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Quantum chemistry

Computational chemistry seeks to use computational methods to predict

the physical properties and behaviors of atoms, molecules, and materials,

and includes methods such as first-principles simulation, classical molecular

dynamics, and cheminformatics. We will restrict our focus to first-principles

simulations that treat chemical systems quantum mechanically (noting that

these methods may be used within a larger workflow incorporating other

techniques). Despite the apparent exponential cost of exact classical methods

for this task, scientists have made incredible progress over the last century

via increasingly sophisticated approximate methods. As a result, quantum

chemistry is now a core part of several applications, including the analyses

of chemistry experiments, the pharmaceutical drug discovery pipeline, and

the optimization of materials for catalysts and batteries. Given the inherently

quantum mechanical nature of these problems, it follows that several quantum

algorithms have been proposed for computational chemistry [66]. In this

chapter, we focus on simulating the electrons and vibrations of nuclei in

molecules and materials. For further reviews of quantum computing for

chemistry, we refer readers to [752, 229, 102, 783].

The authors are grateful to Ryan Babbush, Joshua Goings, and Ashley

Montanaro for reviewing this chapter.

2.1 Simulating electrons in molecules and materials

Overview

We seek the energy eigenstates, thermal states (i.e., statistical ensembles of

eigenstates at a given temperature), or dynamics corresponding to the Hamil-
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30 2. Quantum chemistry

tonian used to describe the electrons in molecules or material systems. The

electrons interact with each other, in addition to fields produced by the nu-

clei and any external applied fields. In many systems it is appropriate to use

the Born–Oppenheimer approximation, which treats the nuclei classically and

fixes their spatial positions, separating the nuclear and electronic degrees of

freedom.

Material systems can be described by a periodically repeating (i.e., transla-

tionally invariant) finite-size computational cell of interacting atoms. By simu-

lating increasingly large computational cells and mitigating finite-size effects,

we can extrapolate simulation results to the thermodynamic limit. This enables

the measurement of bulk properties, such as magnetization, tensile strength,

and thermal or electrical conductivity.

Actual end-to-end problem(s) solved

The Hamiltonian of a system consisting of K nuclei and η electrons interacting

via the Coulomb interaction is (in atomic units)

H = −
η∑

i=1

(∇i)
2

2
−

K∑

I=1

(∇I)
2

2MI

−
∑

i,I

ZI

|ri − RI |
+

∑

i, j

1

2|ri − r j|
+

∑

I,J

ZIZJ

2|RI − RJ |
,

where ∇ is the gradient operator, ri gives the position of the i-th electron,

and RI and ZI give the position and charge of the I-th nucleus. This Hamil-

tonian can be discretized using a basis set {ϕi(r)}N
i=1

of electron spin orbital

and {χi(r)}M
i=1 of nuclear orbital functions, or grid points, and can either be

used with the time-dependent Schrödinger equation to simulate dynamics, or

with the time-independent Schrödinger equation to obtain energy eigenstates.

When simulating dynamics, it is necessary to use a basis set that is sufficiently

flexible (or adaptive) to accurately describe the states at all times, as many

chemical basis sets are highly optimized for ground state calculations and so

are less suitable for dynamics calculations. It is often appropriate to make the

Born–Oppenheimer approximation, fixing the positions of the nuclei, which

are treated as classical point charges. The resulting electronic Hamiltonian at

a fixed nuclear configuration is given by

H({RI}) = −
∑

i

(∇i)
2

2
−

∑

i,I

ZI

|ri − RI |
+

1

2

∑

i, j

1

|ri − r j|
+ V({RI}) , (2.1)

where V({RI}) is the constant offset from the nuclear repulsion energy. In this

case, the Hamiltonian is discretized using a basis set {ϕi(r)}N
i=1

of electron spin

orbital functions or grid points. For many molecules at room temperature, the

ground state of the electronic structure Hamiltonian is a good approximation
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2.1 Simulating electrons in molecules and materials 31

for the thermal state ρ ∝ e−βH (with β = 1/kBT , where kB is the Boltzmann

constant and T the temperature), as the electronic energy levels are well sepa-

rated with respect to kBT . This can be contrasted with the vibrational structure

of molecules, where vibrational energies are on the order of kBT , and so ex-

cited states are also populated at room temperature.

The electronic eigenstates (or thermal states) often provide a good starting

description of a wide range of system properties, which then can be corrected

by, for example, vibrational, rotational, relativistic (e.g., spin-orbit coupling)

or entropic contributions. Preparing the desired electronic state for a given nu-

clear configuration is typically the first step in learning properties of the sys-

tem. We then measure the expectation values of observables with respect to

these states. Moreover, the electronic response to weak or slowly varying per-

turbations can often be described by a sequence of static calculations, for ex-

ample, linear response theory for radiation absorption, or Born–Oppenheimer

molecular dynamics [745] where one iteratively solves the electronic time-

independent Schrödinger equation to obtain the forces on the nuclei, whose

positions can then be updated using Newton’s laws. Static calculations can be

used to probe:

• Energy values (potentially across a range of nuclear configurations)—for

electronic excitation energies at a fixed nuclear geometry, for determining

molecular geometries by computing the electronic ground state energy at

different geometries, and for finding reaction pathways and rates by com-

puting energy differences between a sequence of geometries involved in a

reaction. To obtain accurate predictions, the electronic energy values must

be corrected by other contributions to the free energy.

