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Abstract

Oil palm is one of Southeast Asia’s most common crops, and its expansion has caused
substantial modification of natural habitats and put increasing pressure on biodiversity. Rising
global demand for vegetable oil, coupled with oil palm’s high yield per unit area and the
versatility of the palm oil product, has driven the expansion of oil palm agriculture in the region.
Therefore, it is critical to identify management practices that can support biodiversity in
plantations without exacerbating negative impacts on the environment. This study focuses on
day-flying Lepidoptera (butterflies and moths), which contribute to the ecosystem functioning
as pollinators, prey, and herbivore species. We assessed whether density and behaviours of day-
flying Lepidoptera varied between different habitats within oil palm plantations and across
seasons. We surveyed the density and behaviours of Lepidoptera communities in mature
industrial oil palm plantations within the Biodiversity and Ecosystem Function in Tropical
Agriculture (BEFTA) Programme sites, in Riau, Indonesia. We surveyed two distinct habitats
within the plantations in March and September 2013: Edge habitats, which were bordered by
plantation roads on one side, and Core habitats in the centre of oil palm planting blocks. We
conducted analyses on the effect of habitat type and season on both the overall density and
behaviour of Lepidoptera communities and, independently, on the most common species. In
our surveys, we observed 1464 individuals across 41 species, with a significantly higher density
in Edge than in Core habitats. While there was no significant difference between overall density
in March and September surveys, there was an interaction between season and habitat, with
density increasing more markedly in Edge than Core areas in September. There was also a
significant effect of habitat and season on behavioural time budget for the community as a
whole, with more active behaviours, such as foraging and mating, being recorded more
frequently in Edge than Core habitats, and more commonly in September than March. The
effect of habitat type, season, and their interaction differed between the six most common
species. Our findings indicate that Lepidoptera abundance is affected by habitat characteristics
in a plantation and can therefore be influenced by plantation management practices. In
particular, our study highlights the value of road edges and paths in plantations for day-flying
Lepidoptera. We suggest that increased non-crop vegetation in these areas, achieved through
reduced clearing practices or planting of flowering plants, could foster abundant and active
butterfly communities in plantations. These practices could form part of sustainability
management recommendations for oil palm, such as those of the Roundtable on Sustainable
Palm Oil.

Introduction

In recent years, the rate of habitat change due to agricultural expansion has been highest in the
tropics (Laurance et al. 2014), where production pressures often threaten areas of forest with
high biodiversity. One of the crops whose production has expanded most rapidly is oil palm
(Elaeis guineensis). Production of palm oil has increased by 35 times from 1970 to 2018, with
85% of current global supply produced in Indonesia and Malaysia (Meijaard et al. 2018). In
2019, palm oil accounted for nearly 40% of the vegetable oil used in food, cosmetics, and biofuels
(FAO, 2019). With a yield 5–9 times higher per unit area than alternative oilseed crops, oil palm
is currently the most efficient option for meeting growing demand for vegetable oil (Meijaard
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et al. 2018). However, oil palm expansion has driven 47% of
deforestation in Indonesia and Malaysia from 1973 to 2015,
causing losses of forest species and declines in biodiversity (Vijay
et al. 2016). Generally, oil palm plantations support lower numbers
of bird (Koh and Wilcove, 2008), arthropod (Turner and Foster,
2009), andmammal (Mendes-Oliveira et al. 2017) species and have
altered rates of ecosystem functioning compared to forest habitats
(Dislich et al. 2017). To maximise conservation impact, it is critical
that remaining intact habitats are protected and that existing oil
palm plantations are managed as sustainably as possible to
maximise the biodiversity they can support, whilst maintaining
high levels of production. Supporting biodiversity in agricultural
areas is not only vital for conservation but can also support
agricultural production through the ecosystem services provided
by biotic communities (Dislich et al. 2017).

The reduction in biodiversity in oil palm, and its knock-on
effects on ecosystem functioning, is thought to be largely due to
reductions in habitat complexity, heterogeneity, and changes in
microclimate compared to natural habitat (Benton et al. 2003,
Foster et al. 2011, Meijide et al. 2018). Habitat complexity and
heterogeneity describe the diversity and structural complexity of
environmental factors found in an area, including vegetation
composition, variation in microclimatic conditions, and substrate
variability (Maskell et al. 2019). Across land-use types, these
aspects are influenced by abiotic factors such as topography, wind,
water, and sun exposure, which result in distinct habitats
(Dobrowski, 2011, Hardwick et al. 2015). In agricultural systems
such as oil palm, they are also impacted by management practices
and plantation inputs. By creating more structurally and
floristically complex habitats, plantation managers may be able
to support greater biodiversity than that found in more simple
landscapes (Tscharntke et al. 2012). Furthermore, as a perennial
crop with a 20- to 30-year life cycle (Corley and Tinker, 2008), and
mature palms reaching up to 18 metres in height (Barcelos et al.
2015), oil palm may be able to foster more complex habitats than
annual or shorter-lived agricultural crops. This can create
microhabitats and microclimates for a wide range of species
(Pashkevich et al. 2021).

