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In this article, we consider some critical Brézis-Nirenberg problems in dimension
N ≥ 3 that do not have a solution. We prove that a supercritical perturbation can
lead to the existence of a positive solution. More precisely, we consider the equation:

−∆u = λuq−1 + u2∗+rα−1 in B,

u > 0 in B,

u = 0 on ∂B,

where B ⊂ RN is a unit ball centred at the origin, N ≥ 3, r = |x|,
α ∈ (0,min{N/2, N − 2}), λ is a fixed real parameter and q ∈ [2, 2∗]. This class of
problems can be interpreted as a perturbation of the classical Brézis–Nirenberg
problem by the term rα at the exponent, making the problem supercritical when
r ∈ (0, 1). More specifically, we study the effect of this supercritical perturbation on
the existence of solutions. In particular, when N =3, an interesting and unexpected
phenomenon occurs. We obtain the existence of solutions for λ in a range where the
Brézis–Nirenberg problem has no solution.
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1. Introduction and main results

In 1983, Brézis and Nirenberg in [1.1] studied the following problem:
−∆u = λuq−1 + u2∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN is a bounded domain, N ≥ 3, λ is a fixed real parameter,
q ∈ [2, 2∗) and 2∗ = 2N/(N − 2) is the critical exponent in the sense of Sobolev’s
embedding.

Brézis and Nirenberg proved the following results:

(a) For q =2 and N ≥ 4, problem (1.1) has a solution for every λ ∈ (0, λ1),
where λ1 denotes the first eigenvalue of −∆. Moreover, it has no solution if
λ 6∈ (0, λ1) and Ω is star-shaped.

(b) When q = 2, N = 3, and Ω is a ball, problem (1.1) has a solution if and only

if λ ∈
(

λ1
4 , λ1

)
.

(c) For q ∈ (2, 2∗) and N ≥ 4, problem (1.1) has a solution for every λ> 0.
(d) When N =3 and 4 < q < 6, problem (1.1) has a solution for every λ> 0.
(e) When N =3 and 2 < q ≤ 4, problem (1.1) has a solution only for sufficiently

large values of λ.

Recently, do Ó, Ruf, and Ubilla in [5] studied the following problem:
−∆u = u2∗+rα−1 in B,

u > 0 in B,

u = 0 on ∂B,

(1.2)

where B ⊂ RN is the unit ball centred at the origin, N ≥ 3, r = |x|, and α ∈
(0,min{N/2, N − 2}).

The authors demonstrated that problem (1.2) has a radial solution, which is
surprising because it corresponds to a supercritical perturbation of the equation
−∆u = u2∗−1, which has no solution due to the known Pohozaev identity. In
this same line of reasoning, in the context of the situation of item (b), we studied

the effect of a supercritical perturbation for the case of non-existence λ ∈ (0,
λ1
4 ],

which also generated the existence of a positive solution. We will also have the same
conclusion for situation (e), in which, due to the supercritical perturbation, we will
obtain a solution for all positive λ and not just for sufficiently large λ. Motivated
by the results of [1.1] and [5], we studied this problem in a more general context,
more precisely, let us consider the following problem:

−∆u = λuq−1 + u2∗+rα−1 in B,

u > 0 in B,

u = 0 on ∂B,

(1.3)
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where B ⊂ RN is a unit ball centred at the origin, N ≥ 3, r = |x|, and α ∈
(0,min{N/2, N − 2}) and λ is a fixed real parameter and q ∈ [2, 2∗].

We will now present the main result of this article.

Theorem 1.1 If q= 2, λ ∈ [0, λ1) and N ≥ 3, then the problem (1.3) has a radial
weak solution. If q ∈ (2, 2∗], problem (1.3) has a radial weak solution for every
λ ≥ 0 and N ≥ 3.

We would like to highlight that in the case N = 3 we obtain a solution for
the perturbed problem for each λ ∈ [0, λ1), that is, the perturbation solves the
non-existence interval [0, λ1/4].

Let H1
0 (B) := {u ∈ L2(B) : ∇u ∈ L2(B) : u = 0on ∂B} be the usual Sobolev

space equipped with the gradient norm, or let ‖u‖H1
0(B) = ‖∇u‖L2(B). We say that

u ∈ H1
0 (B) is a weak solution to problem (1.3) if u > 0 in B and it holds:∫

B

∇u∇ϕ dx = λ

∫
B

uq−1ϕdx+

∫
B

u2∗−1+rαϕdx, ∀ϕ ∈ H1
0 (B). (1.4)

Remark 1.2. It is important to emphasize that the Eq. (1.4) is well defined due
to the results obtained in proposition 2.2 and corollary 2.3. Note that (1.4) is not
well-defined for q > 2∗.