• Determining transition probabilities between states—for reactions and opti-

cal properties.

• Differential changes in electronic energy in response to an applied field, for

example, electronic or magnetic dipole moments, polarizability.

• Calculating forces on the nuclei, for use in molecular dynamics

calculations—used in a range of applications, including protein fold-

ing and calculating drug molecule binding affinities.

• Orbital occupancies and correlation functions, as well as real- and

imaginary-time Green’s functions.

Properties of interest for materials include the following:

• Energy densities for given system parameters, to determine phase diagrams.

• Bulk properties, such as magnetization, thermal or electrical conductivity,

and tensile strength.
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32 2. Quantum chemistry

• Particle densities and correlation functions between sites, as well as real-

and imaginary-time Green’s functions.

In order to understand how these observables vary as the system parameters

(nuclear positions, atomic doping, temperature, applied field, etc.) are changed,

the desired state may need to be prepared and measured a number of times.

Simulations of dynamics may be used to explicitly probe many of the equi-

librium phenomena implicitly being probed above—for example, chemical re-

actions occurring at thermodynamic (quasi-)equilibrium—as well as additional

nonperturbative or nonequilibrium phenomena that are difficult to implicitly

describe as a sequence of static calculations, such as scattering from collisions,

absorption of UV and X-ray radiation, charge-transfer dynamics, and optimal

control. As a result, many of the same observables described above are still of

interest and can be monitored as a function of time, including the following:

• Changes in kinetic or potential energy.

• Changes in particle densities or orbital occupancies.

• Changes in charge or spin densities.

Dominant resource cost/complexity

Mapping the problem to qubits: We discretize the electron positions using

a basis of N spin orbital functions. For many basis sets, the discretization er-

ror decays as 1/N [488, 932] and is limited by the resolution of singularities

in the Coulomb interaction from charge coalescence. A variety of functional

forms have been considered for the electron orbitals (see Table 2.1 for a list

of orbitals commonly considered in quantum computing). The optimal choice

will be system dependent and must consider the following non-exhaustive list

of factors:

• The resolution of the orbital, improved by matching the character of local

vs. delocalized physics in the system to that of the orbital.

• The cost of computing the Hamiltonian, either in classical precomputation

or (if required) coherently on a quantum device (see §Accessing the Hamil-

tonian, below).

• The properties of the resulting Hamiltonian (number of terms, norm, locality

of terms, etc.) which determine the cost of accessing the Hamiltonian in

algorithms.

The commonly used “Galerkin discretization scheme” discretizes the

Hamiltonian via integrals over the basis functions, with one- and two-electron
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2.1 Simulating electrons in molecules and materials 33

Representation First-quantized Second-quantized

Gaussians [74]a [416] [1034]
Plane waves [962] [76]

Bloch/Wannier functions Not yet studied [561, 886]
Grids [628] [76, App. A]

Pseudo-spectral /
Discrete variable representations

[601, 253, 287] [76, 721]

Table 2.1 Representative references (chosen based on their discussion of their

choice of representation) showing the use of different basis functions in quantum

algorithms for the electronic structure problem.
a This reference is not technically a first-quantized representation, as antisymmetry is stored in

the operators rather than the wavefunction, but it stores states in an analogously compressed
way to first-quantized representations.

integrals

hi j =

∫
dr ϕ∗i (r)

−
(∇)2

2
−

∑

I

ZI

|r − RI |

 ϕ j(r)

hi jkl =

∫
dr1dr2

ϕ∗
i
(r1)ϕ∗

j
(r2)ϕk(r2)ϕl(r1)

|r1 − r2|
.

(2.2)

Hamiltonians defined using grids, pseudo-spectral representations, or discrete-

variable representations are not obtained from integrals over basis functions, as

specified in Eq. (2.2), and the values of hi j, hi jkl are instead defined using finite

difference formulas, and/or by their values at discrete grid points. An attractive

feature of the Galerkin discretization scheme is that the discretization error

is strictly positive. We refer readers to [287, 76, 244] for a more complete

discussion.

We can represent electronic states on a quantum computer using either first

or second quantized representations.

• For η electrons in N spin orbitals, first quantization uses η registers, which

each contain log2(N) qubits; each register enumerates which orbital its

corresponding electron is in, and the wavefunction must then be anti-

symmetrized to respect fermionic constraints [139]. The Hamiltonian of

Eq. (2.1) in first quantization can be written as

H =

η∑

α=1

N∑

i, j=1

hi j|i⟩⟨ j|α +
1

2

∑

α,β

N∑

i, j,k,l=1

hi jkl|i⟩⟨l|α ⊗ | j⟩⟨k|β ,

where α, β index which of the electron registers the operators act on.

• In second quantization, antisymmetry is stored in the operators, which obey

fermionic anticommutation relations: {ai, a
†
j
} = δi jI and {ai, a j} = {a†i , a

†
j
} =
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34 2. Quantum chemistry

0 (where δi j denotes the Kronecker delta symbol, I denotes the identity op-

erator, and {u, v} = uv + vu). The Hamiltonian of Eq. (2.1) in second quanti-

zation can be written as

H =

N∑

i, j=1

hi ja
†
i
a j +

1

2

N∑

i, j,k,l=1

hi jkla
†
i
a
†
j
akal.

A number of fermion-to-qubit mappings have been studied; see [752] for

discussion. Under the commonly used Jordan–Wigner mapping we require

N qubits, where each qubit stores the occupancy of the corresponding spin

orbital. These mappings induce a mapping of the Hamiltonian (and other

observables) to qubit operators.

