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Abstract

Fuchsian groups with a modular embedding have the richest arithmetic properties
among non-arithmetic Fuchsian groups. But they are very rare, all known examples
being related either to triangle groups or to Teichmüller curves. In Part I of this paper
we study the arithmetic properties of the modular embedding and develop from scratch
a theory of twisted modular forms for Fuchsian groups with a modular embedding,
proving dimension formulas, coefficient growth estimates and differential equations. In
Part II we provide a modular proof for an Apéry-like integrality statement for solutions
of Picard–Fuchs equations. We illustrate the theory on a worked example, giving explicit
Fourier expansions of twisted modular forms and the equation of a Teichmüller curve in
a Hilbert modular surface. In Part III we show that genus two Teichmüller curves are
cut out in Hilbert modular surfaces by a product of theta derivatives. We rederive most
of the known properties of those Teichmüller curves from this viewpoint, without using
the theory of flat surfaces. As a consequence we give the modular embeddings for all
genus two Teichmüller curves and prove that the Fourier developments of their twisted
modular forms are algebraic up to one transcendental scaling constant. Moreover,
we prove that Bainbridge’s compactification of Hilbert modular surfaces is toroidal.
The strategy to compactify can be expressed using continued fractions and resembles
Hirzebruch’s in form, but every detail is different.
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Introduction

Modular forms are certainly best understood for the full modular group SL(2,Z), closely followed
by those for its congruence subgroups and other arithmetic groups. Among the non-arithmetic
Fuchsian groups, the groups having the best arithmetic properties are those admitting a modular
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embedding. Here, modular embedding refers to the existence of a map ϕ : H → H intertwining
the action of a Fuchsian group Γ and its Galois conjugate. The notion of modular embedding
(in this sense) appears for the first time in the work of Cohen and Wolfart [CW90]. They show
that triangle groups admit modular embeddings, and for more than a decade these remained
the only examples. An infinite collection of new examples were found with the discovery of new
Teichmüller curves by Calta [Cal04] and McMullen [McM03]. To find the modular embeddings
for them is one of the motivations for this paper.

For a reader whose main focus is modular forms this paper wants to advertise an interesting
new class of modular forms. For example, we explain an integrality phenomenon for the
coefficients of a solution of a Picard–Fuchs differential equation, like Beukers’s modular proof
of the corresponding phenomenon for Apéry’s famous differential equations, except that this
time the explanation requires using a pair of ‘q-coordinates’. For a reader with a main focus on
Teichmüller curves, we show how to rediscover many of their properties without referring to the
theory of flat surfaces.

The paper has three parts, linked by the aim to describe modular embeddings. In Part I we
set up a general theory of modular forms for Fuchsian groups admitting a modular embedding.
We call these twisted modular forms and we prove the twisted analogues of the properties that
appear in most textbooks about modular forms in the untwisted case. In Part II we start from
an example of a Fuchsian group with modular embedding where the Picard–Fuchs differential
equations can be explicitly computed. We invite the reader to discover the properties of Fourier
coefficients of the modular embeddings and of twisted modular forms via this worked example.
In Part III we give explicitly the Fourier expansions of the modular embedding for the genus two
Teichmüller curves found by Calta [Cal04] and McMullen [McM03]. In the rest of the introduction
we describe the results in more detail, highlighting the main theorems (not necessarily in the
same order) with bullet points.

Modular embeddings and twisted modular forms. Suppose that the Fuchsian group Γ ⊂ SL(2,R)
has coefficients in a quadratic number field K with Galois group generated by σ. The essential
ingredient of a modular embedding for Γ is a holomorphic function ϕ : H → H with the Γ-
equivariance property

ϕ

(
az + b

cz + d

)
=
aσϕ(z) + bσ

cσϕ(z) + dσ
.

We show that such a modular embedding always has a ‘Fourier expansion’, and an old theorem
of Carathéodory gives us a good estimate for its Fourier coefficients. Analyzing ϕ leads us to
the definition of a new kind of modular form that we call a ϕ-twisted modular form of bi-weight
(k, `). This is a holomorphic function f : H → C with the transformation property

f

(
az + b

cz + d

)
= (cz + d)k(cσϕ(z) + dσ)`f(z).

For example, direct calculation shows that ϕ′(z) is a twisted modular form of bi-weight (2,−2).
We develop a theory of twisted modular forms from scratch, analyzing to which extent

classical topics of modular forms generalize to this new notion. Our first topic is the coefficient
growth.
• For ` > 0 and k+` > 2 the Fourier coefficients of a twisted modular form f(z) =

∑
n>0 anq

n

of (k, `) satisfy the estimate an = O(nk+`−1).
Similar estimates are given for other bi-weights as well; see Theorem 2.1 for the complete
statement. The proofs combine the well-known Hecke argument in the untwisted case and the
mechanism underlying the equidistribution of long horocycles.
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The next classical topic is the dimension of the space of modular forms. A modular embedding

comes with one basic invariant λ2, that one can view is several ways: as an integral over a

conformal density (10), as a ratio of the degrees of the natural line bundles whose sections are

twisted modular forms, or as a Lyapunov exponent for the Teichmüller geodesic flow in the case

of Teichmüller curves.

• For k + ` even and k + λ2` > 2 the dimension of the space of twisted modular forms of

bi-weight (k, `) is the sum of (k + λ2` − 1)(g − 1) and contributions from the cusps and

elliptic fixed points. Here g denotes the genus of H/Γ.

For a torsion-free Fuchsian group this is of course a classical Riemann–Roch calculation. Hence

the main point is to determine the elliptic fixed point contributions in the twisted case. See (17)

for the definition of the characteristic quantities of elliptic fixed points and Theorem 3.2 for the

complete statement.

Finally, the statement that modular forms expressed in terms of a modular function satisfy

differential equations also carries over to the twisted case.

• If f(z) is a twisted modular form of bi-weight (k, `) > (0, 0) and t a modular function, then

the function y(t) defined locally by y(t(z)) = f(z) satisfies a linear differential equation of

order (k + 1)(`+ 1) with algebraic coefficients (Theorem 4.1).

Modular embeddings via differential equations. The starting point of the whole project was a

worked example, the Teichmüller curves for D = 17, that we present in §§ 6–8. (The definition

of Teichmüller curves along with a summary of the classification results for Teichmüller curves

in genus two is given in §§ 5.3 and 5.4.) Starting from the flat geometry definition we briefly

explain the derivation of the equation of the Teichmüller curve as family of hyperelliptic curves

and computation of the Picard–Fuchs differential equations, following [BM10a].

In this way, we present in § 7.1 the Fourier expansion of twisted modular forms explicitly.

The corresponding group Γ is in this case neither arithmetic nor commensurable to a

triangle group, and the differential equations expressing the modular forms in terms of a

hauptmodule for Γ (i.e. a suitably scaled modular function t : H/Γ → P1 of degree one) is not

hypergeometric.

The twisted modular forms have two curious properties.

• The twisted modular forms do not have a power series expansion in K[[q]] for the standard

modular parameter q = e2πiz/α, where α is the width of the cusp, but lie instead in K[[Aq]],

where A is a transcendental number of Gelfond–Schneider type (i.e. a number of the form

β1β
β3
2 with all βi algebraic).

• If f is a twisted modular form and t a suitably scaled modular function, then the function

y(t) locally defined by y(t(z)) = f(z), with t(z) as above, has OK-integral Taylor coefficients.

The second of these observations was already proved in [BM10a] using p-adic differential

equations. In § 8 we will give a ‘modular’ proof of both statements. The surprising feature here

is that, while the classical proof by Beukers of the integrality of the Apéry coefficients using

modularity relies on the integrality of the Fourier coefficients of the q-expansions of modular

forms on arithmetic groups, here the expansions of both f(z) and t(z) with respect to Aq have

coefficients with infinitely many prime factors in their denominators, and yet the integrality of f

with respect to t still holds. To give a modular argument for this integrality, we have to use

the relationship between twisted modular forms on the Teichmüller curve and Hilbert modular

forms on the ambient surface.
For D = 17 the full ring of symmetric Hilbert modular forms has been determined by

Hermann [Her81]. We recall and use his construction to write down explicitly the equation
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of the Teichmüller curves for D = 17 on the (rational) symmetric Hilbert modular surface in
Theorem 8.3.
• There exist coordinates U , V on the Hilbert modular surface X17, explicitly given in terms

of theta functions, such that the two Teichmüller curves on X17 are cut out by the quadratic
equations (70) and (71).

Modular embeddings via derivatives of theta functions. The concrete example D = 17 led us to
the discovery of a general construction of the modular form cutting out Teichmüller curves.
• The vanishing locus of the Hilbert modular form Dθ of weight (3, 9), given as a product of

derivatives of odd theta functions, is precisely the union of one or two Teichmüller curves
on the Hilbert modular surface XD (Theorem 9.1).

Starting from the theta function viewpoint we prove the characterizing properties of genus
two Teichmüller curves without relying either on the geodesic definition or on any flat surface
properties. Maybe these ideas can be used to construct new Teichmüller curves. Given the
length of the paper, we simplify our task and prove the following results only for fundamental
discriminants D. With appropriate care, the proofs can certainly be adapted to the general case.
• The vanishing locus of Dθ is transversal to one of the two natural foliations of the Hilbert

modular surface XD (Theorem 12.1).
• The vanishing locus of Dθ is disjoint from the reducible locus (Theorem 12.2).

On the compactified Hilbert modular surface, the reducible locus and the vanishing locus of
a Hilbert modular form always intersect and the number of intersection points is proportional
to the volume of the Hilbert modular surface. So the claim is that all of these intersection points
lie on the boundary of the Hilbert modular surface, hence at cusps of the vanishing locus of Dθ.
While for the second statement we also have a proof using theta functions, we give proofs of
both these statements relying on the following description of the cusps.
• The cusps of the vanishing locus of Dθ are in bijection with pairs consisting of a

standard quadratic form ax2 + bxy + cy2 of discriminant D and a class r ∈ Z/gcd(a, c)Z
(Theorem 10.1).

Here an indefinite quadratic form ax2 + bxy + cy2 is called standard if a > 0 > c and
a+ b+ c < 0. As a statement about cusps of Teichmüller curves, this result already appears in
[McM06a] and [Bai07]. Our proof, however, is completely different. We now explain the main idea.

Suppose that a power series f =
∑
cνq

ν
1q
σ(ν)
2 has to vanish on a branch of a curve parametrized

by q1 = qα1eε1(q) and q2 = qα2eε2(q). After these parametrizations are plugged into f , the lowest
order exponent (in q) has to appear twice, since otherwise the terms cannot cancel. In the
concrete case of f = Dθ we are led to the following notion. Given a fractional OD-ideal a, we say
that a primitive element α ∈ (a2)∨ is a multiminimizer for a if the quadratic form x 7→ tr(αx2)
on a takes its minimum on one of the three non-trivial cosets 1

2a/a at least (and then, as we show,
exactly) twice (with x and −x not distinguished). We show on the one hand that multiminimizers
for a are in bijection with standard quadratic forms in the wide ideal class. (See e.g. [Zag81] for
the correspondence between ideal classes and quadratic forms.) On the other hand, on any
branch of the vanishing locus the local parameter can be chosen such that α = α1 = σ(α2) is
a multiminimizer and that the multiminimizers (up to multiplication by the square of a unit)
determine the branch uniquely up to an element of Z/gcd(a, c)Z.

We have given the definition of multiminimizers and the description of branches of the
vanishing locus in detail since this notion and construction reappears twice in the rest
of the paper. First, multiminimizers appear prominently in the discussion of Bainbridge’s
compactification below and, second, this description of the branches immediately gives the
Fourier expansion of the modular embedding of the uniformizing group of the genus two
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Teichmüller curves for any D (see Theorem 13.1). Moreover, both ‘curious properties’ mentioned
in the case D = 17 hold in general. In particular, we have the following result.
• For any D, any cusp of the vanishing locus of Dθ with corresponding Fuchsian group Γ and

modular embedding ϕ, the ϕ-twisted modular forms of bi-weight (k, `) have a basis with
Fourier expansions of the form

∑
n>0 an(Aq)n with an algebraic and A transcendental of

Gelfond–Schneider type (Theorem 13.2).
As another application of the description of Teichmüller curves via theta derivatives, we give

in Theorem 13.3 a description of the quadratic differentials on the leaves of the natural foliation
of a Hilbert modular surface whose integral measures the flat distance between the two zeros of
the eigenform for real multiplication. These quadratic differentials can be packaged together to
a meromorphic modular form of weight (−2, 4) that we give as the quotient of theta series and
their derivatives. Our result has been used by McMullen [McM12] to describe the beautiful
and complicated flat structure on the leaves visually (‘snow falling on cedars’).

Hirzebruch’s compactification and Bainbridge’s compactification. Hirzebruch constructed a
minimal smooth compactification of Hilbert modular surfaces. His compactification is remarkable
in many ways. First, it is the prototype of what is nowadays a called a toroidal compactification,
i.e. it is given by a fan of decreasing slopes, periodic under the action of the squares of units. The
fan is given for each cusp a of the Hilbert modular surface by the corners of the lower convex
hull of (a2)∨ in R2

+.
Bainbridge [Bai07] observed that the closure in the Deligne–Mumford compactification

of the Torelli preimage of Hilbert modular surfaces provides another compactification. This
compactification is in general neither smooth nor minimal, but it was useful in his calculation
of Euler characteristics of Teichmüller curves. It is amusing to compare the two types of
compactifications and to discover that they are parallel in spirit, but different in every concrete
detail.
• Bainbridge’s compactification is a toroidal compactification, given for each cusp a by the

fan of multiminimizers (lying in (a2)∨) for a (Theorem 11.5).
The second remarkable property of Hirzebruch’s compactification is that it can easily be

computed using a continued fraction algorithm.
• Hirzebruch’s compactification is driven by the ‘fast minus’ continued fraction algorithm,

while Bainbridge’s compactification is driven by a ‘slow plus’ continued fraction algorithm.
The reader will find the precise description of the algorithms in § 11.2 and § 10.4, respectively.

The bijection between standard and reduced indefinite quadratic forms induces a subtle
relationship between the number of boundary components of Hirzebruch’s and Bainbridge’s
compactification. In particular, the number of curves in the Bainbridge compactification of any
cusp is always the same as the number for the Hirzebruch compactification of some cusp, but
not necessarily the same one. The definitions and details, and several examples, are given in § 11.

Part I. Modular embeddings and twisted modular forms

The notion of modular embedding in the sense used here appears for the first time in a paper
by Cohen and Wolfart [CW90]. They study holomorphic maps H → H equivariant with respect
to a Fuchsian group and its Galois conjugate.

In particular, Cohen and Wolfart show that all triangle groups admit modular embeddings.

Subsequent work of Schmutz-Schaller and Wolfart [SW00] gave some necessary conditions for a

group to admit a modular embedding. Some Fuchsian quadrangle groups were shown in [Ric02]
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not to admit modular embeddings, but it took more than a decade until new examples of modular

embeddings were discovered.

The first new examples arose from the Teichmüller curves discovered by Calta and McMullen

(see [Cal04] and [McM03], and [Möl06a] for the modular viewpoint). All Teichmüller curves give

rise to modular embeddings. We summarize the known results of Teichmüller curves (and thus

the known groups admitting a modular embedding) briefly at the end of § 1.

Here, in Part I, we think of the group Fuchsian group Γ as given (e.g. in terms of a

presentation) and study the properties of the modular embeddings as holomorphic maps. We

define an extension of the notion of modular forms to this context that we call twisted modular

forms. The aim of the first part is to study this new object and to derive the analogues of the

standard results on modular forms (Fourier coefficients, dimension, differential equations) from

scratch in the context of twisted modular forms.

1. Hilbert modular embeddings

The term modular embedding is used in the literature both for equivariant maps from H → Hg

(starting with [CW90]) and from Hg
→ Hg (already in [Ham66]). To distinguish between them, we

call them ‘Hilbert modular embeddings’ and ‘Siegel modular embeddings’, respectively, according

to the range of the corresponding map. We will be interested mostly in the quadratic case g = 2

and refer to [SW00] for basic notions is the general case.

Throughout this paper we denote by K a real quadratic field, with a fixed embedding K ⊂ R.

We use the letter σ to denote the Galois conjugation of K or the second embedding of K

into R, writing σ(x) or xσ interchangeably for x ∈ K. By a Hilbert modular group for K we

will mean any subgroup ΓK of SL(2,K) commensurable with SL(2,O) for some order O ⊂ K.

(Later we will make specific choices.) Such a group acts discretely and cofinitely on H2 by

(z1, z2) 7→ ((az1 + b)/(cz1 + d), (aσz2 + bσ)/(cσz2 + dσ)). Here H denotes the upper half-plane.

We will be interested only in Hilbert modular embeddings for which the first coordinate in

H2 is a local coordinate everywhere. A modular embedding of this type is described by the data

(Γ, ϕ), where:

• Γ is a subgroup of some Hilbert modular group ΓK ⊂ SL(2,K) which, viewed as a subgroup

of SL(2,R), is Fuchsian (i.e. discrete and cofinite);

• ϕ : H → H is a holomorphic map satisfying ϕ ◦ γ = γσ ◦ ϕ for all γ ∈ Γ.

For such a pair (Γ, ϕ), the map z 7→ (z, ϕ(z)) defines a map from the curve H/Γ to the Hilbert

modular surface H2/ΓK .
Written out explicitly, the condition on ϕ means that we have

ϕ

(
az + b

cz + d

)
=
aσϕ(z) + bσ

cσϕ(z) + dσ
(1)

for all
(
a b
c d

)
∈ Γ and z ∈ H. We will use this transformation property in § 2 to define a 1-cocycle

on Γ and hence a new type of modular form (‘twisted’ form) on Γ. Just as for usual modular

forms, these must satisfy suitable growth conditions at the cusps of Γ, and to formulate these we

need to know how ϕ behaves near the cusps. Assume first that one of these cusps is at ∞, with

the stabilizer of∞ in the image Γ̄ of Γ in PSL(2,R) being generated by ±
(

1 α
0 1

)
with α ∈K∩R+.

Then we have the following proposition.
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Proposition 1.1. Suppose that the stabilizer of ∞ in Γ is generated by z 7→ z+α with a ∈ K,
α > 0. Then ασ is also positive and ϕ(z) has an expansion of the form

ϕ(z) =
ασ

α
z +

∞∑
n=0

Bn e

(
nz

α

)
(∀z ∈ H), (2)

where e(x) := e2πix and where the coefficients Bn satisfy the inequalities

|Bn| 6 2=(B0) for all n > 1. (3)

Proof. From (1) we have ϕ(z+α) = ϕ(z) +ασ, so the function ϕ(z)−ασz/α is invariant under
z 7→ z + α and hence equals f(e(z/α)) for some holomorphic function f(q) in the punctured
disk D∗ = {q : 0< |q|< 1}. Define a second holomorphic function F in D∗ by F (q) = e(f(q)/|ασ|).
From ϕ(H) ⊆ H we deduce that |q±1F (q)| < 1 in D∗, where the sign is chosen so that ±ασ > 0.
It follows that F (q) extends to a meromorphic function in D = {q : |q| < 1} with at most a
simple pole at q = 0. But then the fact that F has a single-valued logarithm in D∗ implies that
its order of vanishing at 0 must be zero, so ασ must be positive and f extends holomorphically
to the full disk and hence has a convergent Taylor expansion

∑∞
n=0Bnq

n, proving the first
claim. For the second, we note first that the estimate |F (q)| 6 |1/q| and the holomorphy of F
at 0 imply by the maximum principle that |F (q)| 6 1 in the disk D (this is just the Schwarz
lemma, applied to the function qF (q)), so B0 has positive imaginary part and the function
f(q)/B0 takes on values in the right half-plane. An elementary argument then gives the estimate
|Bn| 6 2n=(B0). (Write f(q) = (B0− B̄0λ(q))/(1− λ(q)) where λ sends D to D and 0 to 0; then
Bn = 2i=(B0)

∑n
m=1[λm]n, where [λm]n denotes the coefficient of qn in λ(q)m, which is bounded

in absolute value by 1 because λ is.) The stronger estimate |Bn| 6 2=(B0) follows from a theorem
of Carathéodory [Car07], which says precisely that a holomorphic function mapping D to the
right half-plane and sending 0 to 1 has all its Taylor coefficients at 0 bounded by 2 in absolute
value. 2

Corollary 1.2. The imaginary part of ϕ(z) satisfies the inequalities

ασ

α
y 6 =(ϕ(z)) 6

ασ

α
y + C

(
1 +

1

y

)
(4)

for all z = x+ iy ∈ H, where C is a constant independent of z.

Proof. The first statement is just the inequality |F (q)| 6 1 established in the course of the above
proof, and because

∑∞
n=0 |q|n � 1 + 1/y, the second statement follows from (3). 2

Exactly similar statements hold for all of the other cusps of Γ. Recall that, by definition,
such a cusp is an element ν ∈ P1(K) whose stabilizer Γ̄ν in Γ̄ is infinite cyclic, say Γ̄ν = 〈±γν〉.
Choose g ∈ SL(2,K) with g(∞) = ν. Then g−1γνg = ±

(
1 α
0 1

)
for some positive element α of K.

Equation (1) implies that the function ϕg = gσ−1 ◦φ◦g satisfies ϕg(z+α) = ϕg(z)+ασ, because
ϕg ◦

(
1 α
0 1

)
= ϕgg

−1γνg = gσ−1ϕγνg = gσ−1γσνϕg = gσ−1γσν g
σϕg = (g−1γνg)σϕg =

(
1 ασ
0 1

)
◦ ϕg.

Then the same proof as for the case g = Id shows that ασ is positive and that

ϕg(z) =
ασ

α
z +

∞∑
n=0

Bn e

(
nz

α

)
(5)

for some constants Bn ∈ C, satisfying the same estimate (3) as before, and for all z ∈ H. Of
course α and Bn depend on ν, and also on the choice of g, but the expansions for Γ-equivalent
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cusps are the same up to trivial rescalings, because ϕγg = ϕg for γ ∈ Γ, so that there are only
finitely many essentially distinct expansions.

Another basic property of ϕ, obtained by applying the Schwarz lemma to the map Iϕ(z′) ◦
ϕ ◦ I−1

z′ : D → D, where Ia for a ∈ H denotes the standard isomorphism (H, a) → (D, 0) given by
z 7→ (z − a)/(z − ā), is that one has the inequalities∣∣∣∣ϕ(z)− ϕ(z′)

ϕ(z)− ϕ(z′)

∣∣∣∣ 6 ∣∣∣∣z − z′z − z′

∣∣∣∣, |ϕ(z)− ϕ(z′)|2

=(ϕ(z))=(ϕ(z′))
6
|z − z′|2

=(z)=(z′)
(6)

or equivalently d(ϕ(z), ϕ(z′)) 6 d(z, z′) for any z, z′ ∈ H, where d : H × H → R>0 denotes the
Poincaré metric. (This is of course a standard property of any holomorphic map from the upper
half-plane to itself.) Fixing z and letting =(z′) tend to infinity, or fixing z′ and letting =(z) tend
to zero, we obtain second proofs of the two inequalities in (4), while letting z′ tend to z we obtain
the estimate

|ϕ′(z)| 6 =(ϕ(z))

=(z)
(z ∈ H) (7)

or equivalently |κ(z)| 6 1, where κ : H → C is the map defined by

κ(z) =
=(z)

=(ϕ(z))
ϕ′(z). (8)

From the equivariance property (1) we obtain the formulas

=(ϕ(γz)) =
=(ϕ(z))

|cσϕ(z) + dσ|2
, ϕ′

(
az + b

cz + d

)
=

(cz + d)2

(cσϕ(z) + dσ)2
ϕ′(z), (9)

and these together with the standard formula =(γz) = =(z)/|cz + d|2 imply that the function κ
is Γ-invariant. We can therefore introduce a basic invariant λ2 = λ2(Γ, ϕ) of the pair (Γ, ϕ) by

λ2 =
1

vol(Γ\H)

∫∫
Γ\H

|ϕ′(z)|2

=(ϕ(z))2
dx dy =

∫∫
H |κ|

2 dµ∫∫
H dµ

∈ (0, 1], (10)

where dµ = y−2 dx dy (with z = x + iy as usual) is the standard SL(2,R)-invariant measure
on H, and where the integral can be taken over any fundamental domain for the action of Γ on H
and is absolutely convergent because |κ| 6 1. The invariant λ2, whose values are always rational
numbers, can be interpreted either as a ratio of the intersection numbers on the Hilbert modular
surface with the line bundles L and L̃ defined in § 3, or as the second Lyapunov exponent [Möl14],
which explains the notation. It is a commensurability invariant of the Fuchsian group Γ.

We close this section by describing briefly the four known types of Hilbert modular
embeddings. The first two will play a role in this paper and will be discussed in more detail
in § 5. The other two are mentioned only for the sake of completeness.

Type 1. Modular curves. Here Γ = ΓA = {γ ∈ ΓK | Aγ = γσA} where A is a suitable element
of GL+(2,K), and the map ϕ is defined by ϕ(z) = Az. The corresponding curves (1, ϕ)(H/Γ) ⊂
H2/ΓK in this case are the irreducible components of the curves TN studied in [HZ76] and [HZ77]
and reviewed in § 5.2. In particular, there are infinitely many curves of this type on each Hilbert
modular surface, and conversely each of these curves lies on infinitely many Hilbert modular
surfaces in H2/Sp(4,Z).

Type 2. Teichmüller curves. These are defined abstractly as the algebraic curves in the moduli
space Mg of curves of genus g that are totally geodesic submanifolds for the Teichmüller metric.
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In genus two, they always lie on Hilbert modular surfaces and (apart from one exception for the
field Q(

√
5)) have a modular interpretation as the components of the moduli space of genus two

curves whose Jacobian has real multiplication by an order in a real quadratic field and such that
the unique (up to a scalar) holomorphic form on the curve that is equivariant with respect to
this action1 has a double zero. There are at most two curves of this type on each Hilbert modular
surface XK , and conversely each Teichmüller curve lies on exactly one XK . The proof that these
curves have a modular embedding comes from [Möl06a]. (See also the proof of Proposition 5.6.)

There exists a variant of these curves, not used in this paper but studied in detail by
Weiß in [Wei14], called ‘twisted Teichmüller curves’, obtained as the images of Teichmüller curves
under the action of elements of GL(2,K)+. They are still geodesic for the Kobayashi metric in
XK , but no longer for the Kobayashi (= Teichmüller) metric in M2. There are in general infinitely
many of these curves on any Hilbert modular surface.

Types 3 and 4. Curves related to Prym varieties. Recall that a Prym variety is the kernel of the
map Jac(C) → Jac(C0) induced by a double cover C → C0 of curves. By the Riemann–Hurwitz
formula, it is two-dimensional if and only if the genus g of C lies between two and five. For
the cases g = 3 or 4, there is a construction of Teichmüller curves in the moduli space Mg

corresponding to certain Prym varieties having real multiplication by an order in a real quadratic
field [McM06b]. Our cases 3 and 4 are these two cases, in the order g = 4, g = 3.

The four types 1–4 are distinguished by the invariant λ2, which takes on the values 1 for
Type 1, 1

3 for Type 2, 1
5 for Type 3, and 1

7 for Type 4 [Bai07, Theorem 15.1] and [Möl14,
Proposition 5.1]. For each of these values, there is an infinite number of commensurability classes
of Fuchsian groups with this invariant.

The exceptional Teichmüller curve over Q(
√

5) corresponds to λ2 = 1/2, and at the time of
writing this is the only known commensurability class of a Fuchsian group with this value of the
invariant λ2.

2. Twisted modular forms

For any function ϕ : H → H satisfying (1) we can define two factors J(g, z) and J̃(g, z) for
g ∈ SL(2,K) and z ∈ H by

J(g, z) = cz + d, J̃(g, z) = cσϕ(z) + dσ if g =

(
a b
c d

)
. (11)

The calculation

J̃(γ1γ2, z) = (c1a2 + d1c2)σ ϕ(z) + (c1b2 + d1d2)σ

=

(
cσ1
aσ2ϕ(z) + bσ2
cσ2ϕ(z) + dσ2

+ dσ1

)
(cσ2ϕ(z) + dσ2 )

=

(
cσ1 ϕ

(
a2z + b2
c2z + d2

)
+ dσ1

)
(cσ2ϕ(z) + dσ2 ) (by equation (1))

= J̃(γ1, γ2z) J̃(γ2, z) for γ1, γ2 ∈ Γ

shows that J̃ is a cocycle for Γ. (The corresponding statement for J , which follows from the
same calculation with ϕ ≡ Id, is, of course, standard.) It follows that the map f 7→ f |(k,`)g of
the space of holomorphic functions in H to itself defined for k, ` ∈ Z and g ∈ GL+(2,K) by

(f |(k,`)g)(z) = J(g, z)−k J̃(g, z)−` f(gz) (12)

is a group action when restricted to Γ.

1 That is, (µ◦)∗ϕ = µϕ for all µ in the order; cf. § 5.1 (‘first eigendifferential’) for details.
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We now define a ϕ-twisted modular form of bi-weight (k, `) on Γ to be a holomorphic function
f : H → C satisfying f |(k,`)γ = f for all γ ∈ Γ together with the growth requirement that the

function fg is bounded as =(z) →∞ for every g ∈ SL(2,K), where fg(z) = (cz+d)−k(cσϕg(z)+
dσ)−`f(gz). The function fg depends only on the coset Γg.

To describe its Fourier expansion, we need to distinguish cases. If −1 ∈ Γ, then the modular
transformation property implies that k + ` is even if Mk,`(Γ) is to be non-zero. If −1 6∈ Γ, then
there may exist non-zero twisted modular forms for both parities of k + `. Let α as before be
the totally positive element of K with (g−1Γg)∞ =

〈
±
(

1 α
0 1

)〉
. Recall that the cusp g∞ is called

irregular if Γ does not contain −1 and if (g−1Γg)∞ =
〈
−
(

1 α
0 1

)〉
. Now there are two cases. If the

cusp is regular or if k + l is even, then fg(z + α) = fg(z) and the Fourier expansion of fg has
the form

fg(z) =
∑
n>0

an e(nz/α) as =(z) →∞, (13)

where n ranges over non-negative integers. Only if the cusp is irregular and k + ` is odd, then
fg(z+α) = −fg(z) and the Fourier expansion is as in (13), but now with n ranging over Z>0 + 1

2
instead of Z>0.

If the Fourier coefficient a0 is zero for all cusps (a condition that is automatically satisfied
at regular cusps if k + ` is odd), we call f a cusp form. The spaces of ϕ-twisted modular forms
and cusp forms of bi-weight (k, `) will be denoted by Mk,`(Γ, ϕ) and Sk,`(Γ, ϕ), respectively. We
will often omit the ‘ϕ’ when no confusion can arise.

Obviously, ordinary modular forms of weight k on Γ are ϕ-twisted modular forms of bi-weight
(k, 0) for any ϕ, and in fact Mk,0(Γ, ϕ) = Mk(Γ). We give three examples of twisted modular
forms with ` 6= 0.

(i) We always have ϕ′ ∈ M2,−2(Γ, ϕ), by virtue of the second equation in (9) and the
expansions of ϕ at the cusps given in § 1. This example shows that the weights k and ` of a
holomorphic twisted modular form do not both have to be positive. A similar example, which
follows from the calculations given at the end of § 4, is that 2ϕ′ϕ′′′−3ϕ′′2 belongs to M8,−4(Γ, ϕ).
Note the quotient of this by ϕ′2 is the Schwarzian derivative of ϕ.