The complexity and biodiversity that oil palm plantations can
support is dependent on how the crop is established and managed.
More complex habitats can be developed at a landscape scale
through preservation of forest patches or inclusion of diverse
features such as wetland ponds (Meijaard et al. 2020) or riparian
strips (Gray et al. 2017). At a local scale, they can be developed by
allowing greater understory growth or planting non-crop plant
species (Ghazali et al. 2016, Teuscher et al. 2016). In both large and
small-scale oil palm plantations, less-intensive understory man-
agement, preservation of forest margins around rivers, and
intercropping of crops have all been reported to have a positive
effect on biodiversity (Ashton-Butt et al. 2018, Williamson et al.
2021, Yahya et al. 2017). These management practices can support
biodiversity without compromising yield or profitability and have
therefore been incorporated into sustainability initiatives such as
the Roundtable on Sustainable Palm Oil (2018).

Some of the most ecologically important groups affected by
habitat structure are within the arthropods (Crowder and Jabbour,
2014). Arthropods carry out a range of ecological roles that can
benefit crop productivity, including decomposition, soil process-
ing, and food web support (Crowder and Jabbour, 2014, Dislich
et al. 2017). In agricultural areas, arthropods can benefit crop yield

as pollinators, pest control agents, and soil processors, or can
decrease crop yields as pests and vectors of disease transmission
(Ashraf et al. 2018). Of all arthropods, the order Lepidoptera are
perhaps the best recorded taxonomically and ecologically
(Thomas, 2005). Butterflies and moths have been described as
indicators of evolutionary history and ecosystem health, have been
widely used in biological assessment (Bates, 1865, Fisher et al.
1943, Raffles, 2001) and contribute to ecosystem functioning as
pollinators, prey, and herbivores (Hahn and Brühl, 2016).
Lepidoptera are abundant in oil palm systems (Panjaitan et al.
2020), with some species being yield-damaging pests (Saravanan
et al. 2020). Lepidoptera are an ideal taxon with which to study the
effects of management practices, as they are highly affected by
vegetation structure and microclimate (Öckinger and Smith,
2006), and are responsive to environmental change in oil palm
systems (Koh and Wilcove, 2008). Lepidoptera resource and
habitat requirements vary at both the species and family level and
influence behavioural responses to environmental change (Slade
et al. 2013). The behaviour of butterflies and moths is perhaps the
least understood facet of their ecology (Merckx et al. 2003),
although it can directly affect the stability of populations through
mating, foraging, and predator avoidance behaviours. Behaviour
has been found to differ significantly between habitat types (Evans
et al. 2020) and between species (Mair et al. 2015), with land
managers manipulating vegetation through actions such as
planting nectar sources to encourage butterfly biodiversity and
activity (Kamarudin et al. 2019).

While reductions in Lepidoptera have been recorded after
conversion from forest to oil palm (Koh and Wilcove, 2008,
Kwatrina et al. 2018), and communities in oil palm have been
compared to other crops (Panjaitan et al. 2020), less research
attention has been given to the influence of environmental
conditions and management practices within existing plantations
on Lepidopteran communities. The taxonomic diversity of
Indonesia is highly understudied (Hughes, 2017); however, recent
surveys have shown that Indonesia is home to more than 2,500
species of butterfly (Murwitaningsih and Dharma, 2015), nearly
900 of which are found in Sumatra (Panjaitan et al. 2020).
Although Indonesia could therefore be considered a hotspot of
butterfly biodiversity and is home to over twelve-million hectares
of oil palm plantations (Estate Crops Statistics, 2018), no studies
have yet investigated variation in Lepidoptera community and
behaviour in oil palm plantations of differing habitat structure. In
this paper, we investigate whether butterfly and day-flying moth
density and behaviour at a whole-community level and individual
species level vary between different habitats within existing oil
palm plantations. We surveyed Lepidoptera communities in two
distinct and commonly occurring oil palm plantation micro-
habitats, areas bordered by a roadside (hereafter ‘Edge’), and
within-plantation areas surrounded on all sides by oil palm
(‘Core’), in Riau, Indonesia across two seasons (March to April,
hereafter ‘March’, and September) to answer the following
questions:

1) How does overall Lepidoptera density and individual density
of common species vary across two frequently occurring
plantation microhabitats, and between seasons?

2) How does overall Lepidoptera behaviour and individual
behaviour of common species differ across two frequently
occurring plantation microhabitats, and between seasons?
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Methods

Sites

Data were collected in oil palm plantations in Riau Province,
central Sumatra, Indonesia (Supplementary Information 1). Until
~1970, the area was covered by lowland dipterocarp forest, but was
largely deforested for agriculture from the 1970s onwards. The area
has a tropical climate, with average annual rainfall of 2350 mm
(Tao et al. 2016). The plantations are owned and managed by PT
Ivo Mas Tunggal (a subsidiary company of Golden Agri-
Resources, GAR), with technical input from Sinar Mas Agro
Resources and Technology Research Institute (SMARTRI) (the
research and development centre of GAR). As of 2019, the closest
forest was approximately 30 km from any part of our site, and no
forested riparian buffers or forest fragments had been planted at
the time of survey.