Theorem 1.1 shows (see (b) and (e)) that there are critical equations without
solutions that have a solution when a non-negative term is added to them, con-
verting them into supercritical equations. Note that this phenomenon was already
observed in [5].

We also consider some perturbations of problem (1.1) that become superlinear
on the ball and subcritical for r ∈ (0, δ), for some small δ. However, it can be
supercritical away from r = 0, as in the following equation:

−∆u = λuq−1 + u2∗+f(r)−1 in B,

u > 0 in B,

u = 0 on ∂B,

(1.5)

where B ⊂ RN is a unit ball centred at the origin, N ≥ 3, r = |x|, λ is a fixed real
parameter, q ∈ [2, 2∗) and f : [0, 1) → R is a continuous function satisfying:

(f ) f(0) < 0 and inf
r∈[0,1)

(2∗ + f(r)) > 2.

The next result involves the assumption (f ):

Theorem 1.3 Let q ∈ [2, 2∗), N ≥ 3, and f : [0, 1) → R a continuous function
satisfying condition (f). Then the problem (1.5) has a radial weak solution in the
following cases:

(i) q = 2 and λ ∈ [0, λ1).
(ii) q ∈ (2, 2∗) and λ ≥ 0.
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Remark 1.4. In theorem 1.3, due to the generality of the growth condition
considered for the function f, it was not possible to reach the case q = 2∗.

The definition of a weak solution for problem (1.5) is analogous to the one we
defined in Eq. (1.4). The case 0 < q < 2, which corresponds to a concave-convex
problem, was studied in [3] under a subcritical assumption. Therefore, theorem 1.3
complements the result in [3].

The article is organized as follows: In §2, we present preliminary results, in §3,
we prove theorem 1.1, and in §4, we prove theorem 1.3.

2. Preliminaries

First, we define the Sobolev space of radial functions H1
0,rad(B) := {u ∈

H1
0 (B) : u(x) = u(|x|)} equipped with the usual standard ‖u‖ = ‖∇u‖2. We will

now present the ‘radial lemma’, which can be found in [5, 8].

Lemma 2.1. Let u ∈ H1
0,rad(B). Then

|u(r)| ≤ 1

(N − 2)1/2
‖∇u‖2
r(N−2)/2

(2.1)

and

|u(r)| ≤ (1− r)1/2

r(N−2)/2
‖∇u‖2. (2.2)

For the next result, we refer [5]

Proposition 2.2. Let α> 0; then

sup
{∫

B

|u(x)|2
∗+rα dx : u ∈ H1

0,rad(B), ‖∇u‖2 = 1
}
< +∞. (2.3)

Corollary 2.3. The following embedding is continuous:

H1
0,rad(B) ↪→ L2∗+rα(B) , (2.4)

where L2∗+rα(B) is defined as follows (see, e.g., [4])

L2∗+rα(B) :=
{
u : B → R measurable :

∫
B

|u(x)|2
∗+rα dx < ∞

}
with norm

‖u‖2∗+rα = inf
{
λ > 0 ,

∫
B

∣∣∣u(x)
λ

∣∣∣2∗+rα

dx ≤ 1
}
.

The following proposition follows directly from the definition:

Proposition 2.4. Let p : [0, 1) → R be a bounded continuous function and u ∈
Lp(r)(B). Consider ‖u‖p(r) = µ. Then we have:
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(i) If µ ≥ 1, then µp− ≤
∫
B

|u(x)|p(r)dx ≤ µp+ ,

(ii) If µ ≤ 1, then µp+ ≤
∫
B

|u(x)|p(r)dx ≤ µp− ,

where p+ = supr∈[0,1) p(r) and p− = infr∈[0,1) p(r).