(ii) In the case of modular curves, when the map ϕ : H → H is given by a fractional linear
transformation A ∈ GL+(2,K), the calculation

J̃(γ, z) = cσAz + dσ = J(γσ, Az) =
J(γσA, z)

J(A, z)
=
J(Aγ, z)

J(A, z)
=
J(A, γz)

J(A, z)
J(γ, z)

for γ ∈ Γ shows that if f belongs to M(k,`)(Γ, ϕ), then the function fA(z) = J(A, z)−`f(z)
belongs to Mk+`(Γ) in the usual sense, so that here we do not get a new kind of modular
forms. For Teichmüller curves, on the other hand, the automorphy factor J̃ cannot be reduced
to an automorphy factor of the classical sort, and the twisted forms are a genuinely new type of
modular form.

(iii) If ΓK is a Hilbert modular group containing Γ and F is a Hilbert modular form of
weight (k, `) on ΓK (i.e. F : H2

→ C is a holomorphic map satisfying F (γz1, γ
σz2) = (cz1 +

d)k(cσz2 + dσ)`F (z1, z2) for all γ ∈ ΓK and all z1, z2 ∈ H), then the restriction of F to H under
the embedding (1, ϕ) : H → H2 is an element of Mk,`(Γ, ϕ).

The last example provides many twisted modular forms for any (Γ, ϕ). But not all twisted
modular forms arise in this way, and it makes sense to study the twisted forms independently
of the two-variable theory. In particular, one can ask for the dimensions of the spaces Mk,`(Γ, ϕ)
and Sk,`(Γ, ϕ) and for the structure of the bigraded ring M∗∗(Γ, ϕ) =

⊕
k,`Mk,`(Γ, ϕ), just as is
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usually done for classical modular forms when ` = 0, and we can also study the classical topic
of growth of Fourier coefficients. We shall give a general formula for the dimensions in the next
section and a description of the ring of twisted forms in a special example in § 7, while the rest
of this section is devoted to the study of the coefficient growth.

Theorem 2.1. Let f(z) =
∑
anq

n be a twisted modular form of bi-weight (k, `), and set K =
k + |`|. Then the Fourier coefficients of f satisfy the estimates

an =


O(nK/2) if k + ` < 2 or f is a cusp form,

O(nK/2 log n) if k + ` = 2,

O(nk−1+max(0,`)) if k + ` > 2.

Proof. Suppose first that f is cuspidal. Here we use a modification of the well-known argument
given by Hecke in the untwisted case. We construct the real-valued continuous function

F (z) = |f(z)| yk/2 ỹ`/2,

where y = y(z) = =(z) and ỹ = ỹ(z) = =(ϕ(z)). This function is Γ-invariant by the definition
of a twisted modular form. Since f is a cusp form, F decays rapidly at cusps and hence is
bounded on the whole upper half-plane, so f(z) = O(y−k/2ỹ−`/2). On the other hand, an =
(1/α)

∫ α
0 f(x + iy)e(−n(x + iy)/α) dx for any y. Specializing to y = 1/n and using the first or

the second inequality in (4) depending on the sign of `, we obtain the estimate stated.
In the remaining cases, still

|an| 6
1

α

∫ α

0
F (x+ i/n)nk/2=(ϕ(x+ 1/n))−`/2 dx� nK/2

∫ α

0
F (x+ i/n) dx,

by (4) (where the constant implied by � depends only on Γ), but now F (z) = F (γ(z)) =
O(H(z)(k+`)/2) instead of O(1), where H(z) is defined in the lemma below. Since the exponent
k−1+max(0, `) is equal to K/2+(k+ `)/2−1, the remaining statement is precisely the content
of the following lemma. 2

Lemma 2.2. Let Γ be a non-cocompact Fuchsian group, with the width of the cusp at ∞ equal
to 1, and define the height function H(z) = maxγ∈Γ=(γz). Then for n > 1 and λ > 0 one has
the estimates ∫ 1

0
H

(
x+

i

n

)λ
dx =


O(1) if 0 < λ < 1,

O(log n) if λ = 1,

O(nλ−1) if λ > 1,

where the implied constant does not depend on n.

Proof. The case λ = 1
2 is [Stö04, Proposition 2.2]. Essentially the same method can be used to

give all cases. We provide the details only for λ > 1
2 . We let T =

(
1 1
0 1

)
and choose for each of

the h cusps ηj of Γ a matrix Nj ∈ SL(2,R) such that Njηj = ∞, and such that the stabilizer
of ∞ in Γj = NjΓN

−1
j is always 〈T 〉. Let F be a closed fundamental domain for Γ, which we

may choose so that the cusp neighborhoods have the shape

Nj(F) ∩ {ζ ∈ H : =(z) > B} = [0, 1]× [B,∞) (j = 1, . . . , h)

for some B > 1, and are disjoint. We define the truncation function bxcB to be x if x > B
and 0 otherwise. Since the complement in the fundamental domain of the cusp neighborhoods
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is compact, it suffices to prove the statement of the lemma with bHcB in the place of H. Note
that ∫ 1

0

⌊
H

(
x+

i

n

)⌋λ
B

dx =
h∑
j=1

∑
γ∈〈T 〉\Γj

∫ 1

0

⌊
=
(
γ

(
x+

i

n

))⌋λ
B

dx. (14)

Suppose that γ =
(
a b
c d

)
gives a non-zero contribution to the right-hand side. Recall that Shimizu’s

lemma states that in a Fuchsian group, normalized so that the cusp ∞ has width 1, either c = 0
or 1 6 |c|. Here the truncation implies that c 6= 0 and that

1 6
1/n

|c(x+ i/n) + d|2
,

from which

1 6 |c| 6
√
n and − d

c
∈ [−1, 2].

On the other hand, with the substitution x = −d/c+ t/n we get∫ 1

0

⌊
=
(
γ

(
x+

i

n

))⌋ λ
B

dx 6
∫ ∞
−∞

(
1/n

(cx+ d)2 + c2/n2

)λ
dx

6
nλ−1

|c|2λ

∫ ∞
−∞

dt

(t2 + 1)λ
= O

(
nλ−1

|c|2λ

)
.

(It is this estimate which has to be changed, taking into account b · cB, when λ 6 1
2 .) We define

Cjµ,ν(x,X) =

{
γ =

(
a b
c d

)
∈ 〈T 〉\Γj : x < |c| 6 X,−d

c
∈ [µ, ν]

}
and Cjµ,ν(X) = Cjµ,ν(0, X). The crucial observation now is that the cardinality of this set is
bounded for X > 1, any j and µ < ν by

#Cjµ,ν(X) 6 (ν − µ)X2 + 1.

This again follows from Shimizu’s Lemma, which implies that for two matrices γ =
(
a b
c d

)
and

γ′ =
(
a′ b′

c′ d′

)
in Cja,b(X) we have |d′/c′ − d/c| > |cc′|−1 > X−2 (see [Iwa95, Proposition 2.8], for

details).
If λ = 1, then the contribution of the jth cusp to the right-hand side of (14) is bounded

above by a constant times

∑
γ∈Cj−1,2(

√
n)

1

|c|2
6

(1/2) log2 n∑
k=0

∑
γ∈Cj−1,2(2k−1,2k)

1

|c|2

6
(1/2) log2 n∑

k=0

3 · 22k

22k−2
= O(log n).

The other cases with λ > 1/2 are calculated in the same way, the estimate for the left-hand
side of (14) now being O(nλ−1

∑
k6(1/2) log2 n

22k(1−λ)), which is O(nλ−1) for λ > 1 and O(1)
for λ < 1. 2
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M. Möller and D. Zagier

The bounds in the preceding theorem are not sharp for the classical case ` = 0, since the
methods of Rankin and Selberg give an improvement for any Fuchsian group. Note, however,
that the deeper results of Deligne cannot be applied here, since on Teichmüller curves one does
not dispose of Hecke operators.

In the more interesting case of strictly twisted modular forms (i.e. ` 6= 0) we know in the
example of ϕ′ that the coefficients grow like O(n) by Caratheodory’s estimate (3), while
the preceding theorem with k = 2, ` = −2 gives only the bound O(n2). However, we do not
know if the behavior of the coefficients of ϕ′ is typical for a twisted modular form of bi-weight
(2,−2) or if there exist other elements whose coefficient growth is closer to O(n2).

3. Dimensions and degrees

Twisted modular forms of bi-weight (k, `) can be thought of as sections of the bundle L⊗k⊗ L̃⊗`

with appropriate growth conditions at the cusps, where L and L̃ are the line bundles over
H/Γ defined as the quotients of H × C by the equivalence relations (z, u) ∼ (γz, J(γ, z)u) and
(z, u) ∼ (γz, J̃(γ, z)u) for γ ∈ Γ. The dimension of the space of such forms for a given group can
therefore be computed by the Riemann–Roch theorem for curves, just as in the case of classical
modular forms, if we know the degrees of the two bundles L and L̃ and the numbers of cusps and
elliptic fixed points of various orders of the group. In particular, if Γ had no cusps and no fixed
points (a situation of which, so far as we know, there is no example), then the Riemann–Roch

theorem would give dimMk,`(Γ) = (k deg(L) + `deg(L̃)−1) (g− 1), where g is the genus of H/Γ.
The presence of cusps (including possibly irregular ones) and elliptic fixed points will make the
actual formula more complicated.

Let Π be a torsion-free subgroup of finite index in Γ. Such a group always exists, since the
level-three subgroup of a Hilbert modular group is torsion-free and Γ is a subgroup of the Hilbert
modular group. We define Π0 to be a subgroup of finite index such that the eigenvalues of all
parabolic elements are one (i.e. all cusps are regular). Such a subgroup exists, since Π is free if
it is has a cusp. By passing to a smaller subgroup if necessary, we may suppose Π0 ⊂ Γ to be
normal. We let L0 and L̃0 be the line bundles over H/Π0 defined by the automorphy factors J
and J̃ , respectively.

The basic invariant we attach to a Hilbert modular embedding is the ratio

λ2 = deg(L̃0)/deg(L0). (15)

As a consequence of the proof of Theorem 3.2 below, we see that this number does not depend on
the choice of Π0 among torsion-free subgroups of Γ with regular cusps. The value of the invariant
λ2 is given by 1, 1

3 , 1
5 , 1

7 on the four classes of Hilbert modular embeddings described in § 1.
The definition of λ2 and the classical result that ordinary modular forms of weight two are

differential forms on H/Π0 imply the following proposition.

Proposition 3.1. Let g0 and s0 denote the genus and the number of cusps of H/Π0, respectively.
Then

deg(L0) = g0 − 1 + s0/2 and deg(L̃0) = λ2 (g0 − 1 + s0/2). (16)

Now we have to pass from Π0 to Γ, which may have both elliptic fixed points and irregular
cusps. If Γ contains −I, then we will assume that k + ` is even, since otherwise the equation
f |(k,`)(−I) = −f implies that the space of twisted modular forms of bi-weight (k, `) is zero.
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We define characteristic numbers at elliptic fixed points and cusps for the bundle of twisted
modular forms of bi-weight (k, `) in the following way. Suppose that x is an elliptic fixed point
and that the isotropy group Γx is of order nx in SL(2,R). We take a generator γ =

(∗ ∗
c ∗
)
∈ Γx

that acts on the tangent space at x by a rotation by 2π/nx in the positive direction, i.e. such
that arccos(tr(γ)/2) = 2π/nx and c sin(2π/nx) 6 0. We let rx = 1/nx. Since γ is of finite order,
so is γσ and we can define rσx ∈ 1/nxZ by

cos(2πrσx) = tr(γσ)/2 and cσ sin(2πrσx) 6 0.

Then the characteristic number at x is defined as

bx(k, `) = {−krx − `rσx}, (17)

where the curly braces denote the fractional part (in [0, 1)) of the rational number. If x is a cusp,
we define the characteristic number bx(k, `) to be 1

2 if the cusp is irregular, −I 6∈ Γ, and k+ ` is
odd, and we let bx(k, `) = 0 in all other cases.

We remark that characteristic numbers are a finer information than the usual type of the
elliptic fixed point [vdG87, § I.5 and V.7], since there are two possibilities even for fixed points of
order two (in PSL(2,R)). We let ∆ =

( 1 0
0
√
D

)
and S =

(
0 −1
1 0

)
∈ SL(2,OD). Then the contribution

of ∆S∆−1 ∈ SL(O∨D ⊕ OD) is bx(k, `) = {(−k + `)/4}, whereas the contribution of S is
bx(k, `) = {(−k − `)/4}. Note that in all these calculations we consider modular embeddings
to H2. If we consider a modular embedding to H×H−, the fixed point of S is −i in the second
factor, so its contribution is bx(k, `) = {(−k + `)/4}.

We can now give the dimension of the space of modular forms in terms of the topology of H/Γ
and those characteristic numbers. We let nx be the order of the isotropy group Γx in PSL(2,R).

Theorem 3.2. Let k and ` be integers. If k+` is odd and Γ contains −I, then dimMk,`(Γ, ϕ) = 0.
If −I 6∈ Γ or k+ ` is even, then twisted modular forms of bi-weight (k, `) are precisely the global
sections of a line bundle Lk,` of degree

deg(Lk,`) = (k + λ2`)

(
g − 1 +

s

2
+

1

2

∑
x∈H/Γ

(
1− 1

nx

))
−
∑
x∈H/Γ

bx(k, `),

where g and s denote the genus and the number of cusps of Γ. If also k + λ2` > 2, then

dimMk,`(Γ, ϕ) = deg(Lk,`) + (1− g).

Proof. We mimic the standard argument for ordinary modular forms and describe Lk,` as a

subsheaf of L⊗k⊗ L̃⊗`. If t is a local parameter at x, for x both in H/Γ or being a cusp, the stalk
(Lk,`)x at consists of all germs of holomorphic functions f with f(γ t) = J(γ, t)kJ̃(γ, ϕ(t))`f(t)
for all γ ∈ Γx in the stabilizer of x. With this definition, twisted modular forms of bi-weight
(k, `) for the modular embedding ϕ are obviously the global sections of Lk,`.

In order to compute the degree of Lk,` we use the map π : H/Π0 → H/Γ. This induces an
inclusion π∗(Lk,`) → Lk0L

`
0. Since we know the degree of the image in terms of g, s and λ2, it

suffices to compute the degree of its cokernel K. This cokernel is supported at the elliptic fixed
points and at the cusps.

Suppose first that zγ ∈ H is the fixed point of γ ∈ Γ. The point ϕ(zγ) is fixed by γσ, so

that by the cocycle condition both J(γ, zγ) and J̃(γ, ϕ(zγ)) are roots of unity of some order that
divides the order of the isotropy group nx.
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Now let y be one of the preimages of x and let u be a local parameter at y, so that t = unx .
Then

(Lk0L̃
`
0)y ∼= C[[u]] and (π∗(Lk,`))y = unxBx(k,`) C[[u]],

where Bx(k, `) ∈ [0, 1) is the unique rational number such that

J(γ, zγ)kJ̃(γ, ϕ(zγ))` = e(Bx(k, `)).

Consequently, dimKy = nxBx(k, `) for each of the deg(π)/nx points y above x.
Next we want to show that Bx(k, `) = bx(k, `). If x = i, then the generator of Γx specified

above is γ =
( cos(2π/nx) sin(2π/nx)
−sin(2π/nx) cos(2π/nx)

)
and hence J(γ1, i)

k = e(−krx) and J̃(γ1, i)
` = e(−`rσx) by

the definition of rx and rσx . This proves the claim in the special case x = i. For the general case
note first that for any α ∈ SL(2,R) the cocycle property implies J(γ, zγ) = J(αγα−1, zαγα−1),
where zαγα−1 = αzγ is the fixed point of αγα−1. The equivariance property (1) implies that

ϕ(zγ) is the fixed point of γσ and hence J̃(γ, zγ) = J(γσ, zγσ). If α takes the fixed point of γ to
i, then ασ takes the fixed point of γσ to i and so

J(γ, zγ)k J̃(γ, ϕ(zγ))` = J(γ, zγ)k J(γσ, zγσ)`

= J(αγα, i)k J((ασγσασ)−1, i)`

= J(αγα, i)k J̃((αγα)σ, i)` (18)

reduces to the case already considered.
Now suppose that x is a cusp and let y be one of the cusps of Π0 above x. If nx denotes the

degree of the covering π at y, then there are deg(π)/nx cusps above x since π is Galois.
We start with the case −I 6∈ Γ. Then the stabilizer Γx is infinite cyclic. Let γ be a generator.

The same argument as for (18) allows us to assume that the fixed point zγ =∞. Note that γσ

also fixes ∞, so that J(γ,∞) = J̃(γ, ϕ(∞)) = γ2,2, the lower right entry of γ. Since the cusp is
irregular if and only if the generator γ has γ2,2 = −1, we deduce

J(γ,∞)k J̃(γ, ϕ(∞))` = e(bx(k, `))

for bx(k, `) defined above. On the other hand, let a be the width of the cusp ∞ of Γ0, so that
q = e(z/a) is a local parameter at y. Then

(Lk0L̃
`
0)y ∼= C[[q]] and (π∗(Lk,`)y = qnxbx(k,`) C[[q]],

so that in total dimKy = nx bx(k, `).
With the same local calculation one checks that if −I ∈ Γ then we always have π∗(Lk,`)y =

(Lk0L̃
`
0)y. Hence, in this case, too, dimKy = nx bx(k, `) = 0 holds by definition.

Altogether, this implies

deg(Lk,`) =
1

deg(π)
((k + λ2`) deg(L0))−

∑
x∈H/Γ

bx(k, `).

The number of cusps of Γ is s0 = deg(π)
∑

x∈∂(H/Γ) 1/nx. Together with (16) and the Riemann–
Hurwitz formula

g(H/Π0)− 1

deg(π)
= g(H/Γ)− 1 +

1

2

∑
x∈H/Γ

(
1− 1

nx

)
this implies the degree claim. The dimension statement then follows from Riemann–Roch since
the H1-term vanishes for deg(Lk,`) > 2g − 2, which is guaranteed by the hypotheses on k + λ2`
and the fact that bx(k, `) 6 1− 1/nx for all cusps and elliptic fixed points. 2
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4. Differential equations coming from twisted modular forms

A basic fact about modular forms, whose proof will be recalled below, is that for any Fuchsian
group Γ ⊂ SL(2,R), any modular function t on Γ and any modular form f of integral weight k > 1
on Γ, the function y(t) defined locally by f(z) = y(t(z)) satisfies a linear differential equation of
order k + 1 with algebraic coefficients (and even with polynomial coefficients if H/Γ has genus
zero and t is a hauptmodule2). In this subsection we prove the corresponding statement for
twisted modular forms. This statement will give one of the two approaches used in this paper to
describe Teichmüller curves explicitly on Hilbert modular surfaces, by comparing the differential
equations coming from their geometric definition (Picard–Fuchs differential equations) with the
differential equations satisfied by suitable twisted modular forms on them.

Theorem 4.1. Let f(z) be a twisted modular form on (Γ, ϕ) of bi-weight (k, `), with k, ` > 0,
and t(z) a modular function with respect to the same group Γ. Then the function y(t) defined
locally by f(z) = y(t(z)) satisfies a linear differential equation of order (k+1)(`+1) with algebraic
coefficients.

Proof. It suffices to prove this for the two cases (k, `) = (1, 0) and (0, 1), since the general case
follows from these. (The number (k+ 1)(`+ 1) arises as the dimension of Symk(V1)⊗ Symk(V2)
where dimV1 = dimV2 = 2.) The first case is the classical theorem mentioned above, of which
several proofs are known (see e.g. [BGZ09, § 5.3]). We reproduce one of them here since it
generalizes directly to the more complicated case of bi-weight (0, 1).

Let, then, f(z) be an ordinary modular form of weight one and t(z) a modular function on Γ.
By definition we have the two transformation equations

t

(
az + b

cz + d

)
= t(z), f

(
az + b

cz + d

)
= (cz + d) f(z)

for all matrices
(
a b
c d

)
∈ Γ. Differentiating these equations gives the further transformation

equations

t′
(
az + b

cz + d

)
= (cz + d)2t′(z),

f ′
(
az + b

cz + d

)
= (cz + d)3f ′(z) + c(cz + d)2 f(z),

f ′′
(
az + b

cz + d

)
= (cz + d)5f ′′(z) + 4c(cz + d)4f ′(z) + 2c2(cz + d)3f(z).

The first of these equations says that t′ is a (meromorphic) modular form of weight two, and by
combining the others we find that the expression 2f ′2 − ff ′′ is a modular form of weight six. It
follows that

t′(z)

f(z)2
= A(t(z)),

2f ′(z)2 − f(z)f ′′(z)

t′(z)f(z)4
= B(t(z)) (19)

for some rational (or, if t is not a hauptmodule, algebraic) functions A(t) and B(t). A direct
calculation shows that

1

t′

(
t′

f2

1

t′
f ′
)′

+
2f ′2 − ff ′′

t′f4
f = 0,

2 Recall that a ‘hauptmodule’ (or ‘Hauptmodul’ if one retains the German spelling) is a modular function t giving

an isomorphism between H/Γ and P1(C) if the former has genus zero.
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It follows that the function y(t) defined parametrically by the equation y(t(z)) = f(z) (which of
course can only hold locally, since t(z) is Γ-invariant and f(z) is not) satisfies the second-order
linear differential equations

(A(t) y′(t))′ +B(t) y(t) = 0, (20)

or Ay′′ +A′y′ +By = 0. This proves the theorem in the case (k, `) = (1, 0).
Now suppose that f is a twisted modular form of bi-weight (0, 1), i.e. f satisfies the

transformation equation f((az + b)/(cz + d)) = (cσϕ(z) + dσ) f(z) for
(
a b
c d

)
∈ Γ. From this

equation, and from (1) and its derivative (the second equation in (9)), we find by further
differentiating the transformation equations

ϕ′′
(
az + b

cz + d

)
=

(cz + d)4

(cσϕ(z) + dσ)2
ϕ′′(z) +

2c(cz + d)3

(cσϕ(z) + dσ)2
ϕ′(z)

− 2cσ(cz + d)4

(cσϕ(z) + dσ)3
ϕ′(z)2,

f ′
(
az + b

cz + d

)
= (cz + d)2(cσϕ(z) + dσ) f ′(z) + cσ(cz + d)2ϕ′(z)f(z),

f ′′
(
az + b

cz + d

)
= (cz + d)4(cσϕ(z) + dσ) f ′′(z)

+ [2c(cz + d)3(cσϕ(z) + dσ) + 2cσ(cz + d)4ϕ′(z)] f ′(z)

+ [cσ(cz + d)4ϕ′′(z) + 2ccσ(cz + d)3ϕ′(z)] f(z).

From these equations it follows that the combination (2f ′2 − ff ′′)ϕ′ + ff ′ϕ′′ is a modular form
of weight six. But we have already seen that t′ and ϕ′ are twisted modular of bi-weights (2, 0)
and (2,−2), respectively. It follows that

t′(z)

ϕ′(z)f(z)2
= A(t(z)),

(2f ′(z)2 − f(z)f ′′(z))ϕ′(z) + f(z)f ′(z)ϕ′′(z)

t′(z)ϕ′(z)2f(z)4
= B(t(z)) (21)

for some algebraic (respectively rational if t is a hauptmodule) functions A(t) and B(t), and
since by direct calculation we have

1

t′

(
t′

ϕ′f2

1

t′
f ′
)′

+
(2f ′2 − ff ′′)ϕ′ − ff ′ϕ′′

t′ϕ′2f4
f = 0

in this case, we deduce that f satisfies a second-order linear differential equation of the same

form (20) as before. 2

Remark. The two weight six modular forms 2f ′2 − ff ′′ (for f ∈M1,0(Γ)) and (2f ′2 − ff ′′)ϕ′ +
ff ′ϕ′′ (for f ∈ M0,1(Γ)) used above, which are easily checked to be holomorphic at the cusps,

are special cases of the classical Rankin–Cohen bracket and of twisted versions of it, respectively.

Without going into details, we mention that the twisted Rankin–Cohen brackets of two twisted

modular forms fi ∈ Mki,`i(Γ, ϕ) (i = 1, 2) can be defined as the product of the usual Rankin–

Cohen brackets of ϕ′`1/2f1 and ϕ′`2/2f2 (which by example (i) of § 2 are ordinary modular forms

of weight k1 + `1 and k2 + `2 on Γ) with a suitable power of ϕ′.
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Part II. Modular embeddings via differential equations

In § 4 we have seen abstractly how classical or twisted modular forms give rise to differential
equations. In this Part II we show conversely, in a specific example, how to obtain from these
differential equations the Hilbert modular embedding ϕ. The example that we will consider in
detail is D = 17, for which the differential equations needed were computed in [BM10a]. In § 6
we will sketch how these were obtained, referring to that paper for the full details. In § 7 we
discuss the arithmetical properties of the solutions of these differential equations and compute
the Fourier expansions of the corresponding modular forms at all cusps. We turn Theorem 3.2
into a concrete description of the ring of modular forms (Theorem 5.5 for the general result and
Propositions 7.1 and 7.2 for the special case D = 17), since the corresponding local invariants
can be computed for Teichmüller curves. In § 8 we will show how to use these solutions to obtain
an explicit embedding of the Teichmüller curve in the Hilbert modular surface. The introductory
§ 5 provides the necessary background on Hilbert modular surfaces and Teichmüller curves in
genus two.

5. Curves on Hilbert modular surfaces

As we have already said, there are two basic examples of the situation described in § 1: modular
curves and Teichmüller curves. In this section we describe both of these, the first relatively briefly
since it is well known and the second in more detail. We begin with a preliminary subsection
specifying more precisely the Hilbert modular surfaces that will be used in this paper. The main
new result in this section is the dimension formula Theorem 5.5.

5.1 Hilbert modular groups and Hilbert modular surfaces
As before, we denote by K be a real quadratic field, together with a fixed embedding K ⊂ R,
and denote by σ both the Galois conjugation and the second embedding of K into R. In § 1 we
briefly defined Hilbert modular groups and Hilbert modular surfaces, denoting them generically
by ΓK and H2/ΓK . Now we want to be more specific. Our general reference are Hirzebruch’s
seminal paper [Hir73] and the book [vdG87] by van der Geer.

Usually when one speaks of ‘the’ Hilbert modular group forK one means the group SL(2,OD),
where D is the discriminant of an order O = OD ⊂ K. However, since we want principally
polarized abelian surfaces, we need to work instead with the modified Hilbert modular group

SL(O∨ ⊕ O) =

(
O O∨

(O∨)−1 O

)
∩ SL(2,K),

where O∨ denotes the set of x ∈ K for which xy has integral trace for all y ∈ O. One has
O∨ = d−1, where in the case of quadratic fields the ideal d, called the different of K, is simply
the principal ideal (

√
D) =

√
DO. Note that the two groups SL(2,O) and SL(O∨ ⊕ O) are

conjugate in GL(2,K) by the action of the diagonal matrix ∆ =
(1 0

0
√
D

)
, and in particular are

isomorphic as abstract groups. But the action of ∆ interchanges the upper and lower half-planes
in the second factor (since the Hilbert modular group acts on the second factor via its Galois
conjugates and the Galois conjugate of the determinant of ∆ is negative), so the quotient is the
Hilbert modular surface

XD = H2/SL(O∨ ⊕ O),

which is isomorphic to X−O = H×H−/SL(2,O) and not in general isomorphic to the ‘standard’
Hilbert modular surface XO = H2/SL(2,O). (They do not even necessarily have the same Euler
characteristic.) If O contains a unit ε of negative norm, which happens, for instance, when D is
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prime, then d is principal in the narrow sense and the varieties XO and X−O are isomorphic via
(z1, z2) 7→ (εz1, ε

σz2). To a point z = (z1, z2) ∈ H2 we associate the polarized abelian surface
Az = C2/Lz, where Lz ⊂ C2 is the lattice

Lz = {(az1 + b, aσz2 + bσ) | a ∈ O∨, b ∈ O}, (22)

with the action of O on Az induced from the action λ(v1, v2) = (λv1, λ
σv2) of O on C2 and with

the polarization induced from the antisymmetric pairing

〈 (a, b), (a′, b′) 〉 = trK/Q(ab′ − a′b) (a, a′ ∈ (O∨)−1, b, b′ ∈ O). (23)

This pairing is unimodular and the polarization is principal, which is why that case is of special
interest.

We observe that the action of O on Az gives a canonical splitting of the two-dimensional
space of holomorphic one-forms on A into two one-dimensional eigenspaces, generated by the
differential forms ω = dv1 and ω̃ = dv2, which we will call the first and second eigendifferential,
respectively. If Az is the Jacobian of a curve C of genus two, then by the canonical identification
of the spaces of holomorphic one-forms on C and on Az we obtain corresponding eigendifferentials
on C. These will be used in the definition of Teichmüller curves in § 5.3.

Since the isomorphism class of Az depends only on the image of z in XD, and since polarized
abelian surfaces are parametrized by points in the quotient of the Siegel upper half-space H2 by
Sp(4,Z) we get an embedding of the Hilbert modular surface XD into the quotient H2/Sp(4,Z),
a Siegel modular embedding. Explicitly, let ψ be the map from H2 to H2 given by

ψ : z = (z1, z2) 7→ B

(
z1 0
0 z2

)
BT (24)

where, for some Z-basis (ω1, ω2) of O we let

B =

(
ω1 ωσ1
ω2 ωσ2

)
and A = B−1. (25)

We define a homomorphism Ψ : SL(O∨ ⊕ O) → Sp(4,Z) by

Ψ :

(
a b
c d

)
7→
(
BT 0
0 A

)(
â b̂

ĉ d̂

)(
AT 0
0 B

)
, (26)

where â for a ∈ K denotes the diagonal matrix diag(a, aσ). Then the map ψ is equivariant with
respect to the actions of SL(O∨ ⊕ O) on H2 and of Ψ(SL(O∨ ⊕ O)) on H2, so it induces a map,
also denoted by ψ, on the level of quotient spaces.

Remark on notation. We will use the letters ψ and Ψ for Siegel modular embeddings and ϕ and Φ
for Hilbert modular embeddings. The capital letter will denote the map on the level of modular
groups and the small letter the map on the level of symmetric spaces or quotient spaces.

More generally, for any invertible O-ideal a the trace pairing (23) on the lattice a∨ ⊕ a is
unimodular and, consequently, the abelian surface Lz,a, defined as in (22) with O replaced by a,
is principally polarized. This implies that the Hilbert modular surfaces

XD,a = H/SL(a∨⊕ a),

where

SL(a∨⊕ a) =

(
O a∨(a)

−1

a(a∨)−1 O

)
∩ SL(2,K), (27)
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also parametrize principally polarized abelian varieties with real multiplication by O. The only
difference is that now the cusp at ∞ of XD,a is in general a different one than the cusp at ∞
for XD. We will use these variants XD,a when we discuss cusps of Hilbert modular surface in § 10.
If we construct B using some Z-basis (ω1, ω2) of a, then (24) defines a map ψ that is equivariant
with respect to a homomorphism

Ψ : SL(a∨⊕ a) → Sp(4,Z) (28)

given by the same definition (25). Hence, the pair (ψ,Ψ) defines a Siegel modular embedding
of XD,a.

