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1. Introduction

For solid crystals with sufficiently small grains, Herring [12] claims that the bulk
contribution to their configurational energy is negligible with respect to the surface
tension. Thus, in this setting, when determining the equilibrium shape of a crystal,
interfacial energies of the type

Pϕ(E) =

∫
∂∗E

ϕ(νE) dHd−1

play a fundamental role. Here, ϕ : Rd → [0,+∞) is a convex and positively homoge-
neous function of degree one that describes the possibly anisotropic surface tension
of the crystal. The set E is assumed to be sufficiently regular (i.e., E is a set of
finite perimeter), ∂∗E denotes its (measure theoretic) boundary, and νE(x) the
outer normal to the set E at the point x ∈ ∂∗E. The Wulff problem consists in
studying solutions of
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Figure 1. A generic configuration admissible for (1.4). The substrate is illustrated in dark
grey, the region occupied by the crystal is illustrated in light grey, and the contact surface
is illustrated in as a thick line.

E ∈ argmin {Pϕ(E) : |E| = v} , (1.1)

where v > 0 is given. This problem is an anistropic generalization of the classi-
cal isoperimetric problem. In the early 1900s, Wulff [20] proposed a geometric
construction to (1.1) given by

Wϕ = {x ∈ Rd : x · ν 6 ϕ(ν)for all ν ∈ Sd−1} . (1.2)

This shape is nowadays known as the Wulff set (or Wulff crystal) of ϕ. Dinghas
proved formally in [6] that among convex polyhedra the Wulff set is the shape
having the least surface integral for the volume it contains. The proof has later
been rendered precise by Taylor [16–18] using arguments from geometric measure
theory.

The Wulff variational problem provides a description of an equilibrium crystal
shape deep inside a region in the gas phase. This leads to the natural question
whether, likewise, it is possible to determine the shape of a crystal growing on
a substrate that minimizes a suitable combination of its surface tension and the
interaction energy with the substrate. Such a situation may be described as follows.
For ϕ as above and λ ∈ R, we set

Fλ,ϕ(E) =

∫
∂∗E∩H+

ϕ(νE) dHd−1 + λHd−1(∂∗E ∩H) , (1.3)

where H+ = {x ∈ Rd : xd > 0}, H = {x ∈ Rd : xd = 0} and E is a set of finite
perimeter in H+, i.e. |E \H+| = 0, which we simply denote by E ⊆ H+, cf. figure
1. Here, as in the Wulff problem, ϕ represents the (anisotropic) surface tension
density between crystal and vapour and λ ∈ R is the relative adhesion coefficient
between the crystal and the substrate (i.e., the difference of the crystal-substrate
and the substrate-vapour interfacial energy per unit surface area). In this setting,
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A note on the Winterbottom shape 3

the Winterbottom problem [19] consists in studying the existence and finding the
solutions of

E ∈ argmin
{
Fλ,ϕ(E) : E ⊆ H+, |E| = v

}
, (1.4)

where v > 0. There are three interesting parameter regimes to consider
(see remark 4):

(1) If λ > ϕ(−ed) it is energetically inconvenient for the crystal to attach to the
substrate and therefore the solution (1.4) coincides (up to translation) with
the solution of (1.1). This phenomenon is called complete drying.

(2) If λ ∈ (−ϕ(ed), ϕ(−ed)) a solution to the Winterbottom exists, but its shape
differs from the Wulff shape given in (1.2). In fact, the solution shape is now
the Winterbottom shape given by

Wλ,ϕ =Wϕ ∩ {x ∈ Rd : xd > −λ} (1.5)

suitably rescaled and placed in order to be in contact with the substrate. In
this case, we speak of partial drying/wetting.

(3) If λ 6 −ϕ(ed) complete wetting occurs: It is energetically favourable to
create large surface area in common with the substrate. This allows to create
arbitrarily small energy (if λ = −ϕ(ed)) or even energy diverging to −∞ (if
λ < −ϕ(ed)).

We rigorously study all the cases. From the point of view of the mathematical
analysis, the most interesting regime to consider is the partial wetting regime (2).
There, our first main result theorem 3 proves that indeed (1.5) solves (1.4).