3. Proof of theorem 1.1

To establish a weak solution of problem (1.3), we define the functional
J : H1

0,rad(B) → R given by

J(u) =
1

2
‖∇u‖22 −

λ

q
‖u+‖qq −

∫
B

1

2∗ + rα
(u+)2

∗+rαdx, (3.1)

where u+(x) = max{u(x), 0}. By proposition 2.2 and by corollary 2.3, it follows
that the functional J is well defined. We also note that J is a functional of class C 1.
If u > 0 is a critical point of the functional then u is a weak solution to problem (1.3)
thanks to the symmetric criticality principle (see [7, 10]). The strategy then consists
of obtaining positive critical points of the functional J. For this, we will use the
Mountain Pass Lemma, due to Ambrosetti and Rabinowitz [1].

In the next lemmas, we will demonstrate that the functional J has the geometry
of the Mountain Pass Theorem.

Lemma 3.1. There exist ρ> 0 and θ > 0 such that

J(u) ≥ ρ > 0, if ‖∇u‖2 = θ.

Proof. Note that

J(u) =
1

2
‖∇u‖22 −

λ

q
‖u+‖qq −

∫
B

(u+)2
∗+rα

2∗ + rα
dx

≥ 1

2
‖∇u‖22 −

λ

q
‖u‖qq −

1

2∗

∫
B

|u|2
∗+rα dx.

Let u ∈ H1
0,rad(B) be such that ‖∇u‖2 = θ where θ ∈ (0, 1) will be chosen. By

proposition 2.4 and corollary 2.3 follow that∫
B

|u|2
∗+rα dx ≤ ‖u‖2

∗
2∗+rα ≤ C‖∇u‖2

∗
2 .

Therefore,

J(u) ≥ 1

2
‖∇u‖22 −

λ

q
‖u‖qq −

C

2∗
‖∇u‖2

∗
2 . (3.2)
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We observe that when q =2, we consider λ ∈ [0, λ1), then the expres-
sion

√
‖∇u‖2 − λ‖u‖2 defines a norm in H1

0 (B) equivalent to norm ‖∇u‖2. Since
‖∇u‖2 = θ, we have

J(u) ≥ C

2
θ2 − C

2∗
θ2

∗
.

So, choosing θ1 ∈ (0, 1) small enough we have that for θ ∈ (0, θ1) fixed there is
ρ1 > 0 such that J(u) ≥ ρ1 > 0.

If q ∈ (2, 2∗], by using (3.2) and Sobolev inequality, we get

J(u) ≥ 1

2
‖∇u‖22 −

C1λ

q
‖∇u‖qq −

C

2∗
‖∇u‖2

∗
2

=
1

2
θ2 − λC1

q
θq − C

2∗
θ2

∗
.

Since 2∗ ≥ q > 2, we can choose θ2 ∈ (0, 1) small enough such that for any fixed
θ ∈ (0, θ2), there exists ρ2 > 0 such that J(u) ≥ ρ2 > 0. �

Now, we will state the second condition of the mountain pass geometry.

Lemma 3.2. Exist u ∈ H1
0,rad(B) such that ‖∇u‖2 > θ and J(u) < 0.

Proof. Let u ∈ H1
0,rad(B) \ {0} such that u > 0 in B. We have for t > 1 that

J(tu) =
t2

2
‖∇u+‖22 −

λtq

q
‖u‖qq −

∫
B

t2
∗+rα(u+)2

∗+rα

2∗ + rα
dx

≤ t2

2
‖∇u‖22 −

λtq

q
‖u+‖qq −

t2
∗

2∗ + 1

∫
B

(u+)2
∗+rα dx.

Therefore, since 2 ≤ q ≤ 2∗ we get

lim
t→+∞

J(tu) = −∞,

which proves the lemma. �

We now define SN as the best constant in the Sobolev embedding
H1(RN ) ↪→ L2∗(RN ), that is,

SN := inf

{‖∇u‖2
L2(RN )

‖u‖2
L2∗ (RN )

: u ∈ L2∗(RN ) \ {0}; ∇u ∈ L2(RN )

}
. (3.3)

We consider

ū(x) = C
(
1 + |x|2

)− (N−2)
2

the standard Sobolev instantons, which satisfy the equation (see [9])

−∆u = u2∗−1 , on RN .
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We also consider u∗(x) = ū(x/S
1/2
N ) and Uε(x) = ε−

(N−2)
2 u∗(x/ε). As in [9] and

also [10], we know that,

∫
RN

|∇Uε|2 dx = S
N/2
N and

∫
RN

|Uε|2
∗
dx = S

N/2
N .