The sites surveyed were part of the Biodiversity and Ecosystem
Function in Tropical Agriculture (BEFTA) Understory Vegetation
Project (Luke et al. 2020), which is testing the effects of varying
understory vegetation management practices on the oil palm
ecosystem. However, our investigation took place before any
experimental manipulations were implemented. They therefore
represent typical understory vegetation management within an
industrial plantation. This involves clearance of herbaceous
understory vegetation with herbicide spraying (using glyphosate
(Rollup 480 SL), metsulfuron-methyl (Erkafuron 20 WG),
fluroxypyr (Starane 290 EC), paraquat dichloride (Rolixone
276 SL) along harvesting paths and within 1.5 m circles around
palms, and manual removal of woody vegetation (using a
machete), with understory vegetation otherwise being undisturbed
(Luke et al. 2020). The study sites are sprayed three times a year at a
standardised time and were not sprayed in the immediate months
before surveys were conducted.

The sample plots were located within two neighbouring
plantation estates (Ujung Tanjung and Kandista) that had
comparable management practices, with mature oil palm divided
into 1000 × 300 m plantation blocks across both areas (blocks all
edged by plantation roads). We surveyed eighteen square plots
within these blocks, distributed over ~50 km2, with sites arranged
in triplets (Supplementary Information 2). All plots were on flat
ground, containing mature oil palms (>20 years since planting;
planting dates across plots 1987–1993). Each plot was bordered on
one side by a drainage ditch, an unpaved road, and by
neighbouring oil palm on the other sides. Therefore, each plot
contained a habitat that is within the plantation (at least 50 m from
a road and surrounded by oil palm on all four sides, hereafter
referred to as ‘Core’ habitat), and a habitat which is bordered by a
road on one side (hereafter referred to as ‘Edge’ habitat). The term
‘Edge’ is used throughout the BEFTA Programme and refers to the
areas bordered by plantation unmade roads and ditches, rather
than describing where two different habitats abut. The ‘Core’ and
‘Edge’ habitats were at least 50m apart from each other within each
plot, and there was at least 150 m between neighbouring plots.
‘Edge’ and ‘Core’ habitats had different vegetation structure, with
Core habitats containing a higher percentage of bare ground,
empty fruit bunches (fruit bunches that have had their fruits
removed and that are applied to plantations as a mulch), and dead
palm fronds, and Edge habitats containing a higher canopy
openness, average vegetation height, plant species richness and
biomass, and number of herb species (for a full description of
vegetation characteristics, see Luke et al. 2020). The most common

non-crop species in both Edge and Core habitats were the ferns
Nephrolepis biserrata and Asplenium longissimum, and the herb
Asystasia gangetica subsp. micrantha. A stream ran through two of
the sites. Refer to Luke et al. (2020) for further plot details.

Lepidoptera surveys

We surveyed adult Lepidoptera along transects in both Core and
Edge habitats in two seasons in 2013: between March and April,
hereafter referred to as the ‘March’ season, and in September,
hereafter referred to as the ‘September’ season. Monthly rainfall in
the two estates was 163 mm in March and 239 mm in September
2013, consistent with historically high variation in monthly and
annual rainfall in the area. While 2013 experienced higher average
rainfall than following two years (2013–2015 monthly average:
152 mm), it was not an El Niño year (see Luke et al. 2020 for full
analysis of rainfall patterns at SMARTRI sites). Due to relatively
low numbers for each visit, two surveys of each plot were carried
out on separate days for both March and September seasons, with
total counts being summed for each transect.

Core transect walks were carried out in the centre of the plot, at
least 50m from a road at all points (Supplementary Information 2).
Edge transect walks were carried out immediately alongside a
roadside edge, adjacent to the Core transect and in the same plot
(Supplementary Information 2). We followed standard transect
methods to survey Lepidoptera (Pollard and Yates, 1993). In brief,
a recorder walked slowly along the transect and recorded any
butterflies and day-flying moths seen within a 5 m-sided cube in
front of them. As the transects were originally designed to compare
changes over time within habitats rather than between Core and
Edge, the transect shape and volume differed between Core and
Edge sites (Supplementary Information 2), with the roadside Edge
transects represented as a straight line of 150 m (survey volume
3750 m3) and Core transects represented in the shape of a picture
frame of 200 m (survey volume 4969 m3, with 0.75 m at the
beginning and end of the transect only being surveyed once to
avoid double counting. See Supplementary Information 3 for full
calculations). We acknowledge that this difference means the
distance between furthest points within transects is higher in the
Edge than Core areas and that there could be a higher chance of
resurveying individual butterflies in the Core than in the Edge
transects. However, this is unlikely to have a large impact, as the
plantations we surveyed were highly homogenous, with most
obvious variation being related to distance from palms (planted at
eight-metre distances), rather than across transects. To control for
this variation as far as possible, we standardised abundance counts
to density of individuals within 150 m transects by multiplying
Core values by 0.75 and by analysing density of all butterflies and
individual butterfly species, rather than composition or richness,
which should be robust to the impacts of resampling. We focused
our analyses on the total density and behaviour of all butterflies,
and the six most common species individually, each of which
independently represented more than 10% of the population in
either Core or Edge habitats. When combined, these six species
represented over 70% of the total count.