In the case where ϕ is smooth, the solution given in (1.5) in particular recovers
Young’s law [21]. This law relates the contact angle of the boundary of equilibrium
configurations with the adhesion coefficient λ. More precisely, if ∂(E ∩H) denotes
the boundary of E ∩H in H, then

∇ϕ(νE(x)) · (−ed) = λ , for all x ∈ ∂(E ∩H) (1.6)

(see remark 4(v)). In the isotropic case, i.e., ϕ(ν) = |ν|, this reads (cf. figure 2)

νE(x) · (−ed) = λ , for all x ∈ ∂(E ∩H) .

The equilibrium condition (1.6) has been derived more generally for anistropic
capillarity problems in [5] and for epitaxially strained thin films in [4].

The proof that (1.5) is the solution shape to (1.4) provides a rigorous justification
of an ansatz that has been previously considered in [14]. It essentially relies on the
anistropic isoperimetric inequality [7] for the case λ> 0 and change of coordinates
in the case that λ 6 0. In particular, the quantitative isoperimetric inequality
[3, 8, 11] implies the stability of the Winterbottom shape. The stability of the
Winterbottom shape has already been proved in two dimensions in [14] with the
use of the (generalized) Bonnesen inequalities [2]. The stability of the Winterbottom
shape in any dimension is the content of our second main result, theorem 5: For a
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νE

−ed
x ∈ ∂(E ∩ H)

Figure 2. Young’s law for the contact angle. νE is the normal at the point x ∈ ∂(E ∩H)
and −ed is the normal vector of H pointing outwards with respect to the region the crystal
may occupy.

set E ⊂ H+, we show that its squared asymmetry index (i.e., the Lebesgue measure
of the symmetric difference of E with the optimally placed Winterbottom shape of
equal volume) is controlled by the isoperimetric difference (the energy deficit of E
and the Winterbottom shape).

The article is organized as follows. In §2, we introduce the problems, discuss the
different parameter regimes, and state the main theorems. In §3, we prove the main
theorem. Here, we would like to point out that, due to the presence of substrate, we
are working with discontinuous integrands in general and thus, some of the results
already present for continuous integrands need to be proved again in our setting,
cf. proposition 2.

Finally, we mention the articles [13] and [15] on this topic, which—independently
of our contribution—were published on arxiv.org at essentially the same time.

2. Settings and main results

Notation and preliminaries

For a measurable subset B of Rd, we denote by |B| its d -dimensional Lebesgue
measure and by Hk(B) its k -dimensional Hausdorff measure. Given x, y ∈ Rd, we
denote by x · y their scalar product and by ‖x‖ the Euclidean norm of x. For r > 0,
x ∈ Rd we write Br(x) = {y ∈ Rd : ‖y − x‖ < r} and abbreviate Sd−1 = ∂B1(0).
We also introduce the half space H+ = {x ∈ Rd : xd > 0} and the hyperplane
H = {x ∈ Rd : xd = 0}. If E ⊂ Rd is a set of finite perimeter (i.e., its characteristic
function is of bounded variation), we write ∂∗E for the reduced boundary of E
and denote by νE : ∂∗E → Sd−1 the generalized outer normal to E. We refer to [1]
for the definition of these objects and basic facts about sets of finite perimeter. In
particular, if K ⊆ Rd is a bounded convex set, then K is of finite perimeter and
νK(x) ∈ NK(x) for all x ∈ ∂∗K ⊆ ∂K, where, for each x ∈ ∂K, NK(x) := {ζ ∈
Rd : ζ · (x′ − x) 6 0∀x′ ∈ K} denotes the normal cone to K at x.

Energy

Let ϕ : Rd → [0,+∞) be a convex and positively homogeneous function of degree
one that is bounded from below, i.e., there exists c> 0 such that

ϕ(ν) > c ‖ν‖for all ν ∈ Rd . (2.1)
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For a set of finite perimeter E ⊆ H+, we define Fλ,ϕ(E) as in (1.3). Given v > 0,
we are interested in studying the shape of the solutions to (1.4).

Remark 1. Scaling It is obvious that Fλ,ϕ(rE) = rd−1Fλ,ϕ(E) for any r > 0 and,
in particular, the minimal energy mλ,ϕ(v) = inf {Fλ,ϕ(E) : |E| = v} satisfies

mλ,ϕ(v) = v
d−1
d mλ,ϕ(1) .