Taking a suitable cut-off function η and setting uε = η Uε, it is known that

∫
B

|∇uε|2 dx = S
N/2
N +O(εN−2) ,

∫
B

|uε(x)|2
∗
dx = S

N/2
N +O(εN ). (3.4)

Do Ó, Ruf, and Ubilla, in [5], demonstrated the following lemma:

Lemma 3.3. There exists a constant C> 0 such that for all ε> 0 small

∫
B

|uε(x)|2
∗+rα dx ≥

∫
B

|uε(x)|2
∗
dx+ C | log ε|εα +O(εN/2) +O(εN−2).

Now let’s control the min-max level of the mountain pass theorem.

Lemma 3.4. The level c of the mountain pass of the functional J satisfies

0 < c < 1
N S

N/2
N .

Proof. By lemmas 3.1 and 3.2, J has the geometry of the Mountain Pass lemma.
We consider uε as before and set

c = inf
γ∈Γ

max
u∈γ

J(u)

where

Γ :=
{
γ : [0, R] → H1

0 (B)continuous , γ(0) = 0, γ(1) = Ruε

}
,

with R> 0 sufficiently large such that J(Ruε) ≤ 0. By (3.4) and lemma 3.3, we
note that R can be chosen independent of ε. The path γε(t) = tuε, t ∈ [0, R],
belongs to Γ, and

c ≤ max
t∈[0,R]

J(t uε) := J(tεuε). (3.5)

We have also that d
dtJ(t uε)

∣∣∣
t=tε

= 0 and by J satisfying the geometric conditions

of the Mountain Pass lemma, we can assume that tε ∈ (δ,R] with δ > 0 because
if tε → 0 by (3.4) and lemma 3.3 we obtain that J(tεuε) → 0. So, for ε> 0 small

enough, we have J(tεuε) < S
N/2
N /N .

https://doi.org/10.1017/prm.2024.85 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.85


8 L.F.O. Faria, J.C. Silva and P. Ubilla

Now, let’s consider the following auxiliary functional:

JA(u) =
1

2
‖∇u‖22 −

∫
B

(u+)2
∗+rα

2∗ + rα
dx, u ∈ H1

0,rad(B).

So, for tε ∈ (δ,R] we have the estimate

J(tεuε) =
t2ε
2
‖∇uε‖22 −

λtqε
q

‖uε‖qq −
∫
B

t2
∗+rα

ε

2∗ + rα
(uε)

2∗+rα dx

≤ JA(tεuε)

=
t2ε
2
‖∇uε‖22 −

t2
∗

ε

2∗

∫
B

u2∗
ε dx

+ t2
∗

ε

∫
B

(
1

2∗
− 1

2∗ + rα

)
u2∗
ε dx

+

∫
B

1

2∗ + rα

(
(tεuε)

2∗ − (tεuε)
2∗+rα

)
dx

≤ max
t∈[0,R]

(
t2

2
‖∇uε‖22 −

t2
∗

2∗
‖uε‖2

∗
2∗

)
+ cεα − cεα| log ε|

+O(εN/2) +O(εN−2)

=
1

2

(
‖∇uε‖22
‖uε‖2

∗
2∗

)2/(2∗−2)

‖∇uε‖22 −
1

2∗

(
‖∇uε‖22
‖uε‖2

∗
2∗

)2∗/(2∗−2)

‖uε‖2
∗

2∗

+ cεα − cεα| log ε|

=
1

N

(
‖∇uε‖22

)2∗/(2∗−2)(
‖uε‖2

∗
2∗
)2/(2∗−2)

+ cεα − cεα| log ε|, (3.6)

where we use that α ∈ (0,min{N/2, N − 2}), the lemma 3.3, and the estimate∫
B

( 1

2∗
− 1

2∗ + rα

)
|uε|2

∗
dx =

∫
B

rα

2∗(2∗ + rα)
|uε|2

∗
rN−1 dx

≤ c

∫ ε

0

rαε−NrN−1 dr + c

∫ 1

ε

rα
εN

r2N
rN−1 dr

≤ c εα + c (εα − εN ) = c εα.

(3.7)

Therefore, by using (3.4) and (3.6), we obtain

J(tεuε) ≤ JA(tεuε) ≤
1

N

(
S
N/2
N +O(εN−2)

)2∗/(2∗−2)(
S
N/2
N +O(εN )

)2/(2∗−2)
+ cεα − cεα| log ε|,

=
1

N
S
N/2
N +O(εN−2) + cεα − cεα| log ε|,

<
1

N
S
N/2
N , for ε > 0 small enough and for allN ≥ 3.