Accessing the Hamiltonian: Quantum algorithms for both static and dynamic

simulations require access to the Hamiltonian. This is typically provided by

block-encoding or Hamiltonian simulation.1 A common block-encoding strat-

egy for chemistry Hamiltonians is the linear combinations of unitaries (LCU)

block-encoding, whereby the Hamiltonian is expressed as a linear combina-

tion of unitary operators
∑L−1

i=0 ciUi (e.g., Ui could be products of Pauli matri-

ces), and the block-encoding is then realized using the oracles PREPARE and

SELECT2 that act on the main register and a ⌈log2(L)⌉ ancilla system as

PREPARE|0⌈log2(L)⌉⟩ = 1√
λ

L−1∑

j=0

√
|c j|| j⟩

SELECT =

2⌈log2(L)⌉−1∑

j=0

| j⟩⟨ j| ⊗ sign(c j)U j ,

where λ =
∑L−1

i=0 |ci|. Then the sequence PREPARE† · SELECT · PREPARE is

a (λ, ⌈log2(L)⌉, 0)-block-encoding of the Hamiltonian written as an LCU. The

oracle SELECT can be implemented using the unary iteration method [75] or

the approach of [1011]. The oracle PREPARE can be implemented by coher-

ently loading coefficients stored in memory [75, 722, 140] or by computing

coefficients on-the-fly using quantum arithmetic [601, 74, 73, 962]. In many

cases, loading the coefficients for PREPARE is the bottleneck, with cost—in

terms of the number of non-Clifford gates—scaling linearly with L̃, the num-

ber of unique coefficients in the Hamiltonian (this scaling can be reduced to

1 Hamiltonian simulation is used to explicitly simulate dynamics, but can also be used
implicitly to provide access to the Hamiltonian for use in static calculations, for example, in
quantum phase estimation.

2 To be precise for j < {0, 1, . . . , L − 1} we define sign(c j)U j := I.
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2.1 Simulating electrons in molecules and materials 35

O(L̃1/2) using O(L̃1/2) ancilla qubits [722]). As a result, a number of algo-

rithms have reduced the quantity of data to load by using compressed rep-

resentations of the Coulomb Hamiltonian, achieved through tensor factoriza-

tions [140, 212, 669, 886] (see [712] for a recent unifying perspective on these

approaches).

State preparation: Simulating the behavior of electrons in molecules and ma-

terials reduces to the task of preparing a desired state and measuring observ-

ables. The state to be prepared is typically an energy eigenstate, a thermal state,

or a time-evolved state.

• Energy eigenstates: In the following discussion, we refer to the overlap

γ = |⟨ψ|E j⟩| between a desired eigenstate |E j⟩ and a given initial state |ψ⟩,
and the minimum gap ∆ between the desired energy eigenvalue and other

energy eigenvalues. Below, we list several methods for preparing energy

eigenstates, or approximations to them.

– Classical trial states: Approximate eigenstates obtained from a classical

calculation can be prepared as quantum trial states, including Slater deter-

minant states [1031], linear combinations of D Slater determinants (with

complexity Õ(D) [394]−O(ND) [998]), and matrix product states (MPSs)

with bond dimension χ (with complexity O(Nχ2) [394, 144]). In [144]

it was observed that MPS with modest bond dimension could have large

overlaps with chemical systems of interest. Several of these methods have

been adapted to simulations performed in first quantization [81, 551].

– Quantum trial states: Parameterized quantum circuits, in conjunction with

variational quantum algorithms, have been proposed for preparing ap-

proximate energy eigenstates (see §NISQ implementations, below). Like

classical trial states, the states prepared by these circuits can be used as in-

puts to other quantum algorithms that further refine the initial state, such

as eigenstate filtering, or quantum phase estimation. Initial resource esti-

mates for models of materials systems can be found in [301].

– Eigenstate filtering: Methods such as those in [689, 688] filter out un-

desired eigenstates using spectral window functions applied via quantum

singular value transformation (QSVT) to a block-encoding of the Hamil-

tonian. The complexity to prepare the ground state (to infidelity ϵ, with

failure probability less than θ) using this approach scales as

Õ
(
α

γ∆
log

(
θ−1ϵ−1

))

calls to an (α,m, 0)-block-encoding of the Hamiltonian, where α ≥ ∥H∥ is

a normalization factor of the block-encoding. For comparison to related
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36 2. Quantum chemistry

methods, we refer the reader to [688, 412]. These algorithms can also

be adapted for the case where access to the Hamiltonian is provided by

Hamiltonian simulation [358].

– Adiabatic state preparation (ASP): ASP can be used to prepare a target

eigenstate (typically the ground state) by evolving from the correspond-

ing easy-to-prepare eigenstate of an initial Hamiltonian H(0) to the full

Hamiltonian H(1). Time evolution can be implemented using algorithms

for Hamiltonian simulation. The total evolution time is typically chosen

according to the heuristic

T ≫ max
0≤s≤1

∥ dH
ds
∥

∆(s)2
,

where s describes the adiabatic path H(s) and ∆(s) is the spectral gap of

H(s). It is difficult to analytically bound this (highly system-dependent)

complexity for molecular systems (see, e.g., [870]) motivating numerical

studies on small molecules [1006, 644, 670, 966].