5.2 Modular curves
We already defined the modular curves in § 1 as the quotients of H by subgroups of SL(2,R) of
the form ΓA = {γ ∈ ΓK | Aγ = γσA} where A is ‘a suitable element’ of GL(2,K), embedded into
appropriate Hilbert modular surfaces via z 7→ (z,Az). Here ‘suitable’ means that the adjoint of

A equals its Galois conjugate, so that A =
(
λσ −b

√
D

a
√
D λ

)
for some (a, b, λ) ∈ Q × Q ×K, which

after multiplying A by a suitable scalar in Q× (which does not change the definition of ΓA)
we can assume belongs to Z × Z × OK . The corresponding embedded curve in H2 is defined as
az1z2 + νσz1 + νz2 + b = 0, where ν = λ/

√
D ∈ O∨ = d−1, and the union of these curves (or

rather, of their images in the Hilbert modular surface) when A ranges over all matrices as above
with given determinant N ∈ N is denoted by TN . These curves TN were studied in detail (for the
Hilbert modular surface XO) in [HZ76] and [HZ77]. We recall a few results that we will use. The
curve TN is non-empty if and only if N is congruent modulo D to the norm of an element of O,
and is non-compact (i.e. passes through the cusps) if and only if N is the norm of an integral
ideal a of K, in which case each of its components is non-compact. It is not in general irreducible,
for three reasons. First, we have TN =

⋃
d2|N FN/d2 , where FN is defined like TN but with the

additional requirement that (a, b, ν) is primitive in the lattice Z×Z×d−1. Second, the FN are in
general not irreducible either, but decompose as

⋃
α FN (α), where α ranges over the elements of

d−1/O with N(α) ≡ N/D (mod 1) and FN (α) is defined by requiring ν ≡ α (mod O) (see [Zag75,
p. 4, Remark 1]). Finally, even the FN (α) need not be irreducible. (For instance, if D = p is
prime and p2 | N , then the two Legendre symbols (a/p) and (b/p) cannot both vanish or have
opposite values, so FN = FN (0) has two components distinguished by the invariant ε ∈ {±1}
defined by (a/p) = ε or (b/p) = ε; cf. [Fra77].) However, if N is ‘admissible’ in the sense of the
proposition on [HZ77, p. 57] (i.e. N is the norm of a primitive ideal in the principal genus), then
that proposition says that each FN (α) is irreducible, as one shows by counting the number of
cusps of each component separately and of the whole curve FN .

The same results apply to the curves in X−O defined (and denoted) in the same way but
with the determinant of A now being −N rather than N . Using the identification (z1, z2) 7→
(
√
Dz1,−

√
Dz2) of X−O with XD, we can consider these as curves in XD, the defining equation

now being

ADz1z2 + λσz1 + λz2 +B = 0 (A,B ∈ Z, λ ∈ O, ABD − λλσ = N). (29)

A special union of these curves will be play a role a in characterization of Teichmüller curves
below. In the moduli space of principally polarized abelian surfaces A2 we denote by P the product
locus (also called reducible locus), i.e. the locus of abelian varieties that split, as polarized abelian
varieties, into a product of elliptic curves. The Torelli map gives an isomorphism

t : M2 → A2rP.
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The intersection of P with the Hilbert modular surface XD will be denoted by PD. It is a union
of modular curves, as described in the following proposition.

Proposition 5.1. The decomposition into irreducible components of PD is given by

PD =
⋃

ν∈d−1, ν�0, Tr(ν)=1

PD,ν =
⋃

r≡D (mod 2),|r|<2
√
D

PD,(r+
√
D)/2

√
D,

where PD,ν is the image in XD of the curve (ν, νσ)H ⊂ H2 .

Proof. This is essentially [McM07, Corollary 3.5], which states that

PD =
⋃

N,r∈Z,N>0,D=r2+4N

TN

(
r +
√
D

2
√
D

)
. (30)

Since each N occurring is admissible (it is the norm of the primitive principal ideal generated
by (r +

√
D)/2), we have that TN (ν) = FN (ν) is irreducible for each ν = (r +

√
D)/2

√
D and

hence coincides with its subcurve PD,ν . 2

We would like to say a few words to explain where the equation D = r2 + 4N in (30) comes
from. A point of PD corresponds to a product E×E′ of elliptic curves having real multiplication
by O, i.e. for which there is an endomorphism Φ =

(
a λ′
λ b

)
of E × E′ satisfying a quadratic

equation of discriminant D over Z. Since for generic points the elliptic curves E and E′ do not
have complex multiplication, we have a ∈ End(E) = Z, b ∈ End(E′) = Z, and λλ′ = λ′λ = N with
N = deg λ ∈ N and hence Φ2− (a+b)Φ+(ab−N) = 0, D = (a+b)2−4(ab−N) = (a−b)2 +4N .
We should also mention that the statement PD ⊆

⋃
r2+4N=D TN is just the special case D′ = 1

of the general statement that the intersection of two Humbert surfaces HD and HD′ in the
moduli space A2 = H2/Sp(4,Z) is contained in the union of TN with DD′ = r2 + 4N for some
r ∈ Z, N ∈ N. This statement is well known, and is given implicitly in [vdG87, p. 215, proof
of Proposition XI.2.8], but since we could not find a convenient reference and since the proof is
easy, we give it here. We recall (cf. [vdG87, ch. IX]) that the Humbert surface HD is defined as
the image in A2 of the union of the curves{(

τ1 τ2

τ2 τ3

)
∈ H2

∣∣∣∣ aτ1 + bτ2 + cτ3 + d(τ2
2 − τ1τ3) + e = 0

}
(31)

with (a, b, c, d, e) ∈ Z5, b2 − 4ac − 4de = D. If D is a fundamental discriminant, then HD is
irreducible and hence can be given by any one of the equations in (31). The locus of products
of elliptic curves in A2 is H1, because the standard embedding (H/SL2(Z))2

→ H2/Sp4(Z) is
given by the equation τ2 = 0 in H2, which has the form (31) with (a, b, c, d, e) = (0, 1, 0, 0, 0),
b2 − 4ac − 4de = 1. The Hilbert modular surface XD can be identified with HD, because if we
write N(xω1 + yω2) = Ax2 + Bxy + Cy2 (A,B,C ∈ Z, B2 − 4AC = D), then the map (24) is
given by (

τ1 τ2

τ2 τ3

)
=

(
ω2

1z1 + ωσ1
2z2 ω1ω2z1 + ωσ1ω

σ
2 z2

ω1ω2z1 + ωσ1ω
σ
2 z2 ω2

2z1 + ωσ2
2z2

)
, (32)

which satisfies an equation of the form (31) with (a, b, c, d, e) = (C,−B,A, 0, 0), b2−4ac−4de=D.
In general, to compute the intersection HD ∩HD′ we substitute the expression in (32) into the
an equation of the form (31) with b2 − 4ac− 4de = D′. This gives the equation

−dDz1z2 + (aω2
1 + bω1ω2 + cω2

2)z1 + (aω2
1 + bω1ω2 + cω2

2)σz2 + e = 0,
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which has the form (29) with

N = −deD −N(aω2
1 + bω1ω2 + cω2

2) =
DD′ − (2Aa+Bb+ 2Cc)2

4

as asserted. In the special case D′ = 1, we recover the equation D = r2 + 4N and also see that
we are on the component FN ((r +

√
D)/2

√
D) of FN , as claimed in (30), since it is easily seen

that aω2
1 + bω1ω2 + cω2

2 ≡ (r +
√
D)/2 (mod d).

5.3 Teichmüller curves and Veech groups
A Teichmüller curve is an irreducible algebraic curve W in the moduli space Mg of curves of
genus g which is a totally geodesic submanifold for the Teichmüller metric. Teichmüller curves are
generated by a pair consisting of a curve C and a non-zero holomorphic one-form ω ∈H1(C,Ω1

C).
Such pairs are called flat surfaces. An introductory text to flat surfaces is the survey [Zor06], for
example. On the set of flat surfaces there is an action of GL(2,R) and Teichmüller curves are the
projection to Mg of the orbit GL(2,R) · (C,ω). The uniformizing group Γ such that W = H/Γ,
called a Veech group, can be read off from the flat geometry of the pair (C,ω). Let KΓ be the
trace field of Γ and r = [KΓ : Q]. Teichmüller curves with r = g are called algebraically primitive.
Under the Torelli map, algebraically primitive Teichmüller curves map to the locus of abelian
varieties with real multiplication by K (see [Möl06a, Theorem 2.6]). In particular for g = 2 the
universal covering of an algebraically primitive Teichmüller curve defines a map

(ϕ0, ϕ) : H → H2

equivariant with respect to the action of the Veech group (acting on the left in the obvious
way and on the right via its embedding into SL(2,K) ↪→ SL(2,R)2 ). The geodesic definition of
Teichmüller curves implies that ϕ0 is a Möbius transformation. Moreover we may suppose ϕ0 = id
using appropriate choices in the universal covering map. Consequently, Teichmüller curves define
Hilbert modular embeddings in the above sense [Möl06a, § 3].

The space of flat surfaces (C,ω) is naturally stratified by the number and multiplicities of
the zeros of ω. In particular, for g = 2 we have two strata ΩM2(1, 1) and ΩM2(2), corresponding
to ω having two distinct zeros or one double zero, respectively. For g = 2 we have the following
classification for algebraically primitive Teichmüller curves [McM03, McM05, Möl06b, McM06a].

Theorem 5.2. There is only one Teichmüller curve in the stratum ΩM2(1, 1), called the decagon
curve. It lies in the Hilbert modular surface X5.

The stratum ΩM2(2) contains infinitely many algebraically primitive Teichmüller curves WD,
each lying in a unique Hilbert modular surface. For each non-square discriminant D > 5 the
Hilbert modular surface XD contains exactly one Teichmüller curve if D 6≡ 1 (mod 8) and
exactly two if D ≡ 1 (mod 8).

The union WD of the Teichmüller curves in XD other than the decagon curve is the locus in
M2 of curves whose Jacobians have real multiplication by OD and such that the eigendifferential
on which OD acts via the embedding K ⊂ R has a double zero.

The two components in the case D ≡ 1 (mod 8) are distinguished by a spin invariant δ ∈ {0, 1}
and will be denoted by W δ

D = H/ΓδD, so that WD = W 0
D ∪W 1

D in this case. The definition of the
spin invariant is given in [McM05] and will not be repeated here, but in § 9.2 we will be able to
give a new and equivalent definition in terms of our description of Teichmüller curves via theta
functions.
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The Teichmüller curves in ΩM2(2) admit the following characterization, which is an
adaptation of the criterion in [Möl06a, Theorem 5.3]. Let Fi (i = 1 or 2) be the two natural
foliations of a Hilbert modular surface XD for which the ith coordinate is locally constant in the
uniformization.

Theorem 5.3. An algebraic curve W ⊂ XD is a union of Teichmüller curves if and only if:

(i) W is disjoint from the reducible locus; and

(ii) W is everywhere transversal to F1.

Sketch of proof. If W is a Teichmüller curve, then conditions (i) and (ii) hold by definition and
by the fact that we can use the first coordinate as a parameter, respectively.

For the converse recall that over a Hilbert modular surface the relative first cohomology with
coefficients in K splits into two eigenspaces, two local systems over K that we denote by L and
L̃ and that are interchanged by the Galois group of K. Consequently, over any curve in a Hilbert
modular surface the cohomology splits in the same way.

Condition (i) is equivalent to W being in the image of the locus of Jacobians with real
multiplication under the Torelli map. To apply the criterion of [Möl06a, Theorem 5.3], we need
to show that the Kodaira–Spencer map for L or L̃ vanishes nowhere on W . Condition (ii)
implies the non-vanishing of the Kodaira–Spencer map for the corresponding L in the interior
of XD, while at the cusps non-vanishing is automatic, by a local calculation as in [BM10b,
Proposition 2.2]. 2

One can generalize this setup using algebraic curves in Ag that are totally geodesic for the
Kobayashi metric. See [MV10] for a characterization of these Kobayashi geodesics.

5.4 Twisted modular forms for WD

The topology of WD and the ratio λ2 are completely determined, combining the work of several
authors. We summarize the results and combine them with Theorem 3.2 to determine the
dimension of the space of twisted modular forms.

Theorem 5.4. For any non-square discriminant D, the fundamental invariants of the curves
WD are as follows.

(i) The orbifold Euler characteristic of WD equals

χ(WD) = −9
2χ(XD), (33)

where XD is the Hilbert modular surface H2/SL(O∨D ⊕ OD).

(ii) The cusps of WD are in bijection with standard quadratic forms of discriminant D (see
§ 10).

(iii) For D = 5, the curve WD has two elliptic fixed points, one of order two and one of order
five. For D 6= 5, there are e2(D) elliptic fixed points of order two on WD and no other fixed
points, where e2(D) is a sum of class numbers of imaginary quadratic orders [Muk14, Table 1].
In particular, for D ≡ 1 mod 8, there are e2(D) = 1

2h(−4D) elliptic fixed points of order two.

(iv) The curves W 0
D and W 1

D are defined over Q(
√
D) and are Galois conjugate.

(v) The curves W 0
D and W 1

D are homeomorphic.

(vi) For a torsion-free subgroup of the Veech group of any component W i
D of WD the ratio

λ2 of the degrees of the line bundles L and L̃ equals 1
3 .
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Proof. Statement (i) is the main result of [Bai07, Theorem 1.1]. Statement (ii) is implicit in
[McM05] and explicit in [Bai07, Theorem 8.7(5)]. Statement (iii) is the main result of [Muk14].
Statement (iv) is [BM10a, Theorem 3.3(b)] and statement (v) follows directly. Statement (vi)
was shown in [Bai07, Corollary 12.4], and with a different proof in [BM10a, Corollary 2.4]. 2

We recall that the value of χ(XD) is known, and is given for a fundamental discriminant D
by

χ(XD) = 2 ζK(−1) =
1

30

∑
D=b2+4ac

a (34)

(see [Hir73]), and in general by a similar explicit formula.
Every curve of genus two is hyperelliptic and consequently, −I is in the Veech group for

every Teichmüller curve in genus two. The dimension of the space of twisted modular forms can
now be deduced from Theorem 3.2.

Theorem 5.5. For D > 5 the space of twisted modular forms Mk,` on WD is zero for k+ ` odd.
For k + ` even and D 6≡ 1 mod 8

dimMk,`(Γ) = −1

2

(
k +

`

3

)
χ(WD)−

{
−k + `

4

}
e2(D),

where {x} is the fractional part of x, and for each of the two components for D ≡ 1 mod 8

dimMk,`(Γ) = −1

4

(
k +

`

3

)
χ(WD)− 1

4

{
−k + `

4

}
e2(D),

where χ(WD) and e2(D) is given in Theorem 5.4.

Proof. The first statement holds because the Veech group contains −I. Given the general
dimension calculation in Theorem 3.2 and the Euler characteristic in (33) it remains to show
that for all the fixed points x of order two the local contribution bx(k, `) is {(−k + `)/4}, not
{(−k − `)/4} for some of them.

Suppose that M =
(
a b
c d

)
∈ SL(O∨D ⊕ OD) is of order 4 and stabilizes z = (z1, z2) ∈ H2.

Then multiplication by the diagonal matrix with diagonal entries ((cz1 + d)−1, (cσz2 + dσ)−1)
defines a linear map J of C2 that stabilizes the lattice Lz from (22) (i.e. the corresponding
abelian surface has complex multiplication by the ring generated by OD and J). To show that
bz(k, `) = {(−k + `)/4} is hence equivalent to showing that J−1 (or J) has two eigenspaces of
dimension one, rather than a two-dimensional eigenspace.

Mukamel [Muk14] studies, along with his classification of fixed points of Teichmüller curves,
the locus M2(D8) of genus two surfaces with automorphism group containing the dihedral group
of order eight. He shows that all of the fixed points of order two on the Teichmüller curves WD

lie on the intersection (in A2) of the Hilbert modular surface XD with M2(D8). The family of
curves over M2(D8) is given by the hyperelliptic equation

Y 2 = (X2 − 1)(X2 + aX + 1), a ∈ C\{±2}.

The automorphism of order four is J(X,Y ) = (1/X, iY/X3) and the eigendifferentials are
dX/Y +XdX/Y and dX/Y −XdX/Y , which lie in the eigenspace for +1 and for −1, respectively.
This proves the claim on the J-eigenspaces. 2
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5.5 Gauss–Manin connection and Picard–Fuchs equation
Here we explain why Teichmüller curves give rise to twisted modular forms and how to obtain
the differential equations we attached to them in § 4 geometrically. For the moment, let W be
any curve in M2 such that the corresponding family of Jacobians has real multiplication by an
order in K. Then the vector bundle with fiber H1(C,C) over the point [C] ∈M2 splits (over R,
and in fact over K), as in the proof of Theorem 5.3, into rank-two subbundles L and L̃. This
vector bundle also comes with a flat (Gauss–Manin) connection ∇. The bundles L and L̃ come

with holomorphic subbundles L and L̃, respectively, whose fibers over X are the holomorphic
one-forms on C that are eigenforms for the real multiplication. The bundles L and L̃ naturally
extend over the cusps W\W , where the fibers are stable forms. We denote them by the same
letters. (We recall that a form is called stable if in the limit as t → t0, where the genus two curve
parametrized by t 6= t0 degenerates to a curve of genus zero with double points, the corresponding
differential on the normalization of this curve has simple poles with opposite residues at the points
that get identified.)

Suppose for simplicity that W is a rational curve with parameter t. If we choose sections
ω(t) of L and ω̃(t) of L̃, then {ω(t),∇(∂/∂t)ω(t),∇(∂/∂t)2ω(t)} are linearly dependent in
cohomology. Concretely, this means that if L is the corresponding second-order differential linear
operator, a quadratic polynomial in ∂/∂t, then the image of ω(t) under L is exact. Similarly,
{ω̃(t),∇(∂/∂t)ω̃(t),∇(∂/∂t)2ω̃(t)} are linearly dependent and give a second-order differential
operator L̃ that makes ω̃(t) exact. It follows that the periods, defined as the integral of ω(t)
and ω̃(t) over any fixed element of H1(C,C) are annihilated by L and L̃, respectively. (Here
‘fixed’ means that we use the property of being a local system to identify the homology groups
H1(Ct,C) = H1(Ct,Z) ⊗ C with each other locally.) These are the well-known Picard–Fuchs
differential equations satisfied by periods.

Now assume that W is a Teichmüller curve in M2 or, more generally, with quadratic trace
field. We show that the periods just described are (twisted) modular forms of weight (1, 0) and
(0, 1), respectively, with respect to a modular embedding ϕ as defined in § 1. More precisely we
have the following correspondence.

Proposition 5.6. Suppose that W is a Teichmüller curve with uniformization H/Γ as above,
and let L and L̃ be the rank-two differential operators associated with sections ω(t) and ω̃(t)

of L and L̃ as above. Then there is a rank-one submodule (in the rank-two OW (W )-module
of solutions of L) consisting of holomorphic modular forms of weight (1, 0), and a rank-one
submodule (in the rank-two OW (W )-module of solutions of L̃) consisting of twisted holomorphic
modular forms of weight (0, 1). If ω(t) (respectively ω̃(t)) extends to a stable form over a cusp
of W , then the corresponding (twisted) modular form is holomorphic at this cusp.

This defines a 1:1 correspondence between holomorphic sections of L overW and holomorphic
twisted modular forms on Γ of weight (1, 0), and a 1 : 1 correspondence between holomorphic

sections of L̃ over W and holomorphic twisted modular forms on Γ of weight (0, 1).

Proof. In [Möl06a] it was shown that there exists an oriented basis β, α of the kernel of ω̃
in H1(C,R) such that the monodromy representation of π1(W ) = Γ on that subspace is the
identity, and similarly a basis βσ, ασ of the kernel of ω with respect to which the monodromy
representation is given by the Galois conjugate group Γσ.

Consequently, the period map z 7→
∫
β ω(z)/

∫
α ω(z) is equivariant with Γ acting on domain

and range, hence the identity after an appropriate conjugation by a Möbius transformation.
Moreover, the period map z 7→

∫
βσ ω̃(z)/

∫
ασ ω̃(z) is equivariant with Γ acting on the domain
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and Γσ on the range. Hence, this map agrees with ϕ in the definition of the modular embedding
by the uniqueness of modular embeddings.

As said above, the periods f(z) =
∫
α ω(z) and f1(z) =

∫
β ω(z) = zf(z) span the space of

solutions of L (pulled back to H via t). The statement above about the monodromy implies that
for all γ =

(
a b
c d

)
∈ Γ(
f1(γz)
f(γz)

)
= γ

(
f1(z)
f(z)

)
=

(
af1(z) + bf(z)
cf1(z) + df(z)

)
=

(
(az + b)f(z)
(cz + d)f(z)

)
.

The second row implies that f is a twisted modular form for Γ of weight (1, 0). Similarly, the

periods f̃(z) =
∫
ασ ω̃(z) and f1(z) =

∫
βσ ω̃(z) = ϕ(z)f̃(z) span the space of solutions of L̃ and

we have (
f̃1(γz)

f̃(γz)

)
= γσ

(
f̃1(z)

f̃(z)

)
=

(
aσf̃1(z) + bσf̃(z)

cσf̃1(z) + dσf̃(z)

)
=

(
(aσϕ(z) + bσ)f̃(z)

(cσϕ(z) + dσ)f̃(z)

)
.

Again, the second row implies that f̃ is a twisted modular form for Γ of weight (0, 1).

Holomorphicity of f and f̃ in the interior of H is obvious by the definition of a period. To
show that they are holomorphic at the cusps, we may assume without loss of generality that
z0 =∞ and t0 = 0. There, it follows from the definition of the monodromy representation that α
(respectively ασ) is characterized in 〈ω̃〉⊥ (respectively in 〈ω〉⊥) as the elements invariant under
the local monodromy group. The period of a stable form along such a cycle is finite.

To establish the last statement of the proposition, we just need to assign to every holomorphic
twisted modular form of weight (1, 0) (respectively weight (0, 1)) a section of L (respectively of L̃).
This is well known in the untwisted case and was done in both the untwisted and twisted cases
in § 4 of Part I. 2

We end with a remark on Galois conjugation and spin. We defined Γ to be monodromy group
of the local system L. Then, of course, the monodromy group of the Galois conjugate L̃ is Γσ.
We will see in the next section in an example, and at the end of the paper in general, that the
solutions y and ỹ also have coefficients in the field K. However, the Galois conjugate solution yσ is
neither equal to ỹ nor to any other solution of L̃. In fact, yσ is naturally a solution of a differential
operator associated with the Galois conjugate Teichmüller curve W σ. For D ≡ 1 mod 8 this is the
curve with the other spin invariant (see Theorem 5.4(iv)). For D 6≡ 1 mod 8 this Galois conjugate
curve is isomorphic to the original curve by McMullen’s classification recalled in Theorem 5.2.
The equation of this curve for D = 13 is given explicitly in [BM10a].

6. Example: the curve W 1
17 and its associated differential equations

Our running example, from now until the end of Part II, will be the Teichmüller curve W 1
17

on the Hilbert modular surface X17. In this section we gather the known results for this curve,
computing the Veech group and summarizing the construction from [BM10a] to compute the
equation of the universal family and the corresponding Picard–Fuchs differential equations.

6.1 The Veech group for D = 17 and spin 1
For small values of D the Veech groups ΓδD = Γ(W δ

D) can be calculated using the algorithm in
[McM03]. This is sufficient for our purposes, but we emphasize that a general algorithm
to compute the Veech group for any Veech surface has been developed and implemented by
Mukamel [Muk12]. We describe this in detail for the case D = 17, δ = 1, i.e. for the Teichmüller
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(a) (b)

Figure 1. (a) Flat surface generating the Teichmüller curve W17 when α = (1 +
√

17)/2. The
square is the double zero of ω, the black points are the remaining five Weierstrass points. (b) A
fundamental domain for Γ.

curve of non-trivial spin. McMullen’s algorithm gives a subgroup of SL(2,OD), so the group

that we will get (which we will denote simply by Γ, or by Γ17 when needed for clarity, with

quotient W = H/Γ) is actually the conjugate ∆Γ1
17∆−1 of Γ1

17 by ∆ =
(1 0

0
√
D

)
, and for the same

reason the function ϕ used to make the modular embedding will go from H to H− rather than

from H to H. Later, when we use this modular embedding explicitly to compare the twisted

modular forms on W with standard Hilbert modular forms for Q(
√

17), we will conjugate back

to make the comparison easier.

We denote by α = (1 +
√

17)/2 the standard generator of O = O17 over Z, and for ease of

reading will sometimes use the abbreviated notation [m,n] for m + nα ∈ O. The group Γ can

be embedded into SL(2,R) by the standard embedding of O into R and then acts discretely.

(Note that the other embedding of O into R would lead to a non-discrete subgroup of SL(2,R) .)

A fundamental domain for this action is shown in Figure 1(b), while Figure 1(a) shows the

explicit ‘L-shaped region’ needed to apply the algorithm and obtain the fundamental domain.

The group Γ has three cusps, at z = ∞, 1, and α/2, and an elliptic fixed point of order two

at z = i, where z is the coordinate in H. The stabilizers of the cusps are the infinite cyclic groups

generated by the parabolic elements

M∞ =

(
1 α
0 1

)
, M1 =

(
−2α− 2 2α+ 3
−2α− 3 2α+ 4

)
, Mα/2 =

(
−2α− 3 3α+ 4
−2α− 2 2α+ 5

)
,

and the stabilizer of i is generated by the element Mi =
(

0 1
−1 0

)
. The presentation of the group Γ

given by McMullen’s algorithm is then

Γ =
〈
M∞,Mi,M1,Mα/2 |M2

i = −1,M∞MiM1Mα/2 = 1
〉
.

It will be useful in the following to deal not only with the Fuchsian group Γ but also with a

certain index-four subgroup Π of it, already mentioned in § 3. This group is more convenient for

purposes of calculation because it is free and also because the universal genus two curve over

H/Π has a stable model. We want that Π̃ = Π×{±1} has index two in Γ. (This already implies

that Π has no torsion and is thus free.) This group is not unique. We fix the choice

Π = 〈M∞,Mα/2,M
2
1 ,−M−1

1 M∞M1〉.
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The group Π̃ = Π× {±1} is the kernel of the homomorphism from Γ → {±1} sending M∞ and
Mα/2 to 1 and Mi and M1 to −1.

Both curves H/Γ and H/Π have genus zero, so there are modular functions s(z) and t(z)
on Γ and Π giving isomorphism between their compactifications and P1(C) (hauptmodules). We
can normalize them so that the involution induced by Mi : z 7→ −1/z corresponds to t 7→ 1/t
and that the three cusps of H/Π are at 0, 1, and ∞. Then the quotient map t 7→ s is given by

s = − 4κ0 t

(t− 1)2
where κ0 =

−895 + 217
√

17

256
(35)

and the values of s and t at the cusps and elliptic fixed points are given, according to the
calculations in [BM10a] (where a different parameter on H/Π was used), by the table

z ∞ 0 1 α/2 −2/α i

Π t = t(z) 0 ∞ 1 λ−1 λ −1

Γ s = s(z) 0 0 ∞ 1 1 κ0

(36)

where

λ = t

(
− 2

α

)
=

31− 7
√

17

2
, κ0 = s(i) = −(λ− 1)2

4λ
. (37)

For later use we emphasize that both t and s are local parameters of the Teichmüller curve at
the cusp z =∞. The whole situation is summarized by the following diagram.

WΠ = H/Π t //

2:1
��

P1(C)

s=− 4κ0t

(1−t)2
��

W = H/Γ s // P1(C)

6.2 The universal family over W
The modular curve W = H/Γ parametrizes a family of genus two curves with real multiplication
by O = Z + Zα on their Jacobians. This family, and its associated Picard–Fuchs differential
equations, was determined explicitly in [BM10a]. In this subsection we review these results, and
also give somewhat simpler equations by making suitable changes of coordinates. We remark that
meanwhile equations of more Teichmüller curves have been computed by a different method by
Kumar and Mukamel [KM14].

The explicit equation in [BM10a] was actually given for the family over the double cover
H/Π of W , with the parameter t, and has the form

Y 2 = P5(X, t) = (X + (At+B)) × (X + (Bt+A))

× (X3 + C(t+ 1)X2 + (D(t+ 1)2 + Et)X + F (t+ 1)3 +Gt(t+ 1)), (38)

with coefficients A, . . . , G given (with our above notation [m,n] = m+ nα) by

A = 5 [2, 1], B = −2 [5, 3], C = [3, 1], D = −1
4 [827, 529],

E = 24 · 17 [3, 2], F = −1
2 [4597, 2943], G = 2 · 17 · [271, 173]. (39)

(These coefficients are not quite as bad as they look since they all factor into small prime factors,
e.g. D = −π11

2 /4ε
3 and F = −π14

2 ε
4/2 where ε = 4 +

√
17 is the fundamental unit of Q(

√
17)
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and π2 = (3 +
√

17)/2 one of the prime factors of two.) We explain briefly how this equation is
derived.

We can represent the fiber Ct over t as a hyperelliptic curve Y 2 = P6(X, t), where P6 is a
polynomial of degree six in X whose roots correspond to the Weierstrass points of Ct. From the
action of the subgroup Π ⊂ Γ in the Veech groups on these points (which can be analyzed by
looking at Figure 1(a), in which the Weierstrass points are indicated by black points), we see
that they break up into three orbits of size one and one of size three, with two of the one-element
orbits being interchanged by the symmetry t 7→ t−1. Placing the other one-element orbit, the
singularity of ω, at infinity, we get a new equation of the form Y 2 = P5(X, t) where P5 factors into
two linear and one cubic polynomial, and by degree computations together with the symmetry
under t 7→ t−1 we find that these factors must have the form given in (38) for some constants
A, . . . , G. They are not unique, since we can make a change of variables X 7→ αX+β(t+ 1), but
become unique up to scaling if we assume that the two eigendifferentials ω = dv1 and ω̃ = dv2 are
dX/Y and X dX/Y , respectively. To determine them, we note that at each cusp t = c ∈ {0, 1, λ}
this polynomial must acquire two double roots (the degeneracy of the genus two curve at infinity
cannot consist of just two roots coming together, because the real multiplication forces the
subspace of H1(C;Z) that collapses to be an O-module and hence to have even rank over Z),
so we have P5(X, c) = (X −Xc

0)(X −Xc
1)2(X −Xc

2)2. (The corresponding factorizations at the
two other cusps t = ∞ and λ−1 are then automatic because of the t 7→ t−1 symmetry.) These
conditions do not yet suffice to determine the equation, but there is one further condition at each
cusp. This comes from the fact that a singular curve of the form Y 2 = (X−X0)(X−X1)2(X−X2)2

has genus zero. A parametrization with parameter T is given by X = (X1 − X0)T 2 + X0 and
Y = (X1−X0)5/2T (T 2−1)(T 2−ρ2), where ρ2 = (X2−X0)/(X1−X0) denotes the cross-ratio of
X0, X1, X2 and∞. The differential form dX/Y corresponds under this map to a multiple of the
differential form (1/(T − 1)−1/(T + 1)+ρ−1/(T − ρ)−ρ−1/(T + ρ)) dT on P1 having four simple
poles with residues summing to zero in pairs, and with the ratio of the non-paired residues being
±ρ. But for the cusps of the Teichmüller curves we know a priori that these ratios of residues
must equal the ratio of the top and bottom sides of the L-shaped region as it degenerates. From
the horizontal sides Figure 1(a) we read off the value ρ0 = α. Redrawing this figure decomposed
into cylinders in the direction of slope one (corresponding to the cusp t = 1) and slope α/2
(corresponding to the cusp t = λ by the table in the preceding subsection) we find ρ1 = α/2,
ρλ = (1 +α)/2. This information now suffices to determine all of the unknown coefficients, up to
the ambiguity already mentioned (in particular the second eigendifferential form ω̃ = X dX/Y
automatically has the correct ratio of residues, namely, the Galois conjugates of those for ω, so
that there are no extra restrictions on the coefficients coming from this condition), and carrying
out the calculation we find the values given in (39).

