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Abstract
We show that if Γ is a point group of R𝑘+1 of order two for some 𝑘 ≥ 2 and S is a k-pseudomanifold which has a
free automorphism of order two, then either S has a Γ-symmetric infinitesimally rigid realisation in R𝑘+1 or 𝑘 = 2
and Γ is a half-turn rotation group. This verifies a conjecture made by Klee, Nevo, Novik and Zheng for the case
when Γ is a point-inversion group. Our result implies that Stanley’s lower bound theorem for centrally symmetric
polytopes extends to pseudomanifolds with a free simplicial automorphism of order 2, thus verifying (the inequality
part of) another conjecture of Klee, Nevo, Novik and Zheng. Both results actually apply to a much larger class of
simplicial complexes – namely, the circuits of the simplicial matroid. The proof of our rigidity result adapts earlier
ideas of Fogelsanger to the setting of symmetric simplicial complexes.
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1. Introduction

Let S be an abstract simplicial k-complex with vertex set 𝑉 (S) and edge set 𝐸 (S). The lower bound
theorem concerns the quantity 𝑔2 (S) defined by

𝑔2 (S) = |𝐸 (S) | − (𝑘 + 1) |𝑉 (S) | +
(
𝑘 + 2

2

)
. (1.1)

Barnette [3] showed that 𝑔2 (S) ≥ 0 if S is the boundary complex of a (𝑘 + 1)-dimensional convex
polytope. This was later generalised to simplicial spheres (Stanley [18]) and pseudomanifolds (Kalai
[10], Tay [20]).

Readers familiar with the rigidity theory of bar-joint frameworks will note that the right-hand side
of (1.1) arises naturally in that theory and indeed is nonnegative if the 1-skeleton of S is a generically
rigid graph in R𝑘+1. This was proved by Asimov and Roth [2]. This connection between rigidity theory
and polytopal combinatorics, noted by Kalai [10] and Gromov [8], has been fundamental to much of
the work on lower bound theorems for various classes of simplicial complexes.

Around the same time as [10], Fogelsanger proved that the 1-skeleton of a minimal homology k-cycle
is generically rigid in R𝑘+1 for 𝑘 ≥ 2 [7]. It is not difficult to see that a k-pseudomanifold is a minimal
homology k-cycle; see Section 3 for definitions. Thus, Fogelsanger’s result provides a generalisation and
independent proof of the lower bound theorem for pseudomanifolds. Fogelsanger’s proof technique is
different to the previous proofs of the lower bound theorem: it is a direct proof based on a rigidity lemma
of Whiteley for vertex splitting [23], and an ingenious decomposition result (more on this below).

In the present paper we consider Z2-symmetric simplicial complexes (i.e., simplicial complexes
S with a free automorphism of order two). Such complexes were referred to as centrally symmetric
simplicial complexes in [11]. The term Z2-symmetric is more suitable for our purposes since we will
consider realisations of k-dimensional complexes in R𝑘+1 which have an arbitrary symmetry of order
two, not just a point inversion through the origin.

Note that if P is a centrally symmetric simplicial polytope inR𝑘+1, that is, −𝑃 = 𝑃, then the boundary
complex of P is a Z2-symmetric simplicial complex of dimension k. Stanley [19] showed, in particular,
that if S is the boundary complex of such a polytope, then

𝑔2(S) ≥
(
𝑘 + 1

2

)
− (𝑘 + 1). (1.2)

Later, Sanyal, Werner and Ziegler [13] used a rigidity-based approach to obtain further properties
of the f -vector of centrally symmetric polytopes. In particular, their results imply that (1.2) follows
from an earlier rigidity result of Whiteley [22] that the 1-skeleton of every convex (𝑘 + 1)-polytope
is infinitesimally rigid in R𝑘+1. More recently, Klee, Nevo, Novik and Zheng [11] used techniques
from rigidity theory to characterise the cases for which equality can hold in Stanley’s Theorem. While
centrally symmetric simplicial polytopes have been the topic of much research since Stanley’s paper, the
extension of this theory from simplicial polytopes to more general families of simplicial complexes is
less developed than in the non-symmetric case. One significant result in that direction is the recent proof
by Novik and Zheng of the Z2-symmetric upper bound conjecture for simplicial spheres [12]. In this
paper, we address the lower bound conjecture for a larger class of Z2-symmetric simplicial complexes –
namely, the circuits of the simplicial matroid. Precise definitions will be given in Section 3, but for now,
it suffices to note that a simplicial k-circuit is a minimal homology k-cycle over Z2 in Fogelsanger’s
terminology.
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Figure 1. The Bricard octahedron.

Our approach is to extend Fogelsanger’s rigidity theorem and proof techniques to the Z2-symmetric
setting. The extension is not straightforward and, in particular, makes use of a new notion of a framework
with partial symmetry which we have not seen in the rigidity literature. Our extension of Fogelsanger’s
decomposition technique is powerful enough to show that the graph of any Z2-symmetric simplicial
k-circuit can be realised as an infinitesimally rigid framework having a specified point group symmetry
of order two in R𝑘+1, unless 𝑘 = 2 and the point group is the half-turn rotation group in R3.

We shall see that when 𝑘 = 2 and the point group is the half-turn rotation group in R3, every
symmetric realisation of a Z2-symmetric planar graph is infinitesimally flexible. The smallest such
example is the famous Bricard octahedron [4], given in Figure 1. The Bricard octahedron was the
source of inspiration for Connelly’s flexible polytope [5]. More generally, the rigidity of symmetric
and non-convex realisations of 1-skeletons of polytopes has been one of the central topics in rigidity
theory; see, for example, [17, 14]. We believe that our rigidity theorem will have a substantial impact in
rigidity theory because it gives the first extension of rigidity results on symmetric convex polytopes to
a more general family including non-convex symmetric realisations of polytopes and a larger family of
simplicial complexes that includes pseudomanifolds.

The paper is organised as follows. We first give preliminary facts on the infinitesimal rigidity
of frameworks under a point group symmetry in Section 2. In Section 3, we review Fogelsanger’s
decomposition technique for simplicial circuits using an approach from [6]. We then provide an extension
of Fogelsanger’s rigidity theorem to realisations of simplicial k-circuits in which several pairs of vertices
are constrained to lie symmetrically in R𝑘+1. In Section 5, we extend Fogelsanger’s decomposition
result to Z2-symmetric simplicial k-circuits and use this to prove our main theorem on the rigidity of
Z2-symmetric simplicial circuits. The application to the lower bound theorem is given in Section 6. We
close the paper by giving some final remarks and open problems in Section 7.

2. Preliminaries on rigidity and symmetry

In this section, we introduce some basic results on the infinitesimal rigidity of frameworks and their
extensions to the symmetric case.

Throughout the paper, we use the following basic conventions and notation. All graphs considered
will be finite, undirected and simple (i.e., without loops or multiple edges). For 𝑋 ⊆ 𝑉 (𝐺), let 𝐸𝐺 [𝑋] =
{𝑢𝑣 ∈ 𝐸 (𝐺) : 𝑢, 𝑣 ∈ 𝑋}. The subgraph of G induced by X is given by 𝐺 [𝑋] = (𝑋, 𝐸𝐺 [𝑋]). For
𝑣 ∈ 𝑉 (𝐺), 𝑁𝐺 (𝑣) denotes the set of vertices adjacent to v in G.

2.1. Infinitesimal rigidity

A graph drawn in Euclidean space with straight line edges is called a (bar-joint) framework and denoted
by a pair (𝐺, 𝑝) of the graph G and the point configuration 𝑝 : 𝑉 (𝐺) → R𝑑 . We will also refer to (𝐺, 𝑝)
as a realisation of G in R𝑑 .

An infinitesimal motion of a framework (𝐺, 𝑝) is a map �𝑝 : 𝑉 (𝐺) → R𝑑 satisfying

(𝑝(𝑖) − 𝑝( 𝑗)) · ( �𝑝(𝑖) − �𝑝( 𝑗)) = 0 (𝑖 𝑗 ∈ 𝐸 (𝐺)). (2.1)
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For a skew-symmetric matrix S and 𝑡 ∈ R𝑑 , it is not difficult to check that �𝑝 defined by �𝑝(𝑣) =
𝑆𝑝(𝑣) + 𝑡 (𝑣 ∈ 𝑉 (𝐺)) is an infinitesimal motion of (𝐺, 𝑝). Such an infinitesimal motion is called trivial.
The framework (𝐺, 𝑝) is infinitesimally rigid if every infinitesimal motion of (𝐺, 𝑝) is trivial. We say
that the graph G is rigid in R𝑑 if G has an infinitesimally rigid realisation in R𝑑 .

Since (2.1) is a system of linear equations in �𝑝, we can represent it by a matrix of size |𝐸 (𝐺) |×𝑑 |𝑉 (𝐺) |.
This matrix is called the rigidity matrix 𝑅(𝐺, 𝑝) of (𝐺, 𝑝). The rows of 𝑅(𝐺, 𝑝) are indexed by edges
of G. In addition, for each vertex 𝑣 ∈ 𝑉 (𝐺), we have a corresponding set of d columns. For an edge
𝑢𝑣 ∈ 𝐸 (𝐺), the corresponding row of 𝑅(𝐺, 𝑝) has the d-dimensional vector 𝑝(𝑢) − 𝑝(𝑣) in the column-
set corresponding to u and 𝑝(𝑣) − 𝑝(𝑢) in the column-set corresponding to u. All other entries of the
row are zero.

When the affine span of 𝑝(𝑉 (𝐺)) has dimension at least 𝑑 − 1, the dimension of the space of trivial
motions is

(𝑑+1
2
)
, so (𝐺, 𝑝) is infinitesimally rigid if and only if rank 𝑅(𝐺, 𝑝) = 𝑑 |𝑉 (𝐺) | −

(𝑑+1
2
)
. In

particular, if (𝐺, 𝑝) is infinitesimally rigid and G has at least d vertices, then

|𝐸 (𝐺) | − 𝑑 |𝑉 (𝐺) | +

(
𝑑 + 1

2

)
≥ 0. (2.2)

Kalai [10] and Gromov [8] exploited the close relationship between (1.1) and (2.2) to use rigidity theory
to prove their extensions of the Lower Bound Theorem. We will use a similar approach to obtain our
lower bound theorem for Z2-symmetric simplicial complexes.

2.2. Rigidity under symmetry

A graph with a vertex pairing is a pair (𝐺, ∗) of a graph G and a free involution ∗ acting on some
𝑋 ⊆ 𝑉 (𝐺). (Thus, ∗ : 𝑋 → 𝑋 and satisfies ∗(∗(𝑢)) = 𝑢 and ∗(𝑢) ≠ 𝑢 for all 𝑢 ∈ 𝑋 .) We will denote
∗(𝑢) by 𝑢∗ for each 𝑢 ∈ 𝑋 and put 𝑌 ∗ = {𝑢∗ : 𝑢 ∈ 𝑌 } for all 𝑌 ⊆ 𝑋 . In addition, for each𝑊 ⊂ 𝑉 (𝐺), we
put

𝑋𝑊 = (𝑋 ∩𝑊) ∩ (𝑋 ∩𝑊)∗.

Then ∗ induces a free involution ∗𝑊 : 𝑋𝑊 → 𝑋𝑊 . We will simply denote ∗𝑊 by ∗ when W is clear
from the context. Similarly, for a subgraph H of G, (𝐻, ∗𝑉 (𝐻 ) ) is simply denoted by (𝐻, ∗).

We will use the free involution ∗ to force a symmetry on the point configuration in a possible
realisation of G. Let Γ be a point group of R𝑑 of order two – that is, a subgroup of 𝑂 (𝑑) of order two.
A Γ-framework is a triple (𝐺, ∗, 𝑝) of a graph G, a free involution ∗ : 𝑋 → 𝑋 for some 𝑋 ⊆ 𝑉 (𝐺), and
a point-configuration p such that 𝑝(𝑢∗) = 𝛾(𝑝(𝑢)) for all 𝑢 ∈ 𝑋 , where 𝛾 is the non-identity element
in Γ. By ignoring ∗, (𝐺, ∗, 𝑝) can be considered as a realisation of G, and hence, we can apply the
terminology from Section 2.1 to (𝐺, ∗, 𝑝). We will sometimes refer to a Γ-framework (𝐺, ∗, 𝑝) as a
Γ-symmetric realisation of (𝐺, ∗). We say that (𝐺, ∗) is Γ-rigid if (𝐺, ∗) has an infinitesimally rigid
Γ-symmetric realisation.

A Γ-framework (𝐺, ∗, 𝑝) is generic if the transcendence degree of the set of coordinates of all the
points in 𝑝(𝑉) over Q takes the maximum possible value 𝑑 (|𝑉 | − |𝑋 |/2). Thus, (𝐺, ∗) is Γ-rigid if and
only if every (or equivalently, some) generic Γ-symmetric realisation of (𝐺, ∗) is infinitesimally rigid.
Example 2.1. This example illustrates that the Γ-rigidity of a fixed (𝐺, ∗) may depend on the group Γ.
Consider the case when 𝑑 = 3. Then there are three different types of point groups of order two
corresponding to point inversion, rotation and reflection. Suppose that G is the graph of the octahedron
and ∗ maps each vertex to its antipodal vertex. If Γ is a rotation group, then any Γ-framework (𝐺, ∗, 𝑝)
is the 1-skeleton of a Bricard octahedron, which is infinitesimally flexible; see Example 2.3 below.
Conversely, we will show that every generic Γ-framework (𝐺, ∗, 𝑝) is infinitesimally rigid when Γ is a
point inversion or reflection group.

We will concentrate our attention on graphs G with a vertex pairing ∗ : 𝑋 → 𝑋 with the property
that 𝑥𝑥∗ ∉ 𝐸 for all 𝑥 ∈ 𝑋 . We will refer to such a vertex pairing as a non-adjacent vertex pairing. Note
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that if ∗ : 𝑋 → 𝑋 is a non-adjacent vertex pairing of G, then the induced bijection ∗𝑊 : 𝑋𝑊 → 𝑋𝑊 is
again a non-adjacent vertex pairing of 𝐺 [𝑊] for all 𝑊 ⊆ 𝑉 (𝐺).