�
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3.1. Proof of theorem 1.1

By lemmas 3.1 and 3.2, we know that the functional J satisfies the geometric
conditions of the Mountain Pass lemma; by lemma 3.4, it follows that there is a
sequence of Palais-Smale {un} ⊂ H1

0,rad(B) such that:

J(un) → c <
1

N
S
N/2
N , and J ′(un) → 0.

Let’s show that the sequence {un} is bounded in H1
0,rad(B). Indeed, for n

sufficiently large and q ∈ (2, 2∗], we have:

c+ 1 + ‖∇un‖2 ≥ J(un)−
1

q
J ′(un)un

=

(
1

2
− 1

q

)
‖∇un‖22 +

∫
B

(
1

q
− 1

2∗ + rα

)
(u+

n )
2∗+rα dx

≥
(
1

2
− 1

q

)
‖∇un‖22.

It follows that {un} is bounded in H1
0,rad(B). If q =2, we recall that λ ∈ [0, λ1)

and in this case the expression (‖∇u‖22 − λ‖u‖22)1/2 defines a norm in H1
0,rad(B)

equivalent to the usual norm ‖∇u‖2. Thus, we will also have for n sufficiently large
that:

c+ 1 + ‖∇un‖2 ≥ J(un)−
1

2∗
J ′(un)un

≥
(
1

2
− 1

2∗

)(
‖∇un‖22 − λ‖u‖22

)
+

∫
B

(
1

2∗
− 1

2∗ + rα

)
(u+

n )
2∗+rα dx

≥ c1‖∇un‖22.

It follows that {un} is bounded in H1
0,rad(B). So there exists u ∈ H1

0,rad(B) such

that un ⇀ u in H1
0,rad(B). We have two possibilities:

If u 6≡ 0, then u is a non-trivial non-negative solution to problem (1.3). By the
maximum principle, we guarantee that u is positive, thus proving the theorem.

If u =0, we have un ⇀ 0, and for every ε> 0 and n sufficiently large, the following
inequality holds: ∫

B

|un|2
∗+rα dx−

∫
B

|un|2
∗
dx ≤ ε. (3.8)

Indeed, note that for all η > 0, we have H1
0,rad(B \Bη) ⊂⊂ Ls(B \Bη) for all s ≥ 1.

Therefore,

un → 0in Ls(B \Bη)for all s ≥ 1,
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and consequently,∫
B\Bη

|un|2
∗+rα dx → 0and

∫
B\Bη

|un|2
∗
dx → 0as n → ∞. (3.9)

By (3.9), we can write∫
Bη

|un|2
∗+rα dx = ωN−1

∫ η

0

|un(r)|2
∗+rα rN−1dr (3.10)

= ωN−1

∫ η

0

|un(r)|2
∗ (

|un(r)|r
α
− 1
)

rN−1dr (3.11)

+ ωN−1

∫ η

0

|un(r)|2
∗
rN−1dr

= ωN−1

∫ η

0

|un(r)|2
∗ (

|un(r)|r
α
− 1
)

rN−1dr (3.12)

+

∫
B

|un(x)|2
∗
dx+ o(1). (3.13)

Using lemma 2.1 (Radial Lemma), we can estimate∫ η

0

|un(r)|2
∗ (

|un(r)|r
α
− 1
)

rN−1dr

≤
∫ η

0

|un(r)|2
∗
[(

1

r(N−2)/2

)rα

− 1

]
rN−1dr

≤
∫ η

0

|un(r)|2
∗
[
exp

(
rα log

(
1

r(N−2)/2

))
− 1

]
rN−1dr

≤
∫ η

0

|un(r)|2
∗
rα
∣∣∣log r(N−2)/2

∣∣∣ rN−1dr

≤ C1η
α |log η|

∫ 1

0

|un(r)|2
∗
rN−1dr

≤ C2η
α |log η| ,

where C 1 and C 2 are constants.
Therefore, for all ε> 0, we can choose η = η(ε) > 0 sufficiently small such that

C2η
α |log η| ≤ ε

2
,

which implies

ωN−1

∫ η

0

|un(r)|2
∗ (

|un(r)|r
α
− 1
)

rN−1dr ≤ ε

2
. (3.14)
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From (3.9), (3.10), and (3.14), we obtain that for sufficiently large n and for all
ε> 0,

∫
B

|un|2
∗+rα dx−

∫
B

|un|2
∗
dx ≤ ε.