Wulff shape

In order to construct solutions to (1.4), we first define the Wulff set of ϕ, yet in
a more general set-up: For any positively 1-homogeneous Borel function ϕ : Rd →
[0,+∞) which is bounded from below (cf. (2.1)) but not necessarily continuous or
even convex, we set

Wϕ := {x ∈ Rd : ν · x 6 ϕ(ν)∀ ν ∈ Sn−1} .

In fact, for continuous ϕ, Wϕ is the—up to translations unique—minimizer
among sets with equal volume to the problem E 7→

∫
∂∗E ϕ(νE) dH

d−1 without
substrate, cf. [9, 10, 18]. We recall some basic facts on Wulff sets.

Proposition 2.

(i) Wϕ is a bounded, convex, and closed set with 0 ∈ intWϕ.
(ii) The convex conjugate ϕ∗ is equal to the indicator function of Wϕ, i.e.,

ϕ∗(x) = 0 if x ∈Wϕ and ϕ∗(x) = ∞ if x /∈Wϕ.
(iii) For x ∈ ∂Wϕ, we have that NWϕ(x) = ∂ϕ∗(x), where ∂ϕ∗(x) is the

subgradient of ϕ∗ at x.
(iv) The Wulff shapes of ϕ and its convex envelope ϕ∗∗ coincide: Wϕ =Wϕ∗∗ .
(v) If x ∈ ∂Wϕ and ζ lies in the normal cone to Wϕ at x, then x · ζ = ϕ∗∗(ζ).

Proof. Convexity and closedness of Wϕ, and the inclusions 0 ∈ Bc ⊆Wϕ, for c> 0
given by (2.1), are immediate. Boundedness follows in our set-up from −ϕ(−ek) 6
xk 6 ϕ(ek) for k = 1, . . . , d for any x ∈ Wϕ. This proves (i). Now, (ii)–(v) are
found in [9, propositions 3.4 & 3.5]. A careful inspection of the proofs in [9] reveals
that the relevant assertions do not need continuity of ϕ (which is assumed there).
The statement in (v) follows since, by (iii), ζ ∈ ∂ϕ∗(x), whence the Fenchel–Young
identity implies x · ζ = ϕ∗(x) + ϕ∗∗(ζ) and so x · ζ = ϕ∗∗(ζ) by (ii). �

Winterbottom shape

We now return to our convex, positively 1-homogeneous and bounded from below
ϕ and set

Wλ,ϕ =Wϕ ∩ {x ∈ Rd : xd > −λ} .
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If |Wλ,ϕ| > 0, the Winterbottom set with volume v > 0 is then defined as

Wλ,ϕ(v) =

(
v

|Wλ,ϕ|

) 1
d
(Wλ,ϕ + λed) . (2.2)

Minimizers

We here summarize the different regimes for λ:

(i) Complete drying: λ > ϕ(−ed). In this case, Wλ,ϕ = Wϕ. In remark 4,
we will see that minimizers to Fλ,ϕ for a given volume are those of the
unconstrained system without substrate.

(ii) Partial drying/wetting: λ ∈ (−ϕ(ed), ϕ(−ed)). Here, we have Wλ,ϕ ( Wϕ

as shown in lemma 6. Minimality of the Winterbottom shape will be
established in theorem 3.

(iii) Complete wetting: λ 6 −ϕ(ed). Here Wλ,ϕ = ∅. In remark 4, we will see
that solutions to (1.4) do not exist if λ < −ϕ(ed) as ‘wetting’ configurations
that intersect large parts of H have arbitrarily small energy. Generically,
there are no minimizers in the special case λ = −ϕ(ed) either, while here
for particular ϕ (even non-unique) minimizers might exist.

The first main theorem is the following characterization of minimizers in the
partial drying/wetting regime.

Theorem 3 Let λ ∈ (−ϕ(ed), ϕ(−ed)) and v> 0. Then

Fλ,ϕ(Wλ,ϕ(v)) 6 Fλ,ϕ(E)

for all E ⊆ H+ sets of finite perimeter such that |E| = v. Moreover, equality holds
if and only if there exists τ ∈ H such that |E∆(Wλ,ϕ(v) + τ) | = 0.