We emphasise that a non-adjacent vertex pairing ∗ : 𝑋 → 𝑋 need not, in general, induce an involution
on the edge set 𝐸 [𝑋]. Our main concern, however, is the special case when 𝑋 = 𝑉 (𝐺) and ∗ is an
automorphism of G without fixed edges. In this case, (𝐺, ∗) is said to be aZ2-symmetric graph. Since
∗ is an automorphism, ∗(𝑒) is well defined, and we abbreviate ∗(𝑒) by 𝑒∗ for each edge e. We consider
the more general class of graphs with a non-adjacent vertex pairing because it arises naturally in our
analysis of the Z2-symmetric case.

We next derive a stronger inequality than (2.2) for the number of edges in a Γ-rigid Z2-symmetric
graph. For integers 𝑑 ≥ 1 and 0 ≤ 𝑡 ≤ 𝑑, let 𝐼𝑡 ,𝑑 be the the diagonal matrix of size d whose first t
diagonal entries are 1 and remaining 𝑑 − 𝑡 diagonal entries are −1. Let Γ𝑡 ,𝑑 be the point group generated
by 𝐼𝑡 ,𝑑 . Observe that if Γ is a point group of order 2 in R𝑑 , then we can always choose a coordinate
system so that Γ = Γ𝑡 ,𝑑 for some 0 ≤ 𝑡 ≤ 𝑑 − 1.

Lemma 2.2. Let Γ = Γ𝑡 ,𝑑 where 0 ≤ 𝑡 ≤ 𝑑 − 1. Suppose that a Z2-symmetric graph (𝐺, ∗) is Γ-rigid
and |𝑉 (𝐺) | ≥ 2𝑑. Then

|𝐸 (𝐺) | ≥ 𝑑 |𝑉 (𝐺) | − 2 min
{(
𝑡 + 1

2

)
+

(
𝑑 − 𝑡

2

)
,

(
𝑑 + 1

2

)
−

(
𝑡 + 1

2

)
−

(
𝑑 − 𝑡

2

)}
. (2.3)

Proof. Let 𝑛 = |𝑉 (𝐺) | and 𝑚 = |𝐸 (𝐺) |. Since (𝐺, ∗) is Γ-rigid, there is a Γ-symmetric infinitesimally
rigid realisation (𝐺, ∗, 𝑝) of (𝐺, ∗). Since |𝑉 (𝐺) | ≥ 2𝑑, we can take such a realisation so that the affine
span of 𝑝(𝑉 (𝐺)) is at least 𝑑 − 1. In particular, the space of trivial motions of (𝐺, ∗, 𝑝) has dimension(𝑑+1

2
)
.

Recall that the rigidity matrix 𝑅(𝐺, 𝑝) represents a linear map from R𝑑𝑛 to R𝑚. We shall decompose
R𝑑𝑛 and R𝑚 into two subspaces whose elements are either symmetric or anti-symmetric with respect to
Γ and ∗. Specifically, let

𝑀sym := { �𝑝 : 𝑉 (𝐺) → R𝑑 | �𝑝(𝑢∗) = 𝐼𝑡 ,𝑑 �𝑝(𝑢) for all 𝑢 ∈ 𝑉 (𝐺)},

𝑀ant := { �𝑝 : 𝑉 (𝐺) → R𝑑 | �𝑝(𝑢∗) = −𝐼𝑡 ,𝑑 �𝑝(𝑢) for all 𝑢 ∈ 𝑉 (𝐺)},

𝑆sym := {𝑤 : 𝐸 (𝐺) → R | 𝑤(𝑒∗) = 𝑤(𝑒) for all 𝑒 ∈ 𝐸 (𝐺)} and
𝑆ant := {𝑤 : 𝐸 (𝐺) → R | 𝑤(𝑒∗) = −𝑤(𝑒) for all 𝑒 ∈ 𝐸 (𝐺)}.

Then R𝑑𝑛 = 𝑀sym ⊕ 𝑀ant and R𝑚 = 𝑆sym ⊕ 𝑆ant. Observe further that the rigidity matrix maps 𝑀sym to
𝑆sym and 𝑀ant to 𝑆ant. Indeed, if �𝑝 ∈ 𝑀sym, then for any edge 𝑒 = 𝑢𝑣, we have

(𝑝(𝑢∗) − 𝑝(𝑣∗)) · ( �𝑝(𝑢∗) − �𝑝(𝑣∗)) = (𝐼𝑡 ,𝑑 (𝑝(𝑢
∗) − 𝑝(𝑣∗))) · 𝐼𝑡 ,𝑑 ( �𝑝(𝑢

∗) − �𝑝(𝑣∗))

= (𝑝(𝑢) − 𝑝(𝑣)) · ( �𝑝(𝑢) − �𝑝(𝑣)),

which implies that the image of �𝑝 belongs to 𝑆sym. A similar calculation shows the corresponding
property for 𝑀ant.

Let T be the space of trivial infinitesimal motions of (𝐺, 𝑝). A canonical basis of T consists of
(𝑑

2
)

infinitesimal rotations about the subspaces spanned by each set of (𝑑 − 2) axes and d translations along
each axis. Due to the structure of 𝐼𝑡 ,𝑑 , it follows that the

(𝑡+1
2
)
-dimensional space of isometries in the

subspace spanned by the first t axes and the
(𝑑−𝑡

2
)
-dimensional space of rotations rotating in the subspace

spanned by the last 𝑑 − 𝑡 axes are contained in 𝑀sym. One can also directly check that the remaining(𝑑+1
2
)
−
(𝑡+1

2
)
−
(𝑑−𝑡

2
)

elements of the canonical basis belong to 𝑀ant. Hence,

dim𝑇 ∩ 𝑀sym =

(
𝑡 + 1

2

)
+

(
𝑑 − 𝑡

2

)
and dim𝑇 ∩ 𝑀ant =

(
𝑑 + 1

2

)
−

(
𝑡 + 1

2

)
−

(
𝑑 − 𝑡

2

)
.
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The infinitesimal rigidity of (𝐺, 𝑝) implies that ker 𝑅(𝐺, 𝑝) = 𝑇 . Since the rigidity matrix maps
𝑀sym to 𝑆sym and 𝑀ant to 𝑆ant, this gives

𝑚

2
= dim 𝑆sym ≥ dim 𝑀sym − dim𝑇 ∩ 𝑀sym =

𝑑𝑛

2
−

((
𝑡 + 1

2

)
+

(
𝑑 − 𝑡

2

))
and

𝑚

2
= dim 𝑆ant ≥ dim 𝑀ant − dim𝑇 ∩ 𝑀ant =

𝑑𝑛

2
−

((
𝑑 + 1

2

)
−

(
𝑡 + 1

2

)
−

(
𝑑 − 𝑡

2

))
,

as required. �

Example 2.3. Suppose a Z2-symmetric graph (𝐺, ∗) is Γ-rigid in R3. Then Lemma 2.2 implies

|𝐸 (𝐺) | ≥ 3|𝑉 (𝐺) | −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

6 if 𝑡 = 0 i.e. Γ is generated by a point inversion,
4 if 𝑡 = 1 i.e. Γ is generated by a half turn rotation,
6 if 𝑡 = 2 i.e. Γ is generated by a reflection.

If G is the graph of the octahedron, |𝐸 (𝐺) | = 12 and |𝑉 (𝐺) | = 6. So it cannot be Γ-rigid if Γ is generated
by a half turn rotation, which is the case of the Bricard octahedron.

Note that the case when 𝑑 = 3 is exceptional since the right side of (2.3) is maximised at 𝑡 = 1 when
𝑑 = 3, and at 𝑡 = 0 when 𝑑 ≥ 4.

The infinitesimal rigidity of frameworks having a point group symmetry is an extensively studied
topic in rigidity theory. See, for example, [15, 16] for symmetric extensions of classical rigidity theorems.

2.3. Gluing properties

We write aff (𝑌 ) for the affine span of a subset Y of R𝑑 and lin(𝑌 ) for its linear span. The gluing
properties of rigid frameworks and graphs are important ingredients in the proof of Fogelsanger’s
Rigidity Theorem. For completeness, and since we cannot find an authoritative source for these results
in the literature, we include details of these gluing properties in the classical non-symmetric setting.

Theorem 2.4. Let (𝐺, 𝑝) be a framework in R𝑑 . Suppose that 𝐺1, 𝐺2 are subgraphs of G such that
(𝐺𝑖 , 𝑝 |𝑉 (𝐺𝑖 ) ) is infinitesimally rigid for 𝑖 = 1, 2 and aff (𝑝(𝑉 (𝐺1) ∩ 𝑉 (𝐺2))) has dimension at least
𝑑 − 1. Then (𝐺, 𝑝) is infinitesimally rigid.

Proof. Suppose that �𝑝 is an infinitesimal flex of (𝐺, 𝑝). By assumption, there exist skew symmetric
matrices 𝐴𝑖 of size d and 𝑡𝑖 ∈ R𝑑 for 𝑖 = 1, 2 such that �𝑝(𝑣) = 𝐴𝑖 𝑝(𝑣) + 𝑡𝑖 for 𝑣 ∈ 𝑉 (𝐺𝑖). We can choose
coordinates so that 𝑝(𝑤) = 0 for some 𝑤 ∈ 𝑉 (𝐺1) ∩𝑉 (𝐺2). It follows that 𝐴10 + 𝑡1 = �𝑝(𝑤) = 𝐴20 + 𝑡2.
Therefore, 𝑡1 = 𝑡2, and so 𝐴1𝑝(𝑣) = 𝐴2𝑝(𝑣) for all 𝑣 ∈ 𝑉 (𝐺1) ∩𝑉 (𝐺2). Therefore, the skew symmetric
matrix 𝐴1 − 𝐴2 vanishes on a space of dimension 𝑑 − 1, and so must be 0, as required. �

Corollary 2.5. Let 𝐺1 and 𝐺2 be graphs that are both rigid in R𝑑 . Suppose that |𝑉 (𝐺1) ∩𝑉 (𝐺1) | ≥ 𝑑.
Then 𝐺1 ∪ 𝐺2 is rigid in R𝑑 .

Now we extend Corollary 2.5 to Γ-rigidity. First, we prove a lemma about the affine span of
Γ-symmetric subsets of R𝑑 .

Lemma 2.6. Let 𝛾 = 𝐼𝑡 ,𝑑 for 0 ≤ 𝑡 ≤ 𝑑 − 1. Suppose that P is a generic set of points in R𝑑 and |𝑃 | = 𝑛.
Then dim(aff (𝑃 ∪ 𝛾(𝑃))) = min{𝑛, 𝑑 − 𝑡} + min{𝑛 − 1, 𝑡}.

Proof. Let V, respectively W, be the eigenspace of 𝛾 corresponding to the eigenvalue 1, respectively
−1, and let 𝜋𝑉 , respectively 𝜋𝑊 , be the orthogonal projection from R𝑑 onto V, respectively W. Since P
is generic in R𝑑 and 𝜋𝑉 , 𝜋𝑊 are projections onto coordinate subspaces, it follows that 𝜋𝑉 (𝑃) is generic
in V and 𝜋𝑊 (𝑃) is generic in W. Therefore, dim(aff (𝜋𝑉 (𝑃))) = min{𝑛 − 1, 𝑡} and dim(lin(𝜋𝑊 (𝑃))) =
min{𝑛, 𝑑 − 𝑡}.
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Claim 2.7. aff (𝑃 ∪ 𝛾(𝑃)) = aff (𝜋𝑉 (𝑃)) + lin(𝜋𝑊 (𝑃)).
Proof of claim. Suppose 𝑥 =

∑
𝑞∈𝑃∪𝛾 (𝑃) 𝑐𝑞𝑞 ∈ aff (𝑃 ∪ 𝛾(𝑃))) for scalars 𝑐𝑞 with

∑
𝑞 𝑐𝑞 = 1. Now

𝑥 = 𝜋𝑉 (𝑥) + 𝜋𝑊 (𝑥) and 𝜋𝑉 (𝑥) =
∑
𝑝∈𝑃 (𝑐𝑝 + 𝑐𝛾 (𝑝) )𝜋𝑉 (𝑝) and 𝜋𝑊 (𝑥) =

∑
𝑝∈𝑃 (𝑐𝑝 − 𝑐𝛾 (𝑝) )𝜋𝑊 (𝑝).

Since
∑
𝑝∈𝑃 (𝑐𝑝+𝑐𝛾 (𝑝) ) =

∑
𝑞∈𝑃∪𝛾 (𝑃) 𝑐𝑞 = 1, it follows that aff (𝑃∪𝛾(𝑃)) ⊂ aff (𝜋𝑉 (𝑃))+lin(𝜋𝑊 (𝑃)).

To see the reverse containment holds, consider
∑
𝑝∈𝑃 𝑑𝑝𝜋𝑉 (𝑝) ∈ aff (𝜋𝑉 (𝑃)) and

∑
𝑝∈𝑃 𝑏𝑝𝜋𝑊 (𝑝) ∈

lin(𝜋𝑊 (𝑃)). Set 𝑐𝑝 =
𝑑𝑝+𝑏𝑝

2 and 𝑐𝛾 (𝑝) =
𝑑𝑝−𝑏𝑝

2 for each 𝑝 ∈ 𝑃. Then
∑
𝑞∈𝑃∪𝛾 (𝑃) 𝑐𝑞 =

∑
𝑝∈𝑃 𝑑𝑝 = 1.