Therefore, we have proven (3.8).
Now, for sufficiently large n, we obtain the inequality

− 1

2∗

∫
B

|un|2
∗
dx ≤ −

∫
B

|un|2
∗+rα

2∗ + rα
dx.

Thus, for sufficiently large n, we get

J0(un) ≤ JA(un),

where

J0(u) =
1

2
‖∇u‖22 −

λ

q
‖u+‖qq −

1

2∗

∫
B

(u+)2
∗
dx, u ∈ H1

0,rad(B).

Then, we have

J0(un) → d ≤ c <
1

N
SN/2.

Since un ⇀ 0 also in L2∗(B), it follows that 〈J ′
0(un), ϕ〉 → 0 for all ϕ ∈ H1

0,rad(B).

Indeed, by the embedding H1
0,rad(B) ↪→ Ls(B) for all s ∈ [1, 2∗], we have

∫
B

∇un · ∇ϕdx → 0,

∫
B

(u+
n )

q−1ϕdx → 0, and∫
B

(u+
n )

2∗−1ϕ dx → 0as n → ∞.

Therefore, {un} is a Palais-Smale sequence for the functional J 0 at the level
d < 1

N SN/2. According to [1.1, 10], the functional J 0 satisfies the Palais–Smale

condition for levels d < 1
N SN/2. Thus, we have un → 0 strongly in H1

0,rad(B), and
by the continuity of the functional J, it follows that J(un) → 0, which leads to a
contradiction.

Therefore, we have u 6≡ 0. Choosing ϕ = u− as the test function in the equation
〈J ′(u), ϕ〉 = 0, we get that u = u+ ≥ 0. By the strong maximum principle (see [6,
theorem 4, pp. 333]), it follows that u > 0 in B. Therefore, u is a weak solution of
the problem (1.3), and this completes the proof of theorem 1.1.
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4. Proof of theorem 1.3

For problem (1.5), we will follow a similar strategy to the one we used in the proof
of theorem 1.1. We define the functional J : H1

0,rad(B) → R given by

J(u) =
1

2
‖∇u‖22 −

λ

q
‖u+‖qq −

∫
B

(u+)2
∗+f(r)

2∗ + f(r)
dx, (4.1)

where u+(x) = max{u(x), 0}, f : [0, 1) → R is a continuous function satisfying
condition (f ) and q ∈ [2, 2∗). The parameter λ is considered in two cases: if q =2
then λ ∈ [0, λ1), if q ∈ (2, 2∗) then λ ≥ 0. We will show in the following lemma that
the functional J is well defined and by standard arguments, we will obtain that J
is of class C 1. We also know that positive critical points of J are weak solutions to
the problem (1.5).

Lemma 4.1. Let J be the functional given in (4.1). Then J is well-defined.

Proof. We only have to demonstrate that the variable integral is finite. Let u ∈
H1

0,rad(B), then we write∫
B

|u|2
∗+f(r) dx =

∫
Bρ1

|u|2
∗+f(r) dx+

∫
Bρ2\Bρ1

|u|2
∗+f(r) dx

+

∫
B\Bρ2

|u|2
∗+f(r) dx (4.2)

where ρ1 and ρ2 will be chosen later. By hypothesis (f), it follows that there exists
ρ1 > 0 such that 2 < 2∗ + f(r) < 2∗,∀r ∈ [0, ρ1]. From Hölder’s inequality and
proposition 2.4, it follows that∫

Bρ1

|u|2
∗+f(r) dx ≤ C(‖u‖F+2∗ + ‖u‖F−2∗ ) < +∞ (4.3)

where F+ = supr∈[0,ρ1]
(2∗+f(r)) and F− = infr∈[0,ρ1]

(2∗+f(r)). Now, we consider

ρ2 > 0 sufficiently close to 1. By lemma 2.1, we know that, for r ∈ [ρ1, ρ2]

|u(r)| ≤ (1− r)1/2

r(N−2)/2
‖∇u‖2 ≤ (1− ρ1)

1/2

ρ
(N−2)/2
1

‖∇u‖2 := Cρ1
‖∇u‖2. (4.4)