– Quantum phase estimation (QPE): The above techniques all provide

methods of preparing approximate eigenstates, in some cases using

promises on the gap ∆, or by exploiting pre-existing knowledge of

the energy eigenvalue. Given an approximate eigenstate, and a unitary

U = f (H) that encodes the eigenspectrum of the Hamiltonian (with a

known, classically invertible relationship f ), we can use QPE to project

into the desired eigenstate and provide an estimate of the eigenphase ϕi

of U, which can then be converted into an estimate of the eigenenergy of

H using ϕi = f (Ei). QPE makes

O
(
γ−2∥ f ′(H)∥−1ϵ−1 log

(
θ−1

))

calls to the unitary U(H) encoding the spectrum of the Hamiltonian,

where γ = |⟨ψ|E j⟩| is the overlap between the state |ψ⟩ input to QPE and

the desired energy eigenstate |E j⟩, θ is the failure probability, and ϵ is the

desired precision in the eigenenergy of H. It is possible to improve the

complexity to

O
(
γ−1∥ f ′(H)∥−1ϵ−1 log

(
θ−1

))

using amplitude amplification if a sufficiently precise estimate of the

eigenvalue is known, or to

O
((
γ−2∆−1 + ϵ−1

)
∥ f ′(H)∥−1 log

(
θ−1

))

by exploiting knowledge of the gap ∆ between the energy eigenstates

to perform rejection sampling [139]. The unitary encoding the Hamil-
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2.1 Simulating electrons in molecules and materials 37

tonian is often chosen to be U(H) ≈ eiHt approximated via quantum

algorithms for Hamiltonian simulation. In this case, the approximation

error in U must be balanced against the error from QPE. Alternatively,

it is common to encode the Hamiltonian using a quantum walk opera-

tor W(H) which acts like ei arccos (H/α) and can be implemented exactly via

qubitization [841, 139]. The costs to implement U(H) are inherited from

the method used, based on the properties (e.g., commutativity, locality,

number of terms, norm, cost of coherently calculating coefficients) of the

Hamiltonian in the chosen spin orbital basis and representation. As indi-

cated by the complexities presented above, QPE incurs an overhead from

imperfect overlap with the target eigenstate, as well as from needing to

suppress the failure probability of the method. We refer to Chapter 13 on

QPE for a more detailed discussion of the latter issue, which can either be

mitigated by repeating the calculation and using methods for probability

amplification [792, 222], or by using window functions [143, 829, 456]

to guarantee a desired confidence interval. The latter strategy appears to

require fewer resources in practice, especially when considering the im-

perfect overlap with the target state [144].

• Thermal states: Several quantum algorithms have been proposed for prepar-

ing thermal states, also known as Gibbs states. The most efficient algorithms

proceed by simulating the dissipative open system dynamics, and typically

make repeated calls to a block-encoding of the Hamiltonian. The complex-

ity of these methods for concrete electronic structure problems of interest

has not yet been determined and depends on the spectral gap of the Lind-

bladian considered, at the desired temperature. Thermal states could be used

as an approximation to the ground state, by choosing the temperature to be

sufficiently low compared to the gap between the ground and first excited

state [260]. Quantum algorithms for simulating open systems dynamics can

also be adapted to directly prepare approximations to the ground state [351].

• Time-evolved states: A time-evolved state can be prepared using Hamilto-

nian simulation algorithms, which approximate the propagator to error ϵ

(which provides an upper bound on the error in the resulting state). The

cost of Hamiltonian simulation depends both on the algorithm used and the

details of the Hamiltonian being simulated. Plane wave, grid, and pseudo-

spectral (DVR) basis sets are well suited to simulations of dynamics, as they

treat all points in space on an equal footing. For both the plane wave basis

and pseudo-spectral DVR in first quantization, the scaling is [77, 962]

Õ
(
η8/3N1/3t + η log(1/ϵ)

)
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38 2. Quantum chemistry

using Hamiltonian simulation in the interaction picture [718], or

Õ
(
(η8/3N1/3 + η4/3N2/3)t + η log(1/ϵ)

)

using qubitization with quantum signal processing [77, 962]. In the pseudo-

spectral DVR, the cost scales as

Õ
(
(η7/3N1/3 + η4/3N2/3)

t1+o(1)No(1)

ϵo(1)

)

using high-order product formulas [81].

Measuring observables: Many proposed algorithms consider the ground or

excited state energy of the chemical system as the observable of interest. This

can be calculated directly using QPE, as discussed above. QPE (and related

methods) can also be adapted for other application, for example, calculating

absorption spectra of molecules [395].

In other applications, it may be necessary to measure observables other than

the energy. In a fault-tolerant computation, it can be preferable to measure

these observables through phase-estimation-like approaches, rather than direct

measurement averaging, as the former is asymptotically more efficient and can

be made robust to logical errors through repetition and probability amplifi-

cation. Measurement schemes have been developed which achieve this using

overlap estimation [637] (see Section 14.2 on amplitude estimation) or the

approach of [549, 49] based on the quantum gradient estimation algorithm

of [430]. Both approaches require access to a state preparation unitary Uψ, and

its inverse.3 The algorithm based on overlap estimation can be formulated as

performing amplitude estimation on UO, a unitary block-encoding of the ob-

servable O with subnormalization factor αO. The complexity to compute the

expectation value to precision ϵ is O(αO/ϵ) calls to UO and Uψ (or the reflec-

tion Rψ = I − 2|ψ⟩⟨ψ|) and their inverses. This approach has been considered

in the context of measuring correlation functions, density of states, and linear

response properties (all in [853]), as well as energy gradients with respect to

various parameters, which can be used to compute forces or dipole moments,

and for which a range of estimation strategies are possible [805, 956].