It follows that aff (𝜋𝑉 (𝑃)) + lin(𝜋𝑊 (𝑃)) ⊂ aff (𝑃 ∪ 𝛾(𝑃)). �

The facts that aff (𝜋𝑉 (𝑃)) ⊆ 𝑉 , lin(𝜋𝑊 (𝑃)) ⊆ 𝑊 and 𝑉 ∩𝑊 = {0} (since 𝑉,𝑊 are eigenspaces for
distinct eigenvalues of 𝛾) now give

dim(aff (𝑃 ∪ 𝛾(𝑃))) = dim(aff (𝜋𝑉 (𝑃)) + lin(𝜋𝑊 (𝑃))) = dim aff (𝜋𝑉 (𝑃)) + dim lin(𝜋𝑊 (𝑃))

= min{𝑛, 𝑑 − 𝑡} + min{𝑛 − 1, 𝑡},

as required. �

Theorem 2.8 (Gluing Theorem). Let Γ = Γ𝑡 ,𝑑 for 0 ≤ 𝑡 ≤ 𝑑 − 1. Let (𝐺, ∗) be a graph with a vertex
pairing ∗ : 𝑋 → 𝑋 . Suppose that 𝐻1 = (𝑉1, 𝐸1) and 𝐻2 = (𝑉2, 𝐸2) are subgraphs of G whose union is
G and that, for 𝑖 = 1, 2, (𝐻𝑖 , ∗) is Γ-rigid in R𝑑 . Let 𝑚 = |𝑋𝑉1 ∩ 𝑋𝑉2 |. Suppose that

|𝑉1 ∩𝑉2 | ≥ 𝑑 + 𝑚 − 1 − min{𝑚/2, 𝑑 − 𝑡} − min{𝑚/2 − 1, 𝑡}.

Then (𝐺, ∗) is Γ-rigid.
Proof. Let (𝐺, ∗, 𝑝) be a generic Γ-framework. Then, for 𝑖 = 1, 2, (𝐻𝑖 , ∗, 𝑝 |𝑉𝑖 ) is generic and therefore
infinitesimally rigid. Now we observe that, by Lemma 2.6, the dimension of aff (𝑝(𝑉1∩𝑉2)) is min{|𝑉1∩
𝑉2 | − 𝑚 + min{𝑚/2, 𝑑 − 𝑡} + min{𝑚/2 − 1, 𝑡}, 𝑑}. The theorem now follows by applying Theorem 2.4
to the frameworks (𝐻𝑖 , 𝑝 |𝑉𝑖 ), 𝑖 = 1, 2. �

2.4. Vertex splitting

Whiteley’s Vertex Splitting Lemma [23, Proposition 1] is a fundamental result in rigidity theory and
plays a key role in the proof of Fogelsanger’s Rigidity Theorem. We will derive a version of this lemma
for Γ-rigidity.

First, we fix some terminology. Let G be a graph, 𝑢 ∈ 𝑉 (𝐺), 𝐶 ⊂ 𝑁𝐺 (𝑢) and 𝐷 ⊂ 𝑁𝐺 (𝑢) \ 𝐶. Let
𝐺 ′ be the graph obtained from G by deleting the edges 𝑢𝑤 for all 𝑤 ∈ 𝐷, adding a new vertex 𝑢′ and
adding edges 𝑢′𝑧 for all 𝑧 ∈ 𝐶 ∪𝐷 ∪ {𝑢}. We say that 𝐺 ′ is obtained from G by splitting 𝑢′ from u along
C, or more succinctly, by vertex splitting at u.

The following theorem of is one of the central results in rigidity theory. We include details of
Whiteley’s original proof [23] for the benefit of readers who may not be familiar with it, and since one
of our later variations is proved using essentially the same method.
Theorem 2.9 (Whiteley’s Vertex Splitting Theorem). Let (𝐺, 𝑝) be a framework inR𝑑 such that 𝑅(𝐺, 𝑝)
is row-independent. Also, let 𝑢 ∈ 𝑉 (𝐺) and𝐶 ⊂ 𝑁𝐺 (𝑢) such that |𝐶 | ≤ 𝑑−1 and {𝑝(𝑤)−𝑝(𝑢) : 𝑤 ∈ 𝐶}
is linearly independent. Let 𝐺 ′ be the graph obtained from G by splitting 𝑢′ from u along C. Then there
is some 𝑧 ∈ R𝑑 such that 𝑅(𝐺 ′, 𝑞) is row-independent, where 𝑞(𝑤) = 𝑝(𝑤) for all 𝑤 ∈ 𝑉 (𝐺) and
𝑞(𝑢′) = 𝑝(𝑢) + 𝑧.
Proof. Since |𝐶 | ≤ 𝑑 − 1, we can choose 𝑦 ∈ R𝑑 so that 𝑦 ∉ lin{𝑝(𝑤) − 𝑝(𝑢) : 𝑤 ∈ 𝐶}. Now, for each
𝑡 ∈ R, define 𝑞𝑡 : 𝑉 (𝐺 ′) → R𝑑 by

𝑞𝑡 (𝑣) =

{
𝑝(𝑣) if 𝑣 ∈ 𝑉 (𝐺),
𝑝(𝑢) + 𝑡𝑦 if 𝑣 = 𝑢′.

It will suffice to show that for sufficiently small nonzero t, 𝑅(𝐺 ′, 𝑞𝑡 ) is row-independent.
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Let L be the matrix obtained by replacing the 𝑢𝑢′ row of 𝑅(𝐺, 𝑞0) by the row vector that has y is the
u column-set, −𝑦 is the 𝑢′ column-set and zeroes in all other entries.

Claim 2.10. L is row-independent.

Proof of claim. Suppose that 𝜆 is an element of the left kernel of L. We can think of 𝜆 as a real valued
function on 𝐸 (𝐺 ′). Define 𝜋 : 𝐸 (𝐺) → R by

𝜋(𝑒) =

{
𝜆(𝑒) if 𝑒 ∉ {𝑢𝑤 : 𝑤 ∈ 𝐶},
𝜆(𝑢𝑤) + 𝜆(𝑢′𝑤) if 𝑒 = 𝑢𝑤, 𝑤 ∈ 𝐶.

Now, using the facts that 𝑞0 (𝑢) = 𝑞0(𝑢
′) = 𝑝(𝑢), 𝑞0 (𝑤) = 𝑝(𝑤) for 𝑤 ∈ 𝑉 (𝐺) and 𝜆𝐿 = 0, we can

readily show that 𝜋, considered as row vector with entries indexed by 𝐸 (𝐺), is an element of the left
kernel of 𝑅(𝐺, 𝑝). Since 𝑅(𝐺, 𝑝) is row-independent, it follows that 𝜋 = 0. Therefore, 𝜆(𝑒) = 0 for
all 𝑒 ∉ {𝑢𝑤 : 𝑤 ∈ 𝐶} ∪ {𝑢′𝑤 : 𝑤 ∈ 𝐶} and 𝜆(𝑢𝑤) + 𝜆(𝑢′𝑤) = 0 for 𝑤 ∈ 𝐶. Now, using the fact that
𝜆𝐿 = 0, and considering the uth column-set of L, we have

𝜆(𝑢𝑢′)𝑦 +
∑
𝑤 ∈𝐶

𝜆(𝑢𝑤) (𝑝(𝑢) − 𝑝(𝑤)) = 0.

Our choice of y and the fact that {𝑝(𝑢) − 𝑝(𝑤) : 𝑤 ∈ 𝐶} is linearly independent implies that 𝜆(𝑢𝑤) = 0
for 𝑤 ∈ 𝐶 and 𝜆(𝑢𝑢′) = 0. So 𝜆 = 0, and the claim is proved. �

Finally, we consider, for 𝑡 ≠ 0, the matrix 𝑀𝑡 which is obtained by multiplying the 𝑢𝑢′ row of
𝑅(𝐺 ′, 𝑞𝑡 ) by 1

𝑡 . It is clear that rank(𝑀𝑡 ) = rank(𝑅(𝐺 ′, 𝑞𝑡 )). It is also clear that lim𝑡→0 (𝑀𝑡 ) = 𝐿. Using
the lower semicontinuity of the rank function and Claim 2.10, we see that, for sufficiently small nonzero
t, rank(𝑅(𝐺, 𝑞𝑡 )) = rank(𝑀𝑡 ) ≥ rank(𝐿) = |𝐸 (𝐺 ′) |. This completes the proof of the theorem. �

We remark that the inverse operation to vertex splitting is edge contraction. Given a graph G and an
edge 𝑢𝑣 ∈ 𝐸 (𝐺), we use 𝐺/𝑢𝑣 to denote the simple graph obtained from G by contracting v onto u.
More precisely,𝐺/𝑢𝑣 = (𝐺 − 𝑣) ∪ {𝑢𝑧 : 𝑧 ∈ 𝑁𝐺 (𝑣)}. Observe that G is obtained from𝐺/𝑢𝑣 by splitting
v from u along 𝑁𝐺 (𝑢) ∩ 𝑁𝐺 (𝑣).

Note that if ∗ : 𝑋 → 𝑋 is a non-adjacent vertex pairing and either 𝑋 ∩ {𝑢, 𝑣} = ∅, or 𝑢 ∈ 𝑋 , 𝑣 ∉ 𝑋
and 𝑢∗𝑣 ∉ 𝐸 (𝐺), then ∗ is also a non-adjacent vertex pairing on 𝐺/𝑢𝑣.

Now we will apply Theorem 2.9 to derive a sufficient condition that ensures that vertex splitting
preserves Γ-rigidity of a graph with a non-adjacent vertex pairing. We find it convenient to state this
theorem in terms of edge contraction.

Lemma 2.11. Suppose Γ is a point group of R𝑑 of order two. Let (𝐺, ∗) be a graph with a non-adjacent
vertex pairing ∗ : 𝑋 → 𝑋 and 𝑢𝑣 ∈ 𝐸 (𝐺) with 𝑢, 𝑣 ∉ 𝑋 . Suppose that there is 𝐶 ⊂ 𝑁𝐺 (𝑢) ∩ 𝑁𝐺 (𝑣)
such that |𝐶 | = 𝑑 − 1 and |𝑋𝐶 | ≤ 2. If (𝐺/𝑢𝑣, ∗) is Γ-rigid in R𝑑 , then (𝐺, ∗) is Γ-rigid in R𝑑 .

Proof. Observe that 𝑋𝐶∪{𝑢 } = 𝑋𝐶 since 𝑢 ∉ 𝑋 . If |𝑋𝐶 | = 0, then for any Γ-generic framework
(𝐺/𝑢𝑣, ∗, 𝑝) in R𝑑 , 𝑝(𝐶 ∪ {𝑢}) is a generic set of d points in R𝑑 . If |𝑋𝐶 | = 2, then 𝑝(𝐶 ∪ {𝑢}) is an
affinely independent set of d-points in R𝑑 . In both cases, it follows that {𝑝(𝑢) − 𝑝(𝑧) : 𝑧 ∈ 𝐶} is linearly
independent, and so we can use Theorem 2.9 to construct a Γ-framework (𝐺, ∗, 𝑞) that is infinitesimally
rigid in R𝑑 . �

Lemma 2.11 deals with vertex splitting when the split vertex does not belong to X. We also will need
a vertex splitting result for the situation where we simultaneously split a pair of vertices 𝑢, 𝑢∗ for some
𝑢 ∈ 𝑋 . In order to achieve this, we first derive a variation of Theorem 2.9, which involves simultaneously
splitting two vertices of a framework in a carefully prescribed way.

The proof of Theorem 2.12 closely follows the proof of Theorem 2.9, so we only outline it, empha-
sising the few details which differ from the case of Theorem 2.9.
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Theorem 2.12. Let 𝜏 : R𝑑 → R𝑑 be a non-singular linear transformation. Suppose that (𝐺, 𝑝) is a
framework in R𝑑 such that 𝑅(𝐺, 𝑝) is row-independent. Also, let 𝑢, 𝑣 ∈ 𝑉 (𝐺) be non-adjacent vertices,
𝐶1 ⊂ 𝑁𝐺 (𝑢), 𝐶2 ⊂ 𝑁𝐺 (𝑣) such that |𝐶1 |, |𝐶2 | ≤ 𝑑 − 1, and the sets {𝑝(𝑤) − 𝑝(𝑢) : 𝑤 ∈ 𝐶1} and
{𝑝(𝑥) − 𝑝(𝑣) : 𝑥 ∈ 𝐶2} are both linearly independent. Let 𝐺 ′ be the graph obtained by splitting u from
𝑢′ along 𝐶1 and then splitting v from 𝑣′ along 𝐶2. Then there is some 𝑧 ∈ R𝑑 such that 𝑅(𝐺 ′, 𝑞) is
row-independent, where 𝑞(𝑤) = 𝑝(𝑤) for all 𝑤 ∈ 𝑉 (𝐺), 𝑞(𝑢′) = 𝑝(𝑢) + 𝑧 and 𝑞(𝑣′) = 𝑝(𝑣) + 𝜏(𝑧).

Proof. Choose 𝑦 ∈ R𝑑 such that 𝑦 ∉ lin{𝑝(𝑢) − 𝑝(𝑤) : 𝑤 ∈ 𝐶1} ∪ lin{𝜏−1(𝑝(𝑣) − 𝑝(𝑥)) : 𝑥 ∈ 𝐶2}.
For 𝑡 ∈ R, let 𝑞𝑡 : 𝑉 (𝐺 ′) → R𝑑 be defined by 𝑞𝑡 (𝑤) = 𝑝(𝑤), 𝑤 ∈ 𝑉 (𝐺), 𝑞𝑡 (𝑢′) = 𝑝(𝑢) + 𝑡𝑦,
𝑞𝑡 (𝑣

′) = 𝑝(𝑣) + 𝜏(𝑡𝑦). Let L be the matrix obtained from 𝑅(𝐺 ′, 𝑞0) by replacing the 𝑢𝑢′ row with the
row that has y in the u column-set and −𝑦 in the 𝑢′ column-set, and replacing the the 𝑣𝑣′ row with the
row that has 𝜏(𝑦) in the v column-set and −𝜏(𝑦) in the 𝑣′ column-set.

Claim 2.13. L is row-independent.