Transects were walked between 9:00 and 17:00 and only when it
was not raining. When the recorder was not able to identify a
species by eye, the individual was caught and photographed for
later identification. Identification followed Corbet et al. (1978) as
well as cross-referencing with region-specific photographs and
information at the end of the survey period (using iNaturalist,
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2020). Identification was done to family and species level, where
possible, but morphospecies when this was not possible, all
hereafter referred to simply as ‘species’. There were six cases where
we were only able to accurately identify to genus level (Mycalesis
spp., Amathusia spp., Erionota spp., Graphium spp., Telicota spp.,
Macroglossum spp., and Ypthima spp.). There were also three
species (comprising seven individuals) that were not identified nor
caught in the field, which we have therefore been unable to reliably
identify to species, genus, or family level, and were therefore
excluded (Supplementary Information 4).

The behaviour of individuals was recorded in the same transect
walk. Behaviours were classified as follows: Flying (in flight when
first observed); perching (perching and defending territory when
first seen); resting (wings open or closed but individual not moving
when first seen); nectaring (feeding on flowers or fruit when first
seen); interacting (chasing another butterfly or mating when first
seen); mudpuddling (feeding onminerals or water when first seen);
or unknown (behaviour not recorded or unsure). For analysis,
these behaviours were lumped into active (flying), mating
(perching and interacting), inactive (resting), and foraging
(nectaring and mudpuddling), and unknown. For nectaring
individuals, we also recorded the plant species that butterflies
were using, when known. Due to low numbers, we do not formally
analyse plant-nectaring data, but present qualitative findings.

Statistical methods

All statistical analyses were performed in R version 4.0.2 (R Core
Team, 2020) within R Studio version 1.4.456 (R Core Team, 2020).
We used tidyverse (Wickham et al. 2019), data.table (Dowle and
Srinivasan, 2021), plyr (Wickham, 2011), dplyr (Wickham et al.
2015), and reshape2 (Wickham, 2007) for data wrangling and
visualisation.

To determine the effects of habitat and season on density, we
fitted generalised linear mixed-effect models (GLMMs) using
mvabund (Wang et al. 2012) and lme4 (Bates et al. 2015). Seven
separate GLMMs were run: one for the total density of all species
combined, and one for each of the six most common species. All
linear models were fitted to negative binomial distributions using
log links, with habitat (levels: Core, Edge), season (levels: March,
September), and their interaction as fixed effects and triplet as a
random intercept effect. We validated GLMM models by plotting
Pearson residuals against fitted values and covariates and verifying
that no patterns were present. We further validated models by
simulating eight datasets for frequency, residuals, and residuals
against variables using identical effects and were unable to detect
the observed data from the simulated sets, indicating that there
were no issues in model fit.

Differences in Lepidoptera behaviour across habitat (Core or
Edge) and season (March or September) were visualised using Non-
metric Multidimensional Scaling (NMDS) with package ‘vegan’
(Oksanen et al. 2020) for the population as a whole, and separately
for the six most common species. We tested for significant
differences using ANOSIM with a Bray-Curtis dissimilarity matrix
with 999 permutations, again using ‘vegan’. All figures were plotted
using ggplot2 (Wickham, 2016).

Results

We observed a total of 1464 individual butterflies and moths, from
41 different species within eight different families (Callidulidae,
Erebidae, Hesperiidae, Lycaenidae, Nymphalidae, Papilionidae,
Pieridae, and Sphingidae) (Supplementary Information 3). The

most common species were Ypthima spp. (20% of total observed),
Elymnias hypermnestra (nearly 15% of total observed), and Acraea
terpsicore (13% of total observed). We did not find any species
endemic to Sumatra, or species classified as forest specialists from
the literature (See Supplementary Information 3 for full species list,
and Supplementary Information 4 for figure of species counts).

Lepidoptera density across habitats and seasons

Of the 41 species recorded, only fivewere foundmore than 100 times
(Ypthima spp., Elymnias hypermnestra, Acraea terpsicore, Leptosia
nina, and Amathusia spp.). Nineteen species were represented by
fewer than 10 individuals, with five species observed only once
during the study (Supplementary Information 3, Supplementary
Information 4). In particular, September Edge sites were dominated
by three highly abundant species with counts of over 130 individuals
(Ypthima spp., Elymnias hypermnestra, Acraea terpsicore).

