A REMARK ON (=, n)-TYPE CW-COMPLEXES
KENICHI SHIRAIWA

§1. Let X be a space whose i-th homotopy group =i(X) vanishes for every
i >0 except =2 = 1, and whose n-th homotopy group is isomorphic to a group
7. Then it is well known that the polyhedral homotopy type of X is completely
determined by = and n. We call such a space a (7, »)-type space. Also it is
well known that the minimal complex of the singular complex of a (n, n)-type
space is isomorphic to the complex K(x, n) defined by S. Eilenberg and
S. MacLane [1]. We know also that for any # =1 and any group = (abelian
if #> 1) there exists a (r, )-type space (See [6]).

The purpose of this paper is to shown that if = is a finitely generated
abelian group and z = 2, then there exists a (n, n)-type CW-complex whose
number of cells is algebraically minimal to realize the integral homology group
HJ(n, n; Z) of K(n, n). Since H.,(r, n; Z) is finitely generated in each
dimension under our assumption (Cf. [3]), the number of cells of such a com-
plex is finite in each dimension.
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§2. Throughout this paper we assume 7 is a finitely generated abelian
group, 7 > 1, and the coefficient group is always the group of integers Z.

We know that H,(z, n) is finitely generated in each dimension, so we can
decompose H,(n, n) as a finite sum of cyclic groups.

Let

(1) Hfn,n)=F{+ ...+ F,+T{+...+Ti

be such a decomposition, where F{ is an infinite cyclic group and 77 is a cyclic
group of order #{.

To each F} (i=1,..., 7, we associate a g-cell ¢/ and also to each 77
(i=1,...,1;) we associate a g-cell 'e¢f and a (g+ 1)-cell "ef**.
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TueoreM. There exists a (n, n)-type CW-complex X such that
5]

i) X= \D(Ue?u
q=0

ly
1,9 1y4+1
e; U e; v)y
i=1 i=1 i=1

ii) oel =0'e! =0, o'l = t1'el,
where O is the boundary operator of the chain complex C(X) of X.

We prove this theorem in the following manner. Namely we shall construct
CW-complexes Xr (k=0,1,2,...) which satisfy the following conditions

1)—5).
1) Xi-1 T X,
rk & e klk-x &
2) X — Xe-1=Ue;U'ei U"e (X-1=19¢),
=1 i=1 =1
3) oef =o'l =0, el =t{""el" (g2 k),
4) mi(Xe) =0, ixn and <k,

ma( Xp) =, if B>

By 1) and 2) X% (g-skeleton of Xi) =X, (g £ k), and then by 3) Hi(X) is a
free abelian group generated by {ef, 'ef}.

5) If &> n, there exists a homomorphism
¢r @ Hi(Xe) — Hip(rm, n)

such that ¢pef, ¢lel generates F * T¥ respectively and the following sequence

e Ximt) ~5 2 (X)) —T> Hi(Xe) — Hy(z, n) — 0

is exact, where ¢ is the injection map Xi-1— X and 7 is the Hurewicz homo-
morphism.

Obviously X = U X, will have the required property of our theorem.
k

§3. We first construct X (2 £ n+1) as follows:

0 N N ) BN N T TS N ~ g on+l
Let Xpri=¢ Te; .. ! N L e Ve,

7.7 el where e}

and 'e} are n-cells attached to a 0-cell ¢’ by constant mappings oe! — &’, o'e} - ¢°,
and "e!*' is attached to 'e? ¢’ by a map 3"} — 'ef e’ of degree t!. Let
X. (k= n+1) be the k-skeleton X%.; of Xn+'1, then the conditions 1)—b5) follows
immediately from the fact that Hy:.i(z, #) =0 [2] and also that i.: ma+1(Xn)
- 7ns1(Xn+1) is onto [5].

Now assume we already have Xi, ..., X (2> n) with conditions 1)—5).

The construction of X+ requires the following lemma.
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LemMA. Denoting by i the injection map Xp-. > Xpr we have Hi.\(r, n)

= fyme(Xp-1) for k= n.
(Essentially the same lemma is proved in [4].)

Proof. Let Y be a (r, n)-type CW-complex obtained by killing the homotopy
groups of X except for m.(X:) in the usual way, and consider the commutative
diagram

7e( Xp, Xp-1)
27 Tax
ms (VR YR D (7R, Xk)ﬂ?nkn( Y X?e)‘j—z)/’rkﬂ( Y vk =0
le f3//
0= mrst( Y —> mpa (Y2 X)) —a—o-)r.rk(Xk—l) —>m(Y*?) =0

4.
|“ s/
7

e+ 1\ Xp, Xk_x)/

in which rows and columns are exact sequences of triples and a pair. Then, since
Y*= X, and Y*'= Xp_;, we have

Hyi(m, n) = Ker 05/Im 9. = Ker 9, = Coker ¢; = Coker @ = . me( Xp—1).

Now by the condition 5) for X there exists a; € =(X:) for each generator

thief of Ker ¢k, such that n(a,-):t?’e?. We attach new (k+1)-cells "ef'!