We remark that (38) can be simplified considerably by substituting (1 + t)(1 +X
√

17)/4 for
X, in which case P5(X, t), up to a factor (

√
17(1 + t)/4)5, takes on the much simpler form

F5(X,u) = ((X − 1)2 − [4, 5]u)((X +
√

17)(X + 1)2 − 8u(2X + [9, 5]))

with u = 4ε((1− t)/(1 + t))2 = 4ε/(1− s/κ0). This gives an explicit and relatively simple
equation for the family of genus two curves over the Teichmüller curve H/Γ.

6.3 The Picard–Fuchs equations for W and their solutions
As already discussed in § 3, even though we are considering only the single curve W = H/Γ,
there are two Picard–Fuchs differential equations, corresponding to the variation of the periods
of the two eigendifferentials ω and ω̃ for the action of O on the space of holomorphic differentials
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of the fibers. It will be crucial for our calculations to have both of them, since together they will
tell us explicitly how the Teichmüller curve W is embedded in the Hilbert modular surface X17.

Obtaining the Picard–Fuchs differential equations satisfied by the periods of the two
eigendifferentials ω and ω̃ is straightforward once the equation of the family of curves has been
obtained. One has to find differential operators L and L̃ mapping the one-forms ω and ω̃ to
exact forms. The result, given in [BM10a], is a pair of differential operators of the same form as
in (20), namely

L =
d

dt
A(t)

d

dt
+B(t), L̃ =

d

dt
Ã(t)

d

dt
+ B̃(t), (40)

where A(t) and B(t) are the polynomials given by

A(t) = t (t− 1) (t− λ)(t− λ−1) = t4 − βt3 + βt2 − t,
B(t) = 3

4 (3t2 − (β + γ) t+ γ), (41)

with λ = (31− 7
√

17)/2 as in (37) and β and γ defined by

β = λ+ λ−1 + 1 =
1087− 217

√
17

64
, γ =

27− 5
√

17

4
, (42)

and where Ã(t) and B̃(t) are the rational functions

Ã(t) = A(t)

/(
t2 +

137− 95
√

17

128
t+ 1

)
,

B̃(t) =

(
1

4
t4 +

1113− 399
√

17

512
t3 − 260 375− 69 633

√
17

16 384
t2

−1387− 301
√

17

128
t+

23− 5
√

17

8

)/(
t2 +

137− 95
√

17

128
t+ 1

)2

. (43)

The differential operator L has five singularities, at infinity and at the roots of A(t). The
differential operator L̃ has seven singularities, these five and two more at the poles of Ã, but
these last two are only apparent singularities of the differential equation, i.e. all solutions of the
equation are holomorphic at these points.

The unique solutions in 1 + tC[[t]] of the differential equations Ly = 0 and L̃ỹ = 0 can easily
be calculated recursively. The first few terms are given by

y = 1 +
81− 15

√
17

16
t+

4845− 1155
√

17

64
t2 +

3 200 225− 775 495
√

17

2048
t3 + · · ·

≈ 1 + 1.197 t+ 1.294 t2 + 1.356 t3 + 1.402 t4 + 1.439 t5 + · · ·

ỹ = 1 +
23− 5

√
17

8
t+

5561− 1343
√

17

128
t2 +

452 759− 109 793
√

17

512
t3 + · · ·

≈ 1 + 0.2981 t+ 0.1849 t2 + 0.1384 t3 + 0.1131 t4 + 0.0973 t5 + · · · .
There are also unique power series y1 and ỹ1 without constant term such that y log(t) + y1 and
ỹ log(t)+ ỹ1 are solutions of the same differential equations as y and ỹ, respectively. These series
begin

y1 =
439− 97

√
17

64
t+

563 089− 135 575
√

17

4096
t2 +

200 641 639− 48 642 353
√

17

65 536
t3 + · · ·

≈ 0.6103 t+ 1.001 t2 + 1.283 t3 + 1.504 t4 + 1.687 t5 + · · ·

ỹ1 =
1575− 369

√
17

128
t+

1 749 337− 423 695
√

17

8192
t2 +

1 764 480 419− 427 927 381
√

17

393 216
t3 + · · ·

≈ 0.4185 t+ 0.2927 t2 + 0.2305 t3 + 0.1958 t4 + 0.1748 t5 + · · · .
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We have given the numerical values of the first coefficients of each of these four power series
to emphasize that they are quite small (and the same is true of the first few hundred, which
we have computed). In fact, the coefficients in each case grow like λn, where λ = 1.069 13 . . . is
the number defined by (37), since the radius of convergence is the absolute value of the nearest
singularity t 6= 0, and the singularities are at t = 0, λ−1, 1, λ and ∞. The growth in each case is
quite regular, with the coefficient of tn being asymptotic to a constant times λn/n. It is perhaps
worth mentioning that if we took the Galois conjugates Lσ and L̃σ of the differential operators L
and L̃, which give the Picard–Fuchs equations for the other Teichmüller curve W 0

17 (cf. [BM10a]
or § 9), then the power series y, . . . , ỹ1 would also be replaced by their Galois conjugates and
would look algebraically very similar to those above, but would have completely different real
coefficients and growth, e.g. the expansion of yσ begins

yσ = 1 +
81 + 15

√
17

16
t+

4845 + 1155
√

17

64
t2 +

3 200 225 + 775 495
√

17

2048
t3 + · · ·

≈ 1 + 8.928 t+ 150.11 t2 + 3123.9 t3 + 71 667 t4 + 1 738 907 t5 + · · · ,

now with coefficients growing like (λσ)n/n with λσ = 29.930 86 . . . . The corresponding Fuchsian
group, although isomorphic to Π as an abstract group, is not conjugate to it in SL(2,R), and
the quotients of the upper half-plane by these two groups, which are the curves W 0

D and W 1
D,

represent different points of the moduli space M0,5.
Another very striking property of the expansions of y and ỹ given above (and then of course

also of their conjugates yσ and ỹσ) is that the only denominators one sees are powers of two,
i.e. the first few coefficients of these power series all belong to the ring O[1

2 ]. A calculation to
higher accuracy shows that the same holds for the first few hundred coefficients, and in fact it is
a theorem, proved in [BM10a], that it holds for all coefficients. We will return to this question at
the end of the next section because it is has a very interesting aspect that was in fact the point
of departure for our whole investigation.

7. Arithmetic properties of modular forms for W 1
17

With the preparations in the preceding sections we can now compute in § 7.1 the modular
embedding ϕ in the example D = 17. In the process we compute the Fourier expansions of some
modular forms and later, in § 7.3, we completely determine the ring of twisted modular forms
in this specific example. This arithmetic of the coefficients reveals two surprising phenomena,
a transcendental constant needed for the correct choice of the q-parameter and the integrality
statement mentioned above and proved in [BM10a], which cannot be explained using one modular
q-variable. We discuss these in § 7.2, and provide the explanations in § 8.

7.1 Modular parametrization of the differential equations

We have already mentioned that the differential equations Ly = 0 and L̃ỹ = 0 have the same
form as the differential equation (20) satisfied by ordinary or twisted modular forms with respect
to a hauptmodule. This is of course not a coincidence: we have

y(t(z)) = f(z), ỹ(t(z)) = f̃(z) for =(z) large, |t(z)| small

where t : H/Π → C is the map defined in § 6.1 and f(z) and f̃(z) are a modular form of weight
one and a twisted modular form of weight (0, 1), respectively, on the same group Π. In this
subsection we will work out this statement in more detail, obtaining in particular a way to
calculate the expansion (5) of the function ϕ : H → H− whose graph gives the embedding of
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H/Π into H × H−/SL(2,O17) as discussed in § 1. (Here we need H−, rather than H as in § 1,
because we have conjugated the original Veech group by ∆ =

(1 0
0
√

17

)
to embed it into SL(2,OD)

and the Galois conjugate of ∆ has negative determinant.) We will also calculate the q-expansion

of f̃(z), obtaining our first explicit example of a twisted modular form. In § 8 we will use this
information to determine completely the rings of twisted modular forms for Γ and Π and the
algebraic description of the Teichmüller curve W inside the Hilbert modular surface X17.

We begin with the functions y and f . As stated in § 6.1, the cusp at infinity for either Γ or Π
has width α, i.e. its stabilizer is generated by the transformation z 7→ z+α, where α= (1+

√
17)/2

is our standard generator of O17, so any modular function or modular form on either group can
be written as a power series in the variable q = e2πiz/α. On the other hand, we know that the
space of solutions of the differential equation satisfied by any weight-one modular form f(z)
with respect to any modular function on the same group is spanned by f(z) and zf(z). Our first
thought is thus that q coincides with the ‘mirror parameter’

Q = Q(t) = t exp(y1/y), (44)

where y = y(t) and y1 = y1(t) are the two power series in t defined in § 6.3. This is indeed what
happens in the case of the Apéry or Apéry-like differential equations (see [Zag09]), at least if
one normalizes the hauptmodule correctly. Here, however, it is not quite true. We can see this
numerically as follows. The function Q(t) has a Taylor expansion beginning

Q(t) = t+
439− 97

√
17

64
t2 +

249 125− 60 195
√

17

2048
t3 + · · · . (45)

We can invert this power series to obtain

t = t(Q) = Q− 439− 97
√

17

64
Q2 +

103 549− 24 971
√

17

2048
Q3 + · · · (46)

and then substitute this into the expansion of f(z) = y(t) to express f(z) as a power series

f(z) = 1 +
81− 15

√
17

16
Q+

8613− 2019
√

17

512
Q2 +

726 937− 175 823
√

17

16 384
Q3 + · · ·

≈ 1 + 1.197Q+ 0.563Q2 + 0.122Q3 + 0.0082Q4 − 0.0011Q5 − · · · (47)

in the new local parameter Q at infinity. Looking at the first few numerical coefficients in this
expansion, we see that they seem to be tending to zero rapidly, suggesting that the radius of
convergence of this power series is larger than one, which is the value it would have to have if we
were expanding with respect to q. The point is that, although the function logQ = log t+ y1/y
has the same behavior at infinity as 2πiz/α, namely, that it is well defined up to an integer
multiple of 2πi, this property determines it only up to an additive constant. Therefore, q and Q
are related by

Q = Aq = Ae2πiz/α (48)

for some constant A 6= 0 that has no reason to be equal to one. The radius of convergence of the
series in (47) is then equal to the absolute value of this constant.

We can use this idea, or a modification of it, to calculate A numerically. First, by computing
a few hundred coefficients of the series in (47) and calculating its radius of convergence by the
standard formula R = lim inf |an|−1/n, where an denotes the nth coefficient, we find that |A|
is roughly equal to 7.5. However, this direct approach has very poor convergence (because the
coefficients of the expansion of f(z) in Q, unlike those of the same function when written as
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a power series y(t) in t, do not behave in a regular way), and anyway gives only the absolute
value of the scaling constant A. To find the actual value to high precision, we apply a simple
trick. From the data in the table (36), we know that the value of t(z) at z = i equals −1 and
that this value is taken on with multiplicity 1 (because t is a hauptmodule for a group with no
elliptic fixed points) and is not taken on at any point in the upper half-plane with imaginary
part bigger than one (because i and its translates by multiples of α are the highest points in
the Π-orbit of i). It follows that the function 1/(t(z) + 1) has a simple pole at z = i and that
if we express this function as a power series in q (respectively Q), then its singularity nearest
the origin is a simple pole at q0 = e−2π/α (respectively Q0 = Aq0). In other words, 1/(1 + t) is
the sum of c/(1−Q/Q0) for some non-zero constant c and a function holomorphic in a disk of
radius strictly larger than |Q0|. This implies that if we expand 1/(1 + t) =

∑
bnQ

n, then the
coefficients bn are given by bn = cQ−n0 (1 +O(a−n)) for some a > 1, and hence that the quotients
bn+1/bn tend to Q0 with exponential rapidity. Calculating a few hundred of the coefficients bn
numerically, we find from this the value

A ≈ −7.483 708 229 911 735 369 141 145 566 232 11

to very high precision. After some trial and error we can recognize this number ‘in closed form’
as

A
?
= −2(3 +

√
17)

(
5−
√

17

2

)(
√

17−1)/4

, (49)

and we will see later that this guessed value is indeed the correct one.
Equations (46)–(49) now give as many terms as desired of the q-expansions of the modular

function t(z) and modular form f(z). We can (and of course did) then use this to check the
correctness of these equations numerically to high accuracy by verifying the invariance of t(z),
and the invariance of f(z) up to an automorphy factor cz + d, under modular transformations
z 7→ (az + b)/(cz + d) in the group Π. Similarly, by inverting (45) we can also give the inverse
of the uniformizing map H → WΠ explicitly as

z(t) =
α

2πi
log

Q

A
=

α

2πi

(
log t+

y1(t)

y(t)
− logA

)
=

α

2πi

(
log

t

A
+

439− 97
√

17

64
t+

321 913− 77 807
√

17

4096
t2 + · · ·

)
. (50)

Exactly the same considerations apply to the second differential operator L̃, with the difference
that here the mirror parameter

Q̃ = t eỹ1/ỹ = t+
1575− 369

√
17

128
t2 +

4 814 915− 1 166 773
√

17

16 384
t3 + · · ·

is related to the variable z in the upper half-plane by

Q̃ = Ã q̃ with q̃ = e2πiϕ(z)/ασ ,

where ϕ : H → H− is the twisting map and Ã is some constant. A calculation like the one for A
gives the numerical value

Ã ≈ −40.956 540 789 029 892 271 604 457 295 7685,
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which we can recognize as the ‘conjugate-in-the-exponent’ of the value in (49):

Ã
?
= −2 (3 +

√
17)

(
5−
√

17

2

)(−
√

17−1)/4

. (51)

We will show later that also this formula is indeed correct.
We can now calculate the Fourier expansions of both the twisted modular form f̃(z) = y1(t)

and the twisting map ϕ : H → H− as

f̃(z) = 1 +
23−

√
17

8
Aq +

1951− 473
√

17

256
A2 q2 +

184 453− 44 739
√

17

8192
A3 q3 + · · ·

and

ϕ(z) =
ασ

2πi
log

Q̃

Ã
=

ασ

2πi

(
log t+

ỹ1(t)

ỹ(t)− log Ã

)
=

ασ

2πi

(
log

t

Ã
+

1575− 369
√

17

128
t+

1 208 617− 292 799
√

17

8192
t2 + · · ·

)
=
−9 +

√
17

8
z +

1−
√

17

4πi

(
−
√

17

2
log

(
5−
√

17

2

)
+

697− 175
√

17

128
Aq

+
−29 767 + 7249

√
17

8192
A2 q2 +

3 091 637− 749 587
√

17

393 216
A3 q3 + · · ·

)
. (52)

Again these Fourier expansions, unlike the expansions of the same functions as power series in
t(z), converge exponentially rapidly for all z in the upper half-plane and can be used to compute

the functions f̃(z) and ϕ(z) numerically and to verify the modular transformation properties (1)

and f̃((az + b)/(cz + d)) = (cσϕ(z) + dσ) f̃(z) numerically to high accuracy, giving us the first
explicit example of a non-classical twisted modular form on a Teichmüller curve.

7.2 Modularity and integrality
At the end of § 6.3 we stated that all of the coefficients of the expansions of y and ỹ as power
series in t belong to the ring O[1

2 ]. This integrality has a rather puzzling aspect, which we discuss
here and resolve in § 8.3.

If we write y as
∑
cnt

n, then the differential equation Ly = 0 translates into the recursion

(n+ 1)2cn+1 = (β(n2 + n) + 3
4γ) cn − (β(n2 − 1

4) + 3
4γ) cn−1 + (n− 1

2)2cn−2

for the coefficients cn, where β and γ are given by (42). The integrality (away from two) of the
cn is far from automatic from this recursion, because at each stage one has to divide a linear
combination of previous coefficients by (n+ 1)2, so that a priori one would only expect n!2cn to
be 2-integral. Divisibility properties of this type are familiar from well-known recursions such as
the recursion

(n+ 1)2An+1 = (11n2 + 11n+ 3)An − n2An−1 (53)

used by Apéry in his famous proof of the irrationality of ζ(2), or the similar one he used in
his even more famous proof of the irrationality of ζ(3). However, they are extremely rare. For
instance, in [Zag09] it was found that of the first 100 000 000 members of the three-parameter
family of recursions obtained by varying the coefficients ‘11’, ‘3’, and ‘−1’ in (53), only seven (if
one excluded certain degenerate families, and up to scaling) had integral solutions.
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Apéry proved the integrality of the solution of his recursion (53) by giving the explicit

closed formula An =
∑n

k=0

(
n
k

)2(n+k
n

)
. We do not know a corresponding expression in our

case. However, soon after Apéry’s original proof, a more conceptual explanation was found by
Beukers [Beu87], who saw that the differential equation corresponding to Apéry’s recursion has a
modular parametrization y = f(z) ∈M1(Γ), t = t(z) ∈Mmer

0 (Γ) of the type discussed in § 4, the
group Γ in this case being Γ1(5), and this implies the integrality because we have f(z) ∈ Z[[q]],
t(z) ∈ q + q2Z[[q]] and hence y ∈ Z[[t]]. Similar statements hold for all seven of the ‘Apéry-like’
equations mentioned above, leading to the conjecture (which was made explicitly in [Zag09])
that the integrality property for recursions of this type occurs precisely when the corresponding
differential equation has a modular parametrization.

The surprise is now this. In our case, just as in the seven ‘Apéry-like’ ones, the differential
equation (at least for y) is modular, and does have power series solutions with integral coefficients
(away from two), but now the modularity does not explain the integrality in the same way as
above, because here the relevant Fuchsian group is not arithmetic and the q-expansions of t
and y are not integral. Indeed, as we saw in § 7.1, the coefficients of these q-expansions are not
even algebraic numbers, since they involve powers of the scaling constant A, which according
to (49) and Gelfond’s theorem is a transcendental number. But even if we rescale by replacing
q by Q = Aq, then, although the first few coefficients as listed in equations (46) and (47) have
denominators that are powers of two, this property fails if we compute more coefficients. For
example, the coefficient of Q11 in f(z) equals

16 063 132 006 911 958 155 776 129− 3 895 881 761 337 356 780 171 815
√

17

253 · 33 · 5 · 7
,

and calculating further we find that the first 100 coefficients contain in their denominators all
primes less than 100 that do not split in Q(

√
17), and similarly for t(z). Thus, although our

differential equation (40) does not actually contradict the hypothetical statement

‘integrality occurs only when the differential equation is modular’

mentioned above, the mechanism

y(t) modular⇒ y and t both have integral q-expansions

⇒ y has an integral t-expansion

which previously explained that statement now breaks down completely. This puzzle, which was
in fact the original motivation for the investigation described in this paper, will be solved in § 8,
where we will provide a purely modular explanation of the integrality property by expanding y
and ỹ with respect to both q and q̃, using Hilbert modular forms rather than modular forms in
one variable.

7.3 The ring of twisted modular forms for W and WΠ

We can now calculate the rings M∗,∗(Γ, ϕ) and M∗,∗(Π, ϕ) of twisted modular forms on the
Teichmüller curve W = H/Γ and its double cover WΠ = H/Π. This information will be used in
the following section to embed the curve W 1

17 into the Hilbert modular surface X17.
We already know two twisted modular forms on Π, namely f(z) = y(t(z)) in M1,0(Π) and

f̃(z) = ỹ(t(z)) in M0,1(Π). (From now on we omit the ‘ϕ’.) Any holomorphic or meromorphic

twisted modular form of weight (k, `) on Π is then equal to fkf̃ ` times a rational function
of t = t(z). The next proposition tells us which ones are holomorphic.
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Proposition 7.1. For k, ` > 0 the vector space of twisted modular forms of weight (k, `) on Π
is given by

M(k,`)(Π) =
〈
f(z)kf̃(z)` t(z)c | 3k + ` > 2c > 0

〉
C. (54)

Proof. The group Π has no elliptic fixed points and five cusps, one of which is irregular, so
Theorem 5.5 implies the dimension formula

dimM(k,`)(Π) = 1 +

⌊
3k + `

2

⌋
. (55)

Since the right-hand side of this equals the number of monomials fkf̃ ltc in (54), it suffices to prove

that each of these monomials is holomorphic or equivalently, that f(z) and f̃(z) are holomorphic
everywhere (including at the cusps) and vanish to orders 1

2 and 3
2 , respectively, at the cusp

t = ∞, where the order is measured with respect to the local parameter 1/t. The holomorphy
at the cusps is a special case of Proposition 5.6, since the construction of the defining (38) of W
given in § 6.2 was based on choosing the coefficients in such a way as to make the two differential
forms ω = dX/Y and ω̃ = X dX/Y stable at all of the cusps of W . We therefore only need to

check that the order of vanishing of f and f̃ at z = 0 (corresponding to t =∞) are at most, and
hence exactly, equal to 3

2 and 1
2 , respectively. We will give two arguments to see this.

The first way is to use the action of the element S = Mi of Γ, which corresponds to the
involution t 7→ 1/t on the base of the family (38). This involution extends via X 7→ X/t and
Y 7→ Y/t5/2 to an involution ι of the whole family, with ι∗ω(t) = t3/2ω(t) and ι∗ω̃(t) = t1/2ω̃(t).
Near t = 0, the section f is the period of ω along the unique cycle (up to scale) β0 that is
orthogonal to ω̃(t) and extends across t = 0. Near t =∞, it is the period of ω along the unique
cycle (up to scale) β∞ that is orthogonal to ω̃(t) and extends across t =∞. From these defining
properties it follows that i∗β0 is proportional to β∞. The same argument applies for f̃ . In modular
terms, this translates into the statement that the function f(z) transforms via

1

z
f

(
−1

z

)
= f(z) t(z)3/2 (56)

for some appropriate choice of the square root of t(z)3/2 (which we need only make at one point
since this function has no zeros or poles in H), and similarly

1

ϕ(z)
f̃

(
−1

z

)
= f̃(z) t(z)1/2. (57)

Equations (56) and (57) clearly imply the statement that the modular forms f2t3 and f̃2t at ∞
are holomorphic everywhere, as claimed.

The other approach, not using the accidental fact that the cusps 0 and ∞ of H/Π happen to
be interchanged by an element in the normalizer of Π and therefore applicable in other situations,
is based on the equation

α

2πi
t′(z) = f(z)2A(t(z)), (58)

where A(t) is the fourth-degree polynomial given in (41), see (19). Since the polynomial A(t)
is divisible by t, we find that f(z)2 multiplied by a cubic polynomial in t(z) is equal to the
logarithmic derivative of the modular function t(z), and hence is holomorphic at the cusp t =∞,
so the order of f at t =∞ is 6 3

2 , as desired. A similar argument, this time using (21), applies

also to f̃ , with the polynomial A(t) replaced by the rational function Ã(t), which grows like t2

as t →∞. 2
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Remarks. (i) We make some comments about the half-integer order of f and f̃ at ∞ and about
the appearance of the function

√
t(z) in (56) and (57). By the discussion in § 6.1, the image Π̄

of Π in Γ̄ = Γ/{±1} has index two and is hence normal, so SΠ̄S−1 = Π̄ and hence F |kS must
be a modular form on Π for any modular form F (twisted or not) of even weight k on Π. But
the subgroup Π of Γ is not normal and is not normalized by S, so the intersection of Π with
Π′ = SΠ̄S−1 is a proper subgroup (of index two) in Γ. The space of holomorphic modular forms
of weight one on this group is four-dimensional, spanned by the functions ftj/2 with 0 6 j 6 3,
with the spaces of modular forms of weight one on Π and Π′ separately being spanned by (f, ft)
and by (ft1/2, ft3/2), respectively. Note that the group Π∩Π′ does not contain the stabilizer M∞
of∞ in Γ (or Π), but only its square, so that it has width two and hence a local uniformizer q1/2

at ∞. This group has genus zero, with t(z)1/2 as a hauptmodule.
(ii) In the above proof we gave an implicit estimate of the period integrals that define f

and f̃ in the neighborhood of any cusp. These periods are given by integrating ω = dX/Y and
ω̃ = XdX/Y over a linear combination of paths that are invariant under the local monodromy
around the given cusp. It is perhaps worthwhile giving a more explicit proof in the special case at
hand, since this makes the argument clearer and also shows how to find the full expansion, and
not just the order of vanishing, of f and f̃ at every cusp. We will just give the main formulas,
without complete details. At each cusp we choose a local parameter ε = εj . Then we can find

the expansions of y(t) = f(z) and ỹ(t) = f̃(z) near t = tj by looking at the explicit form of the
degenerations of the differentials ω and ω̃ there, as explained at the end of the discussion in § 6.2.
We consider the cusp t = ∞ here and the other cusps even more briefly in remark (iii) below.
Near t =∞ we make the substitutions (X, t) = ((cT 2 −A)/ε, 1/ε), with c = (17− 3

√
17)/2 and

A = 5(5 +
√

17)/2 as in (39), and where ε tends to zero. Then by direct computation we find

P5(X, t) = (c/ε)5[T (T 2 − λ2
1)(T 2 − λ2

2)]2 +O(ε−4),

with λ1 = (5 +
√

17)/2 and λ2 = (3 +
√

17)/4. The fact that the leading coefficient of the right-
hand side as a Laurent series in ε is a square corresponds to the degeneration of the fiber over
the cusp to a rational curve, and lets us compute the differential form ω = dX/

√
P5(X, t) as

ω =
2 ε3/2

c3/2

[
1

(T 2 − λ2
1) (T 2 − λ2

2)
+ · · ·

]
dT,

where the omitted terms contain higher powers of ε with coefficients that are rational functions of
T having poles only at ±λ1, ±λ2 that can easily be found explicitly with a suitable mathematical
software program. The factor ε3/2 gives the vanishing order we claimed, and the rest of the
expansion gives us the complete expansion of f(z) near z = 0. Specifically, the homology of
P1\{±λ1,±λ2,∞} is spanned by the four small loops γi around the four poles ±λ1 and ±λ2,
and the integral of the above form around each such loop is given simply by the residue of the
form at that pole, so that we can easily calculate the periods around each γi to any order in ε.
When one does this calculation, one finds that these integrals are given, up to a constant, by∫
γ1,γ2,γ3,γ4

ω(ε)
.
=

(
1,−1,

1 +
√

17

2
,−1 +

√
17

2

)(
1+

81− 15
√

17

16
ε+

4845− 1155
√

17

64
ε2 +· · ·

)
.

The surprising observation that they are all proportional is explained by the fact the loops γi
correspond to the core curves (in both directions) of parallel cylinders in the generating flat
surface, here concretely the vertical cylinders in Figure 1(a). More precisely, these curves stay
parallel in a neighborhood of the cusp of the Teichmüller curve by definition of these curves,
and hence the periods remain proportional. Another striking property of the above expansion,
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Table 1. Cusps.

j t z wj Aj

1 0 ∞ α =
1 +
√

17

2
−2 (3 +

√
17)

(
5−
√

17

2

)(
√
17−1)/4

2 1 1 8 + 2
√

17 4 (3 +
√

17) (4 +
√

17)(5+
√
17)/4

3 λ−1 α/2
−3 +

√
17

2
211 (4 +

√
17)9

(
3 +
√

17

2

)−(39+√17)/2

namely the integrality (up to powers of two) of its coefficients as a power series in the local
parameter ε = 1/t at the cusp t =∞, is obvious both from the proof in [BM10a] and from the
one that we will give in § 8.

(iii) We now also indicate briefly how to find the Fourier expansions of f and f̃ at a cusp tj
other than t = 0. To define them, we must first choose a matrix Mj mapping the point zj
with t(zj) = tj to ∞. For definiteness’s sake we choose M1 = Id and Mj =

(0 −1
1 −zj

)
for j 6= 1. The

width wj of the cusp is defined as the smallest positive number w with M−1
j

(
1 w
0 1

)
Mj ∈ Γ, and

we define qj = e2πiMj(z)/wj and Qj = Ajqj , where Aj is chosen so that Qj = ε+O(ε2) as ε → 0.
Note that both the width wj and the value of the scaling constant Aj depend on our choices
of εj and Mj ; with the choices given above, they are given as in Table 1 for representatives of
Γ-equivalence classes of cusps. At each cusp we expand the integral as a power series in the local
parameter, observing that each coefficient is the integral of a rational function on a punctured
Riemann sphere, and proceed just as we did above for t →∞. We omit the calculations and give
only the results (for f ; those for f̃ can be obtained in the same way):

f |1M2 =
1

8
(3 +

√
17)5/2(4 +

√
17)1/2

(
1− 3

4
Q3 +

3807 + 915
√

17

128
Q2

3 + · · ·
)
,

f |1M3 =
−i

229/2
(3 +

√
17)11(4 +

√
17)−4

(
1 +
−255 + 1959

√
17

1024
Q4 + · · ·

)
.

This concludes our discussion of the modular forms and twisted modular forms on the
group Π. Proposition 7.1 also allows us to describe the twisted modular forms on
the Teichmüller curve itself, i.e. for the group Γ. Since this group contains −I, there are no
twisted modular forms of weight (k, `) for k + ` odd. Theorem 3.2 and the arguments in the
preceding proof immediately imply the following statement.

Proposition 7.2. The ring of weight modular forms of even total weight k + ` for Γ has the
graded dimensions

dimM(k,`)(Γ) = 1 +

⌊
3k + `

4

⌋
.

It consists of the invariants of M(k,`)(Π) as given in (54) under the involution

t 7→ t−1, f 7→ ft3/2, f̃ 7→ f̃ t1/2.

As a corollary, we see that the ring of parallel weight twisted modular forms on Γ is freely
generated by the two forms

ξ = (1− t)2 ff̃ , η =
45− 11

√
17

8
t f f̃ = −19 + 5

√
17

4
s ξ, (59)
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with s as in (35). (The numerical factors in the definition of η have been included for later
convenience.) In particular, when we embed the Teichmüller curve into the Hilbert modular
surface, then the restriction of a Hilbert modular form of weight (k, k) is a homogeneous
polynomial of degree k in ξ and η, or equivalently equals ξk times a polynomial in s of degree at
most k. We will use this in the next section to find an explicit description of this embedding.

8. The Hilbert modular embedding of W 1
17

We continue to study the example of the special Teichmüller curve W = W 1
17, using the

information given in the previous section to give a complete description of the embedding of W
into the Hilbert modular surface X17.

8.1 Modular embedding via Eisenstein series
We can use our explicit knowledge of the twisting map ϕ : H → H− and of the twisted modular
forms on Π and on Γ to embed H/Π and H/Γ into X17 by expressing the restrictions of Hilbert

modular forms as polynomials in f, f̃ , and t (or simply in ξ and η if we restrict our attention to
forms of parallel weight). We begin by recalling the main points of the theory of Hilbert modular
forms, using SL(2,O) rather than SL(O∨⊕O) since it is more familiar, and then later transform
our results back to SL(O∨⊕O) for D = 17, using the isomorphism of the two groups in this case.
A textbook reference for the notions and claims in this section is e.g. [vdG87].

A Hilbert modular form of weight (k, `) on the full modular group SL(2,OD) is a holomorphic
function F : H2

→ C satisfying the transformation law F (γz1, γ
σz2) = (cz1+d)k(cσz2+dσ)`F (z1,

z2) for g =
(
a b
c d

)
∈ SL(2,OD). If k = ` (‘parallel weight’), we call the weight simply k. We denote

the space of such forms by Mk,`(SL(2,OD)), or simply Mk(SL(2,OD)) if k = `, and more generally
write Mk,`(Γ, χ) for the corresponding space for forms with respect to a subgroup Γ of SL(2,OD)
and character χ : SL(2,O)D → C∗. On Mk(SL(2,OD)) we have the involution induced by
the symmetry ι : (z1, z2) 7→ (z2, z1) of H2, so we can split this space into the direct sum of the
subspaces M±k (SL(2,OD)) of symmetric and antisymmetric Hilbert modular forms.