Lepidoptera density of individuals for the population as a whole
varied significantly between habitats (estimate= 0.66, SE = 0.15,
p = <0.001), and there was a significant interaction between
habitat and season on density (estimate= 0.86, SE = 0.22,
p = <0.001), but no effect of season alone (estimate = 0.25,
SE= 0.16, p= 0.12). In particular, density was much higher in
September Edge sites (mean= 25.25, SE= 2.91) than March Edge
sites (mean= 7.86, SE = 0.79), but this difference between seasons
was less marked in Core sites (February Core mean = 4.23,
SE= 0.66; September Core mean = 4.84, SE = 0.41) (Figure 1).

Effects were not uniform across the six most common species,
with some species being found at higher densities in Core than
Edge habitats, others vice versa, and others not showing a
difference. Similarly, some species showed an increase in density in
September compared to March in either Core or Edge habitats,
while others did not.

Habitat type and the interaction between habitat and season had
significant effects on Ypthima spp. and Elymnias hypermnestra
density but not season alone (Ypthima spp.Habitat: Estimate= 2.17,
SE= 0.46, p = <0.001; Season: Estimate= 0.39, SE= 0.57, p= 0.49;
Interaction: Estimate= 1.28, SE= 0.59, p= 0.03; Elymnias hyper-
mnestra Habitat: Estimate= 1.96, SE= 0.47, p = <0.001; Season:
Estimate = −0.77, SE= 0.69, p= 0.26; Interaction: Estimate= 1.66,
SE= 0.76, p= 0.03) (Figure 2A and B). Acraea terpsicore was not

Figure 1. Box and whisker plots comparing Lepidoptera density in Core and Edge
habitats in March and September seasons. Median, interquartile range, range, and
outliers are given.
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affected by either habitat or season nor their interaction (Habitat:
Estimate= 1.29, SE= 128.69, p= 0.89; Season: Estimate= 0.01,
SE= 210.13, p= 1.0; Interaction: Estimate= 3.29, SE= 210.13,
p= 0.99) (Figure 2C). Leptosia nina was only significantly affected
by habitat type (Habitat: Estimate = −0.81, SE= 0.37, p= 0.03;
Season: Estimate= 0.19, SE= 0.31, p= 0.54; Interaction:
Estimate= 0.77, SE= 0.48, p= 0.11) (Figure 2D). Amathusia spp.
was significantly affected by only season (Habitat: Estimate =
−16.28, SE= 284.01, p= 0.95; Season: Estimate= 2.01, SE= 0.38,
p = <0.001; Interaction: Estimate= 15.75, SE= 284.01, p= 0.96)
(Figure 2E). Tetragonus lycaenoides was affected by both season and
habitat type independently, but not their interaction (Habitat:
Estimate= −1.82, SE= 0.43, p = <0.001; Season: Estimate= −0.59,
SE= 0.29, p= 0.04; Interaction: Estimate= 0.59, SE= 0.71,
p= 0.93) (Figure 2F).

Lepidoptera behaviour

Both habitat and season had a significant effect on observed
behaviour (Habitat: R = 0.29, p = <0.001; Season: R = 0.0622,
p= 0.006, respectively) (Figure 3B), with foraging and mating
being notably more common in Edge than Core habitats in both
seasons. The most frequently observed behaviour was flying (59%
of total observations; March Core= 59%, September Core= 65%,
March Edge = 50%, September Edge = 58%) across all habitats and
seasons (Figure 3A). For both Core and Edge habitats, the second
most frequent behaviour was resting (March Core= 38%,
September Core= 31%; March Edge= 19%, September
Edge= 22%), followed by foraging (March Core= 4%, September
Core= 3%, March Edge= 26%, September Edge= 13%).

The most frequently observed behaviours differed among the
most abundant species (Figure 4A–F). Acraea terpsicore, Leptosia
nina, and Amathusia spp. were nearly always recorded flying, while
Tetragonous lycaenoides was most frequently recorded resting.
Foraging was proportionally more common for Elymnias hyper-
mnestra than other common species. Mating was not a commonly
recorded behaviour for any species; however, when it was observed
(for Ypthima spp, Elymnias hypermnesta, Acraea terpsicore, and
Leptosia nina), it occurred most frequently in September Edge sites.

Both habitat and season had a significant effect on Ypthima spp.
behaviour (Habitat: R= 0.23, p= 0.008; Season: R= 0.17, p=
0.002), with resting, foraging and mating behaviour being more
common in September Edge sites. There was also a significant
effect of season, but not habitat on Leptosia nina (Habitat:
R = −0.03, p= 0.78; Season: R= 0.11, p= 0.008), Tetragonous
lycaenoides (Habitat: R= 0.19, p= 0.07; Season: R= 0.08,
p= 0.05), and Amathusia spp (Habitat: R= 0.03, p= 0.28;
Season: R = 0.41, p> 0.001) behaviour, with differences varying
between species (Figure 4). The behaviour of Acraea terpsicore was
not significantly affected by either habitat or season (Habitat: NA
as absent in Core habitats; Season: R = 0.15, p= 0.28).