The gradient-based algorithm simultaneously computes the value of M po-

tentially noncommuting observables O j by making Õ(M1/2/ϵ) calls to Uψ,U
†
ψ

(or Rψ) and either Õ(M3/2/ϵ) calls to gates of the form eixO j [549] or Õ(M/ϵ)

calls to a block-encoding of the observables [49]. The algorithm also requires

3 Note that it can be substantially cheaper to directly execute the reflection Rψ = I − 2|ψ⟩⟨ψ|
used in both methods, rather than through the use of Uψ, as the complexity of Rψ does not
depend on the overlap γ that appears in state preparation—see [688] for additional discussion.
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2.1 Simulating electrons in molecules and materials 39

O(M log(1/ϵ)) additional qubits. This approach has been considered in the

context of measuring nuclear forces [805], fermionic reduced density matri-

ces [549], and dynamic correlation functions [549].

Existing resource estimates

There are a large number of resource estimates for performing phase estima-

tion to learn the ground state energies of molecular or material systems, which

we list in Table 2.2 and Table 2.3. These resource estimates use compilation

methods described in Part III on fault-tolerant quantum computing. We also

note the existence of a software package that provides features for calculating

the non-Clifford costs of QPE for the electronic structure problem [238].

There have been comparatively few studies of the logical resources required

for the simulation of chemical dynamics. Recent work has computed the

resources required to calculate the energy loss of charged particles moving

through a medium (“stopping power”), as pertaining to nuclear fusion exper-

iments [887]. End-to-end resource estimates were determined, including the

costs of initial state preparation, measurement of observables, and repetitions

across a range of parameters. The resource estimates for the end-to-end task

ranged from roughly 2000 logical qubits and order-1013 Toffoli gates to

roughly 30,000 logical qubits and order-1017 Toffoli gates.

Caveats

Existing resource estimates typically consider only a single run of phase

estimation and assume that we have access to the desired energy eigenstate.

As outlined above, both phase estimation and eigenstate filtering scale as

Ω(γ−1∆−1) when we have a lower bound on the gap. The “orthogonality

catastrophe” suggests that the overlap of simple trial states with the desired

eigenstate will decay exponentially as a function of system size. Although

simulations will always be performed on finite-size systems, it is an open

question as to when asymptotic behavior becomes problematic and whether

initial states with sufficient overlaps can be prepared for systems of inter-

est [998, 670, 144]. This issue may become more pressing for materials

systems as we scale to the thermodynamic limit. In general, we know that

the problem of finding the ground state of electronic structure Hamiltonians

is QMA-hard [1035], but it is not yet known if these complexity-theoretic

statements provide intuition for physically realistic Hamiltonians.

As noted above, to accurately resolve the system, a large basis set must be

used, as the discretization error decays as 1/N where N is the number of spin

orbitals considered. In practice, one typically repeats the calculation using in-

creasingly accurate basis sets and then extrapolates to the continuum limit.
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42 2. Quantum chemistry

Many quantum resource estimates consider active spaces with a small number

of active orbitals, and so underestimate the resources required to achieve suf-

ficiently accurate results to be informative. It is an active area of research to

develop methods for increasing the resolution without increasing the basis set

size, such as perturbative approaches, downfolding techniques, and embedding

theories.

The end-to-end applications typically solved in the electronic structure prob-

lem can require between tens (e.g., structure determination, low temperature

properties) and millions (e.g., biologically relevant molecular dynamics) of

energy evaluations—each with different Hamiltonian parameters that may re-

quire preparing a new state to be measured. For example, a recent analysis

of quantum algorithms applied to pharmaceutical chemistry [896] highlighted

that to calculate the binding affinity between a drug molecule and its target

(free energy differences) requires sampling a range of thermodynamic config-

urations, resulting in millions to billions of single-point energy evaluations.

This introduces a large overhead when preparing a different state for each con-

figuration and measuring its energy [805], although alternative approaches may

provide more favorable scaling [941].

Comparable classical complexity and challenging instance sizes

The cost of exact diagonalization of the electronic structure Hamiltonian scales

exponentially with the number of electrons and basis set size. As such, classical

approaches to the electronic structure problem typically utilize a range of ap-

proximations that reduce their complexity to polynomial in the system size but

introduce a (potentially uncontrolled) deviation from the exact ground state,

leading to a bias in energy estimates and/or the expectation values of other ob-

servables. Approaches include Hartree–Fock (HF), density functional theory

(DFT), perturbation theory, configuration interaction (CI) methods, coupled

cluster (CC) methods, quantum Monte Carlo (QMC) techniques, and tensor

network approaches. The cheapest approaches can be applied to thousands of

orbitals but can be qualitatively inaccurate for strongly correlated systems. The

most expensive approaches are more effective for strongly correlated systems,

but their higher computational cost limits their applicability to roughly 100

spin orbitals. For example, [437] found that a density matrix renormalization

group (DMRG) calculation performed on an 86 spin orbital active space of the

cytochrome P450 enzyme molecule referenced in Table 2.2 required around

50 hours, using 32 threads, 48 gigabytes of RAM, and 235 gigabytes of disk

memory. We also refer to [1046] for a comparison of 20 first-principles many-

body electronic structure methods applied to a test set of seven transition metal

atoms and their ions and monoxides.
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2.1 Simulating electrons in molecules and materials 43

Due to their extended nature, material systems are most commonly targeted

with DFT. DFT can be applied to systems with thousands of electrons and or-

bitals but can lead to uncontrolled energy bias in strongly correlated systems.