Proof. This is proved in the same way as Claim 2.10, mutatis mutandis. In particular, note that the
choice of y ensures that the sets {𝑝(𝑢) − 𝑝(𝑤) : 𝑤 ∈ 𝐶1} ∪ {𝑦} and {𝑝(𝑣) − 𝑝(𝑥) : 𝑥 ∈ 𝐶2} ∪ {𝜏(𝑦)}
are both linearly independent. �

Now let 𝑀𝑡 be the matrix obtained from 𝑅(𝐺, 𝑞𝑡 ) by multiplying the 𝑢𝑢′ and 𝑣𝑣′ rows by 1
𝑡 , and we

complete the proof of the theorem in exactly the same way as the proof of Theorem 2.9. �

We next apply Theorem 2.12 to the setting of Γ-rigidity. Suppose that𝐺 = (𝑉, 𝐸) has a non-adjacent
vertex pairing ∗ : 𝑋 → 𝑋 and 𝑥, 𝑦 ∈ 𝑋 with 𝑥𝑦, 𝑥∗𝑦∗ ∈ 𝐸 . If 𝑥∗𝑦, 𝑥𝑦∗ ∉ 𝐸 , then the restriction of ∗ to
𝑋 \ {𝑦, 𝑦∗} is a non-adjacent vertex pairing of (𝐺/𝑥𝑦)/𝑥∗𝑦∗. We will abuse notation and continue to
use ∗ for this vertex pairing of (𝐺/𝑥𝑦)/𝑥∗𝑦∗.

Theorem 2.14. Let Γ be a point group of order two in R𝑑 . Let (𝐺, ∗) be a graph with a non-adjacent
vertex pairing ∗ : 𝑋 → 𝑋 , 𝑥, 𝑦 ∈ 𝑋 such that 𝑥𝑦, 𝑥∗𝑦∗ ∈ 𝐸 (𝐺) and 𝑥𝑦∗, 𝑥∗𝑦 ∉ 𝐸 (𝐺). Suppose that there
exist 𝐶 ⊂ 𝑁𝐺 (𝑥) ∩ 𝑁𝐺 (𝑦) and 𝐷 ⊂ 𝑁𝐺 (𝑥

∗) ∩ 𝑁𝐺 (𝑦
∗) such that |𝐶 |, |𝐷 | = 𝑑 − 1 and |𝑋𝐶 |, |𝑋𝐷 | ≤ 2.

Let 𝐺 ′ = (𝐺/𝑥𝑦)/𝑥∗𝑦∗. If (𝐺 ′, ∗) is Γ-rigid, then (𝐺, ∗) is Γ-rigid.

Proof. Let (𝐺 ′, ∗, 𝑝) be a generic Γ-framework. Then (𝐺 ′, 𝑝) is infinitesimally rigid by assumption.
Let 𝐼 = {𝑥𝑣 : 𝑣 ∈ 𝐶} ∪ {𝑥∗𝑤 : 𝑤 ∈ 𝐷}. Observe that 𝑋𝐶∪{𝑥 } = 𝑋𝐶 and 𝑋𝐷∪{𝑥∗ } = 𝑋𝐷 . Since
(𝐺 ′, ∗, 𝑝) is a generic Γ-framework and |𝑋𝐶 |, |𝑋𝐷 | ≤ 2, it follows that both {𝑝(𝑤) − 𝑝(𝑥) : 𝑤 ∈ 𝐶}
and {𝑝(𝑧) − 𝑝(𝑥∗) : 𝑧 ∈ 𝐷} are linearly independent. This also implies that the set of rows of 𝑅(𝐺 ′, 𝑝)
labelled by I is linearly independent. Choose a maximal independent row-set that contains the row-set
labelled by I and let J be the corresponding set of edges of G. Since (𝐺 ′, 𝑝) is infinitesimally rigid, it
follows that J spans𝑉 (𝐺 ′) and |𝐽 | = 𝑑 |𝑉 (𝐺 ′) | −

(𝑑+1
2
)
. Let𝐺 ′ [𝐽] = (𝑉 (𝐺 ′), 𝐽). We apply Theorem 2.12

(with 𝜏 being the non-identity element of Γ) to the framework (𝐺 ′ [𝐽], 𝑝) to obtain a Γ-framework
(𝐺 ′′, ∗, 𝑞), where 𝐺 ′′ is obtained from 𝐺 ′ [𝐽] by splitting x from y along C and then splitting 𝑥∗ from
𝑦∗ along D. By Theorem 2.12, (𝐺 ′′, 𝑞) is infinitesimally rigid. Since 𝐺 ′′ is a spanning subgraph of G,
(𝐺, ∗, 𝑞) is the required infinitesimally rigid Γ-symmetric realisation of (𝐺, ∗). �

We emphasise again that for an arbitrary graph 𝐺 = (𝑉, 𝐸) with a non-adjacent vertex pairing
∗ : 𝑋 → 𝑋 , the hypothesis that 𝑥𝑦 ∈ 𝐸 [𝑋] does not imply that 𝑥∗𝑦∗ ∈ 𝐸 . Hence, in order to apply
Theorem 2.14 to G, we must check that 𝑥𝑦, 𝑥∗𝑦∗ ∈ 𝐸 and similarly that 𝑥𝑦∗, 𝑥∗𝑦 ∉ 𝐸 .

3. Background on simplicial complexes

We now consider simplicial complexes. We summarise some notation and results from [6] that we will
need later. We refer the reader to [6] for more details on this material.

Our main results will apply to a certain class of abstract simplicial k-complexes. However, as in [6],
it will be convenient for us to consider a larger family of complexes in which multiple copies of the
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same facet may exist. Thus, we define a simplicial k-multicomplex to be a multiset whose elements are
(𝑘 + 1)-sets. Suppose that S is a simplicial k-multicomplex. For 0 ≤ 𝑗 ≤ 𝑘 , a j-face of S is a ( 𝑗 + 1)-set
F that is a subset of some element of S . In the case that S does not contain multiple copies of any
k-face, we say that S is a simplicial k-complex. We justify this terminology by noting that a pure abstract
simplicial complex of dimension k, in the usual sense of that term,1 corresponds to a unique simplicial
k-complex in our sense. For 𝑘 ≥ 1, the graph of S , denoted 𝐺 (S), is the simple graph whose vertex set,
𝑉 (S), is the set of 0-faces of S and whose edge set, 𝐸 (S), is the set of 1-faces of S .

The boundary of a simplicial k multicomplex S is given by

𝜕S = {𝐹 ⊂ 𝑉 (S) : |𝐹 | = 𝑘, 𝐹 is contained in an odd number of elements of S}.

By definition, 𝜕S is a simplicial (𝑘 − 1)-complex. We say that S is a simplicial k-cycle if 𝜕S = ∅ and
that S is a simplicial k-circuit if S is a nonempty simplicial k-cycle and no proper subset of S is a
simplicial k-cycle. A trivial simplicial k-circuit is a simplicial k-multicomplex comprising two copies of
the same k-face. Our use of the word ‘circuit’ here comes from matroid theory since the set of simplicial
k-circuits contained within any simplicial k-multicomplex S forms the set of circuits of a matroid on S .
In particular, the simplicial 1-circuits in a multigraph are the circuits of its graphic matroid. Note that if
S is a simplicial k-multicomplex and U ⊂ S is a simplicial k-cycle, then 𝜕 (S \ U ) = 𝜕S . This implies
that a nonempty simplicial k-cycle can be partitioned into a disjoint union of simplicial k-circuits. We
will frequently consider the symmetric difference S�T of two simplicial k-complexes S , T and use the
fact that 𝜕 (S�T ) = (𝜕S)�(𝜕T ).2

We say that a simplicial k-multicomplex S is strongly connected if for any distinct 𝑈,𝑊 ∈ S , there
is a sequence 𝑈 = 𝑈1, . . . ,𝑈ℓ = 𝑊 in S , such that |𝑈𝑖 ∩𝑈𝑖+1 | = 𝑘 for 𝑖 = 1, . . . , ℓ − 1. Observe that if
T is a maximal strongly connected subset of S , then 𝜕T ⊂ 𝜕S . In particular, it follows easily from this
observation that any simplicial k-circuit is strongly connected.

A k-pseudomanifold is a strongly connected simplicial k-complex in which every (𝑘 − 1)-face is
contained in exactly two k-faces. It is not difficult to show that a k-pseudomanifold is a simplicial
k-circuit [6, Lemma 3.2]. We also note here that S is a simplicial k-circuit if and only if it is a
minimal homology cycle over Z2 in the sense of Fogelsanger [7]. Fogelsanger’s Rigidity Theorem
applies to minimal homology cycles over arbitrary abelian groups, and it might be interesting to
investigate symmetric rigidity for arbitrary minimal homology cycles. We have not considered this extra
generality in this paper since the class of simplicial k-circuits is already sufficiently general to include all
pseudomanifolds.

We next define a contraction operation for two vertices 𝑢, 𝑣 in a simplicial k-multicomplex S . Let
Ast({𝑢, 𝑣}) = {𝑈 ∈ S : {𝑢, 𝑣} ⊄ 𝑈} be the anti-star of {𝑢, 𝑣} in S . Then S/𝑢𝑣 is the simplicial
k-multicomplex obtained from Ast({𝑢, 𝑣}) by replacing every k-face U that contains v with𝑈−𝑣+𝑢. We
say that S/𝑢𝑣 is obtained from S by contracting v onto u. Let 𝛾 : Ast({𝑢, 𝑣}) → S/𝑢𝑣 be the canonical
bijection. Note that our contraction operation may create multiple copies of a k-face in S/𝑢𝑣 even when
S is a simplicial complex. We allow this in order to have the useful property that the set of simplicial
k-cycles is closed under the contraction operation. Note also that if every edge in 𝐸 (S) \ {𝑢, 𝑣} belongs
to at least one k-face in Ast({𝑢, 𝑣}), then 𝐺 (S/𝑢𝑣) = 𝐺 (S)/𝑢𝑣, where the right-hand side denotes the
usual contraction operation on simple graphs.

We next describe the Fogelsanger decomposition of a simplicial k-circuit. Suppose that S is a
nontrivial simplicial k-circuit and 𝑢𝑣 ∈ 𝐸 (S). Then S/𝑢𝑣 is a simplicial k-cycle, so we can express it as
S/𝑢𝑣 = S ′

1 � · · · � S ′
𝑚, where S ′

𝑗 is a simplicial k-circuit for 1 ≤ 𝑗 ≤ 𝑚 (this partition is not necessarily
unique). Let

1An abstract simplicial complex in which every maximal face has cardinality 𝑘 + 1.
2We will only use this operation for simplicial k-complexes and so do not need to give a definition for the symmetric difference

of two multisets.
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S 𝑗 = 𝛾−1 (S ′
𝑗 ),

S†
𝑗 = {𝐾 ⊂ 𝑉 (S) : {𝑢, 𝑣} ⊂ 𝐾, 𝐾 − 𝑢, 𝐾 − 𝑣 ∈ 𝜕S 𝑗 } and

S+
𝑗 = S 𝑗 ∪ S†

𝑗 .

We say that (S+
1 , . . . ,S+

𝑚) is a Fogelsanger decomposition for S at 𝑢𝑣. The properties of this decompo-
sition are summarised in the following lemma, which is a restatement of [6, Lemma 3.9].
Lemma 3.1. Suppose S is a nontrivial simplicial k-circuit and 𝑢𝑣 ∈ 𝐸 (S). Let (S+

1 ,S+
2 , . . . ,S+

𝑚) be a
Fogelsanger decomposition of S at 𝑢𝑣. Then,
1. S+

𝑖 /𝑢𝑣 is a simplicial k-circuit for all 1 ≤ 𝑖 ≤ 𝑚;
2. S+

𝑖 is a nontrivial simplicial k-circuit for all 1 ≤ 𝑖 ≤ 𝑚, and each 𝐾 ∈ S+
𝑖 \ S is a clique of 𝐺 (S)

which contains {𝑢, 𝑣};
3. each k-face of Ast({𝑢, 𝑣}) is a k-face in a unique S+

𝑖 ;
4. S = �𝑚𝑗=1S+

𝑗 ;
5. 𝑢𝑣 ∈ 𝐸 (S+

𝑖 ) for all 1 ≤ 𝑖 ≤ 𝑚 and
⋃𝑚
𝑖=1 𝐸 (S+

𝑖 ) = 𝐸 (S);
6. for all proper 𝐼 ⊂ {1, 2, . . . , 𝑚}, there exists 𝑗 ∈ {1, 2, . . . , 𝑚} \ 𝐼 and a (𝑘 + 1)-clique K of 𝐺 (S)

such that 𝐾 ∉ S and 𝐾 ∈ (�𝑖∈𝐼S+
𝑖 ) ∩ S+

𝑗 .

4. Γ-rigidity of simplicial circuits with a non-adjacent vertex pairing

In this section, we will consider simplicial circuits with a non-adjacent vertex pairing and use the results
of Section 2 to prove that their graphs are Γ-rigid in certain cases. We begin with an analysis of the
graph of a crosspolytope in this context. These graphs will serve as the base case in the inductive proof
of our main theorem.

For 𝑘 ≥ 0, let 𝑒1, 𝑒2, . . . , 𝑒𝑘+1 be the standard basis for R𝑘+1. The (𝑘 + 1)-dimensional crosspolytope
is the convex hull of the set of points {±𝑒1,±𝑒2, . . . ,±𝑒𝑘+1}. We will use B𝑘 to denote the boundary
complex of this polytope. It is well known that B𝑘 is a simplicial k-complex whose vertex set is {±𝑒𝑖 :
1 ≤ 𝑖 ≤ 𝑘 + 1}. Moreover, the k-faces are precisely the transversals of {{±𝑒1}, {±𝑒2}, . . . , {±𝑒𝑘+1}}. In
particular, for any distinct vertices 𝑢, 𝑣 of B𝑘 , 𝑢𝑣 is an edge of B𝑘 if and only if 𝑣 ≠ −𝑢. Hence, there
is the unique non-adjacent vertex pairing ∗ : 𝑉 (B𝑘 ) → 𝑉 (B𝑘 ) that pairs the antipodal vertices of B𝑘 .
Using this unique ∗, the graph 𝐺 (B𝑘 ) of B𝑘 is Z2-symmetric.