A Hilbert modular form F on SL(2,OD) has a Fourier expansion of the form

F (z) = F (z1, z2) = b0 +
∑

ν∈O∨D,ν�0

bν e(tr(νz)) (60)

where O∨D is the inverse discriminant and tr(νz) for z = (z1, z2) ∈ H2 means νz1 + νσz2. If we
choose a Z-basis for O∨D and write X and Y for the corresponding exponential functions e(tr(νz)),
then the right-hand side of (60) becomes a Laurent series in X and Y (or even a power series if
the basis is chosen appropriately). In practice, it is sometimes more convenient to choose only
a Q-basis for O∨D, in which case we work with power series with congruence conditions on the
exponents of X and Y . The simplest choice is

X = X(z) = e

(
z1 + z2

2

)
, Y = Y (z) = e

(
z1 − z2

2
√
D

)
, (61)

in which case {e(tr(νz))} = {XmY n | m ≡ n (mod 2)} and (60) becomes

F (z) =

∞∑
m=0

( ∑
|n|6|m|

√
D

n≡m(mod 2)

bm,n Y
n

)
Xm ∈ C[Y, Y −1][[X]]. (62)

For Hilbert modular forms the same remarks as in § 5.1 for Hilbert modular surfaces apply
concerning the (less standard) Hilbert modular groups SL(O∨ ⊕ O) or functions on H × H−,
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the only difference in the latter case being that the condition ν � 0 in (60) must be replaced
by ν > 0 > νσ.

The simplest Hilbert modular forms to construct are the Eisenstein series of weight (k, k)
(k = 2, 4, 6, . . . ), with Fourier expansion given by3

EDk (z) =
ζK(1− k)

4
+

∑
ν∈O∨D, ν�0

σKk−1(ν
√
D) e(tr(νz)). (63)

Here ζK(s) denotes the Dedekind zeta function of K = Q(
√
D) and σKk−1(ν

√
D) for ν ∈ O∨D with

ν � 0 is given by

σKk−1(ν
√
D) :=

∑
b|ν
√
D

N(b)k−1 =
∑
d|ν
√
D

dk−1 σk−1

(
Dνν ′

d2

)
,

where the first sum runs over integral ideals b of K dividing the integral ideal ν
√
D and the

second sum (whose equality with the first is proved in [Zag76, Lemma on p. 66]) runs over
positive integers d such that d−1ν ∈ O∨D, and where σk−1(m) for m ∈ N has its usual meaning
as the sum of the (k − 1)st powers of the (positive) divisors of m. In particular, for D = 17 the
first three Eisenstein series Ek = E17

k have Fourier expansions beginning

E2(z) = 1
12 + (3Y 3 + 7Y + 7Y −1 + 3Y −3)X + (Y 8 + 21Y 6 + 14Y 4

+ 45Y 2 + 18 + 45Y −2 + 14Y −4 + 21Y −6 + Y −8) X2 + · · · ,
E4(z) = 41

120 + (9Y 3 + 73Y + 73Y −1 + 9Y −3)X + (Y 8 + 657Y 6

+ 2198Y 4 + 5265Y 2 + 4914 + 5265Y −2 + · · ·+ Y −8) X2 + · · · ,
E6(z) = 5791

252 + (33Y 3 + 1057Y + 1057Y −1 + 33Y −3)X + (Y 8 + 34 881Y 6

+ 371 294Y 4 + 1 116 225Y 2 + 1 419 858 + · · ·+ Y −8) X2 + · · · ,

with X and Y as in (61). As a check, we can verify that if we set X = q and Y = 1,
corresponding to the natural embedding z 7→ (z, z) of H/SL(2,Z) into H2/SL(2,O), then these
Fourier expansions agree to the accuracy computed (several hundred terms) with those of the
classical SL(2,Z) modular forms 1

12E4, 41
120E

2
4 , and 44

3 E
3
4 + 2095

252 E
2
6 , respectively.

We now compute the restrictions of these Eisenstein series to the Teichmüller curve
W = H/Γ (or, rather, of its double covering H/Π) that we studied in § 6. As explained there,
the algorithm used produced Γ as a subgroup of SL(2,O), rather than SL(O∨ ⊕ O), so that the
twisting function ϕ(z) maps H to H− (cf. (52)). Hence, we must use the embedding of W into
H2/SL(2,O) by

z 7→ (z1, z2) = (εz, εσϕ(z)) (z ∈ H), (64)

where ε = 4 +
√

17 is the fundamental unit of Q(
√

17). Using the expansions of Q and Q̃ as
power series in t that were given in § 7.1, we find that the monomial XmY n = e(tr(νz)) for
ν = m/2 + n/2

√
17 ∈ O∨ has the t-expansion

XmY n = e(ενz + εσνσϕ(z)) = (Q/A)εαν (Q̃/Ã)(εαν)σ

= (−2(3 +
√

17))−(21m+5n)/2

(
5−
√

17

2

)−8m−2n

t(21m+5n)/2

×
(

1 +
16 597m+ 3985n− (3827m+ 919n)

√
17

128
t+ · · ·

)
. (65)

3 For general discriminants there are several Hilbert–Eisenstein series for each value of k, with sum EDk . If the class
number of D is one, as is the case for D = 17, there is only one.
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(More precisely, this is true under the assumption that the constants A and Ã relating q = e(z/α)
and q̃ = e(ϕ(z)/ασ) to Q = t+ · · · and Q̃ = t+ · · · indeed have the values given in (49) and (51);
we will return to this point below.) Inserting the expansion (65) into the Fourier development
of Ek(z) or any other Hilbert modular form, we can compute its restriction to W as a power
series in t. On the other hand, as we saw above, the restriction of any F ∈Mk(SL(2,O)) to W is
a linear combination of monomials ξiηj with i+ j = k, where ξ and η are the functions defined
in (59), whose expansions in t are known, so we can find the coefficients of this linear combination
by linear algebra. The result of the computation for the first three Eisenstein series is

12E2|W = ξ2 − 11 +
√

17

4
ξη + η2,

120E4|W = 41 ξ4 − 1855 + 365
√

17

2
ξ3η +

18 245 + 3979
√

17

8
ξ2η2

+
151 + 35

√
17

4
ξη3 + 41 η4,

252E6|W = 5791 ξ6 − 867 831 + 173 541
√

17

4
ξ5η +

11 350 461 + 2 429 643
√

17

16
ξ4η2

+
1 883 335 + 652 933

√
17

16
ξ3η3 +

69 270 195 + 16 881 483
√

17

64
ξ2η4

+
1 983 525 + 452 397

√
17

32
ξη5 + 5791 η6.

(It was to simplify the coefficients in these polynomials that we introduced the factor c in (59).
The coefficient of ξk here is just the constant term of Ek, and in particular rational, and the
coefficient of ηk has the same value because the matrix

(
1 1
0 1

)
belongs to SL(2,O), though not

to Γ, so that the constant terms at the two cusps s(0) = 0 and s(1) =∞ of the restriction of any
Hilbert modular form to W are the same up to scaling.) Now by elimination we find a polynomial

P (E2,E4,E6) = (3 465 994 203 567− 840 620 808 790
√

17)E4
6

+ · · ·+ (7 395 484 320 944 244 318 526 129 490 625

− 1 711 627 845 603 248 913 114 298 550 625
√

17) E12
2

(in which we have omitted 17 equally gigantic intermediate terms) whose restriction to W
vanishes. We have thus obtained an explicit algebraic equation cutting out the Teichmüller curve
W on the Hilbert modular surface X17, but it is too big in the sense that its vanishing locus is
reducible and W is only one of its components. Indeed, we know from the results of Bainbridge
[Bai07] that there must be a symmetric Hilbert modular form of weight 12 which vanishes
precisely on the Teichmüller curve and its image under the involution ι : (z1, z2) 7→ (z2, z1),
whereas the above equation has weight 24. The reason for this is twofold:
• the Eisenstein series generate only a subring of the full ring of symmetric Hilbert modular

forms, and there is no reason that the minimal defining equation of W should belong to
this subring; and

• we did not even use all of the Eisenstein series, but only E2, E4, and E6.
The second point can be dealt with by expressing the restriction of each Ek to W as a

polynomial in ξ and η and looking for the first weight in which some linear combination of
monomials in these restricted Eisenstein series vanishes. This weight, however, still turns out to
be 14 rather than 12, and the answer is not even unique: there is a two-dimensional space of
linear combinations of E7

2, . . . ,E14 that vanish on W , all having huge coefficients so that we do
not reproduce them here. (As a side remark, it is actually surprising that there should be even
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one relation in such a low weight, let alone two, since there are 15 monomials of weight 14 in
Γ2, . . . ,Γ14 and also 15 monomials of weight 14 in ξ and η, so that one would not expect the
former to lie in a non-trivial subspace, let alone a subspace of codimension two. The first weight
in which there has to be a relation for dimensional reasons is 16. Similarly, it is surprising that
we found a relation among E2, E4, and E6 in as low a weight as 24, since a priori the first weight
in which the number of monomials in these three forms is larger than the number of monomials
in ξ and η is 38. This suggests that the restrictions of the Eisenstein series to W have some
non-generic property, but we do not know what it is.) To address the first point, we need to have
a full set of generators of the ring of Hilbert modular forms. Finding such a set of generators in
general is a comparatively difficult (though always algorithmically solvable) problem, but in the
case D = 17 the result has been obtained by Hermann [Her81]. We will describe his results in
the next subsection and use them to determine the symmetric Hilbert modular form of minimal
weight 12 vanishing on W .

Another pertinent remark is that, although we have so far only used Hilbert modular forms
of ‘parallel’ weight (k, k), whose restriction to W is a polynomial in ξ and η, one can equally well
consider Hilbert modular forms of mixed weight (k, `) with k 6= `, in which case the restrictions

become polynomials in f , f̃ and t±1. For example, the Rankin–Cohen bracket 2E′2(z)E4(z) −
E2(z)E′4(z), where the prime denotes differentiation with respect to the first variable z1, is a
Hilbert modular form of weight (8, 6), and its restriction to W could be computed explicitly

as f(z)8f̃(z)6 times a Laurent polynomial in t(z). Such mixed weight forms will play a role in
Part III of this paper, e.g. in § 9, where we will use a different construction to find explicitly a
non-symmetric Hilbert modular form of non-parallel weight (3, 9) which vanishes precisely on
W , again in accordance with the general results of Bainbridge.

8.2 Hilbert modular forms for the discriminant 17
We continue to work with the Hilbert modular group ΓD = SL(2,O) for the case D = 17,
i.e. for O = Z[α] with α = (1 +

√
17)/2. We will describe the structure of the ring of symmetric

Hilbert modular forms of parallel even weight, following Hermann [Her81], who obtains these
modular forms by restriction of Siegel modular forms of genus two. Later we will look also at
non-symmetric Hilbert modular forms and Hilbert modular forms of odd or non-parallel weight
on Γ17.

Hermann begins with the 16 genus two Siegel theta series

Θm,m′(Z, v) =
∑

x∈Z2+m

e

(
1

2
xZxt + x(v +m′)T

)
. (66)

Here m,m′ ∈ {0, 1
2}

2 and the independent variables Z and v are in the Siegel half-space H2

and in C2, respectively. Ten of these (those for which the theta characteristic (m,m′) is even,
i.e. 4m ·m′ ≡ 0 (mod 2)) are even functions of v and hence give Siegel modular forms of weight 1

2
after restricting to v = 0. (The other six are odd and hence give zero on restriction, but their
derivatives with respect to v give non-trivial restrictions that will play a crucial rule in the
constructions of Part III of this paper.) Using a modular embedding from H2 to H2 such as that
described in the previous subsection, we get 10 Hilbert theta series, all of weight 1

2 with respect
to a suitable subgroup of ΓD.

It is convenient to re-index the 16 theta characteristics in a way that makes the action of
ΓD more transparent. This part works for any D ≡ 1 (8), i.e. for D such that the prime 2 splits
as π2π

σ
2 in K = Q(

√
D) for some prime ideal π2 6= πσ2 (in our case, the principal ideal generated
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Table 2. Reindexing of theta characteristics.

m′

m X 0 1 ∞
X 1111 1011 1010 1110

0 0111 0011 0010 0110

1 0101 0001 0000 0100

∞ 1101 1001 1000 1100

by 1 + α). Define sets S and Ŝ by

S = {0, 1,∞}, Ŝ = S ∪ {X}

where X is a symbol, and let ΓD act on Ŝ× Ŝ by fixing X and identifying S×S with P1(O/π2)×
P1(O/σ(π2)). We match the usual indexing by characteristic with these symbols by Table 2, in
which the even characteristics correspond to the pairs (a, b) ∈ Ŝ2 in which a and b are either
both equal to or both different from X, and the odd characteristics to the pairs (a, b) in which
exactly one of a and b is equal to X. This gives us by restriction 10 Hilbert modular forms θX,X
and θa,b (a, b ∈ S) of weight 1

2 .
Set Θ = θ2

X,X and for each permutation π of the set S set ηπ = ±
∏
s∈S θs,π(s), where the

sign is +1 if π is the identity and −1 otherwise. Up to powers of i, the Hilbert modular group
preserves Θ and permutes the ηπ, preserving the parity of π, so that if we set

η± =
∑
π even

ηπ ±
∑
π odd

ηπ

then Θ, η+ and η− are Hilbert modular forms, with multiplier systems, for the full Hilbert
modular group. More precisely, we have

Θ ∈M1(ΓD, v0), η2
± ∈M3(ΓD, v0), η+η− ∈M3(ΓD, v

−1
0 ), (67)

where

v0 : ΓD → µ4,

(
0 −1
1 0

)
7→ −1,

(
1 x
0 1

)
7→ itr(x) for x ∈ O (68)

is a character of order four. The form θX,X is antisymmetric with respect to the involution ι and
hence vanishes on the diagonal H/SL(2,Z) ⊂ H2/SL(2,OD). Moreover, in the case D = 17 this is
its full vanishing locus, so that any Hilbert modular form vanishing on the diagonal is divisible
by θX,X and any symmetric Hilbert modular form vanishing on the diagonal is divisible by Θ.
For example, since the restrictions of both η2

+ and η2
− are proportional to

√
∆ (where we use E4,

E6 and ∆ = (E3
4 − E2

6)/1728 to denote the standard generators of M∗(SL(2,Z))), some linear
combination of them, which turns out to be η2

− − 4η2
+, vanishes on the diagonal and hence is

divisible by Θ. This gives us the following five symmetric Hilbert modular forms of even weight
and trivial character:

G2 =
η2
− − 4η2

+

Θ
, G4 = η+η−Θ, H4 = Θ4, G6 = η2

−Θ3, H6 = η3
−η+,

where the index of each form indicates its weight.
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Theorem 8.1 (Hermann [Her81]). The ring M+
ev(Γ17) =

⊕
k>0M

+
2k(Γ17) of symmetric Hilbert

modular forms of even weight for D = 17 is generated by the five Hilbert modular forms G2, G4,
H4, G6, and H6, with the relations

G4G6 = H4H6, G3
4 = 1

4G6(H6 +G2G4), G2
6 = H4 (4G2

4 −G2G6).

In particular, M+
ev(Γ17) is a free module of rank four over the algebra C[G2, H4, H6], with basis

{1, G4, G6, G
2
4}.

Sketch of proof (following Hermann). The relations among Hermann’s five forms, like any
relations among modular forms, can be verified algorithmically by looking at a finite part of
the Fourier expansions of the functions involved, so we only have to show that these forms
generate the whole ring. Let F = F0 ∈ Mk(Γ17) be a symmetric Hilbert modular form of even
weight k with trivial character. Then the restriction of F to the diagonal has weight 2k divisible
by four, and since the ring of modular forms on SL(2,Z) of weight divisible by four is generated
by the forms E4 and ∆, which are multiples of the restrictions to the diagonal of G2 and H6,
there is a weighted homogeneous polynomial P0(G2, H6) in G2 and H6 whose restriction to the
diagonal coincides with that of F0. By what we said above, we then have F0 = P0(G2, H6)+ΘF1

for some Hilbert modular form F1 ∈Mk−1(Γ17, v
−1
0 ). The restriction of F1 to the diagonal has the

character of
√

∆ and weight congruent to two modulo four, so by the same argument as before
coincides with the restriction of η+η−P1(G2, H6) for some weighted homogeneous polynomial
P1(G2, H6). This implies in turn F1 = η+η−P1(G2, H6) + ΘF2 for some F2 ∈ Mk−2(Γ17, v

2
0). A

similar argument shows that F2 has the same restriction to the diagonal as η2
+η

2
−P2(G2, H6) for

yet a third polynomial P2, so F2 = η2
+η

2
−P2(G2, H6) + ΘF3 for some F3 ∈ Mk−3(Γ17, v0), and a

final iteration gives a fourth polynomial P3 such that F3 = η2
−P3(G2, H6)+ΘF4 for some Hilbert

modular form F4 of weight k − 4, now again with trivial character. Combining these successive
identities we have written F as P0 + G4P1 + G2

4P2 + G6P3 + H4F4 where each Pi belongs to
C[G2, H6] and F4 ∈M+

k−4(Γ17), and now iterating the whole argument we see that F is a linear
combination of 1, G4, G2

4, and G6 with coefficients in C[G2, H4, H6] as claimed. 2

Example. The Fourier expansions of η+, η−, and Θ begin

η+ = −4X1/4((Y + Y −1) + (13Y 4 − 19Y 2 − 19Y −2 + 13Y −4)X + · · ·),
η− = 16X1/4(1− (Y 5 + 3Y 3 − Y − Y −1 + 3Y −3 + Y −5)X + · · ·),
Θ = 4X1/2((Y 2 − 2 + Y −2)− 2(Y 5 − Y − Y −1 + Y −5)X + · · ·).

(As a check, if we set Y = 1 and X = q then these reduce to −8η6, 16η6, and 0.) Comparing
with the expansions of the first three Eisenstein series Ek given above, we find that these forms
are given in terms of Hermann’s generators of M+

ev by

−192E2 = G2, 640E4 = 41
48 G

2
2 − 39G4 − 57H4,

14 336E6 = −5791
72 G3

2 + 8571G4G2 + 11 463H4G2 − 32 865
4 G6 − 6285H6.

Corollary 8.2. The function field of the symmetric Hilbert modular surface with D = 17 is
the rational function field is generated by the two functions

U =
H4

G4

(
=

Θ3

η−η+

)
, V =

H6

H6 −G2G4

(
=

η2
−

4η2
+

)
. (69)

Proof. The relations among Hermann’s generators imply(
G4

G2
2

,
H4

G2
2

,
G6

G3
2

,
H6

G3
2

)
=

(
UV

4(V − 1)2
,

U2V

4(V − 1)2
,

U2V 2

4(V − 1)3
,

UV 2

4(V − 1)3

)
.

So the corollary follows immediately from the theorem. 2
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M. Möller and D. Zagier

8.3 The equation of the Teichmüller curve

The corollary just given tells us that the Hilbert modular surface for D = 17 is rational, with
coordinates U and V . In particular, the image of the Teichmüller curves W±17 on this surface
must be given by polynomial equations in these coordinates. In this subsection we will give
these equations, which turn out to be several orders of magnitude simpler than the previously
obtained equation P (E2,E4,E6) = 0. We will also describe better systems of Fourier coordinates
and will resolve two questions that we raised earlier by showing that the values of A and Ã
given in (49) and (51) on the basis of numerical computations are indeed correct and by giving
a purely modular proof of the integrality (away from the prime two) of the Taylor expansions
of y and ỹ as power series in t.

Theorem 8.3. On the (rational) symmetric Hilbert modular surface with coordinates U and V ,
the Teichmüller curves W 1

17 and W 0
17 are given by the equations

W 1
D : V +

5 +
√

17

2
U2 + 3

7 +
√

17

8
U +

1−
√

17

8
= 0 (70)

and

W 0
D : V +

5−
√

17

2
U2 + 3

7−
√

17

8
U +

1 +
√

17

8
= 0. (71)

Proof. Since we gave the expressions for the Hilbert–Eisenstein series E2, E4 and E6 in the
Hermann generators in the last subsection, we could derive (70) from the results of § 8.1 giving
the restrictions to the curve W 1

17 of these Eisenstein series. However, it is much simpler to work
directly with Hermann’s generators, obtaining their Fourier expansions from those of η± and Θ
as given above and then using (65) to obtain the t-expansions of their restrictions to W . The
results of the computations are given in the following table, in which we have used the results
from the end of § 7.3 to write the expansion of the restriction of each of G4, H4, G6, and H6

to W (that of G2 = −192E2 was already given above) as a power of ξ times a polynomial in s:

F εG4/2
4π8

2 εH4/2
4π6

2 ε2G6/2
6π12

2 ε2H6/2
6π14

2

ξ−k F |W s(s− 1)(s− κ1) s(s− 1) s2(s− 1)2 s2(s− 1)2(s− κ1)

Here κ1 = π−2
2 = (13− 3

√
17)/8. From the definitions of the Hilbert modular functions U

and V it then follows that their restrictions to W are given by

U |W =
κ1

s− κ1
, V |W =

−1 +
√

17

8

s(s− 1)

(s− κ1)2
, (72)

and (70) follows immediately. Equation (71) is proved in a similar way using the Galois conjugate
differential equation, as discussed in the remark at the end of § 5.5; the resulting expansions are
the Galois conjugates of those for W 1

17 and since the Hermann generators have rational Fourier
coefficients the final equation is necessarily also the Galois conjugate of that of W 1

17. In fact,
this Galois conjugation property holds for all D, as was already recalled in Theorem 5.4(iv)
of § 5.4. 2

We end this section by discussing four points related to the equations given in Theorem 8.3.
(1) Equation (70) describes a Hilbert modular function that vanishes precisely on the

curve W 1
17. We can also ask for the holomorphic Hilbert modular form of smallest weight with
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the same property. If we multiply the left-hand side of (70) through by η2
+η

2
−, then by (69) the

result is

F 1
17 =

1

4
η4
− +

5 +
√

17

2
Θ6 + 3

7 +
√

17

8
Θ3η+η− +

1−
√

17

8
η2

+η
2
−, (73)

and by Theorem 8.3 this vanishes precisely on W 1
17. According to (67), F 1

17 is a holomorphic
Hilbert modular form of weight six on the full Hilbert modular group, but with quadratic
character v2

0, where v0 is defined as in (68). If we further multiply it by Θ2, then we get a Hilbert
modular form of weight eight on the full Hilbert modular group and with trivial character, given
in terms of the Hermann generators by

Θ2F 1
17 =

1

4
G2G6 +

5 +
√

17

2
H2

4 + 3
7 +
√

17

8
G4H4 +

9−
√

17

8
G2

4,

but this form now vanishes not only on W 1
17, but also (doubly) on the diagonally embedded

modular curve H/SL(2,Z) ⊂ H2/SL(2,O). On the other hand, if we multiply F 1
17 by its Galois

conjugate F 0
17 = (F 1

17)σ, then the product F17 vanishes precisely on the full Teichmüller locus
W17 = W 0

17 ∪ W 1
17, and this is now a holomorphic Hilbert modular form on the full modular

group SL(2,O) and with trivial character, given in terms of the basis of M12(SL(2,O)) from
Theorem 8.1 by

F17 = (explicit polynomial in G2, G4, H4, G6, H6 with rational coefficients).

We do not write out the polynomial, since it is a bit complicated, but observe that it involves
only 11 of the 16 generators of M12(SL(2,O)). The fact that here there is a single Hilbert modular
form of weight 12 whose vanishing locus is precisely the union of the Teichmüller curves on XD

is a special case of the theorem of Bainbridge, already mentioned in § 8.1, stating that such a
form FD exists for every D. We will give a different proof of this in Part III by constructing
FD ∈M12(SL(O∨ ⊕ O)) in general as a product of 12 derivatives of theta series of weight (1

2 ,
3
2)

or (3
2 ,

1
2).

(2) The next point concerns the choice of coordinates for our Fourier expansions. We replace
the previously used coordinates X and Y from (61) by the new Fourier variables

X1 = X−3Y 13, Y1 = X5Y −21.

This has several advantages. First of all they form a Z-basis of the group of Fourier monomials
e(tr(xz)), whereas X and Y generated a subgroup of index two. Second, symmetric Hilbert
modular forms of even weight are symmetric in X1 and Y1, as one sees using the action of ε . For
instance the (X1, Y1)-expansions of the first two Hermann generators begin

− 1
192 G2 = 1

12 + Y1X1 + (9Y 2
1 + 3Y 3

1 )X2
1 + (3Y 2

1 + 10Y 3
1 + 15Y 4

1 )X3
1 + · · · ,

1
256 G4 = −Y1X1 + (−9Y 2

1 + Y 3
1 )X2

1 + (Y 2
1 − 14Y 3

1 + Y 4
1 )X3

1 + · · · ,
in which the coefficients of Y 3

1 X
2
1 and Y 2

1 X
3
1 are the same. Third, and most important, both are

holomorphic near the cusp of W and hence have power series expansions in t, with valuations one
and zero there rather than 21

2 and 5
2 as for X and Y . This has to do with the Hirzebruch resolution

of the cusp singularities, according the which different Z-bases of the group just mentioned are
good coordinates in different parts of the resolution cycle. (We will discuss this in much more
detail in § 11.) Here we have to choose the coordinates that are adapted to the point of the cusp
resolution through which W passes. Explicitly, these expansions are

X1 = X−3Y 13 = −11 + 3
√

17

64
t+

403− 229
√

17

2048
t2 + · · · ,

Y1 = X5Y −21 =
21− 5

√
17

2
− 895− 217

√
17

8
t+ · · · . (74)
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(For comparison, the leading terms of X and Y are
√

((524 445− 220 267
√

17)/280)t21/2 and√
−((3 + 11

√
17)/220)t5/2, respectively.) It is then very easy to restrict a Hilbert modular form F

given in its (X1, Y1)-expansion to W : to get the expansion up to order tn it suffices to expand
F up to Xn

1 in C[Y1][[X1]].
(3) The third point concerns the correctness of the values of A and Ã in (49) and (51). We

have been assuming throughout (for instance in (74)) that these guesses were correct, and now
finally prove it. We write

X1 = −11 + 3
√

17

64
c1 t exp

(
εαλ

y1

y
+ (εαλ)σ

ỹ1

ỹ

)
,

Y1 =
21− 5

√
17

2
c2 t exp

(
εαµ

y1

y
+ (εαµ)σ

ỹ1

ỹ

)
, (75)

where λ = (13− 3
√

17)/2
√

17 and µ = (−21 + 5
√

17)/2
√

17 (the factor ε in the exponent takes
care of the identification of H×H and H×H−, the factor α is the cusp width, and the factors λ
and µ come from the passage from (X,Y ) to (X1, Y1)) and where c1 and c2 are numerical factors
that are both equal to one if (and only if) the formulas for A and Ã in (49) and (51) are correct.
(One could, and we originally did, also do the whole calculation without including the prefactors
−(11 + 3

√
17)/64 and (21− 5

√
17)/2 in (75), but then the numbers in the calculation would

be even worse.) We substitute these expressions into G2, divide by ξ2, with ξ as in (59), and
write the quotient as a power series

∑
iCis

i, with s = 4t/(1− t)2 as usual. By Proposition 7.2,
we know that this power has to reduce to a quadratic polynomial if c1 and c2 have the correct
values. If we instead treat c1 and c2 as unknowns, then the coefficients of this power series are
polynomials in c1 and c2 (with huge coefficients), and we have to show that the infinite system of
polynomial equations Ci(c1, c2) = 0 for all i > 2 has the unique solution c1 = c2 = 1. By computer
calculation we find that the greatest common divisor (gcd) of the resultants Resc1(C3, C4) and
Resc1(C4, C5) is equal to −2−111c8

2(c2 − 1), and since c2 cannot be zero, it must be one. Then
substituting c2 = 1 into the g.c.d. of C3 and C4 gives c1 = 1.

(4) The final point concerns the integrality (away from the prime two) of our Fourier
expansions. The coefficients of the expansion of any Hilbert modular form in X1 and Y1 with
rational coefficients always has bounded denominators, like in the examples for G2 and G4 above.
The same is true also for Hilbert modular functions, e.g.

U + 1 = (Y1 − Y 2
1 )X1 + (−Y1 − 15Y 2

1 + 17Y 3
1 − Y 4

1 )X2
1 + · · · ,

1
4 V = Y1X1 − (22Y 2

1 + 2Y 3
1 )X2 + (−2Y 2

1 + 289Y 3
1 + 12Y 4

1 + Y 5
1 )X3

1 + · · ·
for the generators of the field of symmetric Hilbert modular functions given in Corollary 8.2
above. We introduce new generators of this function field, namely U1 = 1 − (4(U + 1)/V ) and
V1 = 1

4V . (Other choices would be equally good.)

Proposition 8.4. In the new set of generators the equality

Z[[X1, Y1]]sym = Z[[U1, V1]]

of power series rings holds.

Proof. We have Z[[X1, Y1]]sym = Z[[S, P ]], where S = X1 + Y1 and P = X1Y1. We have already
seen that U and V , and hence also U1 and V1, are symmetric in X1 and Y1. We can thus express
U1 and V1 as a power series in S and P . Concretely, these expansions start

U1 = S + (−7 + 3S + 3S2)P + (13− 65S + 37S2 + 6S3)P 2 + · · · ,
V1 = P + (−22− 2S)P 2 + (289 + 12S + S2)P 3 + · · · .
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They have integral expansions, so Z[[U1, V1]] ⊆ Z[[S, P ]]. Conversely, since the expansions begin
S + O(P ) and P + O(P 2), we can recursively compute S and P as power series in U1 and V1,
and these again have integral coefficients:

S = U1 + (7 + 3U1 + 3U2
1 )V1 + (120− 20U1 − 82U2

1 + 6U3
1 )V 2

1 + · · · ,
P = V1 + (22 + 2U1)V 2

1 + (693 + 158U1 + U2
1 )V 3

1 + · · · .

It follows that Z[[U1, V1]] ⊇ Z[[S, P ]], as desired. 2

Corollary 8.5. The restriction to WΠ of any symmetric Hilbert modular form of even weight
with integral Fourier coefficients belongs to R[[t]], where R = O17[1

2 ].

Proof. Since κ0 ∈ R×, equation (35) implies that R[[t]] = R[[s]]. Since κ1 ∈ R×, equation (72)
implies that the restrictions of U1 and W1 to W belong to this ring. Since any Hilbert modular
form has a Fourier expansion with exponents in a cone strictly contained in the positive quadrant
(explicitly, if F =

∑
r,s ar,sX

r
1Y

s
1 , then ar,s = 0 unless (9−

√
17)/8r 6 s 6 (9 +

√
17)/8r), it

contains only finitely many monomials contributing to any fixed power of t in the t-expansion of
its restriction to W . (Explicitly, Xr

1Y
s

1 + Xs
1Y

r
1 is divisible by Pmin(r,s), and P |W = O(t).) The

corollary follows. 2

Proposition 8.6. The power series y(t) and ỹ(t) have O17-integral expansions up to
denominator two, i.e. y(t), ỹ(t) ∈ R[t], where R = O17[1

2 ].