QMC and tensor network methods have been successfully applied to proto-

typical models of material systems and are becoming increasingly practical

for more realistic models. We refer to [666, 784, 785, 900] for benchmarks of

classical electronic structure methods on hydrogen chains and Hubbard mod-

els scaling to the thermodynamic limit, which act as simplified models for real

materials.

Many of the techniques discussed above for computing ground and excited

states of chemical systems have been extended to explicitly simulate the time

dynamics of the electronic Hamiltonian. These include time-dependent HF,

real-time time-dependent DFT, and time-dependent CI & CC methods. In gen-

eral, the errors from the approximations made in these approaches are larger

than for their static counterparts. We refer readers to [682] for a more detailed

discussion of classical methods for real-time time-dependent electronic struc-

ture theory.

Speedup

It is nontrivial to determine the speedup of quantum algorithms for the elec-

tronic structure problem over their classical counterparts. If we consider the

subtask of determining energy eigenstates, then for speedup greater than poly-

nomial to be achieved, we require:

• The ability to prepare a trial state with nonexponentially vanishing overlap

with the ground state as the system size increases.

• Polynomially scaling (with system size) classical algorithms having an ex-

ponential growth in their approximation parameter (e.g., bond dimension,

number of excitations) as the system size increases.

Whether these two requirements can coexist in systems of interest is an active

area of research [670, 144]. Even if exponential speedups are not available, it

may be the case that quantum algorithms provide polynomial speedups over

exact classical algorithms—and potentially over approximate classical algo-

rithms [252].

From a complexity-theoretic viewpoint, we know that simulating the dy-

namics of a quantum system is a BQP-complete problem [705]. Combined

with the observed difficulty of classically simulating the time evolution of elec-

tronic structure Hamiltonians, this may be taken as evidence for the possibility

of an exponential speedup when simulating dynamics. In [81], quantum algo-

rithms for simulating the fully correlated dynamics of electrons in a pseudo-
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44 2. Quantum chemistry

spectral DVR or plane-wave basis [601, 77, 962] were compared against clas-

sical methods for mean-field dynamics. Large polynomial speedups were ob-

served, ranging from superquadratic to seventh power in the salient parameters,

depending on the relation between N and η.

NISQ implementations

Solving the electronic structure problem is one of the most widely studied

and promoted NISQ applications. The primary NISQ approach is the varia-

tional quantum eigensolver (VQE). There have been a number of experimental

demonstrations on small molecules, for example, [595, 442], as well as pro-

posals to simulate material systems [1068, 738, 301]. Related methods, such

as quantum computing–assisted QMC methods [550] have also been devel-

oped. Nevertheless, current device noise rates are too high to enable the run-

ning of circuits sufficiently deep that they can outperform classical electronic

structure methods, and the number of circuit repetitions required to measure

energy expectation values can be impractically large [440]. As such, there are

several challenges that must be overcome if heuristic NISQ approaches are to

scale to classically intractable system sizes and provide advantage over classi-

cal methods. There have also been proposals to simulate the electronic struc-

ture problem using analog quantum simulators [55], though to the best of our

knowledge, these have not yet been experimentally demonstrated and are lim-

ited by the high-precision requirements of the electronic structure problem.

Outlook

Simulating the behavior of electrons in molecules and materials has repeatedly

been identified as one of the most promising applications of quantum com-

puting. Nevertheless, the discussion above highlights several challenges for

current quantum approaches to become practical. Most notably, after incorpo-

rating the costs of initial state preparation and measuring observables, using

larger active spaces to capture dynamic correlation, and including algorithmic

repetitions to account for nonzero failure probabilities and sampling a range

of parameters, a large number of logical qubits and total T /Toffoli gates may

be required. The success of approximate classical methods for a wide range of

chemical problems sets a high bar for quantum simulations to achieve advan-

tage and encourages continued focus on resource estimations for end-to-end

applications.
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2.2 Simulating vibrations in molecules and materials 45

2.2 Simulating vibrations in molecules and materials

Overview

We seek the energy eigenstates, thermal states (i.e., statistical ensembles of

eigenstates at a given temperature), or dynamics corresponding to the Hamilto-

nian that describes the vibrations of the nuclei in a molecule or material around

their equilibrium positions. This Hamiltonian contains the kinetic energy of

the nuclei and the effective potential that they move on, which is determined

by the electronic potential energy surface (i.e., the electronic energy expressed

as a function of the nuclear coordinates). It is also possible to consider non-

adiabatic couplings between the vibrational degrees of freedom and electronic

(“vibronic”) or rotational (“ro-vibrational”) degrees of freedom.