We now check the Γ𝑡 ,𝑘+1-rigidity of (𝐺 (B𝑘 ), ∗). We need the following operation and result due to
Whiteley [21]. Given a graph 𝐺 = (𝑉, 𝐸), the cone of G is the graph 𝐺𝑣 obtained by adding a new
vertex v and all edges from v to V.
Lemma 4.1 (The Coning Lemma). Suppose that 𝐺 = (𝑉, 𝐸) is a graph, 𝐺𝑣 is the cone of G and p is
a realisation of 𝐺𝑣 in R𝑘+1 such that 𝑝(𝑉) is contained in a hyperplane H, 𝑝(𝑣) ∉ 𝐻 and (𝐺, 𝑝 |𝑉 ) is
infinitesimally rigid in H (viewed as a copy of R𝑘 ). Then (𝐺𝑣 , 𝑝) is infinitesimally rigid in R𝑘+1.
Lemma 4.2. Suppose 𝑘 ≥ 2 and Γ = Γ𝑡 ,𝑘+1 for some 0 ≤ 𝑡 ≤ 𝑘 . Let 𝐺 (B𝑘 ) be the graph of the (𝑘 + 1)-
dimensional crosspolytope and ∗ : 𝑉 (B𝑘 ) → 𝑉 (B𝑘 ) be the non-adjacent vertex pairing on𝑉 (B𝑘 ). Then
(𝐺 (B𝑘 ), ∗) is Γ-rigid in R𝑘+1 unless 𝑘 = 2 and Γ is a rotation group of order two.
Proof. Denote the set of vertices of B𝑘 by {𝑥1, 𝑥

∗
1, . . . , 𝑥𝑘+1, 𝑥

∗
𝑘+1}. We show by induction on k that

𝐺 (B𝑘 ) has an infinitesimally rigid Γ𝑡 ,𝑘+1-symmetric realisation 𝑝𝑡 ,𝑘 in R𝑘+1. For the base case when
𝑘 = 2, it is straightforward to check that (𝐺 (B2), 𝑝0,2) is infinitesimally rigid when 𝑝0,2 (𝑥𝑖) = 𝑒𝑖 and
𝑝0,2 (𝑥

∗
𝑖 ) = −𝑒𝑖 for all 1 ≤ 𝑖 ≤ 3; (𝐺 (B2), 𝑝2,2) is infinitesimally rigid when 𝑝2,2 (𝑥𝑖) = 𝑒𝑖 + 𝑒3 and

𝑝2,2 (𝑥
∗
𝑖 ) = 𝑒𝑖 − 𝑒3 for all 1 ≤ 𝑖 ≤ 3. Hence, we may assume that 𝑘 ≥ 3.

The inductive step will follow immediately from the following:
Claim 4.3. Suppose (𝐺 (B𝑘−1), ∗) has an infinitesimally rigid Γ𝑡 ,𝑘 -symmetric realisation 𝑝𝑡 ,𝑘−1 in R𝑘
for some 𝑘 ≥ 3 and 0 ≤ 𝑡 ≤ 𝑘 − 1. Then (𝐺 (B𝑘 ), ∗) has both an infinitesimally rigid Γ𝑡 ,𝑘+1-symmetric
realisation and an infinitesimally rigid Γ𝑡+1,𝑘+1-symmetric realisation in R𝑘+1.
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Proof. We may assume that 𝑝𝑡 ,𝑘−1 is a generic Γ𝑡 ,𝑘 -symmetric realisation of (𝐺 (B𝑘−1), ∗) in R𝑘 and
that 𝑉 (B𝑘−1) = {𝑥1, 𝑥

∗
1, . . . , 𝑥𝑘 , 𝑥

∗
𝑘 }.

We first extend 𝑝𝑡 ,𝑘−1 to an infinitesimally rigid Γ𝑡 ,𝑘+1-symmetric realisation 𝑝𝑡 ,𝑘 of (𝐺 (B𝑘 ), ∗) in
R𝑘+1 by putting 𝑝𝑡 ,𝑘 (𝑧) = (𝑝𝑡 ,𝑘−1 (𝑧), 0) for all 𝑧 ∈ 𝑉 (B𝑘−1) and 𝑝𝑡 ,𝑘 (𝑥𝑘+1) = 𝑒𝑘+1 = −𝑝𝑡 ,𝑘 (𝑥

∗
𝑘+1). Then

the restrictions of 𝑝𝑡 ,𝑘 to both 𝐺 (B𝑘 ) − 𝑥𝑘+1 and 𝐺 (B𝑘 ) − 𝑥∗𝑘+1 are infinitesimally rigid by Lemma 4.1.
We can now use Theorem 2.8 to deduce that 𝑝𝑡 ,𝑘 is an infinitesimally rigid realisation of 𝐺 (B𝑘 ).

A similar proof works for 𝑝𝑡+1,𝑘 . We construct a realisation 𝑝𝑡+1,𝑘 of 𝐺 (B𝑘 ) from 𝑝𝑡 ,𝑘−1 by putting
𝑝𝑡+1,𝑘 (𝑧) = (0, 𝑝𝑡 ,𝑘−1 (𝑧)) for all 𝑧 ∈ 𝑉 (B𝑘−1) and 𝑝𝑡+1,𝑘 (𝑥𝑘+1) = 𝑒1 = 𝑝𝑡+1,𝑘 (𝑥

∗
𝑘+1). Then we can use

Lemma 4.1 and Theorem 2.8 to deduce that (𝐺 (B𝑑), 𝑝𝑡+1,𝑘 ) is infinitesimally rigid. �

�

We next use Lemma 4.2 to analyse the case when 𝑋 ≠ 𝑉 (B𝑘 ).
Lemma 4.4. Let 𝑘 ≥ 2, 𝑋 ⊆ 𝑉 (B𝑘 ), ∗ : 𝑋 → 𝑋 be a non-adjacent vertex pairing of 𝐺 (B𝑘 ) and Γ be a
point group of R𝑘+1 of order two. Suppose that |𝑋 | ≤ 2𝑘 . Then (𝐺, ∗) is Γ-rigid in R𝑘+1.
Proof. It will suffice to show that (𝐺 (B𝑘 ), ∗) has an infinitesimally rigid Γ-symmetric realisation in
R𝑘+1. This follows immediately from Lemma 4.2 unless 𝑘 = 2 and Γ is a rotation group. In the latter
case, a realisation of 𝐺 (B𝑘 ) as the regular octahedron is a Γ-symmetric realisation of (𝐺 (B𝑘 ), ∗) since
|𝑋 | ≤ 4. Hence, the Γ-rigidity of (𝐺 (B2), ∗) follows from the infinitesimal rigidity of the 1-skeleton of
the regular octahedron. �

We next show that Lemma 4.4 can be extended from B𝑘 to arbitrary simplicial k-circuits. This result
will be a key ingredient in the proof of our main theorem (Theorem 5.8).
Theorem 4.5. Let 𝐺 = (𝑉, 𝐸) be the graph of a simplicial k-circuit S for some 𝑘 ≥ 2, 𝑋 ⊆ 𝑉 ,
∗ : 𝑋 → 𝑋 be a non-adjacent vertex pairing of G, and Γ be a point group of R𝑘+1 of order two. Suppose
that |𝑋 | ≤ 2𝑘 . Then (𝐺, ∗) is Γ-rigid in R𝑘+1.
Proof. Suppose, for a contradiction, that S is a counterexample with as few vertices as possible. Clearly,
S cannot be a trivial simplicial k-circuit. Let (𝐺, ∗, 𝑝) be a generic Γ-framework in R𝑘+1. First, we
record a useful observation. Suppose that 𝐾 ⊂ 𝑉 is a clique in G. Then since 𝑥𝑥∗ ∉ 𝐸 for all 𝑥 ∈ 𝑋
(as ∗ is non-adjacent), it follows that

𝑋𝐾 = ∅ and 𝑝(𝐾) is a generic set of points in R𝑘+1. (4.1)

Claim 4.6. Every edge of G is incident to X.
Proof of claim. Suppose, for a contradiction, that 𝑢𝑣 ∈ 𝐸 and 𝑢, 𝑣 ∉ 𝑋 . Let (S+

1 , . . . ,S+
𝑚) be a Fo-

gelsanger decomposition of S with respect to 𝑢𝑣. Put (𝑉𝑖 , 𝐸𝑖) = 𝐺𝑖 = 𝐺 (S+
𝑖 ) and 𝑋𝑖 = 𝑋𝑉𝑖 =

(𝑉𝑖 ∩ 𝑋) ∩ (𝑉𝑖 ∩ 𝑋)∗. Then |𝑋𝑖 | ≤ |𝑋 | for each i. Also, ∗|𝑋𝑖 is a non-adjacent vertex pairing for 𝐺𝑖 by
Lemma 3.1(e).

Suppose |𝑉𝑖 | < |𝑉 | for all 𝑖 = 1, . . . , 𝑚. Then, by the minimality of |𝑉 |, (𝐺𝑖 , ∗|𝑋𝑖 ) is Γ-rigid in
R𝑘+1. It follows that (𝐺𝑖 , 𝑝 |𝑉𝑖 ) is infinitesimally rigid. Now, a straightforward induction argument using
Lemma 3.1(6), Theorem 2.8(b) and (4.1) proves that (𝐺, 𝑝) is infinitesimally rigid, contradicting our
choice of S .

Thus, we can assume without loss of generality that 𝑉1 = 𝑉 . Since S+
1 /𝑢𝑣 is a simplicial k-circuit,

it follows from the minimality of |𝑉 | that (𝐺1/𝑢𝑣, ∗) is Γ-rigid. By Lemma 3.1(b), we can choose
𝑈 ∈ S+

1 such that 𝑢, 𝑣 ∈ 𝑈. Since S+
1 is a nontrivial simplicial circuit, there is some 𝑤 ∉ 𝑈 such that

𝑤 ∈ 𝑁𝐺1 (𝑢) ∩ 𝑁𝐺1 (𝑣). Now 𝐶 = 𝑈 − {𝑢, 𝑣} + 𝑤 satisfies, |𝐶 | = 𝑘 , and |𝑋𝐶 | ≤ 2. Lemma 2.11 now
implies that (𝐺1, ∗) is Γ-rigid in R𝑘+1 and since 𝐺1 is a spanning subgraph of G, that (𝐺, ∗) is also
Γ-rigid in R𝑘+1. This contradicts our choice of S . �

For each𝑈 ∈ S , Claim 4.6 gives |𝑈∩𝑋 | ≥ 𝑘 . Since |𝑋 | ≤ 2𝑘 and 𝑥𝑥∗ ∉ 𝐸 (S) for all 𝑥 ∈ 𝑋 , we have

|𝑋 | = 2𝑘 and |𝑈 ∩ 𝑋 | = 𝑘 for all𝑈 ∈ S . (4.2)
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Claim 4.7. Some subcomplex of S is isomorphic to B𝑘 .

Proof. Choose 𝑈 ∈ S . Since 𝑥𝑥∗ ∉ 𝐸 (S) for all 𝑥 ∈ 𝑋 , (4.2) implies that we can label the elements of
X as 𝑥1, 𝑥

∗
1, 𝑥2, 𝑥

∗
2, . . . , 𝑥𝑘 , 𝑥

∗
𝑘 with 𝑈 ∩ 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 }. Let 𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑘 , 𝑢}. Since S is a

nontrivial simplicial k-circuit, (4.2) also implies that 𝑈 − 𝑥𝑖 + 𝑥
∗
𝑖 is a k-face of S for all 1 ≤ 𝑖 ≤ 𝑘 and

hence that 𝐽 + 𝑢 is a k-face of S for all transversals J of {{𝑥1, 𝑥
∗
1}, {𝑥2, 𝑥

∗
2}, . . . , {𝑥𝑘 , 𝑥

∗
𝑘 }}.

These cannot be all of the k-faces of S since they do not form a simplicial k-circuit. Therefore,
there is some 𝑢′ ∈ 𝑉 (S) \ 𝑋 such that 𝑢′ ≠ 𝑢, and the same argument as before shows that 𝐽 + 𝑢′

is a k-face of S for all transversals J of {{𝑥1, 𝑥
∗
1}, {𝑥2, 𝑥

∗
2}, . . . , {𝑥𝑘 , 𝑥

∗
𝑘 }}. Hence, every transversal of

{{𝑥1, 𝑥
∗
1}, {𝑥2, 𝑥

∗
2}, . . . , {𝑥𝑘 , 𝑥

∗
𝑘 }, {𝑢, 𝑢

′}} is a k-face of S . These transversals induce a subcomplex of S
which is isomorphic to B𝑘 . �

Since both S and B𝑘 are simplicial k-circuits, Claim 4.7 implies that S � B𝑘 . We can now use
Lemma 4.4 to deduce that (𝐺, ∗) is Γ-rigid. �

It is worth noting that the case 𝑋 = ∅ in Theorem 4.5 is Fogelsanger’s theorem for simplicial k-
circuits, so we can view Theorem 4.5 as a non-generic extension of this fundamental result in rigidity
theory.

The Bricard octahedron shows that the hypothesis |𝑋 | ≤ 2𝑘 in Theorem 4.5 is necessary when 𝑘 = 2
and Γ is a half turn rotation group.