(4=1, ..., It) to Xk each by a representative map g’ : 8"ef*' - Xi of ai. Let
Biti=1,..., 7e1), Bii=1, ..., Ips1) be elements of 7.7x( Xp-1) whose images
!

under the isomorphism Hp+1(7, 7) = i, mil Xe-1) generate Fr*', T#! respectively.
We now attach éfﬁ (z=1, ..., 7k+1) and ’é;’-"Tl (=1, ..., lg+1) by representa-
tive mappings h; : aé?*_‘ ~ Xj-1 and &' : 9'e¥"' > X4, of 5 and ji respectively.
Then the attached space

- rk+1..k 111:+1 s IIL e
+
Xpai=Xe Uef™ U el U "ei ™!
=1 i=1 i=1
obviously satisfies conditions 1) and 2).

To see 3) is satisfied by Xi.:, we consider the following commutative

diagram
'Tk+1(Xk+1, Xk) ﬂ’ Trk(Xk)

<7
me( Xe, Xe-1)
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where &,, o are boundary homomorphisms. Since . is equivalent to the
homology boundary operator of the chain groups of Xi.:, and since o, makes
each of the attached (%4 1)-cells correspond to the attaching map, 3) follows
directly by the construction of Xp.i1.

To see 4) is satisfied, we only have to prove 7x(Xi:1) =0. In virtue of the

exact sequence
0 —> femp( K1) — 7mr( Xe) 5 Im 7 —0

derived from condition 5) for X, ai, 8: and Bi generate mx(X:), since 3i, ﬂ:‘
generate ixmr(Xp-;) and y(a;) generate Imy. It follows then that in the

exact sequence
S F) -
meer(Xes1, Xe) —> me(Xe) —> 7e(Xe1) — 0

9, is onto. Therefore we obtain mr(Xp41) =0.

Now to get Xi+: satisfying 1)—5) we make some improvement on the cells
e 1ef". Namely we first imbed Xi.: ina (7, n)-type CW-complex Y in such

a way that Xz = Y*'.. Then exactness holds in the following sequence

(2) 7Tk+1(Xk) “L*) 7Tk+1(Xk+1) i’ HkH(Xk:;) fﬁ) Hk+1( Y)— 0

where 4, ¢ are injections. (This is essentially the same result as [1].) In fact,

consider the following commutative diagram

7:'k+2( Yk”, Xk+1)

31// azl
me+1( Xk) LN wh+1( Xp11) AN et Xer1, Xe) - e Xe)
y
azi (/
me( X, Xe-1)

where 9; is onto and the row sequence is exact, and ., 9; are equivalent to the
boundary operators of the chain complex of Y. Thus (2) can be identified with
the sequence

(2") Tern(Xp) 25 mper(Xiers) —2> Ker 93 —> Ker 9/Im 9: — 0

which is obviously exact in virtue of the above diagram.
Now we identify Hp:i(x, #) to Hp.:(Y), then @, gives an onto homo-

morphism Tp+1 @ He+1(Xei1) > Hei(m, 7). Since Hi+1(Xp+) is a free abelian
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group generated by ef"' (i=1,0.., 7)) and ‘e (i=1,..., L), we can

select another base ¥, . . ., %rpes X1, - « « > Xy Of Heoil Xisq) such that ¢i.y(x,)

and ¢1..,(x;) generate F¥'' and T%' respectively. The existence of such a base

is readily verified by a quite elementary argument, and so the proof is omitted.
Let

ki1 - ki
%= 2laije; " + 23bij'e]
7

i 2
U ki1 kel
xi=2\cije; "+ 23dy el
7 7

be the transformation of the bases. Then we attach new (k4 1)-cells e?“

(6=1,..., 7¢-1) to Xp—: each by a map representing > a3+ > bijB; and
1ef*1 (=1, ..., Ip+)) to Xe-: each by a map representinJg 2c;;,9;+ 2(11‘;’33’.
Finally we attach "ef'! (i=1, ..., ) to X each by a map] represenéing a;.
Then the attached space
X1 = Xb rGlef"”‘GX’ef“ C) gkt
it1 i1 o1

satisfies the required condition 1)—5). Infact, 1) and 2) are trivial and 3) is
verified easily as in the case of Xj,,.

Let g : C(Xp-;) - C(Xk.1) be a chain map defined in the following way:
g 1 Ci(Xk+1) » C(Xpr1), 1=k
is the identity map,
g CroilXpi1) » Crat( Xih)
is defined by
glef ) =SNajef "+ bjlet ! = x,
2 —— 7 S
(3) gUef ™y = Seief - Sdiet = 1,
2
é'(”ef””) _ ?{aéi' !
Let g’ be the identity map of X% =Xr to X}.1= Xy, then the following diagram

is commutative.

Th+1{ Xpr1, Xp) = Cret( Xpoy) AN Cooil( Xeo1) =il Xegr, X))

v

=1
~e( X%) & — me(XE)

Therefore by a lemma of J. H. C. Whitehead [5], g’ extends to a map g : Xi+,
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— X1 which realizes g : C(Xi+1) > C(Xgk.1). Therefore g induces an iso-
morphism of H.(Xk.;) - H.(Xp,1) and g is a homotopy equivalence (See [7]).
This proves 4) for Xp:1.

Finally let us consider the following commutative diagram

mzﬂ(Xk) ~’—*) 7rle+1(Xk+1) i> Hk+1(Xk+1)
sl aln FARE

e (Xe) =5 mie1(Xon) —> Hisr( Xor1) =5 Hisi(z, n) — 0

Set ¢r+1=Cr:1 © gx. Then the condition 5) for Xi., is now assured by (2) and

(3), and this concludes the proof.
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