Actual end-to-end problem(s) solved

Classically solving the Schrödinger equation while treating electrons and nu-

clei on an equal footing has prohibitively high computational cost for all but the

smallest systems. For systems where it is valid to separate the electronic and

nuclear motions (the Born–Oppenheimer approximation), we can imagine the

nuclei moving on the electronic potential energy surface (PES). For molecules

composed of light atoms (where relativistic effects can be neglected), the vi-

brations of the nuclei around their equilibrium positions provide a first-order

correction to the electronic energies and influence photo-emission/absorption

properties. For a system with K classical nuclei at equilibrium positions {RI},
the vibrational Hamiltonian can be written as

H = −
∑

I

∇2
I

2MI

+ Ve({RI}) ,

where Ve({RI}) denotes the nuclear potential determined by the electronic po-

tential energy surface, obtained by first solving the electronic Hamiltonian for

a range of nuclear positions. Computing vibrational eigenstates can be made

classically tractable by modeling Ve as a harmonic potential, which reduces

the problem to solving a number of coupled quantum harmonic oscillators.

The harmonic approximation can also be used when simulating vibronic tran-

sitions between vibrational energy levels on different PESs. However, due to

the coordinate change between the PESs—which acts as a squeezing and dis-

placement operation on the vibrational modes—exact simulation is #P-hard,

and therefore inefficient for both classical and quantum algorithms. Neverthe-

less, vibronic spectra can be efficiently approximated using classical [552, 811]

and quantum [553] algorithms in many regimes of interest.
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46 2. Quantum chemistry

To accurately describe nonrigid molecules or highly excited vibrational

states, additional anharmonic terms are required in the potential. These can

be obtained by performing higher-order fits of the potential, for example,

by expanding the potential Ve to degree d. Computing accurate solutions

of this Hamiltonian is prohibitively costly for many systems of interest.

Probing certain phenomena, such as vibronic spectra, internal conversion,

intersystem crossings, and conical intersections, additionally requires the

consideration of vibrations on multiple PESs and may require a description of

the nonadiabatic couplings between the different PESs (which must often be

explicitly determined [828]). We seek to prepare eigenstates or thermal states,

or simulate the dynamics of the anharmonic vibrational Hamiltonian, and then

measure the expectation values of observables with respect to these states.

Properties of interest include the following:

• The vibrational energy at the minimum of the PES, which provides a first-

order correction to the electronic energies—for calculating excitation ener-

gies, determining stable molecular structures, or finding reaction pathways

and rates.

• Determining transition probabilities between states and transition dipole

moments—for calculating infrared/Raman spectra between vibrational

levels of the same electronic state or vibronic spectra between vibrational

levels of different electronic states.

• Measuring the occupancy of vibrational modes as a function of time follow-

ing excitation, to understand vibrational energy transfer and relaxation in

chemical systems (i.e., internal conversion and intersystem crossings).

Thermal states ρ ∝ e−βH (with β = 1/kBT , where kB is the Boltzmann con-

stant and T the temperature) are often of greater interest in the vibrational case

than in the electronic case; vibrational energies are on the order of kBT and

so excited vibrational states are populated even at room temperature. This can

be contrasted with the electronic structure problem, where the larger electronic

energy gaps of many molecules mean that ground states are typically of pri-

mary interest at room temperature.

Dominant resource cost/complexity

A molecule with K atoms has M = 3K − 6 (M = 3K − 5 for linear molecules)

vibrational modes. Each vibrational mode excitation is treated as a distinguish-

able particle and so the wavefunction does not need to be explicitly sym-

metrized. The Hamiltonian is discretized using a basis set of vibrational modal

functions {χi}Ni=1
, for example, the truncated eigenfunctions of the quantum
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2.2 Simulating vibrations in molecules and materials 47

harmonic oscillator Hamiltonian, pseudo-spectral (Fourier) discrete variable

representations, or grids.

The vibrational wavefunction can be stored in a first-quantized represen-

tation using M log(N) qubits, where the basis function of each vibrational

mode is specified in binary (or an equivalent representation, such as the Gray

code [897]). Alternatively, one can use second-quantized representation using

MN qubits [813].

Preparing the desired eigenstate or thermal state, or simulating the dynamics

can be achieved using a range of quantum algorithms, including quantum phase

estimation, quantum singular value transformation, adiabatic state preparation,

variational quantum algorithms, Gibbs sampling, and Hamiltonian simulation.

These methods are discussed in more detail for the electronic Hamiltonian,

as the explicit costs of many of these methods have not yet been determined

for simulating vibrations. Nonetheless, many of the same high-level considera-

tions apply. The complexities of subroutines to prepare eigenstates and extract

observables are determined by the following observations:

(i) All methods scale as Ω(1/ϵ) to measure the desired observable to an er-

ror of ±ϵ. For the energy, we typically seek ϵ ∼ (1–10) cm−1 ≈ (4.56 ×
10−6)–(4.56 × 10−5) Hartree.4 For comparison, the largest matrix ele-

ments in the vibrational Hamiltonian (the harmonic couplings) are typi-

cally on the order of 1000 cm−1, and there areO(M) such terms [899]. As

such, the ratio ∥H∥1/ϵ that features multiplicatively in the complexity of

quantum phase estimation (at least, variants based on qubitization) can

be on the order of 104 (or larger) for modest system sizes with M ≈ 100.

(ii) To date, only product formula–based methods have been quantitatively

studied in the context of providing coherent access to the vibrational

Hamiltonian. If expanding the Hamiltonian as a linear combination of

Pauli operators, the number of terms grows as O(MdN2d) for a degree d

of anharmonic terms considered in the Hamiltonian (often at least 4th or-

der). An alternative approach is to consider the Hamiltonian discretized

by a real-space grid or Fourier pseudo-spectral basis, where the position

and momentum operators can be easily applied [732, 731].