5. Z2-symmetric simplicial complexes

Suppose that S is a simplicial k-multicomplex. Let ∗ : 𝑉 (S) → 𝑉 (S) be an involution. For 𝑋 ⊆ 𝑉 (S)
and U ⊂ S , let 𝑋∗ = {𝑥∗ : 𝑥 ∈ 𝑋} and U∗ = {𝐾∗ : 𝐾 ∈ U }. The set X, respectively U , is ∗-invariant if
𝑋∗ = 𝑋 , respectively U∗ = U . We say that ∗ is a simplicial involution if for every facet F of S , 𝐹∗ is a
facet of S of the same multiplicity as F, and that ∗ is free if 𝑉 (𝐹∗) ≠ 𝑉 (𝐹) for every face F of S . A Z2-
symmetric simplicial k-multicomplex is a pair (S , ∗) where S is a simplicial k-multicomplex and ∗ is a
free simplicial involution on S . This terminology is consistent with our terminology for graphs since if
(S , ∗) is a Z2-symmetric k-multicomplex, then (𝐺 (S), ∗) is a Z2-symmetric graph. We will often abuse
notation by omitting explicit mention of the involution ∗ when it is obvious from the context.

5.1. Z2-irreducible cycles and their structural properties

We will refer to a Z2-symmetric k-multicomplex, which is also a simplicial k-cycle, as a Z2-symmetric
k-cycle. A Z2-irreducible k-cycle is a nonempty Z2-symmetric k-cycle (S , ∗) which is minimal in the
sense that for all ∅ ≠ T � S , (T , ∗|𝑉 (T ) ) is not a Z2-symmetric k-cycle. We say that S is a trivial
Z2-irreducible k-cycle if it consists of two vertex disjoint copies of the trivial simplicial k-circuit and
the involution interchanges the vertex sets of these two trivial simplicial k-circuits. Otherwise, S is a
nontrivial Z2-irreducible k-cycle.

Suppose that S is a nonempty Z2-symmetric k-cycle. It is straightforward to show that if T ⊆ S is a
Z2-symmetric k-cycle, then S \ T is a Z2-symmetric k-cycle. This implies that there exists a partition
S = S1 � · · · �S𝑚 where S𝑖 is a Z2-irreducible k-cycle for 𝑖 = 1, . . . , 𝑚. This partition is not necessarily
unique (even up to permutations).

An important class of examples is the following. Let P be a simplicial convex d-polytope. That
is a convex polytope in R𝑑 that has dimension d and such that every face in the boundary of P is a
simplex. Suppose also that that P is centrally symmetric. The boundary complex 𝐵(𝑃) is a simplicial
(𝑑 − 1)-complex whose facets are the vertex sets of the (𝑑 − 1)-dimensional faces of P. Then 𝐵(𝑃) is
a simplicial sphere and hence a simplicial (𝑑 − 1)-circuit. Moreover, the involution ∗ : 𝑉 (𝑃) → 𝑉 (𝑃)
given by 𝑣∗ = −𝑣 makes 𝐵(𝑃) into a Z2-irreducible (𝑑 − 1)-cycle.

More generally, if S is a simplicial k-circuit with a free simplicial involution, then since it does not
properly contain any simplicial k-cycle (∗-invariant or otherwise), it must also be aZ2-irreducible k-cycle.
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Figure 2. The 1-skeleton of a Z2-irreducible 2-cycle S , which is not a simplicial 2-circuit. We have
S = T � T ∗, where T = {{𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣2, 𝑣4}, {𝑣1, 𝑣3, 𝑣4}, {𝑣

∗
1, 𝑣2, 𝑣3}, {𝑣

∗
1, 𝑣2, 𝑣4}, {𝑣

∗
1, 𝑣3, 𝑣4}} is

the simplicial 2-circuit given by the boundary complex of the hexahedron.

However, there are Z2-irreducible k-cycles that are not simplicial k-circuits – the trivial Z2-irreducible
k-cycle is an example. A nontrivial example is given in Figure 2. Since our main motivation is to
understand simplicial k-circuits that have a free involution, the reader might wonder why we introduce
the more general notion of a Z2-irreducible k-cycle. The reason is that Z2-irreducible k-cycles that
are not simplicial k-circuits can arise naturally from the the Z2-symmetric version of the Fogelsanger
decomposition, even if we start with a simplicial k-circuit with a free involution.

Our first structural result on Z2-irreducible k-cycles characterises those which are not simplicial
k-circuits.

Lemma 5.1. Let (S , ∗) be a nontrivial Z2-irreducible k-cycle. Then either S is a simplicial k-circuit or
S = T � T ∗ where T is a nontrivial simplicial k-circuit. Moreover, if the second alternative holds and
U is a simplicial k-circuit properly contained in S , then U = T or U = T ∗.

Proof. Suppose thatS is not a simplicial k-circuit. Then some simplicial k-circuitT is properly contained
in S . Since S is a Z2-irreducible k-cycle, T ∗ ≠ T . It follows that T �T ∗ is a nonempty ∗-invariant
simplicial k-cycle contained in S , so T �T ∗ = S , whence S = T � T ∗. If T is a trivial simplicial
k-circuit, then 𝐾 = 𝑉 (T ) ∩𝑉 (T ∗) is a face of S and 𝐾∗ = 𝐾 . Since ∗ is a free involution, it follows that
𝐾 = ∅ and so S is a trivial Z2-irreducible k-cycle, contradicting the hypothesis. Hence, T is nontrivial.

Now suppose that the second alternative in the lemma holds and U is a simplicial k-circuit properly
contained in S . Then S = U � U∗ by the same argument as the first paragraph, and U�T = (U∗ ∩ T ) ∪

(U ∩ T ∗) is a ∗-invariant simplicial k-cycle contained in S . Therefore, either U�T = ∅ and so U = T
or, U�T = S and so U = S \ T = T ∗. �

An example illustrating the second alternative in Lemma 5.1 is given in Figure 2.

Lemma 5.2. Suppose that (S , ∗) is a Z2-irreducible k-cycle for some 𝑘 ≥ 1. Then |𝑉 (S) | ≥ 2𝑘 + 2 with
equality if and only if (S , ∗) is a trivial Z2-irreducible k-cycle or S is isomorphic to B𝑘 .

Proof. We have |𝑉 (S) | ≥ 2𝑘 + 2 since for any 𝑈 ∈ S , we have 𝑈 ∩ 𝑈∗ = ∅, and hence, |𝑉 (S) | ≥
|𝑈 �𝑈∗ | = 2𝑘 + 2.

Suppose that |𝑉 (S) | = 2𝑘 + 2. Let 𝑉 (S) = {𝑥𝑖 , 𝑥
∗
𝑖 : 1 ≤ 𝑖 ≤ 𝑘 + 1}. If S contains two copies of some

k-face W, then it follows easily that S = {{𝑊,𝑊,𝑊∗,𝑊∗}}, and so S is a trivial Z2-irreducible k-cycle.
Thus, we may assume that each𝑊 ∈ S has multiplicity one. Then, for each𝑊 ∈ S and 𝑤 ∈ 𝑊 , we have
𝑊 − 𝑤 + 𝑤∗ ∈ S since𝑊 − 𝑤 is contained in at least two k-faces of S and ∗ is free. It follows that every
transversal of {{𝑥𝑖 , 𝑥∗𝑖 } : 1 ≤ 𝑖 ≤ 𝑘 + 1} is a k-face of S , and so, S � B𝑘 . �
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Lemma 5.3. Let (S , ∗) be a Z2-irreducible k-cycle for some 𝑘 ≥ 2 and 𝑋 ⊂ 𝑉 (S) be an inclusion-
minimal ∗-invariant vertex separator of 𝐺 (S). Suppose |𝑋 | ≤ 2𝑘 . Then either S = T � T ∗ for some
simplicial k-circuit T with 𝑉 (T ) ∩𝑉 (T ∗) = 𝑋 , or |𝑋 | = 2𝑘 and the subgraph of 𝐺 (S) induced by X is
isomorphic to 𝐺 (B𝑘−1).

Proof. Choose 𝑉1, 𝑉2 ⊂ 𝑉 (S) such that 𝑉1 ∩ 𝑉2 = 𝑋 , 𝐺 (S) = 𝐺 (S) [𝑉1] ∪ 𝐺 (S) [𝑉2]. Let T𝑖 = {𝑊 ∈

S : 𝑊 ⊂ 𝑉𝑖}. Since X is a vertex separator of 𝐺 (S), it follows that S = T1 ∪ T2 and that T1, T2 ≠ S . The
hypothesis that X is ∗-invariant and the fact that |𝑋 | ≤ 2𝑘 imply that, for any 𝑊 ∈ S , 𝑊 � 𝑋; hence,
T1 ∩ T2 = ∅. Thus, S = T1 � T2, 𝜕T1 = 𝜕T2 =: U and 𝑉 (U ) ⊂ 𝑋 .

Suppose U = ∅. Then T𝑖 is a simplicial k-cycle for 𝑖 = 1, 2. Lemma 5.1 now implies that T1 is a
simplicial k-circuit, T2 = T ∗

1 and S = T1 � T ∗
1 . The minimality of X now gives 𝑉 (T1) ∩ 𝑉 (T ∗

1 ) = 𝑋 .
Hence, we may assume that U ≠ ∅.

The definition of the boundary operator implies that U is a simplicial (𝑘 − 1)-cycle and each of its
facets has multiplicity one. Hence, U�U∗ is a Z2-symmetric (𝑘 − 1)-cycle that does not contain a trivial
simplicial (𝑘 − 1)-circuit. Since 𝑉 (U ) ⊆ 𝑋 and X is ∗-invariant, V := U�U∗ ⊆ 2𝑋 . We can now apply
Lemma 5.2 and the hypothesis that |𝑋 | ≤ 2𝑘 to V to deduce that either V = ∅ or V � B𝑘−1.

Suppose V � B𝑘−1. Then |𝑋 | = 2𝑘 , and V is the Z2-irreducible (𝑘 − 1)-cycle consisting of all
transversals of the following partition of X: {{𝑥1, 𝑥

∗
1}, . . . , {𝑥𝑘 , 𝑥

∗
𝑘 }}. Hence, every k-subset of X which

contains no pair {𝑥𝑖 , 𝑥
∗
𝑖 } is contained in V . Since ∗ is free and 𝑉 (U ) ⊂ 𝑋 , this implies that U ⊂ V .

Since U ⊂ V and V = U�U∗, V = U � U∗, and hence, V is a trivial Z2-irreducible (𝑘 − 1)-cycle. This
contradicts the assumption that V � B𝑘−1.

Hence, V = U�U∗ = ∅ so U = U∗. Then U is a Z2-symmetric (𝑘 − 1)-cycle with at most 2𝑘 vertices
that does not contain a trivial Z2-irreducible (𝑘 − 1)-cycle. Lemma 5.2 now implies that U � B𝑘−1, and
hence, 𝐺 (S) [𝑋] is isomorphic to 𝐺 (B𝑘−1). �

5.2. Z2-symmetric Fogelsanger decomposition

We next adapt Fogelsanger’s decomposition technique for simplicial k-circuits to the context of
Z2-irreducible k-cycles. Let (S , ∗) be a Z2-irreducible k-cycle and put 𝐺 = (𝑉, 𝐸) = 𝐺 (S). Sup-
pose that 𝑥𝑦 ∈ 𝐸 and 𝑥𝑦∗ ∉ 𝐸 . Then 𝑥∗𝑦∗ ∈ 𝐸 , 𝑥∗𝑦 ∉ 𝐸 and (S/𝑥𝑦)/𝑥∗𝑦∗ is a Z2-symmetric
k-cycle under the free simplicial involution induced by ∗ on 𝑉 − 𝑦 − 𝑦∗. Recall that, for a face F of
S , the antistar of F in S is given by Ast(𝐹) = {𝑈 ∈ S : 𝐹 ⊄ 𝑈}. Observe that there is a bijection
𝛾 : Ast({𝑥, 𝑦}) ∩ Ast({𝑥∗, 𝑦∗}) → (S/𝑥𝑦)/𝑥∗𝑦∗ given by 𝛾(𝑈) = 𝑈 if 𝑦, 𝑦∗ ∉ 𝑈, 𝛾(𝑈) = 𝑈 − 𝑦 + 𝑥 if
𝑦 ∈ 𝑈, and 𝛾(𝑈) = 𝑈 − 𝑦∗ + 𝑥∗ if 𝑦∗ ∈ 𝑈.

Choose a partition {S ′
1,S ′

2, . . . ,S ′
𝑚} of (S/𝑥𝑦)/𝑥∗𝑦∗ into Z2-irreducible k-cycles. For 1 ≤ 𝑖 ≤ 𝑚, let

S𝑖 = 𝛾−1 (S ′
𝑖 ),

S†
𝑖 = {𝐾 ⊂ 𝑉 (S𝑖) : {𝑥, 𝑦} ⊂ 𝐾, 𝐾 − 𝑥 ∈ 𝜕S𝑖 , 𝐾 − 𝑦 ∈ 𝜕S𝑖}

and

S+
𝑖 = S𝑖 ∪ S†

𝑖 ∪ (S†
𝑖 )

∗. (5.1)

We say that (S+
1 , . . . ,S+

𝑚) is a Z2-symmetric Fogelsanger decomposition for S at 𝑥𝑦. Note that a Z2-
symmetric Fogelsanger decomposition at 𝑥𝑦 is defined only when 𝑥𝑦∗ ∉ 𝐸 .

The Z2-irreducible 2-cycle in Figure 2 can be used to illustrate this construction. We have
(S/𝑣2𝑣4)/𝑣

∗
2𝑣

∗
4 = S ′

1 � S ′
2, where S ′

1 is a trivial Z2-irreducible 2-cycle consisting of consisting of two
copies of {𝑣1, 𝑣2, 𝑣3} and two copies of {𝑣∗1, 𝑣

∗
2, 𝑣

∗
3}, and S ′

2 is a trivial Z2-irreducible 2-cycle consisting
of consisting of two copies of {𝑣∗1, 𝑣2, 𝑣3} and two copies of {𝑣1, 𝑣

∗
2, 𝑣

∗
3}. The above definitions now

give S1 = T1 ∪ T ∗
1 , where T1 = {{𝑣1, 𝑣2, 𝑣3}, {𝑣1, 𝑣2, 𝑣4}, {𝑣1, 𝑣3, 𝑣4}}, S†

1 = {{𝑣2, 𝑣3, 𝑣4}} and S+
1 is

the disjoint union of the boundary complexes of two tetrahedra on {𝑣1, 𝑣2, 𝑣3, 𝑣4} and {𝑣∗1, 𝑣
∗
2, 𝑣

∗
3, 𝑣

∗
4},

https://doi.org/10.1017/fms.2024.150 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.150


16 J. Cruickshank et al.

respectively. Similarly, S+
2 is the disjoint union of the boundary complexes of two tetrahedra on

{𝑣∗1, 𝑣2, 𝑣3, 𝑣4} and {𝑣1, 𝑣
∗
2, 𝑣

∗
3, 𝑣

∗
4}, respectively.