Remark 4.

(i) Complete drying: λ > ϕ(−ed). Comparison to the unconstrained case shows
that E is a solution to (1.4) if and only if |E∆(Wλ,ϕ(v) + τ) | = 0 (recall
definition (2.2) ofWλ,ϕ(v)) for some τ ∈ H+ (if λ > ϕ(−ed) and Hd−1({x ∈
Wϕ : xd = −ϕ(−ed)}) > 0), respectively, τ ∈ H+ ∪ H (if λ = ϕ(−ed) or
Hd−1({x ∈Wϕ : xd = −ϕ(−ed)}) = 0).

(ii) Complete drying: λ > ϕ(−ed). Comparison to the unconstrained case shows
that E is a solution to (1.4) if and only if |E∆(Wλ,ϕ(v) + τ) | = 0 (recall
definition (2.2) of Wλ,ϕ(v)) for some translation vector τ such that τ ∈ H+

if λ > ϕ(−ed) and Hd−1({x ∈ Wϕ : xd = −ϕ(−ed)}) > 0 and τ ∈ H+ ∪H
if instead λ = ϕ(−ed) or Hd−1({x ∈Wϕ : xd = −ϕ(−ed)}) = 0).

(iii) Complete drying and partial drying/partial wetting: λ > −ϕ(ed). For every
set of finite perimeter E ⊆ H+, one has∫
∂∗E∩H+

ϕ(νE) dHd−1 > ϕ
(∫

∂∗E∩H+
νE dHd−1

)
= Hd−1(∂∗E ∩H)ϕ(ed) ,

(2.3)

https://doi.org/10.1017/prm.2024.118 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.118


A note on the Winterbottom shape 7

where we have used Jensen’s inequality, the homogeneity of ϕ and the
fact that, by the Gauss–Green Theorem for sets of finite perimeter,∫
∂∗E νE dHd−1 = 0. This shows that mλ,ϕ (cf. remark 1) is positive if
λ > −ϕ(ed).

(iv) Complete wetting: λ 6 −ϕ(ed). In the case λ < −ϕ(ed), one may consider
cylindrical sets ER = (0, R)d−1 × (0, v/Rd−1) with R → ∞ to see that
mλ,ϕ = −∞. In particular, solutions to (1.4) do not exist. In the case λ =
−ϕ(ed), the admissible configurations ER show that mλ,ϕ 6 0. Together
with (2.3), this implies that mλ,ϕ = 0. However, in this case, both existence
and non-existence of minimizers might occur: If, e.g., ϕ is strictly convex,
the above argument shows that Fλ,ϕ(E) > 0 for |E| > 0. If, instead, ϕ
is affine near ed the above computation shows that for a spherical cap
Cε = {x ∈ B1(0) : xd > 1− ε}, 0 < ε� 1, the set E = v

|Cε| (Cε− (1− ε)ed)

has Fλ,ϕ(E) = 0.
(v) Young’s law: The relation (1.6) can be seen as follows. Let x ∈ ∂Wλ,ϕ

with xd = −λ and ν(x) ∈ NWϕ(x). Then proposition 2(iii) and the
Fenchel–Young identity imply x ∈ ∂ϕ∗∗(ν(x)) = ∂ϕ(ν(x)). For smooth
ϕ, this shows that ∇ϕ(ν(x)) = x and, hence,

∇ϕ(ν(x)) · (−ed) = −xd = λ .

Furthermore, we are able to establish the stability of the Winterbottom shape
improving theorem 3. This is formulated in our second main theorem.

Theorem 5 Let λ ∈ (−ϕ(ed), ϕ(−ed)) and v> 0. There is a constant C> 0 such
that for every set E ⊆ H+ of finite perimeter with |E| = v there exists τ ∈ H that
verifies

|E4(Wλ,ϕ(v) + τ)|2

v2
6 C

(
Fλ,ϕ(E)− Fλ,ϕ(Wλ,ϕ(v))

Fλ,ϕ(Wλ,ϕ(v))

)
.

3. Proof of the main theorems

In this section, we prove theorems 3 and 5. In the following, we will make use
of various unconstrained auxiliary functionals. If ψ : Rd → R is a homogeneous
function of degree one (not necessarily convex or bounded from below), for a set
E ⊆ H+ of finite perimeter, we define

Pψ(E) =

∫
∂∗E

ψ(ν) dHd−1 .