Existing resource estimates

To date, there have been no end-to-end resource estimates for the vibrational

structure problem. In terms of initial steps in this direction, [897] considered

4 Due to the close historical ties with spectroscopy, in vibrational chemistry it is common to see
energies expressed as wavenumbers. Interconversion can be performed using the Planck
relation.
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48 2. Quantum chemistry

the resources required to map vibrational operators to qubit operators, [899]

compared the number and magnitude of terms in vibrational Hamiltonians to

those in electronic structure Hamiltonians, and [995] estimated the number

of terms and Trotter steps required to perform quantum phase estimation on

polyyne molecules.

Caveats

Quantum algorithms and many (but not all [1092]) classical algorithms for

simulating the vibrations of nuclei require the availability of an electronic

PES, from classical calculations. For a grid-based interpolation of the multi-

dimensional PES with h points per dimension, we require O(hM) PES eval-

uations. Nevertheless, several interpolation techniques and adaptive methods

have been developed to obtain high-accuracy PESs, at lower costs. Moreover, a

few molecules with classically challenging vibrational spectra have been iden-

tified with classically easy-to-compute electronic PESs [899].

There has been less work on the number of vibrational basis states required

to achieve a given accuracy than in the electronic case. While rigorous results

exist for more simple bosonic Hamiltonians [991], the truncation level N has

not yet been established for anharmonic potentials.

Comparable classical complexity and challenging instance sizes

A hierarchy of approximate classical methods has been developed for comput-

ing vibrational eigenstates, which trade increased accuracy for increased cost.

Vibrational states with a multireference nature—which are required to describe

vibrational resonances that arise due to near degeneracies between different

vibrational eigenstates, resulting from anharmonicities in the PES—require

more accurate (and thus costly) methods. Moreover, nonrigid molecules re-

quire a higher-degree approximation of the PES, leading to an increased cost

for classical methods—and potentially increasing the complexity of the result-

ing eigenstates. For such challenging systems, accurate classical results have

been obtained for molecules with G = 20–30 atoms [237, 84, 989, 99].

Recently, a number of quantum-inspired classical algorithms (see [811, 810]

and references therein) have been developed for classically approximating the

results of Gaussian boson sampling experiments. These experiments have been

proposed as analog simulators of harmonic vibrational phenomena, includ-

ing vibronic spectra and vibrational dynamics (see §NISQ implementations,

below). This reduces the regime where quantum advantage may be possible

and reinforces the necessity of considering anharmonicities in the vibrational

Hamiltonian [811].
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2.2 Simulating vibrations in molecules and materials 49

For a review of classical algorithms for simulating coupled vibrational and

electronic degrees of freedom, we refer to [1092, 597]. Commonly used al-

gorithms include multiconfigurational time-dependent Hartree (MCTDH) and

the ab initio multiple spawning method (AIMS).

Speedup

The speedup for quantum algorithms in computing vibrational eigenstates de-

pends on the overlap and error convergence of classical trial states to the true

eigenstate and energy. This has yet to be determined for systems of interest.

Nevertheless, in spectroscopic calculations that start from a classically easy-to-

prepare state, the overlap between the initial state and a desired excited state

becomes a quantity of interest—corresponding to the absorption intensity—

rather than a limiting factor on the calculation. For example, in [898] it was

proposed to use quantum phase estimation to project from the initial state into

other eigenstates with probability given by the squared overlap between the

states. However, while a single (exponentially costly) classical diagonalization

of the vibrational Hamiltonian would provide complete access to the entire

vibrational spectrum, a large number of repetitions of the quantum algorithm

would be required to reconstruct the spectrum.

As discussed above, the development of recent quantum-inspired algo-

rithms [811, 810] has reduced the prospect of achieving quantum advantage

for vibrations in harmonic potentials, motivating the need to include an-

harmonicities in the vibrational Hamiltonian, or to consider more complex

models that nonadiabatically couple vibrational and electronic degrees of

freedom. We refer to [597] for a discussion of the classical complexity of

simulating such models.

NISQ implementations

There have been proposals to apply variational algorithms to solve the vibra-

tional structure problem [750, 813, 897, 899], but additional developments are

required in order to implement sufficiently deep circuits to surpass classical

methods, and the number of circuit repetitions required to measure energy ob-

servables is likely a bottleneck [899].

There have also been several proposals and experimental demonstrations

for using analog quantum simulators to simulate molecular vibrations. Analog

simulations have been performed for zero and finite temperature vibronic spec-

tra [553, 1015] as well as vibrational dynamics [946]. We note that these ap-

proaches use harmonic approximations for the vibrational potential, and can be

approximated efficiently by classical algorithms in some regimes [811]. There

have also been analog quantum simulations of systems with coupled electronic
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50 2. Quantum chemistry

and vibrational degrees of freedom (typically via a linear vibronic coupling

model) including simulations of conical intersections [1016, 1036, 1001] and

vibrational assisted energy transfer [443].

Outlook

Further work is required to identify target systems that are challenging to sim-

ulate classically, but that may be amenable to quantum algorithms. In addition,

existing quantum algorithms need to be further optimized for the accuracy re-

quired in vibrational structure problems and the form of the vibrational Hamil-

tonian. This will enable resource estimates for end-to-end applications, such

as estimating vibrational spectra or simulating vibrational dynamics.
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