Across species, the most commonly observed plants used for
foraging were as follows: Asystasia gangetica subsp. micrantha
flowers, Turnera ulmifolia flowers, and Melastoma affine fruit. In
March, four out of a total of six observations were on Asystasia
micrantha in Core areas, and eight out of a total of 80 observations
were on Asystasia micrantha, 24 on Turnera ulmifolia, and 38 on
Melastoma affine fruit in Edge areas. In September, as before, four
out of a total of six observations were on Asystasia micrantha in
Core areas, and 17 out of a total of 117 observations on Asystasia

Figure 2. Comparisons of species density for the six most common species in Core and Edge habitats in March and September seasons (A–F): Ypthima spp., Elymnias
hypermnestra, Acraea terpsicore, Leptosia nina, Amathusia spp., Tetragonus lycaenoides. Median, interquartile range, range, and outliers are given. Note: y-axis scales differ by
species.
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micrantha, 11 on Turnera ulmifolia (with a further three on
Turnera subulata), and 36 onMelastoma affine fruit in Edge areas.
In nearly all cases, individual butterflies feeding on Melastoma
affine fruit were Elymnias hypermnestra (62 out of 74 cases)
(Supplementary Information 4).

Discussion

In this study, we investigated the effects of microhabitat and season
on butterfly and day-flying moth density and behaviour in
industrial oil palm plantations. We found that oil palm plantations
can support abundant Lepidoptera, with our surveys recording
1464 individuals from 41 species. We found a significantly higher
density of Lepidoptera in Edge habitats, which were bordered on
one side by plantation roads, than in Core habitats, located in the

centre of plantation blocks surrounded on all sides by oil palm.
While there was no significant difference between March and
September surveys on overall butterfly density, there was an
interaction between season and habitat, with density increasing
more in September compared to March in Edge than Core areas.
Of the six most abundant species, four showed a preference for
either Edge or Core habitats, with Ypthima spp. and Elymnias
hypermnestra being found at higher density in Edge, Leptosia nina
and Tetragonas lycaenoides being found at a higher density in Core,
and Acraea terpsicore and Amathusia spp. not differing between
the two. The effects of season were similarly varied across species,
with Amathusia sp being found at a higher density in September
than in March, Ypthima spp. and Elymnias hypermnestra
increasing more in September in Edge than Core habitats,
Tetragonas lycaenoides being found at a higher density in

Figure 3. Bar charts showing the percentage of
total observations by activity for the Lepidoptera
community as a whole in Core and Edge habitats
in both March and September seasons (A). Results
of the non-metric multidimensional scaling, show-
ing the effects of habitat and season on behaviour
observed of butterflies and moths (B). Points are
spherically grouped by site type (March Core,
March Edge, September Core, September Edge),
based on a 98% confidence interval.
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March, and Acraea terpsicore not differing in density between
seasons. The most common behaviour observed was flying in all
plot types, and there was a significant effect of habitat and season
on the overall behavioural time budget, with more active
behaviours, such as foraging and mating, being recorded more
commonly in Edge than Core habitats, particularly in September.
As with density, individual species responses were varied, although
season more commonly had an effect on behaviour than habitat,
with the exception of Ypthima spp. where resting, foraging, and
mating behaviour were again more common in Edge sites,
particularly in September.

Lepidoptera community

Although we recorded a high abundance of Lepidoptera from over
40 species, this is a much lower number of species than would be
expected from natural forest areas in the region (Hamer et al. 1997,
Panjaitan et al. 2020). In addition, we found no endemic or forest
specialist species in our study, which emphasises the importance of
conserving remaining forested areas for conservation of global
Lepidoptera biodiversity. Over 60% of the butterflies we recorded
were within the family Nymphalidae. This family contains many
disturbance-tolerant species, which show a range of feeding
strategies, broad habitat ranges, and high dispersal abilities
(Armstrong, 2010, Sousa et al. 2019, Uehara-Prado and Freitas,
2006). For example, Ypthima spp. and Elymnias hypermnestra, by
far the most common species in this study, are tolerant generalists
capable of surviving in a wide range of disturbed habitats
(Harmonis, 2017). Ypthima spp. are particularly abundant in
disturbed areas (Sing et al. 2016), not unlike mature oil palm
plantations, and Elymnias hypermnestra is commonly found in oil

palm and coconut plantations in Southeast Asia (Khyade et al.
2018). The success of such disturbance-tolerant species is likely to
increase as agricultural land expands in the tropics (Laurance
et al. 2014).