Now define ϕλ : Rd → R as

ϕλ(ν) =

λt if ν = −tedwith t > 0 ,

ϕ(ν) otherwise.

https://doi.org/10.1017/prm.2024.118 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.118


8 L. Kreutz and B. Schmidt

Lemma 6. Let −ϕ(ed) < λ < ϕ(−ed). Then,

Pϕλ(E) 6 Fλ,ϕ(E)

for all sets of finite perimeter E ⊆ H+, with equality if and only if

Hd−1 ({x ∈ ∂∗E : νE(x) = −ed} \H) = 0 .

In particular, Wλ,ϕ(1) (Wϕ(1) and

Pϕλ(Wλ,ϕ(1)) = Fλ,ϕ(Wλ,ϕ(1)) .

Proof. The first two statements are direct consequence of the definition of Pϕλ . As
Wλ,ϕ(1) is convex andWλ,ϕ(1) ⊆ {xd > 0}, it suffices to show thatWλ,ϕ(1)∩H 6= ∅,
or equivalently Wϕ ∩ {xd = −λ} 6= ∅. In fact, if there exists x ∈ ∂Wλ,ϕ(1) such
that xd > 0 and −ed = ν(x) ∈ NWλ,ϕ(1)(x), then

−xd = x · (−ed) > y · (−ed) = −yd ∀y ∈Wλ,ϕ(1)

⇐⇒ yd > xd > 0 ∀y ∈Wλ,ϕ(1) .

This contradicts Wλ,ϕ(1) ∩H 6= ∅. In order to see that Wϕ ∩ {xd = −λ} 6= ∅, we
choose x+, x− ∈ Wϕ such that ±ed ∈ NWϕ(x±). Then, by proposition 2(v), we
have that (x±)d = ±x± · (±ed) = ±ϕ(±ed). Thus by convexity of Wϕ, there exists
x ∈Wϕ such that xd = −λ. �

Lemma 7. Let 0 < λ < ϕ(−ed). Then

Pϕ∗∗
λ
(Wλ,ϕ(1)) = Pϕλ(Wλ,ϕ(1)) 6 Pϕλ(E)

for all sets of finite perimeter E ⊆ H+ such that |E| = 1. Moreover, equality holds
if and only if there exists τ ∈ H+ ∪H such that |E∆(Wλ,ϕ(1) + τ)| = 0.

Proof. lemma 7. First note that the argument in the proof of lemma 6 shows that
for x ∈ ∂∗Wλ,ϕ

νWλ,ϕ(x) =

νWϕ(x) 6= −ed if xd > −λ ,
−ed if xd = −λ .

(3.1)

Since 0 < λ < ϕ(−ed), we have that ϕλ is bounded from below and that Wλ,ϕ =
Wϕλ

is the Wulff set of ϕλ. By proposition 2(iv), we therefore have

Wλ,ϕ =Wϕ∗∗
λ
. (3.2)

Let x ∈ ∂∗Wλ,ϕ = ∂∗Wϕ∗∗
λ
. If xd > −λ, we apply proposition 2(v) to both ϕ∗∗

λ and

ϕ and get

ϕ∗∗
λ (νWλ,ϕ(x)) = x · νWλ,ϕ(x) = ϕ(νWλ,ϕ(x)) = ϕλ(νWλ,ϕ(x)) ,
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by (3.1). If xd = −λ, we apply proposition 2(v) to ϕ∗∗
λ and use (3.1) to obtain

ϕ∗∗
λ (νWλ,ϕ(x)) = x · (−ed) = λ = ϕλ(νWλ,ϕ(x)),

too. It follows that

Pϕ∗∗
λ
(Wλ,ϕ) = Pϕλ(Wλ,ϕ) . (3.3)

We can now conclude by referring to known results [9, 10, 18] on the unconstrained
functional Pϕ∗∗

λ
as, by (3.3) and (3.2), for any set E ⊆ H+ of finite perimeter with

|E| = 1 we have

Pϕλ(Wλ,ϕ(1)) = Pϕ∗∗
λ
(Wλ,ϕ(1)) = Pϕ∗∗

λ
(|Wϕ∗∗

λ
|−1/dWϕ∗∗

λ
) 6 Pϕ∗∗

λ
(E) 6 Pϕλ(E) ,

with equality only if E =Wλ,ϕ(1) + τ with τ ∈ H+ ∪H. �

The following change of coordinates allows us to reduce to the case λ> 0. Given
x0 ∈ int (Wϕ), we define

ϕx0(ν) = ϕ(ν)− x0 · ν .