The properties of Z2-symmetric Fogelsanger decompositions given in the following lemma are
analogous to those for Fogelsanger decompositions given in Lemma 3.1.

Lemma 5.4. Let (S , ∗) be a Z2-irreducible k-cycle for 𝑘 ≥ 2 and 𝑥𝑦 ∈ 𝐸 (S) with 𝑥𝑦∗ ∉ 𝐸 (S). Suppose
that (S+

1 , . . . ,S+
𝑚) is a Z2-symmetric Fogelsanger decomposition for S at 𝑥𝑦. Let 𝐺 (S+

𝑖 ) = (𝑉𝑖 , 𝐸𝑖) for
1 ≤ 𝑖 ≤ 𝑚. Then,

1. 𝑥𝑦, 𝑥∗𝑦∗ ∈ 𝐸𝑖 for 1 ≤ 𝑖 ≤ 𝑚;
2.

⋃𝑚
𝑖=1 𝐸𝑖 = 𝐸 and

⋃𝑚
𝑖=1𝑉𝑖 = 𝑉;

3. (S+
𝑖 /𝑥𝑦)/𝑥

∗𝑦∗ is a Z2-irreducible k-cycle for 1 ≤ 𝑖 ≤ 𝑚;
4. S+

𝑖 is a nontrivial Z2-irreducible k-cycle, and each 𝐾 ∈ S+
𝑖 \ S is a clique of G that either contains

{𝑥, 𝑦} or contains {𝑥∗, 𝑦∗};
5. if𝑈 ∈ S and U contains neither {𝑥, 𝑦} nor {𝑥∗, 𝑦∗}, then U belongs to a unique S+

𝑖 ;
6. S = �𝑚𝑘=1S+

𝑘 ;
7. for all proper subsets I of {1, . . . , 𝑚}, there exists 𝑗 ∈ {1, . . . , 𝑚} \ 𝐼 such that S+

𝑗 ∩ �𝑖∈𝐼S+
𝑖 is

nonempty.

Proof. We adopt the definitions of S ′
𝑖 , S𝑖 and S†

𝑖 given in our description of a Z2-symmetric Fogelsanger
decomposition. Note that for all 1 ≤ 𝑖 ≤ 𝑚, S𝑖 ≠ S since 𝑥𝑦 ∉ 𝐸 (S𝑖). Suppose 𝐹 ∈ 𝜕S𝑖 . Then
𝐹 ∩ {𝑥, 𝑦, 𝑥∗, 𝑦∗} ≠ ∅ otherwise 𝐹 ∈ 𝜕𝑆, contradicting the fact that S is a simplicial k-cycle. For
𝑣 ∈ {𝑥, 𝑦, 𝑥∗, 𝑦∗}, letU𝑣 = {𝑈 ∈ 𝜕S𝑖 : 𝑣 ∈ 𝑈}. Since no edge in 𝐸 (S𝑖) joins two vertices of {𝑥, 𝑦, 𝑥∗, 𝑦∗},
we have 𝜕S𝑖 = U𝑥 � U𝑦 � U𝑥∗ � U𝑦∗ . Furthermore, since 𝜕 (S𝑖/𝑥𝑦)/𝑥∗𝑦∗ = 𝜕S ′

𝑖 = ∅, it follows that

the mapping 𝐹 ↦→ 𝐹 − 𝑦 + 𝑥 is a bijection U𝑦 → U𝑥 , (5.2)

and

the mapping 𝐹 ↦→ 𝐹 − 𝑦∗ + 𝑥∗ is a bijection U𝑦∗ → U𝑥∗ . (5.3)

In particular,

S†
𝑖 = {𝐹 + 𝑦 : 𝐹 ∈ U𝑥}. (5.4)

Also, ∗ induces a bijection U𝑥 → U𝑥∗ , and hence,

|S†
𝑖 | = |U𝑥 | = |U𝑦 | = |U𝑥∗ | = |U𝑦∗ |. (5.5)

Now if 𝑥𝑦 ∉ S+
𝑖 , then S†

𝑖 = ∅, and it follows from (5.5) that 𝜕S𝑖 = ∅, contradicting the fact that S is
a Z2-irreducible k-cycle and ∅ ≠ S𝑖 � S . So 𝑥𝑦 ∈ 𝐸 (S+

𝑖 ), and since S+
𝑖 is ∗-invariant, 𝑥∗𝑦∗ ∈ 𝐸 (S+

𝑖 ),
proving (1).

The definition of S+
𝑖 implies that (S+

𝑖 /𝑥𝑦)/𝑥
∗𝑦∗ = S ′

𝑖 . Since S ′
𝑖 is a Z2-irreducible k-cycle, this

gives (3).

Claim 5.5. 𝜕 (S†
𝑖 ∪ (S†

𝑖 )
∗) = 𝜕S𝑖 .

Proof of claim. From (5.5) and the definition of S†
𝑖 , it follows that for 0 ≤ 𝑠 ≤ 𝑘−1, the map 𝐹 ↦→ 𝐹 + 𝑦

is a bijection between the set of s-faces of U𝑥 that contain x and the set of (𝑠+1)-faces of S†
𝑖 that contain

{𝑥, 𝑦}. Since 𝜕S𝑖 is a simplicial (𝑘 − 1)-cycle, every (𝑘 − 2)-face of U𝑥 that contains x belongs to an
even number of (𝑘 − 1)-faces of U𝑥 . Therefore, every (𝑘 − 1)-face of S†

𝑖 that contains {𝑥, 𝑦} belongs to
an even number of k-faces of S†

𝑖 . Hence, 𝜕S†
𝑖 = {𝐾 − 𝑥 : 𝐾 ∈ S†

𝑖 } ∪ {𝐾 − 𝑦 : 𝐾 ∈ S†
𝑖 } = U𝑦 � U𝑥 . By

symmetry, 𝜕 ((S†
𝑖 )

∗) = U𝑦∗ � U𝑥∗ . Therefore, 𝜕S𝑖 = U𝑥 � U𝑦 � U𝑥∗ � U𝑦∗ = 𝜕 (S†
𝑖 ∪ (S†

𝑖 )
∗). �
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Since S+
𝑖 = S𝑖�(S†

𝑖 ∪ (S†
𝑖 )

∗), Claim 5.5 implies that 𝜕S+
𝑖 = ∅, and hence, S+

𝑖 is a Z2-symmetric
k-cycle.

Suppose T ⊆ S+
𝑖 is a Z2-irreducible k-cycle. If 𝑥𝑦, 𝑥∗𝑦∗ ∉ 𝐸 (T ), then T � S , contradicting the

fact that S is a Z2-irreducible k-cycle. So 𝑥𝑦, 𝑥∗𝑦∗ ∈ 𝐸 (T ). Now (T /𝑥𝑦)/𝑥∗𝑦∗ is a nonempty Z2-
symmetric k-cycle contained in the Z2-irreducible k-cycle S ′

𝑖 . Hence, (T /𝑥𝑦)/𝑥∗𝑦∗ = S ′
𝑖 and S𝑖 ⊆ T .

Since 𝜕T = ∅, it follows that T ⊃ S†
𝑖 , and so T = S+

𝑖 . Hence, S+
𝑖 is a Z2-irreducible k-cycle, which

is nontrivial by (3). Since S+
𝑖 \ S ⊂ S†

𝑖 ∪ (S†
𝑖 )

∗, each 𝐾 ∈ S+
𝑖 \ S is a clique of G that either contains

{𝑥, 𝑦} or contains {𝑥∗, 𝑦∗}. This completes the proof of (4).
If𝑈 ∈ S contains neither {𝑥, 𝑦} nor {𝑥∗, 𝑦∗}, then U is an element of S𝑖 for a unique i, proving (5).
We next prove (6). Suppose, for a contradiction, that R = S�

(
�𝑚𝑖=1S+

𝑖

)
≠ ∅ and choose 𝑈 ∈ R. By

(5), either {𝑥, 𝑦} ⊂ 𝑈 or {𝑥∗, 𝑦∗} ⊂ 𝑈. Suppose {𝑥, 𝑦} ⊂ 𝑈 (a similar argument works for the other
case). Now R is a simplicial k-cycle, and since S and S+

𝑖 , 1 ≤ 𝑖 ≤ 𝑚, are all nontrivial Z2-irreducible
k-cycles, R does not contain any trivial simplicial k-circuit. It follows that there is some 𝑈 ′ ∈ R such
that 𝑈 ∩𝑈 ′ = 𝑈 − 𝑥. By (5), 𝑈 ′ must contain {𝑥∗, 𝑦∗}, and so 𝑦𝑦∗ ∈ 𝐸 (R) ⊂ 𝐸 (S), contradicting the
assumption that ∗ is a simplicial involution on S . Therefore, R must be empty – this proves (6).

To verify (7), we suppose, for a contradiction, that there exists a proper subset I of {1, . . . , 𝑚} such
that S+

𝑗 ∩ �𝑖∈𝐼S+
𝑖 = ∅ for all 𝑗 ∈ 𝐽 = {1, . . . , 𝑚} \ 𝐼. Then, by (6), S = �𝑚𝑖=1S+

𝑖 = �𝑖∈𝐼S+
𝑖 � � 𝑗∈𝐽S+

𝑗 .
This yields a partition of S into two Z2-symmetric k-cycles, contradicting the hypothesis that S is a
Z2-irreducible k-cycle. This proves (7).

We can now complete the proof of the lemma by verifying (2). Observe that if 𝑢𝑣 ∈ 𝐸 (S) and
𝑢𝑣 ∉ {𝑥𝑦, 𝑥∗𝑦∗}, then since S is a nontrivial Z2-irreducible k-cycle and 𝑥𝑦∗, 𝑥∗𝑦 ∉ 𝐸 (S), there is
some 𝑈 ∈ S such that 𝑢, 𝑣 ∈ 𝑈 and {𝑥, 𝑦}, {𝑥∗, 𝑦∗} ⊄ 𝑈. By (5), 𝑢𝑣 ∈ 𝐸 (S+

𝑖 ) for some i. Using this,
together with (1), we see that

⋃𝑚
𝑖=1 𝐸 (S+

𝑖 ) = 𝐸 . Since 𝐺 (S) has no isolated vertices, this implies that⋃𝑚
𝑖=1𝑉 (S+

𝑖 ) = 𝑉 . This proves (2). �

We need one more additional property of Z2-symmetric Fogelsanger decompositions.

Lemma 5.6. Let (S , ∗) be a Z2-irreducible k-cycle and 𝑥𝑦 ∈ 𝐸 (S) with 𝑥𝑦∗ ∉ 𝐸 (S). Let
{S ′

1,S ′
2, . . . ,S ′

𝑚} be a partition of (S/𝑥𝑦)/𝑥∗𝑦∗ into Z2-irreducible k-cycles and (S+
1 , . . . ,S+

𝑚) be
the Z2-symmetric Fogelsanger decomposition for S at 𝑥𝑦 corresponding to this partition. Suppose
S ′
𝑗 = T ′

𝑗 � T ′∗
𝑗 for some simplicial k-circuit T ′

𝑗 with |𝑉 (T ′
𝑗 ) ∩ 𝑉 (T ′∗

𝑗 ) | ≤ 2𝑘 − 2. Then S+
𝑗 = T 𝑗 � T ∗

𝑗
for some simplicial k-circuit T 𝑗 with |𝑉 (T 𝑗 ) ∩𝑉 (T ∗

𝑗 ) | ≤ |𝑉 (T ′
𝑗 ) ∩𝑉 (T ′∗

𝑗 ) | + 2.

Proof. Since S ′
𝑗 = (S 𝑗/𝑥𝑦)/𝑥∗𝑦∗, the hypothesis that |𝑉 (T ′) ∩ 𝑉 (T ′∗) | ≤ 2𝑘 − 2 implies that 𝐺 (S+

𝑗 )

has a ∗-invariant vertex separator X with𝑉 (T ′) ∩𝑉 (T ′∗) ⊆ 𝑋 ⊆ 𝑉 (T ′) ∩𝑉 (T ′∗) + 𝑦 + 𝑦∗. In particular,
|𝑋 | ≤ 2𝑘 . By Lemma 5.3, either S+

𝑗 = T 𝑗 �T ∗
𝑗 for some simplicial k-circuit T 𝑗 with𝑉 (T 𝑗 ) ∩𝑉 (T ∗

𝑗 ) = 𝑋

or 𝐺 (S+
𝑗 ) [𝑋] is isomorphic to 𝐺 (B𝑘−1). In the former case, we have the statement. So let us assume the

latter case. Then we have |𝑋 | = 2𝑘 , and hence, |𝑋 | = |𝑉 (T ′)∩𝑉 (T ′∗) |+2, so {𝑥, 𝑦, 𝑥∗, 𝑦∗} ⊆ 𝑋 . Together
with 𝐺 [𝑋] � 𝐺 (B𝑘−1), this implies that 𝑥𝑦∗ ∈ 𝐸 , contradicting an hypothesis of the lemma. �

5.3. Main rigidity theorem

We can now establish our main result. We begin with the following special case.