Proof. The differential operators D1 = (
√

17/2πi)(∂/∂z1) and D2 = (
√

17/2πi)(∂/∂z2) can be
written as

D1 = λX1
∂

∂X1
+ µY1

∂

∂Y1
, D2 = λσX1

∂

∂X1
+ µσ Y1

∂

∂Y1
,

where λ = (13− 3
√

17)/2 and µ = (−21 + 5
√

17)/2, and hence map R[[U1, V1]] to itself. On
the other hand, they send Hilbert modular functions to meromorphic Hilbert modular forms of
weight (2, 0) and (0, 2), respectively. By Proposition 7.2, the quotients of the restrictions to WΠ

of these derivatives by y2 (respectively ỹ2) must be rational functions of t. We have to make the
right choices of these functions in order not to introduce unwanted denominators. Since 1/U and
V/U2 restrict to polynomials in s (cf. (72)), we choose these as the Hilbert modular functions
to be differentiated, finding

y2 = c
(1− t)4

P (t)
· D1

(
V

U2

)∣∣∣∣
WΠ

, ỹ2 = c̃
(1− t)2

t(1 + t)
· D2

(
1

U

)∣∣∣∣
WΠ

,

where c = (29 + 7
√

17)/2, c̃ = (7 +
√

17)/2 and P (t) is the polynomial

P (t) = t (1 + t)

(
1− 31− 7

√
17

2
t

)(
1− 31 + 7

√
17

64
t

)(
1− 647− 153

√
17

8
t+ t2

)
.

Since c and c̃ belong to R and the polynomials in the denominators are in 1 + tR[t], it follows
that y2 and ỹ2, and hence also y and ỹ, are in R[[t]]. 2

Although we have been working with D = 17 all the time and using concrete generators of
the field of Hilbert modular functions, it is clear from the proof that the basic principle, the use
of integral coefficients for Hilbert modular forms and the base change in two variables, can be
applied for any D, giving the OD-integrality (up to finitely many primes in the denominator) of
solutions y(t) and ỹ(t) of the corresponding Picard–Fuchs equations for any D.
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Part III: Modular embeddings via derivatives of theta functions

In Part II we deduced the equation of the Teichmüller curve in the Hilbert modular surface
for D = 17 and of a Hilbert modular form cutting out the Teichmüller curve starting from the
differential operators L and L̃, which in turn were deduced from the explicit algebraic model of
the family as given in (38). In Part III we will show that there is a general construction of a
Hilbert modular form of mixed weight that cuts out the Teichmüller curve. The construction,
given in § 9, uses derivatives of theta functions. The short proof depends on the description of
Teichmüller curves using eigenforms for real multiplication with a double zero (see Theorem 5.2).
We also verify that in the case D = 17 we get the same equation for the Teichmüller curve as
already obtained in § 8.

Next, in §§ 10 and 12, we develop the theory of Teichmüller curves in genus two ‘from scratch’
starting from the new definition as vanishing loci of theta derivatives. In particular, we give new
proofs from this point of view of the cusp classification and of the facts that these curves are
Kobayashi geodesics and are disjoint from the reducible locus and hence are Teichmüller curves.
We do not know how to reprove the irreducibility from the viewpoint of theta functions.

Along the way, in § 11 we show that Bainbridge’s compactification of Hilbert modular surfaces
using the moduli space of curves is indeed a toroidal compactification. Recall that this property
of Hirzebruch’s compactification was the model on which the notion of toroidal compactifications
was developed.

9. Teichmüller curves are given by theta derivatives

Bainbridge has shown in [Bai07, Theorem 10.2], that the Teichmüller curves WD defined in § 5.3
are given as the vanishing locus of a modular form (3, 9) for all D. We determine this form
explicitly. It turns out to be a product of derivatives of theta series restricted from the Siegel
half-space to Hilbert modular varieties.

9.1 Theta functions and their restrictions to Hilbert modular varieties
We recall the definition of the classical theta functions and properties of their derivatives.
Although we are ultimately interested in g = 2 only, we can keep g general without effort when
setting up the definitions.

For m,m′ ∈ (1
2Z)g (considered as row vectors) we define the (Siegel) theta function

Θ(m,m′) :


Cg ×Hg → C,

(v, Z) 7→
∑

x∈Zg+m

e(1
2xZx

T + x(v +m′)T ),

with characteristic (m,m′). The evaluation of a theta function at v = 0 is called a theta constant.
The theta function (and the characteristic (m,m′)) is called odd if 4m(m′)T is odd and even
otherwise. Odd theta constants vanish identically as functions of Z. Up to sign, Θ(m,m′) depends
only on m and m′ modulo Zg.

The theta constants Θ(m,m′)(0, Z) are modular forms of weight 1
2 for some subgroup (in

fact Γ(4, 8), see e.g. [Igu72]) of Sp(2g,Z). The partial derivatives with respect to any vi are not
modular, but if we restrict to v = 0 and consider the gradient (as column vector)

∇(Θ(m,m′)(0, Z)) =

(
∂

∂vi
Θ(m,m′)(v, Z)|v=0

)
i=1,...,g

,
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then we get a vector-valued modular form. That is, if Θ(m,m′)(0, Z) = 0, one calculates that for

any M =
(
A B
C D

)
∈ Γ(4, 8) the gradient transforms as

∇(Θ(m,m′))(0,M · Z) = ζ8 det(CZ +D)1/2 (CZ +D)∇(Θ(m,m′))(0, Z),

where ζ8 is an eighth root of unity depending on M .
If K is a totally real number field of degree g over Q with ring of integers O, then just as in the

special case g = 2 we can define a g-dimensional Hilbert modular variety XK = Hg/SL(O∨ ⊕O)
and a Siegel modular embedding (Ψ, ψ) of XK into Hg/Sp(2g,Z), given by a matrix B ∈ GL(g,
R) as in (25). Recall that this means that Ψ : SL(O∨ ⊕ O) → Sp(2g,Z) is a homomorphism
and that ψ(z) = BTdiag(z1, . . . , zg)B is a map that is equivariant with respect to Ψ. We then
denote by θ(m,m′)(z) = Θ(m,m′)(0, ψ(z)) and ∇θ(m,m′)(z) = ∇Θ(m,m′)(0, ψ(z)) the restriction of
the theta functions and their gradients to Hg. We also write θ(m,m′),Ψ if we want to emphasize
the dependence on the modular embedding. The modularity of the Siegel theta functions imply
that the (Hilbert) theta constants θ(m,m′)(z) are modular forms with a character of order eight

of weight (1
2 , . . . ,

1
2) for a subgroup of finite index of the Hilbert modular group SL(O∨⊕O). The

theta constants are non-zero if and only if (m,m′) is even, while the theta gradients are modular
if and only if (m,m′) is odd.

The modular transformation of the derivative of theta constants for (m,m′) odd now reads

∇θ(m,m′)(γ · z) = ζ8 det(ĉψ(z) + d̂)1/2B−1J(z, γ)B∇θ(m,m′)(z)

for γ =
(
a b
c d

)
in the subgroup Ψ−1(Γ(4, 8)) ⊂ SL(O∨⊕O), where ê for e ∈K denotes the diagonal

matrix with entries σj(e) given by the different real embeddings σj of K and J = J(z, γ) is
the diagonal matrix with entries σj(c)zj + σj(d). Consequently, the vector-valued modular form

B∇θ(m,m′) transforms with the automorphy factor ζ8 det(ĉψ(z) + d̂)1/2J(z, γ), which is also a

diagonal matrix. We will calculate the root of unity ζ8 for K = Q(
√
D) with D ≡ 1 (mod 8) in

detail below.
To summarize, the ith entry Diθ(m,m′)(z) of the column vector B∇θψ is a Hilbert modular

form of multiweight (1
2 , . . . ,

1
2 ,

3
2 ,

1
2 , . . . ,

1
2) and a character stemming from the eighth root of

unity.
We can also express the functions Diθ(m,m′) as derivatives in certain eigendirections. For this

purpose replace the original coordinates v = (v1, . . . , vg) ∈ Cg by the ‘eigendirection coordinates’
u = Bv = (u1, . . . , ug). Then we may write

Diθ(m,m′)(z) =
∂

∂ui
Θ(m,m′)(v, ψ(z))|u=0.

9.2 The curve WD is the vanishing locus of the theta derivatives
With this preparation we can now determine Bainbridge’s modular form for general D.

Theorem 9.1. The function

Dθ(z) =
∏

(m,m′) odd

D2θ(m,m′)(z) (76)

is a modular form of weight (3, 9) (with character) for the full Hilbert modular group SL(O∨D ⊕
OD). Its vanishing locus is precisely the Teichmüller curve WD.
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Table 3. The action of SL(2,O) on the D2θL and D2θR.

f(z1, z2) f(z1 + 1, z2 + 1) f(z1 + α, z2 + σ(α)) z
−3/2
1 z

−9/2
2 f(1/z1, 1/z2)

DL −DL −ζ8DL −DL

DR −DR ζ−18 DR −DR

We will give additional properties of the modular form Dθ if the prime (2) splits, i.e. if
D ≡ 1 (mod 8). In that case, as already mentioned in § 8.2, the discussion of the numbering
of theta characteristics given there for D = 17 always holds. In particular, one has a quartic
character v0 given by (68). Here, Dθ is a product of two modular forms and its character is v2

0.
Indeed, using the shorthand notation introduced in § 8.2 we calculate the action of generators of
SL(O∨ ⊕ O) on the functions D2θ(m,m′). From Table 2 in § 8.2, we deduce that the products
of theta derivatives

DL = D2θ0X ·D2θ1X ·D2θ∞X and DR = D2θX0 ·D2θX1 ·D2θX∞ (77)

are modular forms for the full group SL(O∨⊕O) of weight (3
2 ,

9
2) with a character of order eight

according to Table 3 below, in which α = (1 +
√
D)/2 as usual. The function Dθ then equals

DLDR and has character v2
0 of order two. This computation also shows that if D ≡ 1 (mod 8),

then the Teichmüller curve WD has two components, the vanishing loci of DL and of DR. This
is our equivalent of McMullen’s spin invariant that we referred to after Theorem 5.2.

Before proceeding to the proof of Theorem 9.1, we write out the Fourier expansions of the
theta derivatives explicitly. Fix a basis (ω1, ω2) of OD as we did in (25) for the construction of a
Siegel modular embedding, say (ω1, ω2) = (1, γ0 = (D +

√
D)/2). Then the first row the matrix

B is the basis of O and the second row consists of the Galois conjugates. Given m ∈ 1
2Z

2, we let

ρ(x) = (x+m) · (1, γ0)T

for x ∈ Z2. Then for (m,m′) odd the theta derivative is given by

D2θ(m,m′)(z1, z2) = i4m(m′)T
∑
x∈Z2

(−1)2x·(m′)T σ(ρ(x))q
ρ(x)2/2
1 q

σ(ρ(x))2/2
2 , (78)

where qj = e(zj) as usual.

Proof of Theorem 9.1. The modularity of Dθ for some level subgroup follows from the
corresponding property of the Siegel theta functions, as shown in § 9.1. It follows from the
calculations above for D ≡ 1 (mod 8) that the factor group permutes the set of theta
characteristics, preserving their parity. Moreover, we read off from the table that Dθ has character
v2

0 in this case. In other cases D 6≡ 1 (mod 8), one checks similarly that the factor group still
permutes theta characteristics, preserving their parity. In fact, classical calculations of Igusa
show the full symplectic group Sp(4,Z) preserves the parity. Consequently, Dθ is still a modular
form, with some character, for the full Hilbert modular group.

For the second statement, let C be a curve of genus two with period matrix Z. It is cut
out in its Jacobian as the vanishing locus of Θ(0,0)(v, Z). See e.g. [FK80, chs VI and VII.1] for
standard properties of theta functions and Weierstrass points. The two-torsion points in Jac(C)
are ZmT + (m′)T for m,m′ ∈ (1

2Z)2. The Weierstrass points of C are precisely the six points
ZmT + (m′)T for (m,m′) odd. Moreover, a holomorphic differential form ω has a double zero on
C if and only if ω vanishes (automatically doubly) at a Weierstrass point.
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Suppose that the point [C] ∈M2 lies on WD. Then C has real multiplication, so Z = ψ(z) for
some fixed Siegel modular embedding ψ. We identify the universal covering V of the Jacobian
J(C) with the dual to H0(C,Ω1

C). We claim that the characterizing condition on the existence of
an eigenform with a double zero (see Theorem 5.2) is equivalent to the vanishing of the derivative
of the Riemann theta function in the second eigendirection u2 at a Weierstrass point. In fact,
the definition of the Abel–Jacobi map C → J(C) implies that its projectivized tangent map is
given by p 7→ (ω1(p) : ω2(p)) in the chosen eigenbasis of H0(C,Ω1

C) and so ω1 vanishes at p if and
only if the u2-derivative of the defining equation of C in J(C) vanishes at p. Since we defined
u = Bv this just means that

2∑
j=1

ωσj

(
∂

∂vj
Θ(0,0),D(v, ψ(z))

)∣∣∣∣
v=ψ(z)mT+(m′)T

= 0 (79)

for some even (m,m′).
By the product rule, the derivative with respect to vi of the defining equation

Θ(0,0)(v + ZmT + (m′)T , Z)) = e(−πimZmT − 2πim(v +m′)T ) ·Θ(m,m′)(v, Z)

for Z = ψ(z) has two summands. The factor given by differentiating the exponential term vanishes
by definition for every pair of a point z ∈ H2 and v ∈ Jac(Cz). Since e(·) is never zero, the
vanishing of the derivative (79) is equivalent to z being in the vanishing locus of Dθ.

To show that the modular form MWD
vanishes nowhere else there are several options. The

first is to remark that the above argument can be inverted for Jacobians of smooth curves. So
one has just to show that the vanishing locus of Dθ is disjoint from the reducible locus. We give
two proofs of this fact that do not rely on any Teichmüller theory in § 12. Yet another way to
conclude is to compare the weight of Dθ with the modular form that cuts out WD in Bainbridge’s
theorem from [Bai07, Theorem 10.2]. They are both of weight (3, 9). 2

The example D = 17 revisited. If we calculate the theta series and their derivatives for D = 17
as was done in § 8.2, then we can verify that the product of DR(z1, z2) with DR(z2, z1) is indeed
proportional to the function F 1

17 given in (73), and similarly that the product of DL(z1, z2) with
DL(z2, z1) is proportional to the Galois conjugate function F 0

17.

10. Cusps and multiminimizers

Fix an invertible OD-ideal a. Our aim in this section is to list the branches of the theta derivative
vanishing locus WD through the cusp of the Hilbert modular surface XD determined by the class
of a. Our Ansatz is to describe the branch of WD defined by a Hilbert modular form in (q1, q2)
by q1 = qα and q2 = qσ(α)(1 + P ), where q a suitable local parameter and P a power series with
positive valuation in q. This will lead us to consider a minimization problem on quadratic forms.
The solutions are given by so-called ‘multiminimizers’.

The main result of this section will be the following characterization of cusps of WD, derived
from Fourier expansions only. We call an indefinite quadratic form Q = [a, b, c] standard 4 if
a > 0 > c and a + b + c < 0. To a quadratic form Q we associate the quadratic irrationality
λQ = (−b+

√
D)/2a. The quadratic form is standard if and only if λ = λQ satisfies

λ > 1 > 0 > λσ. (80)

A quadratic irrationality λ satisfying (80) will also be called standard.

4 There seems to be no standard terminology for these quadratic forms and quadratic irrationalities. They appear
implicitly in [CZ93] and [Bai07].
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Theorem 10.1. Suppose that D is a fundamental discriminant or, more generally, that a is an
invertible OD-ideal. Then there is a bijection between the cusps of WD mapping to the cusp a of
XD and the set of pairs (Q, r) consisting of a standard quadratic form Q = [a, b, c] of discriminant
D such that [〈1, λQ〉] = [a] together with a residue class r ∈ Z/(a, c)Z.

This will be proved in § 10.2. We will also comment on the case of non-invertible ideals after
a discussion of cusps of Hilbert modular surfaces in the same subsection.

Given that WD is a Teichmüller curve, as we showed in Theorem 9.1 using the eigenform
definition and will show again in the next section using the theta viewpoint only, this
characterization reproves the list of cusps of [McM05]. (See also [Bai07, Theorem 8.7(5)].) For a
comparison, we will briefly sketch the approach based on flat surfaces in § 10.3.

The proof of Theorem 10.1 can be applied verbatim to prove the following result on the
reducible locus PD (see § 5.2) from the theta function viewpoint. This result was also proven by
Bainbridge using the flat surface viewpoint on cusps.

Theorem 10.2. Let D and a be as above. Then there is a bijection between the cusps of PD
mapping to the cusp a of XD and the set of pairs (Q, r) as in Theorem 10.1. In particular, for
every given a the numbers of cusps of PD and WD mapping to the cusp a of XD coincide.

We will end the section by giving an algorithm in § 10.4 to compute multiminimizers using
continued fractions.

10.1 Multiminimizers
Let F (x, y) = Ax2 +Bxy+Cy2 be a positive-definite binary quadratic form with real coefficients.
On each of the cosets of 2Z2 in Z2 this form assumes its minimum a finite number of times. Of
course on the trivial coset the minimum is zero and is assumed exactly once, while on each of the
other cosets the minimum is generically attained exactly twice, by some non-zero vector and its
negative. We call the form [A,B,C] multiminimizing if on at least one of the three non-trivial
cosets the minimum is attained more than twice. These forms are classified by the following
proposition.

Proposition 10.3. A positive-definite binary quadratic form is multiminimizing if and only if
it is diagonalizable over Z. In this case, there is exactly one coset of 2Z2 in Z2 on which the form
has a multiple minimum; this minimum is assumed exactly twice (up to sign) and is the sum of
the minima in the other two cosets.

Proof. This is proved using reduction theory. Suppose that the form F is multiminimizing. Since
this property is obviously SL(2,Z)-invariant, we can assume that F is reduced, i.e. F = [A,B,C]
with C > A > |B|. By Cauchy’s inequality we have |Bxy| 6 A(x2 + y2)/2 , and hence

F (x, y) >
A

2
x2 +

(
C − A

2

)
y2,

for all (x, y) ∈ R2. In particular,

|x| > 1, |y| > 2 ⇒ F (x, y) > 4C − 3A/2 > A,

|x| > 2, |y| > 1 ⇒ F (x, y) > C + 3A/2 > C,

|x| > 3, |y| > 1 ⇒ F (x, y) > C + 4A > A+ |B|+ C,

|x| > 1, |y| > 3 ⇒ F (x, y) > 9C − 4A > A+ |B|+ C.
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These equations show that the smallest value of F on the coset ‘(odd, even)’ is attained
only at (±1, 0) and equals A , that the smallest value of F on the coset ‘(even, odd)’ is
attained only at (0,±1) and equals C , and that the two smallest values of F on the coset
‘(odd, odd)’ are attained only at (±1,±1) and are equal to A − B + C and A + B + C . In
particular, F is multiminimizing if and only if B vanishes, in which case the only coset on which
it attains its minimum more than once is ‘(odd, odd)’ and the minimum there is attained exactly
twice (up to sign) and is the sum of the unique minima in the other two cosets. 2

Let a be a fractional OD-ideal in a real quadratic field K and ξ a non-zero coset of a in 1
2a.

(Thus there are three possibilities for ξ given a.) We denote by M̃M(a, ξ) the set of non-zero α ∈K
such that the quadratic form Fα(x) = tr(αx2) is positive-definite and assumes its minimum value
on the coset ξ more than twice (up to sign), and call the elements of this set multiminimizers for ξ.

We denote by M̃M(a) the set of all multiminimizers for a, i.e. the union of the sets M̃M(a, ξ) for

all three cosets ξ. Clearly, M̃M(a) is invariant under multiplication by positive rational numbers
and by the squares of elements of the group UD of units ε of OD. We set

MM(a) = M̃M(a)/(Q×+ · U2
D). (81)

Later we will often use the representatives of α ∈ MM(a) that are primitive in (a2)∨. They are
unique up to multiplication by U2

D.

Proposition 10.4. Let a be a fixed fractional OD-ideal of K. Then there is a bijection between
MM(a) and the set of standard quadratic forms Q = [a, b, c] with b2− 4ac = D in the wide ideal
class of a.

Moreover, given α ∈ M̃M(a), there is a unique basis (ω1, ω2) such that ω2 > ω1 > 0 of a with
respect to which the form Fα is diagonal, and the coset ξ is then 1

2(ω1 + ω2) + a.

Proof. Given Q = [a, b, c] choose µ ∈ K× positive such that µ〈1, λQ〉 = a and take

α =
−ac

µ2λQ
√
D

=
a

µ2
· b+

√
D

2
√
D

. (82)

This is positive-definite if Q is standard. Since Q is simple the basis ω1 = µ, ω2 = µλQ satisfies
the conditions stated. Moreover, in this basis the quadratic form Fα is

Fα = [A, 0, C], A = tr(αω2
1) = a, C = tr(αω2

2) = −c

since tr(αω1ω2) = tr(−ac/
√
D) = 0. Thus, α is a multiminimizer.

Conversely, if α is a representative of a class in MM(a), then it follows from Proposition 10.3
that there exists a unique basis (ω1, ω2) of a (up to interchanging the ωi and changing their
signs) of a with respect to which Fa(x) is diagonal, and the coset ξ is then 1

2(ω1 + ω2) + a. This

also proves the last statement. In this basis Fα = [A, 0, C] with A = tr(αω2
1) and C = tr(αω2

2).
We choose signs and order the basis such that λ = ω2/ω1 > 1 and claim that then σ(λ) < 0, so
that λ is the root of a standard form. In fact, we have α = q/(ω1ω2

√
D) for some q ∈ Q×+. Thus

C = tr(qλ/
√
D) and

A = tr(q/(λ
√
D)) = −N(λ)C.

Since Fα is positive-definite (by definition of a multiminimizer), the numbers A and C are
positive, so this implies thatN(λ)< 0 as claimed. One checks immediately that λ does not depend
on the representative of the multiminimizer in MM(a, ξ) we have chosen. We take Q = [a, b, c]
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so that λ satisfies aλ2 + bλ+ c = 0 with a > 0 and a, b, c coprime integers, and since 〈1, λ〉 is an
invertible OD module, we then have b2 − 4ac = D.

Obviously, the composition λQ 7→ α(λQ) 7→ λ(α) is the identity. In the other direction, note
that α is determined by (ω1, ω2) up to a positive rational number and that µ with µ〈1, λQ〉 = a is
determined up to a unit. Consequently, each of the distinguished basis elements ωi is determined
up to a unit and α is determined up to a square of this unit. Since multiminimizers were defined
in (81) by these two equivalence relations, this shows the bijection we claimed. 2

10.2 Cusps of Hilbert modular surfaces
Classically, cusps of the Hilbert modular surface XD are defined to be the equivalence classes of
points in P1(K) under the action of SL(O∨⊕O). Equivalently, we may define a cusp as an exact
sequence

0 → a∨ → O∨D ⊕ OD → a → 0

of torsion-free O-modules up to the action of SL(O∨ ⊕ O) on O∨ ⊕ O and its sub-O-modules.
The modules a arising in this way are quasi-invertible, i.e. invertible OE-module for some order
OE ⊇ OD = O. Yet another equivalent viewpoint to define a cusp is by the class of an invertible
OE-ideal a together with an element r ∈ Z/

√
(D/E)Z.

We briefly recall how to see the equivalence of these definitions. For the equivalence of the
first two definitions, intersect the line L ⊂ K2 determined by a point in P1(K) with a fixed
embedding of O∨ ⊕O in K2 to get the exact sequence and conversely tensor the exact sequence
with K over O. That such an extension class is determined by r ∈ Z/(

√
D/E)Z can be deduced

from the calculation in [Bai07, Proposition 7.20] or [BM12, Theorem 2.1].
As a preparation for the proof of Theorem 10.1 we determine the Fourier series of Dθ at a

given cusp a of XD. For a basis ω = (ω1, ω2) of the ideal a let ρω(x) = (x+m) · ωT for x ∈ Z2,
with the dependence on m suppressed in the notation. Then for (m,m′) ∈ (1

2Z)2 odd we define

D2θ(m,m′),ω(z1, z2) =
∑
x∈Z2

(−1)2x·(m′)T σ(ρω(x))q
ρω(x)2/2
1 q

σ(ρω(x))2/2
2 , (83)

where qi = e(zi). Note that D2θ(m,m′),ω depends on the chosen basis ω, but a base change can
be compensated for by letting the base change matrix also act on the characteristic (m,m′).
Consequently, the product

Dθa =
∏

(m,m′) odd

D2θ(m,m′),ω (84)

is of the form
∑

y∈a c(y) exp(tr(y2z)) and thus invariant under an upper triangular matrix in
SL(a∨⊕ a).

Lemma 10.5. The Fourier expansion of Dθ at the cusp a is proportional to Dθa.

Proof. To avoid the generally hard problem of finding the Fourier development of a modular form
at a different cusp we use the fact that the vanishing locus of Dθ has an intrinsic formulation in
terms of eigenforms. In Theorem 9.1 we proved that this vanishing locus corresponds to the set
of principally polarized abelian varieties with real multiplication such that the first eigenform
has a double zero. This proof works for any Siegel modular embedding, for example the one given
at the end of § 5.1, where the locus of real multiplication is XD,a and ψ is constructed with the
help of the matrix B as in (25) having ω = (ω1, ω2) as its first column. The restriction of the
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Siegel theta function with characteristic (m,m′) via this modular embedding is just D2θ(m,m′),ω.
To complete the proof, we note that the cusp at ∞ of XD,a is just the cusp a of XD. To see this,

take a matrix
(

a−1 a∨

(a∨)−1 a

)
∩SL(2,K). It conjugates SL(O∨⊕O) into SL(a∨⊕ a), since a∨ = a−1O∨

and the line at infinity in P1
K intersects a∨ ⊕ a in the submodule a∨, as required. 2

Proof of Theorem 10.1. We first determine the cusps of the vanishing locus of Dθa, as defined
in (84), that map to the cusp ∞ of the Hilbert modular surface XD,a. Because functions in a

neighborhood of the cusp a have the form
∑

ν cνe(tr(νz)) with ν ∈ (a∨a
−1

)∨ = a2, we can choose
a local parameter q at a branch of this locus, with q = 0 at the cusp, of the form q = e(z/α)
with α ∈ (a2)∨ primitive. A lift of the vanishing locus to H × H looks locally like z2 = ϕ(z1),
where ϕ(z) = ασ/αz +C + ε(q)/2πi as =(z) →∞ for some C ∈ C and some power series ε in q
with no constant term. Then we have

e(νz1 + νσz2)|locus = e(Cνσ) qtr(αν)eσ(ν)ε(q) for all ν ∈ a2, (85)

so that the restriction of any Hilbert modular form becomes a power series in q. Making a
different choice of the lifting would change C by an integral multiple of N(a)2

√
D/α, so that the

quantity

S = e

(
Cα

N(a)2
√
D

)
∈ C∗ (86)

is independent of the choice of the lifting. We will show below that S is in fact a rational power
of an element of K∗.

The resulting q-exponents after plugging (85) into (83) are of the form tr(αρω(x)2). In
order for the theta derivative to vanish, the smallest exponent of q must occur twice, so this
quadratic form has to take its minimum twice (with x and −x not distinguished). Hence,
α is a multiminimizer for a. Recall that this specifies α only up to Q×+ · U2

D, but here the
fact that q = e(z/α) is a local parameter (or, equivalently, that α is primitive) eliminates the
Q×+-ambiguity. The U2

D-ambiguity corresponds to the fact that this group (considered as diagonal
matrices in the Hilbert modular group) stabilizes the given cusp α of the Hilbert modular surface.
Since U2

D acts transitively on the three non-trivial cosets ζ of 1
2a/a and since a multiminimizer

has the multiple minimum property on exactly one of the three cosets by Proposition 10.3, we
may suppose from now on that the branch is chosen such that D2θ(m,m′),ω for m = (1

2 ,
1
2) vanishes

on that branch.
We next determine α and exhibit for this purpose a convenient basis of a2. We suppose that

ω1, ω2 was from the beginning of the discussion the distinguished basis of a associated with a
multiminimizer in Proposition 10.4. We let g = gcd(a, c), where ax2 + bx+ c = 0 is the minimal
polynomial of λ = ω2/ω1. Choose s, t ∈ Z such that sa+ tc = g. It is easily verified that

a2 = 〈ω2
1, ω1ω2, ω

2
2〉 = 〈α∗, β∗〉,

where

α∗ =
g

a
ω2

1 +
tb

a
ω1ω2 and β∗ =

1

g
ω1ω2

since gcd(a, b, c) = 1. (In fact, a2 contains (c/a)ω2
1 + (b/a)ω1ω2 using the minimal polynomial,

so (b/g)ω1ω2 and finally (1/g)ω1ω2 by the gcd condition. The ideal also contains (ct/a)ω2
1 +

(tb/a)ω1ω2 and, since gcd(a, tc) = g, also α∗. The converse inclusion follows from the line
below (89).) This basis is chosen such that the dual basis is {α, β} where

α =
−ac

gω2
1λ
√
D

=
a

gω2
1

· b+
√
D

2
√
D

. (87)
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As local coordinates on the Hilbert modular surface we now pick X = qα
∗

1 q
σ(α∗)
2 and Y =

qβ
∗

1 q
σ(β∗)
2 , which are power series in the local coordinate q beginning with q and S, respectively.

In these coordinates the factors of Dθa have the expansion

D2θ(m,m′),ω(z1, z2) =
∑
x∈Z2

(−1)2x·(m′)T ρω(x)σXF (x̃1,x̃2)/2Y G(x̃1,x̃2)/2 , (88)

where x̃i = xi + 1
2 and where

F =

[
a

g
, 0,
−c
g

]
, G = [−bt, 2g, bs]. (89)

(This follows from (a/g)α∗ − btβ∗ = ω2
1, 2g β∗ = 2ω1ω2 and −(c/g)α∗ − bsβ∗ = ω2

2.) Then
D2θ(m,m′),ω/X

1/8Y 1/8 has an expansion in integral powers of X and Y 1/2, but we actually
need the product F = D2θ((1/2,1/2),(1/2,0)),ωD2θ((1/2,1/2),(0,1/2)),ω, and this product, divided by

X1/4Y 1/4, has integral powers of Y as well.
Finally we need to show that map from cusps to multiminimizers is onto and that the

fibers have cardinality g. Analyzing the lowest-order coefficient in q of F, to which precisely
the summands x̃1 = ±1

2 and x̃2 = ±1
2 contribute, and noting that G(1

2 ,
1
2) − G(1

2 ,−
1
2) = g, we

find that the S of (86) has to be a solution of

Sg =

(
ρω(1

2 ,−
1
2)

ρω(1
2 ,

1
2)

)σ
. (90)

This equation has precisely g solutions, differing by gth roots of unity. For each such solution of
the lowest-order term in q there is a unique power series ε(q) such that (85) is in the vanishing
locus of Dθa, since the coefficients of ε(q) are recursively determined by a triangular system of
equations. (We will discuss the arithmetic properties of ε(q) in § 13.1.)

This completes the proof for the vanishing locus of Dθa at the cusp ∞ and by Lemma 10.5
also the proof of Theorem 10.1. 2

A statement such as Theorem 10.1 can certainly be proven along the same lines also if a
is not an invertible OD-ideal (which can of course only happen for non-fundamental D). This
has an effect in Lemma 10.5, and the fact that gcd(a, b, c) > 1 changes the computation of the
basis {α∗, β∗} that was used in the proof. Since our aim is just to demonstrate the method of
reproving the properties of genus two Teichmüller curves using theta functions, we do not carry
this out in detail.