Lemma 8. Let −ϕ(ed) < λ < ϕ(−ed). For all x0 ∈ int(Wϕ), there exists ε =
ε(x0) > 0 such that

ϕx0(ν) > ε‖ν‖ for all ν ∈ Rd . (3.4)

Furthermore, there exists x0 ∈ int(Wϕ) such that for λ′ = λ+ x0 · ed we have that

(i) 0 < λ′ < ϕx0(−ed) and (ii)P(ϕx0)λ′
(E) = Pϕλ(E) . (3.5)

In addition, we have

(i)x ∈Wϕ ⇐⇒ x− x0 ∈Wϕx0
and (ii)Wλ′,ϕx0

(1) =Wλ,ϕ(1) + τ (3.6)

for τ = |Wλ,ϕ|−1/d(−x0 + (x0 · ed)ed) ∈ H.

Proof. We first prove (3.4). As ϕx0 is positively 1-homogeneous, it suffices to prove

the claim for ν ∈ Sd−1. By construction of Wϕ for all x ∈Wϕ, we have x · ν 6 ϕ(ν)
and hence

(x− x0) · ν 6 ϕ(ν)− x0 · ν = ϕx0(ν) for all ν ∈ Sd−1 .

Since x0 ∈ int (Wϕ), there is ε> 0 such that Bε(x0) ⊆ Wϕ and thus choosing
xε,ν = x0 + εν ∈ Bε(x0) we find

ε = (xε,ν − x0) · ν 6 ϕx0(ν) for all ν ∈ Sd−1 .

This shows (3.4). Next, we prove (3.5)(i). To see this, observe

0 < λ′ < ϕx0(−ed) ⇐⇒ −x0 · ed < λ < ϕ(−ed) .
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By assumption, λ < ϕ(−ed). By choosing an element x̄ with maximal last com-
ponent in the compact set Wϕ and observing that ed ∈ NWϕ(x̄), with the help of
proposition 2(v), we also get

−max{x0 · ed : x0 ∈Wϕ} = −x̄ · ed = −ϕ(ed) .

Since λ > −ϕ(ed), there exists x0 ∈ int (Wϕ) such that −x0 ·ed < λ, too, as claimed.
Next, we show (3.5)(ii). To this end, note that (ϕx0)λ′(ν) = ϕλ(ν) − x0 · ν for all

ν ∈ Sd−1 since

(ϕx0)λ′(ν) =

{
ϕx0(ν) = ϕ(ν)− x0 · ν = ϕλ(ν)− x0 · ν if ν 6= −ed ,

λ′ = λ− x0 · (−ed) = ϕλ(ν)− x0 · ν if ν = −ed .

Now, by the Gauss–Green Theorem for sets of finite perimeter, for E a set of finite
perimeter, we obtain

P(ϕx0)λ′
(E) =

∫
∂∗E

(ϕx0)λ′(ν) dH
d−1 =

∫
∂∗E

ϕλ(ν)− x0 · ν dHd−1

=

∫
∂∗E

ϕλ(ν) dHd−1 −
∫
E

div(x0) dx =

∫
∂∗E

ϕλ(ν) dHd−1 = Pϕλ(E) ,

where we used that div(x0) = 0. To see (3.6)(i), it suffices to note that

x ∈Wϕ ⇐⇒ x · ν 6 ϕ(ν) ∀ ν ∈ Sd−1

⇐⇒ (x− x0) · ν 6 ϕ(ν)− x0 · ν ∀ ν ∈ Sd−1

⇐⇒ (x− x0) · ν 6 ϕx0(ν) ∀ ν ∈ Sd−1 ⇐⇒ x− x0 ∈Wϕx0
.