Since f is continuous in [ρ1, ρ2] it follows that f ∈ L∞[ρ1, ρ2] and therefore the
second integral in (4.2) is finite. For r ∈ [ρ2, 1), again by lemma 2.1, we get

|u(r)| ≤ (1− r)1/2

r(N−2)/2
‖∇u‖2 ≤ (1− ρ2)

1/2

ρ
(N−2)/2
2

‖∇u‖2 := Cρ2
‖∇u‖2 ≤ 1 (4.5)

since ρ2 was chosen sufficiently close to 1. Therefore, we obtain that the third
integral in (4.2) is also finite. Therefore, we conclude that the J functional is
well-defined. �
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As previously mentioned, we must ensure that the functional J has a positive
critical point, for this, we will use the Mountain Pass Theorem, due to Ambrosetti
and Rabinowitz [1]. We will show now that the functional J has the geometry of
the Mountain Pass Theorem.

Lemma 4.2. There exist ρ> 0 and θ > 0 such that

J(u) ≥ ρ > 0, if ‖∇u‖2 = θ.

Proof. Let u ∈ H1
0rad(B) be such that ‖∇u‖2 = θ < 1. By (4.3) and Sobolev’s

inequality, we have for ρ1 small enough that∫
Bρ1

|u|2
∗+f(r) dx ≤ C(‖u‖F+2∗ + ‖u‖F−2∗ ) ≤ C1(‖∇u‖F+2 + ‖∇u‖F−2 ) ≤ C2‖∇u‖F−2 ,

(4.6)

where F+ = supr∈[0,ρ1]
(2∗ + f(r)) and F− = infr∈[0,ρ1]

(2∗ + f(r)). Let ρ2 > 0 be

sufficiently close to 1 as in lemma 4.1. By (4.4) and (4.5), and choosing θ > 0 small
enough such that Max{Cρ1

, Cρ2
}‖∇u‖2 < 1, we obtain∫

B\Bρ1

|u|2
∗+f(r) dx ≤

∫
B

(
Max{Cρ1

, Cρ2
}‖∇u‖2

)2∗+f(r)
dx ≤ C3‖∇u‖F−2 (4.7)

where C3 = |B|
(
Max{Cρ1

, Cρ2
}
)F− . Then, by (4.6) and (4.7), we get∫

B

|u|2
∗+f(r) dx ≤ C‖∇u‖F−2 , (4.8)

where C = Max{C2, C3}. Therefore, we have

J(u) =
1

2
‖∇u‖22 −

λ

q
‖u‖qq −

∫
B

|u|2∗+f(r)

2∗ + f(r)
dx

≥ 1

2
‖∇u‖22 −

λ

q
‖u‖qq − C‖∇u‖F−2 .

When q =2, we consider λ ∈ [0, λ1) and then the expression
√
‖∇u‖2 − λ‖u‖2

define a norm in H1
0 (B) equivalent to usual norm. Since 2∗ > q ≥ 2 and F− > 2

due to the above inequality and by Sobolev inequality follows that for ‖∇u‖2 = θ
with θ sufficiently small, that there exists ρ> 0 such that J(u) ≥ ρ > 0. �

Lemma 4.3. Exist u ∈ H1
0,rad(B) such that ‖∇u‖2 > θ and J(u) < 0.

Proof. Let u ∈ H1
0,rad(B) \ {0} such that u > 0 in B. We have for t > 1 that

J(tu) =
t2

2
‖∇u‖22 −

λtq

q
‖u‖qq −

∫
B

t2
∗+f(r)|u|2∗+f(r)

2∗ + rα
dx

≤ t2

2
‖∇u‖22 −

λtq

q
‖u‖qq −

tF−

2∗ + F+

∫
B

|u|2
∗+f(r) dx.
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Therefore, since F− > 2 and q ∈ [2, 2∗), we get

lim
t→+∞

J(tu) = −∞,

which proves the lemma. �

Now we will show that the functional J satisfies the (PS ) condition.

Lemma 4.4. Palais–Smale condition Let q ∈ [2, 2∗), λ ≥ 0, and f : [0, 1) → R a
continuous function satisfying condition (f). Then the functional J given in (4.1)
satisfies the Palais–Smale condition.