Proof of Theorem 10.2. The reducible locus is the vanishing locus of the product of all 10 even
theta functions. Thus branches of the vanishing locus have to be parametrized as in (85) with
α a multiminimizer. For m = (0, 0) the forms are never multiminimizing and in all other cases
the proof proceeds as the proof of Theorem 10.1. Only the coefficients of (90) change, but not the
exponents. This does not affect the number of cusps for each multiminimizer. 2

10.3 Cusps of WD via flat surfaces and prototypes
The cusps of the Teichmüller curve WD were first determined in [McM05] based on the
following observations. It was discovered by Veech along with the definition of Teichmüller curves
that cusps correspond to directions (considered as elements of R2/R∗) of saddle connections
(i.e. geodesics for the flat metric |ω| starting and ending at a zero of ω). Applying a rotation
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Figure 2. Prototype of a flat surface parametrizing cusps of the Teichmüller curves WD. Sides
with the same label are identified.

to the flat surface, we may suppose that the direction is horizontal, so that the subgroup of

GL(2,R) stabilizing the direction consists of upper triangular matrices. McMullen discovered

that flat surfaces parametrized by WD always decompose in saddle connection directions into

two cylinders as indicated in Figure 2. The action of the upper triangular group allows us to

assume the upper cylinder to be a square, while still having the freedom to be normalized by the

action of T =
(

1 1
0 1

)
. McMullen further deduces from real multiplication that the two cylinders

must be isogenous with a homothety in a real quadratic field. We thus may suppose that (a, c, q)

are integral and λ is real quadratic. A more careful analysis of the isogeny (see [McM05, (2.1)]

or [Bai07, Proposition 7.20]), imposing moreover that OD is the exact endomorphism ring of a

generic abelian surface parametrized by the Teichmüller curve, implies that λ = [a, b, c] with a

and c as in Figure 2 and such that (a, b, c, r) = 1.

Obviously a > 0, c < 0 and the side length inequality −aλσ < −c is equivalent to a + b +

c < 0. By the action of T we may reduce mod gcd(a, c). Altogether this implies that cusps

of WD correspond bijectively to pairs (λ = [a, b, c], q) with λ standard and q ∈ Z/(a, c), as in

Theorem 10.1.

10.4 Computing multiminimizers

There are many variants of how to expand real numbers into continued fractions. One may

subtract (slowly) one at each step or group these steps together, one may subtract one while

being greater than one, greater than zero, or until becoming negative. We will need two of them,

one here and one in § 11.2.

The slow plus greater-than-one continued fraction expansion of x ∈ R>1 is defined by x0 = x

and then inductively by

xn+1 =

{
xn − 1 if xn > 2,

1/(xn − 1) if 2 > xn > 1,

so that

x = 1 + · · ·+ 1 +

(
1 +

1

1 + · · ·+ 1 +

(
1 +

1

. . .

)).
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The class of the ideal [a] = [〈1, xn〉] is unchanged under this continued fraction algorithm,
since 〈1, xn〉 = 〈1, xn − 1〉 = (xn − 1)〈1, 1/(xn − 1)〉.

Lemma 10.6. The slow plus greater-than-one continued fraction expansion of any quadratic
irrational λ is periodic, and is pure periodic if and only if λ is standard.

Proof. The classical proof of Lagrange (for the more usual fast continued fraction algorithm with
plus sign, where λ is sent to λ− bλc if λ > 1 and to 1/λ if 0 < λ < 1) applies here as well. The
slow algorithm here just introduces intermediate steps and combines two steps when 1 < λ < 2.
The second statement is proven in [CZ93]. 2

This observation gives us an algorithm to compute all multiminimizers for a given ideal a.
Write a = µ0〈λ0, 1〉 and apply the continued fraction algorithm to λ0 until it becomes pure
periodic, say at a standard quadratic irrational λ1 with a = µ1〈λ1, 1〉. The first multiminimizer
is then the (U2

D · Q∗)-class of α1 = −1/(µ2
1λ1

√
D) as in (82). Proceeding in this way with

αk = −1/(µ2
kλk
√
D) where a = µk〈λk, 1〉 for λ2, . . . , λn along the period of λ1 gives all of the

multiminimizers for a.
In each of the steps we may choose α in its Q∗-class to be primitive in some fixed OD-module.

We will use this normalization for the Bainbridge compactification in the next section.

11. The Hirzebruch and the Bainbridge compactification

Hirzebruch’s minimal smooth compactification is a toroidal compactification. In this section
we reinterpret the Bainbridge compactification of Hilbert modular surfaces as a toroidal
compactification, see Theorem 11.5. This compactification was defined originally via the Deligne–
Mumford compactification of the moduli space of one-forms on Riemann surfaces, We will see
that both Hirzebruch’s and Bainbridge’s compactification can be computed using continued
fraction algorithms.

We start with a review of toroidal compactifications from the viewpoint of curve
degenerations and we recall Hirzebruch’s continued fraction algorithm. The procedure presented
in § 10.4 to compute multiminimizers is very similar to Hirzebruch’s, but the continued fraction
algorithms are different. The geometry of Bainbridge’s compactification has been described
in [Bai07]. We recall this material in § 11.4, since it is part of the main Theorem 11.5. Once this
is proven, all geometric properties will follow from general facts about toroidal compactifications.
(See Proposition 11.2.) The proof of the main theorem will be given in § 11.5.

The description of toroidal compactifications will make it easy to determine (in § 11.6) where
the cusps of modular curves FN or Teichmüller curves WD intersect the cusp resolution cycle
both of the Hirzebruch compactification and the Bainbridge compactification. Finally, in § 11.8
we compare the two continued fraction algorithms governing the two compactifications and give
formulas for the total lengths or the cusp resolution cycles in both cases.

11.1 Toroidal compactifications
The reader may consult the textbook by Ash et al. [AMRT75] as a general reference on
toroidal compactifications. We give a self-contained treatment for the case of Hilbert modular
surfaces. Locally near (∞,∞) ∈ H2 a Hilbert modular surfaces is H2/G(M,V ), where M is a
complete submodule of K (i.e. an additive subgroup of K that is free abelian of rank two) and
G(M,V ) ⊂ SL(O∨D⊕OD) is the semidirect product of M and some subgroup V of totally positive
units (see e.g. [vdG87]).
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We study the limiting behavior of a complex curve C in H2 parametrized by τ ∈ H and
having the asymptotic form

z1 = γτ +A0 +A1q +A2q
2 + · · ·

z2 = γστ +B0 +B1q +B2q
2 + · · · (91)

for =(τ) →∞, where γ ∈K is totally positive, q = e(τ) and Ai, Bi ∈ C. If this curve descends to
an algebraic curve in the Hilbert modular surface XD, so that the intersection with the subgroup
M of the cusp stabilizer is not trivial, we can always assume that the leading coefficients are of
that form. In fact, such a curve is always given as (part of) the vanishing locus of some Hilbert
modular form. Looking at the q-expansion of this Hilbert modular form, we deduce (91) by the
same argument as given at the beginning of the proof of Theorem 10.1.

To each totally positive α ∈M we associate a copy P1
α of P1(C). We have a map

Xα :


H2/M → C∗α ⊂ P1

α,

(z1, z2) 7→ e(tr(α∨z)) = e

(
ασz1 − αz2

N(M)
√
D

)
,

where N(M) denotes the norm of M . Using this identification, we glue P1
α at the cusp (∞,∞)

of H2 topologically as follows. A sequence of points z = (z1, z2) ∈ H2 with imaginary parts y1, y2

both tending to ∞ with limiting value of y1/y2 being equal to t ∈ R+ converges to the point
0 ∈ P1

α if t < α/ασ, to the point ∞ ∈ P1
α if t > α/ασ and to a finite point X = e(θ/N(M)

√
D)

for some θ ∈ C if t = α/ασ and if ασz1 − αz2 = θ + o(1).
Consequently, the curve C meets P1

α at∞ if tr(α∨γ) < 0, at 0 if tr(α∨γ) > 0, and at a finite,
non-zero, point if γ is a rational multiple of α.

To any oriented Q-basis (α, β), i.e. with α/ασ < β/βσ, corresponds a pair of projective lines
P1
α and P1

β meeting at one point (∞, 0) ∈ P1
α × P1

β. Suppose that γ ∈ K has the property

α

ασ
<

γ

γσ
<

β

βσ

holds, so that the curve C passes through the point (∞, 0). If we write γ = pα+qβ with p, q ∈ Q+

then, near the point (∞, 0) the curve (91) looks like

(X−1
α )p = (Xβ)q.

We will, of course, apply this in particular to the curves FN and to Teichmüller curves.
A V -invariant partial compactification H2/M of a Hilbert modular surface is defined by

adding not just one P1
α, but an appropriate sequence of P1

α.

Definition 11.1. A sequence of numbers (αn)n∈N in M forms a fan if (i) the αn are all totally
positive, (ii) V ·{αn}n∈N = {αn}n∈N and (iii) the ratios ασn/αn are a strictly decreasing sequence.

Our definition includes that the fan is V -invariant. If V = 〈ε〉, then (ii) is equivalent to the
existence of some k such that εαn = αn+k. The minimal positive k with that property will be
called the length of the fan.

Proposition 11.2. A fan (αn)n∈N determines a partial compactification H2/M of H2/M with
the following properties. For each n there is an irreducible curve P1

αn in H2/M\H2/M . The curves
P1
αn and P1

αn+1
intersect in one point. For k > 1 the curves P1

αn and P1
αn+k

are disjoint in H2/M .
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The action of V on H2/M extends to an action on H2/M . Hence, a fan determines a partial

compactification H2/G(M,V ) of H2/G(M,V ).

The partial compactification is always smooth along P1
αn minus the intersection points with

the P1
αn±1

. At the intersection point of P1
αn and P1

αn+1
the compactification is smooth if and only

M = Zαn + Zαn+1. More generally, if Zαn + Zαn+1 has index k in M , then H2/M has a cyclic

quotient singularity of order k at that point. In particular, the compactification is normal.

Proof. We first recall the general setup of two-dimensional toric varieties, e.g. the book of Fulton

[Ful93] provides an introduction to this topic. For each two-dimensional cone σ given, say, as

the span of αn and αn+1 we let Uσ be the variety with coordinate ring C[σ∨ ∩M∨]. For each

one-dimensional cone τ at the boundary of σ2, say spanned by αn we let Vτ ⊂ Uσ be the

variety with coordinate ring C[σ∨ ∩ M∨]. If τ is contained both in σ1 and σ2 we may glue

Uσ1 and Uσ2 along the open set Vτ . In particular an (or τ = 〈an〉) determines a rational curve

P1
αn = (Uσ1 ∪ Uσ2)\Vτ . The zero-dimensional cone 0 corresponds to the varietyW with coordinate

ring C[M∨] and sits as open part in all the Vτ and Uσ. Here M∨ is the dual Z-module, which we

will identify from now on as a submodule of K using the trace pairing.

In our situation we want to identify W with C2/M . On the level of local coordinate rings

this is done by assigning to b ∈M∨ the coordinate function

X∨b (z1, z2) = e(bz1 + bσz2).

(This is the same coordinate as Xα∨ associated above with α ∈ M , using the identification

of M with M∨ via α 7→ α∨ = ασ/(N(M)
√
D). We refer to α∨ as the trace dual of α.) Since

H2/M sits inside C2/M , the partial compactification of W by the Uσ defines the desired partial

compactification of H2/M .

Given a cone τ generated by αn, the element α∨n is the unique (up to sign) primitive element

of M∨ with tr(αnα
∨
n) = 0. If we complete α∨n to a basis of M∨ using βn, whose sign we may

choose such that tr(α∨nβn) > 0, then the curve {X∨βn = 0} is independent of the choice of βn and

coincides with the curve P1
αn defined in the text preceding the proposition.

Given two consecutive elements αn and αn+1 of the fan, the monotonicity of the ratios implies

that

tr(α∨nαn+1) < 0 and tr(α∨n+1αn) > 0.

Hence, α∨n and −α∨n+1 can play the role of βn above. Consequently, the intersection point of P1
αn

and P1
αn+1

is the point {X∨α∨n = 0, (X∨αn+1
)−1 = 0}. Since Xαj is a coordinate on P1

αj , we retrieve

that the intersection point of P1
αn and P1

αn+1
is (∞, 0) in that coordinate system.

The disjointness of P1
αn and P1

αn+k
is obvious from the gluing procedure. The statement on

the V -action is an obvious consequence of the V -invariance of a fan.

The singularity statements are described in detail in [Ful93, § 2.2]. 2

Replacing the Q-basis (α, β) by (α+β, β) respectively by (α, α+β) corresponds to performing

a sigma-transformation (or blowup) defined by the coordinate changes

(X−1
α , Xβ) 7→ (X−1

α X−1
β , Xβ) respectively (X−1

α , Xβ) 7→ (X−1
α , XαXβ)

at that point. It follows that the partial compactifications defined by any two fans are related

by repeated blowing up and blowing down.
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11.2 Hirzebruch’s compactification
We describe the fan of Hirzebruch’s compactification. There are many detailed expositions of
this, in particular [Hir73] and [vdG87, ch. II]. The aim is to compare the fans of Hirzebruch
and Bainbridge below. We will use the letters Ak for Hirzebruch’s fan (which is consistent
with [vdG87]) and subscripts k for the indexing that produces an increasing sequences of slopes.
(Thus, if we replace An by Ak0−n for some k0 we fit exactly the Definition 11.1.)

Suppose we want to compactify the Hilbert modular surface XD at the cusp a or equivalently
the cusp at ∞ in XD,a. Then, in the notation of § 11.1 the module M = a∨(a−1) = (a2)∨. We
choose the Ak to be the set of extreme points in M+ = M ∩ (R+)2, i.e. the points lying on the
convex hull conv(M+) of M+ in (R+)2, indexed by increasing slope then the Ak form a fan since
conv(M+) is V -invariant. This compactification is smooth, because any two adjacent points on
the boundary of conv(M+) form a Z-basis of M ([Hir73] or [vdG87], (II) Lemma 2.1). Since the
Ak lie on the boundary of the convex hull, we can write

Ak−1 +Ak+1 = pkAk with pk ∈ Z, p > 2. (92)

On this smooth compactification the self-intersection number of P1
Ak

is −pk (see [vdG87,
§ II.2]). Consequently, the compactification using at a cusp with stabilizer G(M,V ) the fan given
by the boundary points of conv(M+) is the minimal smooth compactification.

We call x reduced (or a reduced quadratic irrationality) (see [vdG87, § 2.5] or [Zag81]) if x is
real quadratic and

x > 1 > xσ > 0. (93)

The fast-minus continued fraction algorithm of x ∈ R > 1 is defined by x0 = x and then
inductively by

xk+1 = 1/(pk − xk) where pk = dxke, (94)

so that

xk = pk −
1

pk+1 −
1

. . .

.

Note that the narrow class of the ideal [M ] = [〈1, x〉] is unchanged under this continued fraction
algorithm, since 〈1, x〉= (p−x)〈1, 1/(p− x)〉. The following lemma is the analogue of Lemma 10.6
above.

Lemma 11.3. The fast minus continued fraction expansion of any quadratic irrational x is
periodic, and is pure periodic if and only if x is reduced.

Proof. This is well known and is stated, for instance, in [Hir73, § 2.5], where the relation of the
fast plus continued fraction expansion and the fast minus continued fraction expansion is also
given. 2

This observation gives us an algorithm to compute the convex hull. Write M = µ0〈1, x0〉 and
apply the continued fraction algorithm until it becomes pure periodic, say at a reduced quadratic
irrational x1 with M = µ1〈1, x1〉. Take A0 = µ1 and A1 = µ1x1 and then Ak = Ak−1/xk for k > 2,
where x1, x2, . . . , xn form the cycle of the continued fraction algorithm. The recursive definition
of the xk in (94) then is equivalent to (92).

Conclusion. The Hirzebruch compactification is given by the fan stemming from the lower convex
hull or, equivalently, triggered by the fast minus continued fraction algorithm.
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11.3 Bainbridge’s compactification
Bainbridge’s compactification of a Hilbert modular surface is defined using the Deligne–Mumford
compactification of the moduli space of curves of genus two. For the details we recall facts about
various bundles of one-forms over moduli spaces.

In § 5.3 we introduced together with Teichmüller curves the vector bundle ΩMg of
holomorphic one-forms over the moduli space Mg of curves of genus g. The moduli space of
curves comes with the Deligne–Mumford compactification by stable curves Mg and the vector
bundle ΩMg extends to a vector bundle ΩMg, whose sections are stable forms. A stable form
is a differential form on the normalization of the stable curves, holomorphic except for at most
simple poles at the preimages of nodes and such that the residues at the two branches of a
node add up to zero. We refer to ΩMg and to the corresponding projective bundle PΩMg as the
Deligne–Mumford compactification of ΩMg (respectively of PΩMg).

Strictly contained between Mg and Mg is the partial compactification M̃g of stable curves of
compact type, i.e. stable curves whose Jacobian is compact or equivalently of arithmetic genus g.

For g = 2 the Torelli map t : M̃2 → A2 is an isomorphism. It extends to an isomorphism

of the bundles of stable one-forms t : Ω̃M2 → ΩA2 and also to the projectivized bundles

t : PΩ̃M2 → PΩA2.
On the other hand, we have seen in § 5.1 that a Hilbert modular surface XD parametrizes

principally polarized abelian varieties with real multiplication. There is a unique holomorphic
one-form on such an abelian variety that is an eigenform for the action of real multiplication
(with the embedding K → R that we fixed throughout). The quotient map of a Siegel modular
embedding by the action of SL(2,OD) defines a map XD → A2 and the choice of an eigenform
lifts this map to an injection

ψ : XD → PΩA2.

We thus use the same letter for this map as for the modular embedding. The image t−1(ψ(XD))
is called the eigenform locus (maybe the projectivized eigenform locus would be more precise).
It parametrizes stable curves of genus two of compact type with real multiplication by OD. We

denote by XD
DM

the closure of the eigenform locus in the Deligne–Mumford compactification
PΩM2.

Definition 11.4. The Bainbridge compactification (called the geometric compactification

in [Bai07]) XD
B

of a Hilbert modular surface XD is the normalization of XD
DM

.

We now identify this compactification as a toroidal compactification. We restrict to the case
D fundamental for simplicity and since the preparations in § 10 have been carried out for this
case only. In § 11.5 we will prove the following theorem.

Theorem 11.5. Suppose that D is a fundamental discriminant. For each cusp given by the ideal
class a the sequence of multiminimizers for a, as derived from the continued fraction algorithm
in § 10.4, forms a fan. The Bainbridge compactification is the toroidal compactification of the
Hilbert modular surface obtained by using this sequence of multiminimizers.

Comparing with § 11.2, we can summarize this theorem and the algorithm in § 10.4 as follows.

Conclusion. The Bainbridge compactification is given by the fan stemming from the
multiminimizers or, equivalently, triggered by the slow plus greater-than-one continued fraction
algorithm.
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In § 11.4 we review the properties of the compactification by Bainbridge. For the proof of
Theorem 11.5 we will need only part of these properties. The local structure at the intersection
points of the compactification curves is forced by normality and could also be derived from
Proposition 11.2.

11.4 Period coordinates and properties of the Bainbridge compactification
In order to identify the Bainbridge compactification and to prove Theorem 11.5 we use the part

of the work of Bainbridge, where he gives a coordinate system of ΩM2 and describes XD
DM

in
there. He uses a lift by choosing a scaling of the one-form ω by fixing locally a loop α1 and by
imposing that

∫
α1
ω = r1 for some r1 ∈ K. We will then compare the coordinates introduced for

toroidal compactifications to this coordinate system and thereby prove the claimed isomorphism.

There are two relevant types of coordinate systems, both called period coordinates depending

on the type of the stable curves. We follow [Bai07, § 6.6]. If (X,ω) is in the boundary of XD
DM

,
then g(X) is zero. The first type of coordinate system is around a stable curve X with two
non-separating nodes. We moreover suppose that ω has two simple zeros. We let ±r1 and ±r2 be
the residues of ω. Choose loops α1, α2 around the punctures such that

∫
αi
ω = ri. For a smooth

surfaces in a neighborhood choose loops β1, β2 that complete the αi curves to a symplectic basis.
Finally, choose a path I joining the two zeros of ω. Then on a neighborhood of (X,ω) in ΩM2

the functions

v(E) =

∫
α1

ω, w(E) =

∫
α2

ω,

y(E) = e

(∫
β1

ω/v

)
, z(E) = e

(∫
β2

ω/w

)
, x(E) =

∫
I
ω

(95)

are well defined, i.e. independent of ambiguity in the choice of βi given by Dehn twists around the
corresponding αi. These five functions form a system of coordinates on ΩM2. We provide them
with a superscript E (edge) to distinguish them. They will correspond to edges of the boundary

of XD
DM

. Note that x = x(E) is only well defined up to an additive constant depending on the
path of integration and that its sign depends on the choice of ordering of the two zeros.

From the geometry of the Deligne–Mumford compactification Bainbridge derives the
following proposition that we use to prove Theorem 11.5.

Proposition 11.6 [Bai07, Proposition 7.18, Theorems 7.17 and 7.22]. A pair (r1, r2) appears
as residues of an eigenform of XD if and only if λ = r2/r1 ∈ Q(

√
D) and N(λ) < 0. More precisely,

the irreducible components of the boundary of XD
DM

are in bijection with the unordered
projective tuples (r1 : r2), or equivalently to standard quadratic irrationals λ in OD.

Near a boundary component labeled by λ, the Hilbert modular surface XD
DM

is cut out in
ΩMg by the equations

v(E) = r1, w(E) = r2 and (y(E))a = (z(E))−c, (96)

and the boundary curve is given in these coordinates as {y(E) = z(E) = 0}.
The boundary of XD

B
is a union of rational curves Cλ where λ = r1/r2.

We explain the last statement. If gcd(a, c) > 1, then (96) shows that the compactification is
not normal near {y(E) = z(E) = 0}: the normalization has gcd(a, c) local branches. Nevertheless,

the preimage of {y(E) = z(E) = 0} in the normalization XD
B

is a connected curve Cλ.

2333

https://doi.org/10.1112/S0010437X16007636 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007636
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The normalization map is a cyclic covering of order gcd(a, c) ramified precisely over the
intersection points of Cλ with its two adjacent curves in the cusp resolution.

We include the following proposition for a complete description of the Bainbridge
compactification. It is not needed for the proof of Theorem 11.5.

The second type of coordinate system is around a stable curve X consisting of two
irreducible components joined at three non-separating nodes. Here we choose α1, α2, α3 to be
the loops around the punctures and let ri =

∫
αi
ω be the residue. We may orient the αi so that

r1− r2 + r3 = 0. The one-form ω necessarily has one zero on each of the irreducible components.
We let γi be a path joining these two zeros that crosses αi once with positive intersection and
no other αj . Then the five functions

v(V ) =

∫
α1

ω, w(V ) =

∫
α2

ω, x(V ) = e

(∫
γ3

ω/(w(V ) − v(V ))

)
,

y(V ) = e

(∫
γ1

ω/v(V )

)
, z(V ) = e

(∫
γ2

ω/w(V )

)
(97)

form a system of coordinates on ΩM2 near (X,ω). We provide them with a superscript V (vertex
of the compactification cycle) to distinguish them. We also have to say how the coordinates
v(V ), . . . , z(V ) and v(E), . . . , z(E) are related near a vertex. Suppose we unpinch the node
corresponding to α3. Then on this nearby surface

β1 = γ1 − γ3, β2 = γ2 + γ3, I = γ3.

Consequently, we have
v(E) = v(V ) =: v, w(E) = w(V ) =: w

and
x(V ) = e(x(E)/(w − v)), y(V ) = y(E) · e(x(E)/v), z(V ) = z(E) · e(x(E)/w).

The following proposition describes the intersection points of boundary curves of XD
B

. It is
proven in [Bai07, Theorem 7.27] but it is also an immediate consequence of Theorem 11.5 and
Proposition 11.2, in particular its last statement.

Proposition 11.7. If λ+ denotes the successor of λ for the slow plus greater-than-one continued
fraction, then the curves Cλ and Cλ+ have exactly one point cλ in common. Near this intersection

point the Hilbert modular surface XD
B

is cut out in ΩMg by the equations

v(V ) = r1, w(V ) = r2 and (y(V ))a = (z(V ))−c (x(V ))−a−b−c.

The point cλ is a cyclic quotient singularity of order

mλ =
a

gcd(a, c) gcd(a, a+ b+ c)
.

11.5 The proof of Theorem 11.5
The first step is to show that the multiminimizers form a fan. For the cusp a we may choose
the normalization as in (87) and suppose that the multiminimizers are primitive elements in
(a2)∨. We next examine the slopes. Suppose that at some step of the slow plus greater-than-one
continued fraction we have the representation a = µk〈λk, 1〉. Then

σ(αk)

αk
=

λkµ
2
k

σ(λkµ
2
k)

and
σ(αk+1)

αk+1
=

(λk − 1)µ2
k

σ((λk − 1)µ2
k)
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in both cases of the continued fraction algorithm. The ratio of these two fractions is

σ(αk)

αk

/
σ(αk+1)

αk+1
=

(
1 +

1

λk − 1

)(
1− 1

σ(λk)

)
> 1

since λk is standard. Consequently the slopes of multiminimizers are decreasing. Since the
continued fraction algorithm is periodic this shows that the sequence multiminimizers in
continued fraction order forms a fan. We denote the compactification of the Hilbert modular

surface using these fans of multiminimizers by XD
MM

.

We let XD
MM,∗

, XD
B,∗

, respectively XD
DM,∗

be the complement of the intersection points
of the cusps resolution curves in the three compactifications, i.e. obtained by removing the

codimension two boundary strata. Our aim to show that there is a map m : XD
MM,∗

→XD
DM,∗

,
which is an isomorphism over XD and which maps the boundary components labeled by a
standard quadratic irrational λ onto the component with the same label by an unramified cyclic
covering of degree g = gcd(a, c). Since the Bainbridge compactification is normal, the map m

factors through a map m̂ : XD
MM,∗

→ XD
B,∗

, which is an isomorphism by the local description

of the map XD
B,∗

→ XD
DM,∗

. Since the multiminimizer compactification and the Bainbridge
compactification are normal, the codimension two indeterminacy of m̂ (on domain an range) can
be resolved to a global isomorphism.

We want to define m in a neighborhood of a point on the component of the boundary

of XD
MM,∗

given by the multiminimizer α with corresponding standard quadratic irrational λ.
Since α∨ is the unique (up to sign) primitive element in (a2)∨ with tr(αα∨) = 0, local coordinates

near this point as defined in the proof of Proposition 11.2 are just the coordinates X = qα
∗

1 q
σ(α∗)
2

and Y = qβ
∗

1 q
σ(β∗)
2 used in the proof of Theorem 10.1.

The map m is given by assigning to a point in XD the curve given as the vanishing locus of the
Siegel theta function restricted to XD together with the first eigenform. In order to understand
the local behavior of this map near the boundary we may choose any convenient translate of
the theta function. As in the previous proofs we take the characteristic (1

2 ,
1
2), (1

2 , 0) and the
basis ω = (ω1, ω2) of a that is distinguished by the multiminimizer. Moreover, we define elliptic
coordinates

S = e(tr(ω∨1 u)), T = e(tr(ω∨2 u)).

In the coordinates X,Y, S, T , the theta function is

θ(m,m′),ω(z1, z2) =
∑
x∈Z2

(−1)2x·(m′)TXF (x̃1,x̃2)/2Y G(x̃1,x̃2)/2Sx1T x2

= 2X(a+|c|)/2S−1/2T−1/2 (Y G(1/2,1/2)/2(ST − 1)

+Y G(1/2,−1/2)/2(S − T ) +O(X)), (98)

where x̃i = xi + 1
2 and where

F = [a/g, 0,−c/g], G = [−bt, 2g,−bs]. (99)

Consequently, since the boundary is given byX = 0 the vanishing locus of θ degenerates there.
As in § 6.2 the limiting curve is a rational curve. We abbreviate Z = Y G(1/2,1/2)/2/Y G(1/2,−1/2)/2 =
Y g/2, and obtain (for Z fixed) the equation

Z−1(ST − 1) + (S − T ) = 0 or, equivalently, (S − Z)(T + Z) = 1− Z2

for the rational curve. A parametrization with coordinate t is given by S = t + Z, T =
(1− Z2)/t− Z.
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M. Möller and D. Zagier

On a boundary component of the genus two Deligne–Mumford compactification parametrizing
rational curves with two nodes, the cross-ratio of the four points is a coordinate. This is also
the relative period xE that was used by Bainbridge as coordinate (cf. Proposition 11.6), up to a
Möbius transformation depending on r1 and r2, as one checks easily be integrating the limiting
stable form.

Our last task is therefore to express the cross-ratio in terms of the coordinate X. The first
eigenform is

ω = du1 = (ω∨2 )σ
dS

S
− (ω∨1 )σ

dT

T
=

(
(ω∨2 )σ

t+ Z
+

(ω∨1 )σ

t(1− (Z/(1− Z2))t)

)
dt, (100)

in the given rational parametrization. The cross-ratio of the four poles 0,∞,−Z, and (1− Z2)/Z
is given by a Möbius transformation of Z−2 = Y gcd(a,c). This completes the proof of the properties
claimed about the map m, and of Theorem 11.5.

11.6 Intersection of FN with Bainbridge’s and Hirzebruch’s boundary
We can now answer the question about the intersection of the modular and Teichmüller curves
with the two compactifications. For the Hirzebruch compactification the statement in
Theorem 11.8 is of course already in the literature.

Fix the cusp to be infinity and let FN be one of the modular curves, as defined in § 5.2,
passing through the cusp at infinity. Then FN can be given by an equation of the form

λz1 + λσz2 +B = 0 (B ∈ Z, λ ∈ O, λλσ = −N). (101)

The following result now follows immediately from Proposition 11.2 and the descriptions of
the Hirzebruch and Bainbridge compactifications given in this section.

Theorem 11.8. The curve FN passes through an interior point of the cusp resolution cycle of
the Bainbridge compactification (respectively of the Hirzebruch compactification) if there is a
multiminimizer αn for this cusp such that αn/λ ∈ Q (respectively if there is an element An of
Hirzebruch’s lower convex hull fan such that An/λ ∈ Q).

Otherwise, if
αn
ασn

>
λ

λσ
>
αn+1

ασn+1

respectively
An
Aσn

>
λ

λσ
>
An+1

Aσn+1

,

then the curve FNµ passes through the node corresponding to the intersection of the curves
associated with αn and αn+1 (respectively with An and An+1).

This result together with Theorems 10.1 and 10.2 reproves from the theta viewpoint another
result of Bainbridge.

Corollary 11.9. The curves WD and the components of the reducible locus PD intersect the
boundary of the Bainbridge compactification only in interior points of the boundary curves.

Note that the component PD,ν of PD as defined in Proposition 5.1 is given by (101) with
λ = ν

√
D, B = 0.

11.7 Examples
Case D = 17. We consider the cusp at ∞ for SL(O∨ ⊕ O). In this case M = O∨17 and the
standard quadratic forms are [2,−3,−1], [2,−1,−2], [1,−3,−2], [1,−1,−4], and [1, 1,−4]. The
following table contains the corresponding multiminimizers α ∈ O∨D, scaled by the factor

√
17.
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Standard [1,−3,−2] [1,−1,−4] [1, 1,−4] [2,−3,−1] [2,−1,−2]

n 1 2 3 4 5

λ
3 +
√

17

2

1 +
√

17

2

−1 +
√

17

2

3 +
√

17

4

1 +
√

17

4
√

17α
−3 +

√
17

2

−1 +
√

17

2

1 +
√

17

2

3 +
√

17

2
4 +
√

17

√
17Ak

−3 +
√

17

2

−1 +
√

17

2

1 +
√

17

2

3 +
√

17

2
4 +
√

17

xk
7 +
√

17

4

9 +
√

17

8

7 +
√

17

8

5 +
√

17

4

5 +
√

17

2
k 5 4 3 2 1

By the singularity criterion Proposition 11.2 this compactification is smooth.
A reduced quadratic irrationality is x1 = (5 +

√
17)/2. Its fast minus continued fraction is

listed in the lower part of that table. The point A1 = (1/
√

17)(4 +
√

17) lies on the lower convex
hull of O∨√

17
∩ (R+)2. By the algorithm for Hirzebruch’s compactification the subsequent points

on the lower convex hull are defined by Ak+1 = Ak/xk, as listed in the table.
The Bainbridge compactification has no singularities at the points cλ and the number of

reduced quadratic forms equals the number of standard quadratic forms. Hence, the Hirzebruch
and the Bainbridge compactification coincide in this case. This is consistent with the table listing
the same values for

√
17αn and for

√
17Ak.