In order to prove (3.6)(ii), note that

Wλ′,ϕx0
= {x ∈Wϕx0

: xd > −λ′} = {x ∈Wϕx0
: xd > −λ− x0 · ed}

= {x ∈Wϕ − x0 : (x+ x0)d > −λ}
= {x ∈Wϕ : xd > −λ} − x0 =Wλ,ϕ − x0 .

Therefore,

Wλ′,ϕx0
(1) = |Wλ′,ϕx0

|−1/d(Wλ′,ϕx0
+ λ′ed)

= |Wλ,ϕ|−1/d(Wλ,ϕ − x0 + (λ+ x0 · ed)ed)
= |Wλ,ϕ|−1/d(Wλ,ϕ + λ ed − x0 + (x0 · ed)ed) =Wλ,ϕ(1) + τ ,

where

τ = |Wλ,ϕ|−1/d(−x0 + (x0 · ed)ed) ∈ H . (3.7)

�

We are now in position to prove the main theorems.
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Proof. Proof of theorem 3. By remark 1, it suffices to prove the theorem only for
v =1. To this end, let E ⊆ H+ be such that |E| = 1. We choose x0 ∈ int (Wϕ)
and λ′ = λ+ x0 · ed such that the assertions of lemma 8 hold true. Using lemma 6,
(3.5)(ii), and (3.6)(ii), we obtain

Fλ,ϕ(Wλ,ϕ(1)) = Pϕλ(Wλ,ϕ(1)) = Pϕλ(Wλ′,ϕx0
(1)) = P(ϕx0)λ′

(Wλ′,ϕx0
(1))

and, for any set E of finite perimeter,

Fλ,ϕ(E) > Pϕλ(E) = P(ϕx0)λ′
(E) .

Finally applying lemma 7 to ϕx0 and the positive λ′ gives P(ϕx0)λ′
(Wλ′,ϕx0

(1)) 6

P(ϕx0)λ′
(E) if |E| = 1, and we have shown that

Fλ,ϕ(Wλ,ϕ(1)) 6 Fλ,ϕ(E)

for such E. In case of equality, we also have P(ϕx0)λ′
(Wλ′,ϕx0

(1)) = P(ϕx0)λ′
(E)

and lemma 7 implies E = Wλ′,ϕx0
(1) + τ ′ = Wλ,ϕ(1) + τ + τ ′ for τ as in (3.7)

and some τ ′ ∈ H+ ∪H. As also Pϕλ(E) = Fλ,ϕ(E), necessarily τ + τ ′ ∈ H. This
concludes the proof. �

We are now in position to prove theorem 5 establishing the stability of the
Winterbottom shape.

Proof. theorem 5. Let x0 ∈ int(Wϕ) and λ′ = λ + x0 · ed be such that the
assertions of lemma 8 hold true. By properly rescaling, we may without loss
of generality assume |E| = 1. In the following, we set W = Wλ,ϕ(1) and
W ′ =Wλ′,ϕx0

(1). We first want to prove that there exists τ ∈ Rd such that

|E4(W + τ)|2 6 C(Fλ,ϕ(E)− Fλ,ϕ(W )) . (3.8)

The quantitative isoperimetric inequality [8, theorem 1.1] for the unconstrained
functional P(ϕx0)

∗∗
λ′

yields C > 0 such that for a suitable τ ′ ∈ Rd we have

|E∆(W ′ + τ ′)|2 6 C
(
P(ϕx0)

∗∗
λ′
(E)− P(ϕx0)

∗∗
λ′
(W ′)

)
.

Recalling that, by (3.6)(ii), there holds W = W ′ + τ̂ for some τ̂ ∈ H and setting
τ = τ ′ − τ̂ , we obtain

|E∆(W + τ)|2 = |E∆(W ′ + τ ′)|2 6 C
(
P(ϕx0)

∗∗
λ′
(E)− P(ϕx0)

∗∗
λ′
(W ′)

)
. (3.9)

Now, by lemma 6, lemma 8, and, as λ′ > 0, by lemma 7, we have

P(ϕx0)
∗∗
λ′
(E) 6 P(ϕx0)λ′

(E) = Pϕλ(E) 6 Fλ,ϕ(E)

and

P(ϕx0)
∗∗
λ′
(W ′) = P(ϕx0)λ′

(W ′) = Pϕλ(W
′) = Pϕλ(W ) = Fλ,ϕ(W ) ,
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where we again used that W =W ′ + τ̂ with τ̂ ∈ H. Therefore

P(ϕx0)
∗∗
λ′
(E)− P(ϕx0)

∗∗
λ′
(W ′) 6 Fλ,ϕ(E)− Fλ,ϕ(W ) .

