ 2|x|+2θ

0 Bydy, which is

N
(

0, Var(ρ−) (2|x|+2θ)3

3

)
by Lemma 25. We obtain that

∫ |x|+2θ

−|x|−2θ
Bx

ydy has the distribution

N
(

0, Var(ρ−)
(2|x| + 2θ )3

3
+ Var(ρ−)

(2θ )3

3

)
=N

(
0, Var(ρ−)

8

3

(
(|x| + θ )3 + θ3

))
.

Consequently,
∫ |x|+2θ

−|x|−2θ
Y ′

N(y)dy converges in distribution to N (
0, Var(ρ−) 8

3

(
(|x| + θ )3 + θ3

))
when N tends to +∞, which completes the proof of Proposition 4.
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