Effect of habitat on Lepidoptera density and behaviour

Edge habitats along roadsides had significantly, and sometimes
substantially, higher Lepidoptera density than Core habitats in
both seasons, and we recorded a greater proportion of active
behaviours, such as foraging and mating, in Edge habitats. These
findings indicate that the presence and behaviour of Lepidoptera
are more heavily influenced by the habitat characteristics of a
plantation than by seasonal conditions. It is likely that Edge
conditions may have particularly benefitted the most abundant
disturbance-tolerant species in our study, as seen in previous
research (Hamer et al. 2003; Willott et al. 2000). For example, the
most frequent species we found in Edge habitats (Ypthtima spp.) is
known to be most prevalent along forest edges, roads, and
riverbanks (Laurance et al. 2014), and our results suggest that
plantation roads may be behaving similarly to forest gaps (Hill
et al. 2001). Edge and Core habitats differ in abiotic factors, such as
greater sun and wind exposure in Edge, and in biotic factors, such
as vegetation characteristics, including floral resources (Luke et al.
2019). For example, Edge habitats have a greater degree of canopy
openness (Luke et al. 2019), which has been found to positively
influence butterfly presence in previous studies (Vu, 2009). In
addition, the lack of direct sun exposure in Core areas could have
made this habitat less favourable for butterflies, which are
poikilothermic, and explains the greater proportion of time spent
resting, when temperaturewas not sufficient to support energetically

Figure 4. Bar charts showing the frequency of behaviour observed for the six most abundant species in Core and Edge habitats in March and September season (A–F): Ypthima
spp., Elymnias hypermnestra, Acraea terpsicore, Leptosia nina, Amathusia spp., Tetragonous lycaenoides. Note: y-axis scales differ by species.
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demanding behaviour. In addition, Edge habitats have a more
diverse environment than Core areas, especially associated with the
ditches, with features such as rocks, mud, and water that were rarely
present in Core areas. This heterogeneity may also have contributed
to a denser Lepidoptera population in Edge habitats, as it provided a
wider range of conditions for species and increased opportunities for
diverse behaviours. For example, mudpuddling is a foraging
behaviour where butterflies congregate around mud and damp
surfaces to drink moisture, salt, and other nutrients. This additional
sodium uptake supports healthy butterfly physiology and can
increase reproductive success in some species, as males transfer the
nutrients to females during mating, and therefore has broader
population impacts (Sculley and Boggs, 1996). This behaviour was
recorded only once throughout the study in a ditch in Edge habitat.
Our study indicates that the creation of Edge habitats may offer an
opportunity for plantation managers to foster higher numbers of
Lepidoptera in oil palm and potentially healthier agricultural
landscapes and so should be considered when undertaking
landscape planning.

Previous research at the site has also found that edge habitats
have a higher richness and biomass of native, non-native, and
beneficial plant species than Core habitats (Luke et al. 2019).
Butterflies and moths use vegetation throughout their lifecycle,
with vegetative material being a food source for larvae, nectar and
fruit being a food source for adults, and plants being used for
perching, resting and hiding from predators (Hahn and Brühl,
2016). Therefore, increased vegetation cover is likely to support
greater Lepidoptera presence and higher incidences of mating and
foraging behaviours. The difference in plant species composition
between habitats may attract different butterfly species at both
adult and larval phases, as they support foraging and breeding
activities. In particular, Edge habitats have a higher abundance of
the flowering plant Asystasia micrantha, in English commonly
known as the Chinese violet, which is a larval host plant for
Doleschallia bisaltidae and Junonia orithya wallacii. The Chinese
violet is also an important adult nectar source for several species of
Hesperiidae, Nymphalidae, and Pieridae and was the most
common nectar source we observed in our behavioural observa-
tions. At our study sites, 30% of observed vegetation along Edge
sites was Turnera ulmifolia, which does not naturally occur in
plantations, but was planted along road edges as an additional nectar
source to support parasitoid pest control species (Turner and
Hinsch, 2018). This greater abundance of nectar sources is also likely
to contribute to the higher density of butterflies in Edge habitats and
the higher incidence of nectar feeding we recorded. Larvae ofAcraea
terpsicore, one of the most common butterfly species we observed,
also feed on Turnera ulmifolia, further explaining the higher counts
of this species in Edge habitats (Abdullah and Rahim, 2018).
Borreria latifolia (Subedi et al. 2020), a known food source for
Ypthima, spp. with significantly greater density in Edge habitats, had
an average biomass over 90 times greater in Edge habitats than in
Core habitats (10.89 g per transect, 0.12 g per transect, respectively)
(Luke et al. 2019). Similarly, vegetation in the Poaceae family upon
which Elymnias hypermnestra is known to feed (Kunte, 2000) was
significantly more abundant in Edge habitats, mirroring the
significant effect of habitat on this species’ density.

However, Core habitats remained valuable for some species.We
found higher densities of Tetragonus lycaenoides and Leptosia nina
in Core habitats, likely due to their preference for dense and shady
habitats (Aluthwattha et al. 2017). The relationship between host-
plant biomass and butterfly density was not always consistent;
while both adult and larval food sources of Leptosa nina were

higher in Edge habitats (Luke et al. 2019), Leptosa nina density was
significantly higher in Core habitats. This indicates that, while the
more complex Edge habitats may host a higher density of
Lepidoptera, amix of microhabitats is needed to support the widest
possible range of Lepidoptera species within plantations.