Proof. Let {un} ⊂ H1
0,rad(B) be a Palais–Smale sequence. So, we get

J(un) → c > 0 and J ′(un) → 0. (4.9)

Since 2∗+f(r) > 1 for r ∈ [0, 1) by standard calculations we know that the sequence
{un} is bounded in H1

0,rad(B), So, up to a subsequence, there exists u ∈ H1
0,rad(B)

such that
un ⇀ u in H1

0,rad(B),

un → u in Ls(B) ∀ s ∈ [1, 2∗).
(4.10)

From J ′(un) → 0, we can choose ϕ = un − u as the test function and obtain the
following inequality:∣∣∣∣ ∫

B

∇un∇(un − u) dx−λ

∫
B

(u+
n )

q−1(un − u) dx−
∫
B

(u+
n )

2∗−1+f(r)(un − u) dx

∣∣∣∣
≤ εn‖∇(un − u)‖2 ≤ Cεn,

(4.11)
where εn → 0. As q ∈ [2, 2∗), by Hölder inequality and (4.10), we obtain∫

B

(u+
n )

q−1(un − u) dx ≤
(∫

B

|(u+
n )

q dx

)(q−1)/q (∫
B

|un − u|q dx
)1/q

≤ C‖un − u‖q → 0.

Therefore, by (4.11), the lemma will be proved if we check that∫
B

(u+
n )

2∗−1+f(r)(un − u) dx → 0. (4.12)

Indeed,

1

ωN−1

∫
B

(u+
n )

2∗−1+f(r)(un − u) dx =

∫ ρ1

0

(u+
n )

2∗−1+f(r)(un − u)rN−1 dr

+

∫ ρ2

ρ1

(u+
n )

2∗−1+f(r)(un − u)rN−1 dx

+

∫ 1

ρ2

(u+
n )

2∗−1+f(r)(un − u)rN−1 dr,
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where ρ1 and ρ2 will be chosen later. We will estimate each integral above separately.
First, for r > 0 small enough, we know that 2−2∗ < f(r) < 0 because f is continuous
at r =0 and f(0) < 0. Therefore, for r small enough, we have that 2 < 2∗ + f(r) <
2∗. So, we can choose ρ1 > 0 small enough such that 2 < 2∗ + f+(ρ

1) < 2∗, where
f+(ρ

1) = sup
r∈[0,ρ1]

f(r). Then, we get

ωN−1

∫ ρ1

0

(u+
n )

2∗−1+f(r)(un − u)rN−1 dr

≤ 2‖(u+
n )

2∗−1+f(r)‖ 2∗+f(r)
2∗−1+f(r)

‖un − u‖2∗+f(r)

≤ C‖un − u‖2∗+f+(ρ1) → 0.

To estimate the second integral, we need to choose ρ2 = 1− ρN−2
1 sufficiently close

to 1. So, by inequality (2.1) of the lemma 2.1, we get

∫ ρ2

ρ1

(u+
n )

2∗−1+f(r)(un − u)rN−1 dx ≤

(
1

ρ
(N−2)/2
1

)2∗−1+f+(ρ) ∫ ρ2

ρ1

(un − u)rN−1 dr

≤ C‖un − u‖L1(B) → 0,

where f+(ρ) = sup
r∈[ρ1,ρ2]

f(r).

To estimate the last integral. Note that for ρ2 = 1 − ρN−2
1 and ρ2 < r < 1, we

have

(1− r)1/2

ρ
(N−2)/2
1

≤ 1.

By inequality (2.2) from lemma 2.1, we get

∫ 1

ρ2

(u+
n )

2∗−1+f(r)(un − u)rN−1 dr ≤
∫ 1

ρ1

(
(1− r)1/2

ρ
(N−2)/2
1

)2∗−1+f(r)

(un − u)rN−1 dr

≤ ‖un − u‖L1(B) → 0.

Therefore, (4.12) is verified and the proof of the lemma is concluded. �

From lemmas 4.2, 4.3, and 4.4, we conclude that the functional J has a non-
trivial critical point u. Using ϕ = u− as a test function in equation 〈J ′(u), ϕ〉 = 0,
we obtain that u = u+ ≥ 0 and by the strong maximum principle (see [6, theorem
4, pp. 333]) it follows that u is positive, thus finishing the proof of the theorem 1.3.
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[2] H. Brézis and L. Nirenberg. Positive solutions of nonlinear elliptic equations involving
critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437–477.

[3] R. Clemente, J. A. Marcos do Ó and P. Ubilla. On supercritical problems involving the
Laplace operator. Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), 187–201.
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