Together with (3.9), this yields (3.8).
The challenge that remains is to show that τ can be chosen in H, i.e., such that

τd = 0. In order to do that, we distinguish some cases.

Case 1. Assume (3.8) holds true with τd < 0. By convexity of W, we have

|E4(W + τ)| > |{x ∈ τ +W : xd < 0}| = |{x ∈W : xd < −τd}| > cmin{−τd, 1}

for a constant c> 0. Since also

|(W + τ)4(W + τ − τded)| 6 Cmin{−τd, 1}

(note that trivially |(W + τ)4(W + τ − τded)| 6 2|W | 6 C), we find that

|E4(W + τ − τded)| 6 |E4(W + τ)|+ |(W + τ)4(W + τ − τded)|
= (1 + Cc−1)|E4(W + τ)| .

This implies the claim in view of (3.8).

Case 2. Assume (3.8) holds true with τd > 0. In the following, we denote by

Wϕ(v) =

(
v

|Wϕ|

) 1
d
Wϕ

the rescaled Wulff set of ϕ with volume v > 0. Since in the partial drying/wet-
ting regime Wϕ(1) (placed in H+) is not optimal for Fλ,ϕ, we have Pϕ(Wϕ(1)) >
Fλ,ϕ(Wλ,ϕ(1)). We can thus define a positive constant c0 by asking that

(1− c0)
d−1
d Pϕ(Wϕ(1))− (ϕ(ed) + ϕ(−ed))c0 = Fλ,ϕ(Wλ,ϕ(1)) + δ ,

where δ := 1
2 (Pϕ(Wϕ(1))− Fλ,ϕ(Wλ,ϕ(1)) > 0.

Case 2a. Suppose that |{x ∈ E : xd < τd}| > c0 min{τd, 1}. Then

|E4(W + τ)| > c0 min{τd, 1}

and, similarly as above, from

|(W + τ)4(W + τ − τded)| 6 Cmin{τd, 1},

we conclude

|E4(W + τ − τded)| 6 |E4(W + τ)|+ |(W + τ)4(W + τ − τded)|
= (1 + Cc−1

0 )|E4(W + τ)| .

Again this concludes the proof with the help of (3.8).
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Case 2b. Assume that |{x ∈ E : xd < τd}| < c0 min{τd, 1}. Then there is an
ε ∈ (0, τd) such that

Hd−1(E ∩ (εed +H)) 6 c0 min{1, τ−1
d }.

We cut along this hyperplane and set Ẽ = {x ∈ E : xd > ε}. With this set, we
then get

Fλ,ϕ(E) > Fλ,ϕ(E \ Ẽ) + Pϕ(Ẽ)− (ϕ(ed) + ϕ(−ed))Hd−1(E ∩ (εed +H)).

By remark 4(iii), the first term on the right hand side is non-negative and we get
the bound

Fλ,ϕ(E) > Pϕ(Ẽ)− (ϕ(ed) + ϕ(−ed))c0 min{1, τ−1
d }

> Pϕ(Wϕ(|Ẽ|))− (ϕ(ed) + ϕ(−ed))c0

= |Ẽ|
d−1
d Pϕ(Wϕ(1))− (ϕ(ed) + ϕ(−ed))c0 ,

where in the second step we have used that the Wulff shape Wϕ(|Ẽ|) minimizes the

unconstrained functional Pϕ among sets of volume |Ẽ|. As by assumption |Ẽ| >
1− c0, it follows that

Fλ,ϕ(E) > (1− c0)
d−1
d Pϕ(Wϕ(1))− (ϕ(ed) + ϕ(−ed))c0 > Fλ,ϕ(Wλ,ϕ(1)) + δ

(3.10)

by our choice of c0. Thus, for any C > 4δ−1, we have even for τ =0

|E4W |2 6 (|E|+ |W |)2 = 4 6 C(Fλ,ϕ(E)− Fλ,ϕ(W )).

�
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