Case D = 41. There are 11 standard and also 11 reduced quadratic forms. But here the
Hirzebruch and the Bainbridge compactification do not coincide.

Standard [1,−5,−4] · · · [4,−5,−1] [2,−3,−4] [2, 1,−5] · · · [4,−3,−2]

n 1 · · · 6 7 8 · · · 11

λn
5 +
√

41

2
· · · 5 +

√
41

8

3 +
√

41

4

−1 +
√

41

4
· · · 3 +

√
41

8
√

41αn
−5 +

√
41

2
· · · 5 +

√
41

2

19 + 3
√

41

2

83 + 13
√

41

2
· · · 429 + 67

√
41

2

√
41Ak

−5 +
√

41

2
· · · 5 +

√
41

2
6 +
√

41
19 + 3

√
41

2
· · · 826 + 129

√
41

xk
13 +

√
41

8
· · · 11 +

√
41

8

9 +
√

41

10

7 +
√

41

4
· · · 11 +

√
41

10
k 11 · · · 6 5 4 · · · 1

At the intersection points of the curves Cλ7 and Cλ8 and also at the intersection points of Cλ8

and Cλ9 the Bainbridge compactification is smooth, but

α7 + α9 = α8 and also α9 + α11 = α10

and hence this compactification is not minimal. In fact, Cλ8 (and also Cλ10) is a (−1)-curve and
the corresponding values α8 and α10 do not show up in the list of Ak. On the other hand, at the
intersection point of Cλ6 and Cλ7 the Bainbridge compactification has a quotient singularity of
order two, since α6 and α7 generate an index two subgroup of O∨41. It can be resolved by blowing
up, adding a (−2)-curve, corresponding to the value

√
41A5 = 6 +

√
41 that does not show up

in the list of
√

41αn. The singularity can also be read off from the quadratic form [4, 5,−1] and
Proposition 11.6. In terms of the convex hull of O∨41, the multiminimizer fan has two interior
points and skips two boundary points, as is shown in Figure 3 below.
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Figure 3. The multiminimizer fan (thick black points) and the Hirzebruch fan (circles) for
D = 41, connected by red respectively by black lines. The rightmost thick black point is an interior
point of the convex hull. Another point of the Hirzebruch fan skipped by the multiminimizer fan
is not drawn (far to the right, close to the horizontal axis).

11.8 Relating the two compactifications and two continued fraction algorithms

The preceding examples show that the Bainbridge and the Hirzebruch compactification may

sometimes agree, but that they are different in general. They also illustrate the general algorithm

how to go from Bainbridge’s compactification to Hirzebruch’s: blow down curves corresponding

to interior points and blow up points where boundary points of the lower convex hull have been

omitted by the multiminimizers.

At first glance the previous examples suggest that at least the length of the boundary cycles

in the Bainbridge and the Hirzebruch compactification agree. This is true for class number one,

but otherwise the truth is more subtle, as we now explain.

To determine the geometry of the cusp a in the Bainbridge compactification, we need to run

the multiminimizer algorithm given in § 10.4 for λ such that a = 〈1, λ〉 and get as an output

α ∈ (a2)∨. The geometry of Hirzebruch’s minimal smooth resolution, however, depends only on

the square of a2, since we need to determine by the algorithm in § 11.2 the lower convex hull of

(a2)∨ ∩ R2
+.

Consequently, whenever the squaring map is not an isomorphism on the ideal class group of
K = Q(

√
D), only the reduced quadratic irrationalities x such that (〈1, x〉)∨ is a square appear

as labels in the cusp resolution of the Hilbert modular surface XD in the focus of our interest.
However, all the curves labeled by standard quadratic forms appear on XD. An example to
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illustrate this is D = 65, where the class group (both in the narrow and wide sense) is of order
two, so the multiminimizers for both cusps lie in an ideal equivalent to O∨65. Representatives of
the multiminimizers are

MM(O65) =

{
5 +
√

65

2
√

65
,
7 +
√

65

2
√

65
,
23 + 3

√
65

2
√

65
,
8 +
√

65√
65

,
153 + 19

√
65

2
√

65
,
137 + 17

√
65

2
√

65
,

395 + 49
√

65

2
√

65
,
1685 + 209

√
65

2
√

65
,
1943 + 241

√
65

2
√

65

}

7−
√

65

2
MM

(〈
1,
−3 +

√
65

4

〉)
=

{
5 +
√

65

2
√

65
,
7 +
√

65

2
√

65
,
8 +
√

65√
65

,
137 + 17

√
65

2
√

65

395 + 49
√

65

2
√

65
,
653 + 81

√
65

2
√

65
,
911 + 113

√
65

2
√

65

}
while the elements on the convex hull, up to multiplication by U2

65, are given by{
5 +
√

65

2
√

65
,
7 +
√

65

2
√

65
,
8 +
√

65√
65

,
137 + 17

√
65

2
√

65
,
395 + 49

√
65

2
√

65
,
653 + 81

√
65

2
√

65
,

911 + 113
√

65

2
√

65
,
1169 + 145

√
65

2
,
1427 + 177

√
65

2

}
.

There is however an equality of total lengths of cusp resolution cycles, if one takes all Hilbert
modular surfaces H2/SL(b ⊕ OD) into account. We start our considerations on the level of
quadratic irrationalities.

Reduced quadratic irrationalities as defined in (93) are well known and have been used to
label the boundary curves of Hirzebruch’s compactification. Standard quadratic irrationalities
as defined in (80) have been used to label the boundary curves of Bainbridge’s compactification.
There is an obvious bijection between these two classes, given by

reduced
x > 1 > xσ > 0

standard
λ > 1 > 0 > λσ

x= λ
λ−1

λ= x
x−1

In order to pass from this correspondence of quadratic irrationalities to cusp resolutions, we
define

Cstd(a) = {(µ, λ) ∈ K+/U2
D ×K : a = µ〈1, λ〉, λ standard}

and
Cred(a) = {(ρ, x) ∈ K+/U2

D ×K : a = ρ〈1, x〉, x reduced}.

Then the map

φ : Cstd(a) → Cred(a), (µ, λ) 7→ (ρ, x) =

(
µ(λ− 1),

λ

λ− 1

)
is obviously a bijection.

Proposition 11.10. For any a, the length of the cycle of the Bainbridge compactification for the
cusp corresponding to a2 is equal to the length of the cycle of the Hirzebruch compactification
for the cusp corresponding to a.
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Proof. Curves in the Bainbridge compactification for a2 are in bijection to Cstd(a2) by
Theorem 11.5 together with Proposition 10.4. Curves in the Hirzebruch compactification for
a are in bijection to Cred(a2) by the algorithm in § 11.2. We now can use the identification φ. 2

This explains the initial observations for D = 17 and D = 41 and in general for a = a2 = OD.
For a more symmetric formulation we recall that the isomorphism class of the Hilbert modular
surface H2/SL(b⊕OD) depends on b only up to squares of ideals and multiplication by a totally
positive element in K. Consequently, there are 2t−1 = |Ker(Sq : Cl+(D) → Cl+(D))| Hilbert
modular surfaces for a given D, where t is the number of distinct prime factors of D. This
also implies that every ideal class a (in the wide sense) appears 2t−1 times as the module M
associated with a cusp H2/G(M,V ) on the total collection of Hilbert modular surfaces for a
given D. Altogether, this implies that the number

`(D) =
∑

[a,b,c] reduced
b2−4ac=D

1 =
∑

[a,b,c] standard
b2−4ac=D

1

appears in two incarnations.

Proposition 11.11. The total number of boundary curves of the Bainbridge compactification
of XD is equal to `(D).

The total number of boundary curves of the Hirzebruch compactifications of the Hilbert
modular surfaces H2/SL(bi ⊕ OD) for bi in a set of representatives of Cl+(D)/Sq(Cl+(D)) is
equal to 2t−1`(D).

We could presumably make this statement even more symmetrical if we compactified all
Hilbert modular surfaces H2/SL(b⊕OD) using multiminimizers defined by theta functions, but
we leave it to the reader to explore this.

12. Uniformization and disjointness from the reducible locus

The aim of this section is to give an independent proof of ‘WD is a Teichmüller curve’ using
the definition via theta functions and applying Theorem 5.3. We emphasize that we derive all
properties of WD ab ovo, i.e. using just the definition (76) as the vanishing locus of Dθ and
without using anything that follows from the ‘geodesic’ definition. Here again we simplify our
counting task by restricting to fundamental discriminants.

12.1 Transversality of WD to the foliation F1

Recall that in § 5.3 we defined the ‘first Hilbert modular foliation’ F1 of the Hilbert modular
surface XD to be the foliation defined by the constancy of the first coordinate in the
uniformization (i.e. by the equation dz1 = 0, which is invariant under the action of the Hilbert
modular group). Let ϕ : H → H be a holomorphic map such that z 7→ (z, ϕ(z)) defines a branch
of the vanishing locus of Dθ, and suppose that the corresponding component WD of the vanishing
locus has the uniformization WD = H/Γ.

Theorem 12.1. Suppose that D is a fundamental discriminant. Then the restriction to WD of
the derivative D3θ = (∂/∂z2)Dθ is a ϕ-twisted modular form of weight (3, 11) for Γ that vanishes
only at the cusps of WD.
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Since the vanishing locus of a holomorphic function F is transversal to F1 at a point p if and
only if (∂/∂z2)F (p) 6= 0, the theorem immediately implies the transversality we want to prove.
For all (m,m′) ∈ (1

2Z
2)2 and for any basis ω = (ω1, ω2) of an O-ideal a, define

D3
2θ(m,m′),ω(z) =

∂3

∂u3
2

(Θ(m,m′)(u, ψω(z)))|u=0,

where the Siegel modular embedding ψω is defined using ω. If we drop the index ω we tacitly
assume that we have chosen some basis of O, as we did in (78). It follows that

D3
2θ(m,m′)(z1, z2) =

∂

∂z2
(D2θ(m,m′)(z1, z2))

(by the heat equation or by direct computation). Consequently,

D3θ(z1, z2) =
∑

(m0,m′0) odd

D3
2θ(m0,m′0)(z1, z2)

∏
(m,m′) odd

(m,m′)6=(m0,m′0)

D2θ(m,m′)(z1, z2),

explaining also the name given to this twisted modular form.

Proof. By applying the chain rule one sees that the restriction of the zi-derivative of a Hilbert
modular form to the vanishing locus of the form satisfies a modular transformation property
with respect to the subgroup stabilizing this vanishing locus. This calculation also shows that
the zi-derivative increases the weight in the ith component by two, proving the first claim.

To prove the second claim we will show that the vanishing orders of D3θ at the cusps
sum up to the total vanishing order of a twisted modular form of this bi-weight. Since D3θ
is holomorphic, it cannot then have any zeros at finite points. On a minimal compactification
of the Hilbert modular surface XD the number of intersection points of two modular forms of
bi-weights (k1, `1) and (k2, `2) is 1

4(k1`2 + k2`1)|χ(XD)|. This follows e.g. from [vdG87, § IV.2].
This calculation is still valid when intersecting the vanishing locus WD of a modular form with
a section of the bundle of modular forms of bi-weight (k2, `2) to WD. Since here (k1, `1) = (3, 9)
and (k2, `2) = (3, 11), the function D3θa has 15|χ(XD)| zeros on the closure of WD. We have to
show that they all lie at the cusps.

Note that precisely one of the two quadratic forms [a, b, c] and [−c,−b,−a] of discriminant
D with a > 0 and c < 0 satisfies the additional condition a + b + c < 0 required to make it a
standard quadratic form, since a + b + c = 0 would imply that D is a square. From (34) we
consequently deduce that

15χ(XD)| = 1

2

∑
D=b2−4ac
a>0, c<0

a =
1

2

∑
[a,b,c] standard
D=b2−4ac

(a+ |c|).

To complete the proof it thus suffices to show that at each of the g cusps of WD corresponding
to λ, the vanishing order of D3θ is at least (and, hence, precisely) equal to (a + |c|)/2g. Here
λ is a zero of the standard form [a, b, c] and g = gcd(a, c). (The order of zero may indeed be
half-integral, in accordance with the fact that Dθ is a modular form with a quadratic character.)

By Lemma 10.5 the vanishing orders of D3θ at the cusps of WD mapping to α can be
computed as the vanishing orders of

D3θa(z1, z2) =
∑

(m0,m′0) odd

D3
2θ(m0,m′0),ω(z1, z2)

∏
(m,m′) odd

(m,m′)6=(m0,m′0)

D2θ(m,m′),ω(z1, z2),
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on the Hilbert modular surface XD,a at the cusps mapping to infinity. By Theorem 10.1 we
associate a multiminimizer α to such a cusp and we may assume that ω = (ω1, ω2) has been
chosen to be the distinguished bases for this multiminimizer. If t is a local parameter of cusps of
WD, as in the proof of Theorem 10.1, then the terms appearing in the expansion of D2θ(m0,m′0),ω

and D3
2θ(m0,m′0),ω are tF (x̃1,x̃2)/2, where x̃i = xi +mi with xi ∈ Z and where

F =

[
a

g
, 0,
−c
g

]
as in (89). The minimal t-exponents are greater than or equal to (a + |c|)/8g, a/8g, and |c|/8g
in case m is equal to (1

2 ,
1
2), (1

2 , 0), and (0, 1
2), respectively, both for D2θ and D3

2θ. Since for each
of these m there are precisely two m′ such that (m,m′) is odd, the total vanishing order is at
least (a+ |c|)/2g, which is what we wanted to show. 2

12.2 Disjointness of WD from the reducible locus (by counting zeros)
In this and the following subsection we give two completely different proofs of the following
result, which is the second half of what we need to apply the criteria of Theorem 5.3 and show
that the vanishing locus of Dθ is a Teichmüller curve. The first proof is similar to that used for
Theorem 12.1, by comparing the number of known zeros of a twisted modular form with its total
number of zeros.

Theorem 12.2. The vanishing locus WD of Dθ is disjoint in XD from the reducible locus PD.

Proof. Recall that the reducible locus is the vanishing locus of the product of all 10 even theta
functions. This product is a Hilbert modular form of weight (5, 5), so its restriction to WD is a
modular form for WD of bi-weight (5, 5). As in the preceding proof we deduce that the degree
of its divisor (on a compactification of WD) is 1

4(5 · 3 + 5 · 9)|χ(XD)| = 15|χ(XD)|.
As in the preceding proof it suffices to show that the restriction of the product∏

(m,m′) even θ(m,m′) to WD vanishes at each of the g cusps of WD corresponding to λ to the
order at least (a + |c|)/2g. Here again we can work at the cusp ∞ of XD,a. There, by the
same argument as in Lemma 10.5, the product of the 10 even theta functions is given by∏

(m,m′) even θ(m,m′),ω, where ω is some basis of a and where θ(m,m′),ω(z) = Θ(m,m′),ω(0, ψω(z))
with the modular embedding ψω defined using ω. The rest of the proof proceeds as above. To
each cusp we associate its multiminimizer and take ω to be the distinguished basis. The terms
appearing in the expansion of θ(m,m′),ω at such a cusp are tF (x̃1,x̃2)/2, where x̃i = xi + mi with
xi ∈ Z and where F = [a/g, 0,−c/g]. The minimal t-exponents are greater than or equal to
(a+ |c|)/8g, a/8g, |c|/8g, and 0 in case m is equal to (1

2 ,
1
2), (1

2 , 0), (0, 1
2), and (0, 0), respectively.

Each of the first three cases occurs twice among the ten even theta characteristics (and the
irrelevant last case four times). Summing up these contributions gives again the vanishing order
at least (a+ |c|)/2g that we claimed. 2

12.3 Disjointness of WD from the reducible locus (via theta products)
In this subsection we give a proof of Theorem 12.2 based on a completely different idea, by
establishing a formula for the restriction of theta derivatives to the reducible locus. Let

θ00(z) =
∑
n∈Z

qn
2/2, θ 1

2
0(z) =

∑
n∈Z+1/2

qn
2/2,

θ0 1
2
(z) =

∑
n∈Z

(−1)nqn
2/2, θ(1/2)(1/2)(z) =

∑
n∈Z+1/2

(−1)n−1/2nqn
2/2.
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(Here θ(1/2)(1/2) should perhaps be called θ′(1/2)(1/2), since the corresponding Jacobi theta constant

vanishes identically, but with these notations it will be easier to write a closed expression.) The
product formulas found by Jacobi for these four functions, which in a modern notation say
that they are equal to η(2z)5/η(z)2η(4z)2, 2η(4z)2/η(2z), η(z)2/η(2z), and η(z)3, respectively,
show that none of these functions vanish anywhere in the upper half-plane. Recall from
Proposition 5.1 that the reducible locus is the union of irreducible curves PD,ν = FN (ν) for
ν = (r +

√
D)/2

√
D, where D = r2 + 4N with N ∈ N. Therefore, Theorem 12.2 follows from the

following theorem, which for simplicity we formulate only for D odd, the case of even D being
similar.

Theorem 12.3. Let D ≡ 1 (mod 4) be a fundamental discriminant. Then for any odd theta
characteristic (m,m′) the restriction of the modular form D2θ(m,m′) to the curve PD,ν for ν as
above has the factorization

D2θ(m,m′)(νz, ν
σz) =

{
−θm̂1m′1

(z)θm2m̂′2
(Nz) if m1 = m′1 = 1/2,

−
√
Dνσ θm̂1m′1

(z)θm2m̂′2
(Nz) if m2 = m′2 = 1/2,

as a product of Jacobi theta functions, where m̂1 and m̂′2 are defined by

m̂1 = m1 +m2 mod (1), m̂′2 = m′1 +m′2 mod (1) if r ≡ 1 mod 4,

m̂1 = m1, m̂2 = m2, if r ≡ 3 mod 4,

for m = (m1,m2), m′ = (m′1,m
′
2). In particular, this restriction vanishes only at cusps.

Proof. As above we use a tilde to denote elements of the shifted lattice, i.e. x̃i = xi + mi. The
restriction of the theta derivative to PD,ν is

D2θ(m,m′)(νz, ν
σz) =

∑
(x1,x2)∈Z2

(−1)2(x1,x2)(m′)T ρ(x̃1, x̃2)σqtr(νρ(x̃1,x̃2)2)/2,

where ρ(x1, x2) = x1+((1 +
√
D)/2)x2. With the Z-linear transformation ỹ1 = x̃1+((r + 1)/2)x̃2

ỹ2 = −x̃2 we obtain

ρ(x̃1, x̃2) = ỹ1 +
r −
√
D

2
ỹ2 = ỹ1 +

√
Dνσỹ2 =: τ(ỹ1, ỹ2)

and

D2θ(m,m′)(νz, ν
σz) =

∑
(ỹ1,ỹ2)∈Z2+(m̂1,m2)

ε(ỹ1, ỹ2)τ(ỹ1, ỹ2)q(ỹ2
1+Nỹ2

2)/2,

where
ε(ỹ1, ỹ2) = (−1)2(ỹ1−m̂1)m′1+2(ỹ2−m2)m̂′2

and where we have used tr(ντ(y1, y2)2) = y2
1 +Ny2

2. The q-exponent is invariant under both ỹ1 7→
−ỹ1 and ỹ2 7→ −ỹ2. Under, say, ỹ2 7→ −ỹ2 the sign of ε(ỹ1, ỹ2) is unchanged unless m2 = m̂′2 = 1

2 .

Hence, unless m2 = m̂′2 = 1
2 , the

√
Dνσỹ2 contribution of τ(ỹ1, ỹ2) cancels and one checks the

formula by multiplying the unary theta functions. For an odd theta constant (m,m′) precisely
one of the cases m1 = m̂′1 = 1

2 or m̂2 = m′2 = 1
2 happens and a similar cancelation gives the

formula in the second case, too. Note that in each case of the theorem, one of the theta series
in the decomposition is the function θ(1/2)(1/2) of weight 3

2 , so that the total weight is always
two. 2

Open problem. Can one reprove the irreducibility, stated in Theorem 5.2 and proved by McMullen
using combinatorial number theory of the set of cusps, exclusively with techniques of (Hilbert)
modular forms?
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13. Applications

13.1 The modular embedding via theta functions
Using the description ofWD as the vanishing locus of Dθ, we can now give the modular embedding
ϕ as in the ‘Fourier expansion’ as defined in (2) for any cusp of WD. In fact, most of this
was already achieved in the proof of Theorem 10.1. There we identified a cusp of WD with a
standard quadratic form [a, b, c] (and, hence, a multiminimizer α) together with an element in
r ∈ Z/gZ where g = gcd(a, c) (equivalently, a solution S of (90)). Recall from this proof that for
each such solution there is a unique branch, given by (85), of the locus D2θ(m,m′),a(z1, z2) = 0.
The map z 7→ (z, ϕ(z)) describing this branch was given by

ϕ(z) =
ασ

α
z + C +

ε(q)

2πi
. (102)

We can now describe the arithmetic properties of this expansion.

Theorem 13.1. The coefficients of the modular embedding describing the branch determined by
the quadratic form [a, b, c] and number S as in (90) through the cusp a of XD have the following
properties.

(i) The constant C in (102) belongs to (1/2πi)K× logK×. In fact, e(gαC/(N(a)2
√
D)) ∈

K\Q.

(ii) The number S lies in K1/g.

(iii) For each β completing the multiminimizer α determined by [a, b, c] to a basis of (a2)∨

there exists A ∈ C∗ such that in the local parameter Q = Aq of the cusp

e(νz + νσϕ(z)) = Str(βν)Qtr(αν)eσ(ν)ε(q) for all ν ∈ a2.

The scalar A is transcendental of Gelfond–Schneider type, more precisely of the form xy with x
and y in K\Q.

(iv) The coefficients an of the power series ε(q) =
∑

n>1 anQ
n expanded in a local parameter Q

as in property (ii) lie in the number field K(S).

Proof. Statement (i) obviously follows from (90) and (86). For property (ii) it suffices to test
for ν the dual basis {α∗, β∗} ⊂ a2 of {α, β}. Plugging in β∗ confirms that S here is the same as
in (86), since β∗ = ασ/N(a)2

√
D. Plugging in α∗ = βσ/N(a)2

√
D implies that

A = e

(
β C

N(a)2
√
D

)
= Sβ/α ∈ Kβ/gα.

The last statement (iii) follows since the coefficients of Fourier expansion of the theta function
lie in K(S) and solving recursively for the an involves only these coefficients and integral powers
of S. For concreteness, we perform the first step in this procedure in the case |c| < a. The
summands (x̃1, x̃2) = (±1

2 ,±
1
2) contribute to the lowest-order term (in Q) of the restriction

of the theta derivative to the branch ( z, ϕ(z). The next lowest-order term is determined by
(x̃1, x̃2) = (±1

2 ,±
3
2) and we can solve for

a1 = Sg+2bs ρω(1
2 ,

3
2)(σ(α∗)F (1

2 ,
3
2) + σ(β∗)G(1

2 ,
3
2))

ρω(1
2 ,

1
2)(σ(α∗)F (1

2 ,
1
2) + σ(β∗)G(1

2 ,
1
2))

using the notation ρω introduced in the lines before (83), where F and G given in (89) and
g = sa+ tc. 2
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We remark that the ‘A’ of § 7.1 is not quite the same as the one above, and that the numerical

value given in (49) is not of the form xy with x, y ∈ K, but an algebraic multiple of this. This is

because we normalized our Q in § 7.1 so that the expansion of t = Q+ · · · had leading coefficient

one. If we changed Q by the algebraic factor, then t and y would still have Q-expansions with

coefficients in K, so that this would be an equally good choice in the special case D = 17, but

for the general statement it seems best to normalize Q as above.

13.2 Fourier coefficients of twisted modular forms

Fix D, a fractional OD-ideal a, and a branch of the vanishing locus of Dθ through the cusp at

∞ of the Hilbert modular surface XD,a given by the quadratic form [a, b, c] and S as above. Let

Γ ⊂ SL(a∨⊕ a) be the subgroup stabilizing this branch. It is the Fuchsian group uniformizing

the curve WD, normalized so that the cusp labeled with ([a, b, c], S) is the cusp at ∞.

The first twisted modular form for Γ we encountered was the form ϕ′(z) of bi-weight (2,−2)

in the case D =
√

17. By the preceding theorem we know that this modular form has a Fourier

expansion of the form

ϕ′(z) =
∑
n>0

bn(Aq)n

with A transcendental of Gelfond–Schneider type and bn in the field K(S) (which is equal to

K in this case, since g = 1). We will show that such a statement holds for all twisted modular

forms.

This section is inspired by work of Wolfart in the case of non-compact Fuchsian triangle

groups. Let ∆(∞, q, r) be such a group. We normalize it so that ∆(∞, q, r) ⊂ SL(2, Q̄) and that

∞ is a cusp of ∆(∞, q, r). In this situation Wolfart shows in [Wol83] (see also [Wol85]) that there

exists some A ∈ C such that the space of (ordinary, i.e. of bi-weight (k, 0)) modular forms for

∆(∞, q, r) admits a basis given by forms fm with Fourier expansions

fm(z) =
∑
n>0

rm,n(Aq)n with rm,n rational,

where q = e(z/a0). The constant A is transcendental of Gelfond–Schneider type if the Fuchsian

group is non-arithmetic and is algebraic in the finitely many other cases.

The uniformizing group of the curves WD is non-arithmetic and the following result extends

Wolfart’s non-algebraicity result to this class of curves.

Theorem 13.2. The space of twisted modular form of all bi-weights for the uniformizing group Γ

of WD has a basis of forms with Fourier expansions
∑

n>0 anQ
n with an ∈ K(S) with Q =

Ae(z/α) and S as in Theorem 13.1(ii). The number A, and also the radius of convergence |A| of

this series, is transcendental of Gelfond–Schneider type.

Wolfart’s proof of A being of Gelfond–Schneider type relies on properties of Γ-functions and

trigonometric calculations. It overlaps with our result in the few cases (D = 5, 8, 12) where the

uniformizing group of WD is a triangle group. The rationality of rn in Wolfart’s result follows

easily from the rationality of the coefficients of the Picard–Fuchs differential operators. This

rationality does not hold for general D, as can be seen from our example (41). The statement

of the theorem can indeed not be strengthened to rationality of the coefficients, even in the case

k = ` = 0, since the modular function t in (46) admits no rescaling that has rational coefficients.
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Proof. For each (k, `) the space of Hilbert modular forms of weight (k, `) has a basis of forms
whose Fourier expansions have rational coefficients. Suppose that f =

∑
ν∈a2 cνe(νz1 + νσz2) is

such a basis element. Then the restriction to (z1, z2) = (z, ϕ(z)) with ϕ as in (102) is

f(q) =
∑
ν∈a2

cνS
tr(βν)Qtr(αν)eσ(ν)ε(q)

and so for this twisted modular form the claim directly follows from Theorem 13.1.
For k and ` sufficiently large the restriction map is surjective since L1⊗L2 is ample on XD.

Here L1 and L2 are the natural line bundles on XD such that Hilbert modular forms of weight
(k, `) are sections of Lk1 ⊗L`2. (The surjectivity in fact holds already for k > 4 and ` > 10. To see
this, we tensor the structure sequence for WD ⊂ XD with Lk1 ⊗ L`2 and note that the cokernel
of the restriction map lies in H1(XD, IWD

⊗Lk1 ⊗L`2). Since IWD
∼= OXD(−WD) ∼= L−3

1 L−9
2 and

since L1 ⊗ L2 is ample on XD, Kodaira’s vanishing theorem implies the claim.)
For the remaining cases, note that with f and f also 1/f and fg have Fourier expansions

as claimed in the theorem. It thus suffices to consider the products of modular forms of bi-
weight (k, `) with a given modular form of large enough weight and then to apply the restriction
argument. 2

13.3 The foliation by constant absolute periods
As quotients of H×H, Hilbert modular surfaces come with two natural holomorphic foliations,
which we called F1 and F2. They also admit an interesting foliation defined using the SL(2,R)
action on the space ΩM2. The leaves of this foliation are upper half-planes, but the foliation is
not holomorphic. It is studied in detail in [McM07]. In the context of studying the SL(2,R)-action
a natural local coordinate system on ΩM2 is given by period coordinates, i.e. by integrating the
holomorphic one-form ω along a chosen basis of the first homology relative to the zeros of ω. In
the special case of genus two, we have used this coordinate system in (95).

We may identify the (Torelli preimage of a) Hilbert modular surface as a subset of PΩM2 =
(ΩM2)/C∗ by mapping X to the class of (X,ω), where ω is the eigenform for the first embedding
of K (in the order that we have chosen once and for all). It follows from [Bai07] or [McM07] that
the foliation by constant absolute periods, where only xE defined in (95) is allowed to vary, is
the first foliation F1. The function xE is not globally well defined: its sign depends on the choice
of an orientation and it may also be altered by a constant by adding the period of a closed loop.
However, q = (dxE)2 is a well-defined quadratic differential on each leaf of F1, independent of
these choices.

The horizontal trajectories of this quadratic differential exhibit beautiful structures on the
leaves of F1. They have been determined by McMullen in [McM12], using the following theorem.

Theorem 13.3. The quadratic differential q is proportional to the restriction of the meromorphic
modular form

Q(z1, z2) =

( ∏
(m,m′) odd

D2θ(m,m′)(z1, z2)

)/( ∏
(m,m′) even

θ(m,m′)(z1, z2)

)
of weight (−2, 4) to the leaf where z1 is constant.

Proof. This follows directly from [Bai07, Theorem 10.2] and Theorem 9.1. More precisely,
Bainbridge has determined the dependence on z1. Since the quadratic differential depends on
the choice of a holomorphic one-form on each Riemann surface, there exists a linear map Q1
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from the first eigenform bundle to quadratic differentials on the leaves of F1 that is locally
defined by q = (dxE)2. Such a map is the same object as a meromorphic modular form of weight
(−2, 4). This modular form Q1 vanishes at WD, where the zeros collide, and acquires a pole at
the reducible locus PD, where the zeros are infinitely far apart. It is shown moreover in [Bai07,
Theorem 10.2] that both the vanishing order and the pole order are equal to one. Consequently,
by Theorem 9.1 and the fact that the even theta characteristics vanish precisely at the reducible
locus, Q/Q1 is a holomorphic function on XD. It then extends holomorphically to the Baily–Borel
compactification by Hartog’s theorem, since the boundary has codimension two. We deduce that
Q/Q1 has to be constant, which proves the claim. 2

Note added in proof. We have just learned that our notion of twisted modular form is not
new, but has already occurred in the work of Min Ho Lee under the name of mixed modular form
and is described in detail in the first chapter of his 2004 book Mixed automorphic forms, torus
bundles, and Jacobi forms [Lee04]. In fact, his notion is somewhat more general than ours in
that the underlying map ϕ can be equivariant with respect to any homomorphism Γ → SL(2,R),
not specifically the Galois conjugation for a subgroup of a Hilbert modular group. So his specific
results do not apply to Teichmüller curves or to modular embeddings in Hilbert modular surfaces,
but some parts of the theory, in particular the connection to differential equations and to periods
(in his case of an elliptically fibered surface rather than of a Teichmüller curve) are the same.
We would like to thank YoungJu Choie for bringing Lee’s work to our attention.
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