Effect of season on Lepidoptera density and behaviour

We recorded an interaction between season and habitat type for
total butterfly density, with density increasing more in Edge than
Core areas in September than March. Indeed, we recorded more
individuals in September Edge sites than in all other site types
combined. This may be because the host-plant dynamics in Edge
habitats vary more with season than in Core habitats, perhaps
because the greater number of plant species and greater light
exposure in Edge areas mean that plants can respond more to
changing environmental conditions in this habitat, influencing
butterfly density as a result. As the full larval host-plant
information and adult feeding information for most species in
this study is not available, it is difficult to determine whether
composition is driven more heavily by overall habitat complexity
or the presence of specific food plants and the interaction of these
factors with season. However, the overall higher frequency of
interacting and foraging behaviour we observed in Edge transects
in September supports the hypothesis that increased resources for
foraging and mating may be driving this pattern. Density between
seasons varied across the six most abundant species, with
Amathusia sp, Ypthima spp. and Elymnias hypermnestra, all
increasing in one or more habitats in September, but Tetragonas
lycaenoides being found at a higher density in March, and Acraea
terpsicore not differing in density between seasons. Effects of
season on behaviour were similarly varied. These differences are
likely also to reflect species-specific habitat requirements and
resource availability that are influenced by season. More work is
needed to quantify seasonal differences in flowering patterns and
host-plant dynamics for the most common Lepidoptera species in
different months to clarify this, such as the work already carried
out by Koh and Sodhi (2004), and Scriven et al. (2017) at other
locations.

Our surveys were conducted at eye level, meaning canopy
species were not included. However, as the most abundant families
prefer the understory and bush (Schulze et al. 2001), we maintain
that our findings are representative of the true population of
butterflies and day-flying moths. Our analysis focused on the most
common species, together representing over 70% of the pop-
ulation, giving us a clear indication of the species that are abundant
enough to play a functional role in the ecosystem. All common
species we found were generalists, with only Amathusia spp.
feeding on oil palm in its larval phase but failing to reach an
abundance high enough (over five larvae per frond) to be
considered a pest by plantation managers (Mariau and Biggins,
2021). Our findings therefore indicate that management decisions
to support higher Lepidoptera numbers may be enacted without
threatening yield. However, the most impactful Lepidopteran oil
palm herbivores are nocturnal moths, that were not sampled in this
study, and therefore, the generality of this finding needs further
research.

Conclusions and implications for management

Our study shows that oil palm plantations can support a high
density of butterflies and day-flyingmoths, although the number of
species is far lower than in native forests, further confirming the
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importance of protecting intact natural ecosystems (Koh and
Wilcove, 2008, Kwatrina and Santosa, 2019). However, the
assemblage present in oil palm plantations underscores the
potential of agricultural land to host robust populations of
Lepidoptera, in particular disturbance-tolerant species. As butter-
flies are an indicator taxon of environmental health (Winarni et al.
2020), this result may be indicative of the wider invertebrate
community.

At a local scale, management practices may be manipulated to
support more heterogenous plant communities and boost
important resources, such as pollen and nectar, that may support
a higher abundance of arthropods, including Lepidoptera and
other flower-visiting species, including predatory and parasitic
arthropods. Naturally occurring plant species such as Asystasia
micrantha provided nectar sources in both Core and Edge habitats
and, when allowed to flower under reduced clearing management
regimes, may therefore support higher butterfly density and activity.
Artificially planted Turnera ulmifolia also acted as an important
nectar source in Edge habitats, suggesting that plantation managers
may be able to carry out plantation management practices, such as
targeted planting, which both positively affect the oil palm yield and
foster healthy invertebrate biodiversity. Preference for Edge or Core
habitats varied among the six most common species, highlighting
the importance of having a range of both open and closed habitats in
plantations. However, the higher density of all Lepidoptera and
higher incidence of mating behaviours in Edge habitats indicates
that including these areas in plantation design may increase
Lepidoptera populations in plantations. To accurately determine
management metrics such as the optimal ratio of open to closed
habitats, distance to road or opening, and shape of intermittent
structures, further research is needed on butterfly dispersal ability
(Lucey and Hill, 2012) and response to a gradient of habitat
heterogeneity (Kwatrina and Santosa, 2019), while taking into
account any impacts on yield.

Increasing butterfly presence in the plantations could have
larger knock-on effects through their role in the ecosystem as
herbivores, pollinators, and prey species. With a consideration for
both conservation and production priorities, our findings are
relevant to biodiversity-friendly management practices andmay be
useful to inform industry sustainability guidelines from organ-
isations such as the Roundtable on Sustainable Palm Oil (2018).

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0266467423000111
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