Lemma 5.7. Let Γ = Γ𝑡 ,𝑘+1 for 0 ≤ 𝑡 ≤ 𝑘 . Let (S , ∗) be a Z2-irreducible k-cycle such that S = T � T ∗

for some simplicial k-circuit T with ℎ := |𝑉 (T ) ∩ 𝑉 (T ∗) | ≤ 2𝑘 . Then (𝐺 (S), ∗) is Γ-rigid in R𝑘+1 if
and only if ℎ ≥ max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡}.

Proof. To prove sufficiency, we suppose ℎ ≥ max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡}. Let ∗𝑇 be the non-adjacent
vertex pairing induced on 𝑉 (T ) ∩ 𝑉 (T ∗) by ∗. Since ℎ ≤ 2𝑘 , we can apply Theorem 4.5 to
(𝐺 (T ), ∗𝑇 ) to deduce that (𝐺 (T ), ∗𝑇 ) is Γ-rigid. Symmetrically, (𝐺 (T ∗), ∗𝑇 ) is Γ-rigid. Now
Theorem 2.8 (the gluing theorem) implies that the union of (𝐺 (T ), ∗𝑇 ) and (𝐺 (T ∗), ∗𝑇 ) is Γ-rigid

https://doi.org/10.1017/fms.2024.150 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.150


18 J. Cruickshank et al.

if ℎ ≥ (𝑘 + 1) + ℎ − 1 − min{ℎ/2, 𝑑 − 𝑡} − min{ℎ/2 − 1, 𝑡}, or equivalently, min{ℎ/2, 𝑘 + 1 − 𝑡} +
min{ℎ/2 − 1, 𝑡} ≥ 𝑘 . By an elementary calculation, one can check that this is equivalent to
ℎ ≥ max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡}.

To prove necessity, we suppose ℎ < max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡} and let (𝐺 (S), ∗, 𝑝) be a generic
Γ-symmetric framework. If T and T ∗ are trivial simplicial k-circuits then, by Lemma 5.1, 𝑉 (T ) ∩

𝑉 (T ∗) = ∅, and it is clear that 𝐺 (S) is not Γ-rigid. So we may assume that T and T ∗ are nontrivial
simplicial k-circuits. It follows easily that

dim(aff (𝑝(𝑉 (T )))) = dim(aff (𝑝(𝑉 (T ∗)))) = 𝑘 + 1.

However, the assumption ℎ < max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡} implies that 𝐻 = aff (𝑝(𝑉 (T ) ∩ 𝑉 (T ∗))) has
dimension at most 𝑘 − 1, and so (𝐺 (T ), ∗𝑇 , 𝑝) has a nontrivial infinitesimal flex induced by rotation
about H. �

Theorem 5.8. Let (S , ∗) be a nontrivial Z2-irreducible k-cycle for some 𝑘 ≥ 2. Suppose that Γ = Γ𝑡 ,𝑘+1
for some 0 ≤ 𝑡 ≤ 𝑘 and that Γ is not a rotation group when 𝑘 = 2. Then the following statements are
equivalent.

(i) (𝐺 (S), ∗) is Γ-rigid in R𝑘+1;
(ii) S is a simplicial k-circuit or S = T � T ∗ for some simplicial k-circuit T with |𝑉 (T ) ∩ 𝑉 (T ∗) | ≥

max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡};
(iii) for every 𝑋 ⊂ 𝑉 (S) such that 𝑋∗ = 𝑋 and |𝑋 | < max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡}, 𝐺 (S) − 𝑋 is connected.

Proof. Let 𝑐 = max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡}.
By Lemmas 5.1 and 5.7, (i) implies (ii). To see that (ii) and (iii) are equivalent, observe that 𝑐 ≤ 2𝑘

since 0 ≤ 𝑡 ≤ 𝑘 . Also, if X is a ∗-invariant subset of 𝑉 (S) of size less than 2𝑘 , then Lemma 5.3 implies
that X is a vertex separator of 𝐺 (T ) if and only if S = T � T ∗ for some simplicial k-circuit T with
𝑉 (T ) ∩𝑉 (T ∗) ⊆ 𝑋 . The equivalence between (ii) and (iii) now follows.

It remains to prove that (ii) and (iii) imply (i). Suppose, for a contradiction, that S is a counterexample
to this statement with |𝑉 (S) | minimal and let 𝐺 (S) = 𝐺 = (𝑉, 𝐸).

Claim 5.9. There exists an edge 𝑥𝑦 ∈ 𝐸 such that 𝑥∗𝑦 ∉ 𝐸 .

Proof of claim. Suppose, for a contradiction, that 𝑥∗𝑦 ∈ 𝐸 whenever 𝑥𝑦 ∈ 𝐸 . Then, for every 𝑈 ∈ S ,
𝐺 [𝑈�𝑈∗] can be obtained from the complete graph on𝑈�𝑈∗ by deleting the set of edges {𝑥𝑥∗ : 𝑥 ∈ 𝑈}.
Hence, 𝐺 [𝑈 �𝑈∗] is isomorphic to 𝐺 (B𝑘 ). We can now apply Lemma 4.2 to deduce that

𝐺 [𝑈 �𝑈∗] is Γ-rigid for all𝑈 ∈ S . (5.6)

Suppose S is a simplicial k-circuit. Then S is a strongly connected simplicial k-complex so, for all
𝑈,𝑈 ′ ∈ S , there exists a sequence of k-faces 𝑈1,𝑈2, . . . ,𝑈𝑚 of S such that 𝑈1 = 𝑈, 𝑈𝑚 = 𝑈 ′ and
|𝑈𝑖∩𝑈𝑖+1 | = 𝑘 for all 1 ≤ 𝑖 ≤ 𝑚−1. Putting𝐻 =

⋃𝑚
𝑖=1 𝐺 [𝑈𝑖∪𝑈

∗
𝑖 ], we can now use (5.6) and Theorem 2.8

to deduce that H is Γ-rigid. This implies that every vertex of G belongs to the unique maximal Γ-rigid
subgraph of G which contains 𝑈 �𝑈∗, and hence, G is Γ-rigid. This contradicts the choice of S .

Thus, S is not a simplicial k-circuit. Then S = T � T ∗ for some simplicial k-circuit T with
|𝑉 (T ) ∩ 𝑉 (T ∗) | ≥ 𝑐 by the assumption that (ii) holds for S . Then T is strongly connected, so we can
apply the argument in the previous paragraph to deduce that 𝑉 (T ) is contained in a Γ-rigid subgraph
of G. By symmetry, 𝑉 (T ∗) is also contained in a Γ-rigid subgraph of G. Since 𝑉 (𝐺) = 𝑉 (T ) ∪𝑉 (T )∗,
we can now apply Theorem 2.8 to deduce that G is Γ-rigid, again a contradiction. This completes the
proof of the claim. �

Claim 5.9 tells us we can choose an edge 𝑥𝑦 ∈ 𝐸 such that 𝑥𝑦∗ ∉ 𝐸 . Let (S+
1 , . . . ,S+

𝑚) be a Z2-
symmetric Fogelsanger decomposition of S at 𝑥𝑦, and put S ′

𝑖 = (S+
𝑖 /𝑥𝑦)/𝑥

∗𝑦∗ for all 1 ≤ 𝑖 ≤ 𝑚. By
Lemma 5.4(3), S ′

𝑖 is a Z2-irreducible k-cycle.
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Claim 5.10. For all 1 ≤ 𝑖 ≤ 𝑚, either 𝐺 (S+
𝑖 ) is Γ-rigid or S+

𝑖 = T𝑖 � T ∗
𝑖 for some simplicial k-circuit

T𝑖 with |𝑉 (T𝑖) ∩𝑉 (T ∗
𝑖 ) | ≤ 2𝑘 .

Proof. The proof splits into two cases depending on the Γ-rigidity of S ′
𝑖 = (S+

𝑖 /𝑥𝑦)/𝑥
∗𝑦∗.

Suppose S ′
𝑖 is Γ-rigid. Since 𝑥𝑦 ∈ 𝐸 (S+

𝑖 ) and S+
𝑖 is a nontrivial Z2-irreducible k-cycle by Lemma

5.4(a)(d), there exist 𝑈1,𝑈2 ∈ S+
𝑖 such that |𝑈1 ∩ 𝑈2 | = 𝑘 and {𝑥, 𝑦} ⊆ 𝑈1 ∩ 𝑈2. Let 𝐶 = (𝑈1 ∪

𝑈2) \ {𝑥, 𝑦}. Then 𝐶 ⊂ 𝑁𝐺 (S+
𝑖 )
(𝑥) ∩ 𝑁𝐺 (S+

𝑖 )
(𝑦), |𝐶 | = 𝑘 and |𝐶 ∩ 𝐶∗ | ≤ 2. Similarly, we can choose

𝐷 ⊂ 𝑁𝐺 (S+
𝑖 )
(𝑥∗) ∩ 𝑁𝐺 (S+

𝑖 )
(𝑦∗) such that |𝐷 | = 𝑘 and |𝐷 ∩ 𝐷∗ | ≤ 2. Theorem 2.14 now implies that

𝐺 (S+
𝑖 ) is Γ-rigid.

Next, suppose S ′
𝑖 is not Γ-rigid. Then, by the minimality of |𝑉 (S) |, S ′

𝑖 does not satisfy (ii) in the
statement of the theorem. Lemma 5.1 now implies that S ′

𝑖 = T ′ � T ′∗ for some simplicial k-circuit T ′

with |𝑉 (T ′) ∩𝑉 (T ′∗) | < 𝑐. By Lemma 5.6, there is a simplicial k-circuit T such that S+
𝑖 = T �T ∗ with

|𝑉 (T )∩𝑉 (T ∗) | ≤ |𝑉 (T ′)∩𝑉 (T ′∗) |+2. Suppose 1 ≤ 𝑡 ≤ 𝑘−1. Then 𝑐 = max{2(𝑘−𝑡), 𝑘+1, 2𝑡} ≤ 2𝑘−1.
Hence, |𝑉 (T ) ∩ 𝑉 (T ∗) | ≤ |𝑉 (T ′) ∩ 𝑉 (T ′∗) | + 2 ≤ 𝑐 + 1 ≤ 2𝑘 , as required. Hence, we may assume
that 𝑡 = 0 or 𝑡 = 𝑘 . Then 𝑐 = 2𝑘 . Since |𝑉 (T ′) ∩ 𝑉 (T ′∗) | and c are both even, |𝑉 (T ) ∩ 𝑉 (T ∗) | ≤

|𝑉 (T ′) ∩𝑉 (T ′∗) | + 2 ≤ 𝑐 = 2𝑘 . This completes the proof. �

We next define a sequence of simplicial k-cycles W1,W2, . . . ,W𝑚. For each 1 ≤ 𝑖 ≤ 𝑚, we set
W𝑖 = S+

𝑖 if 𝐺 (S+
𝑖 ) is Γ-rigid. Otherwise, we put W𝑖 = T𝑖 , where T𝑖 is the simplicial k-circuit given by

Claim 5.10 for S+
𝑖 . We will show that

𝐺 (W𝑖) and 𝐺 (W∗
𝑖 ) are both Γ-rigid. (5.7)

If W𝑖 = S+
𝑖 , then 𝐺 (W𝑖) is Γ-rigid by definition, and we have W∗

𝑖 = (S+
𝑖 )

∗ = S+
𝑖 because S+

𝑖 is a
Z2-irreducible k-cycle. Conversely, if W𝑖 = T𝑖 , then we have |𝑉 (T𝑖) ∩ 𝑉 (T ∗

𝑖 ) | ≤ 2𝑘 , and we can apply
Theorem 4.5 to deduce that 𝐺 (T𝑖) and 𝐺 (T ∗

𝑖 ) are both Γ-rigid. Thus, (5.7) holds.
We can now complete the proof of the theorem. Using Lemma 5.4(7) to reorder (S+

1 , . . . ,S+
𝑚) as

necessary, and interchanging T ∗
𝑖 and T𝑖 where necessary, we can assume that

W 𝑗 ∩ (�
𝑗−1
𝑖=1 W𝑖) ≠ ∅ for 2 ≤ 𝑗 ≤ 𝑚. (5.8)

The hypothesis that 𝑥𝑥∗ ∉ 𝐸 for all 𝑥 ∈ 𝑋 implies that

𝑈 ∩𝑈∗ = ∅ for all cliques 𝑈 of 𝐺 (S). (5.9)

We can now apply a straightforward induction argument using (5.7), (5.8), (5.9) and Theorem 2.8 to
deduce that

𝑚⋃
𝑖=1

𝐺 (W𝑖) and
𝑚⋃
𝑖=1

𝐺 (W∗
𝑖 ) are both Γ-rigid. (5.10)

If W𝑖 = S+
𝑖 for some 1 ≤ 𝑖 ≤ 𝑚, then

⋃𝑚
𝑖=1 𝐺 (W𝑖) and

⋃𝑚
𝑖=1 𝐺 (W∗

𝑖 ) intersect in at least 2𝑘 vertices.
By Theorem 2.8, 𝐺 (S) =

(⋃𝑚
𝑖=1 𝐺 (W𝑖)

)
∪
(⋃𝑚

𝑖=1 𝐺 (W∗
𝑖 )
)

is Γ-rigid contradicting our choice of S .
So we can assume that for 𝑖 = 1, . . . , 𝑚, S+

𝑖 = T𝑖 � T ∗
𝑖 , where T𝑖 is simplicial k-circuit properly

contained in S+
𝑖 and W𝑖 = T𝑖 . If T𝑖 ∩ T ∗

𝑗 ≠ ∅ for some distinct 𝑖, 𝑗 , then
⋃𝑚
𝑖=1 𝐺 (T𝑖) and

⋃𝑚
𝑖=1 𝐺 (T ∗

𝑖 )

intersect on a (𝑘 + 1)-clique in 𝐺 (S). Hence, their union is Γ-rigid by (5.9) and the gluing theorem
(Theorem 2.8). Since the union is 𝐺 (S) by Lemma 5.4(b), this contradicts the choice of S as a
counterexample.

Therefore, T𝑖 ∩ T ∗
𝑗 = ∅ for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚. By Lemma 5.4(e), T ∗

𝑖 contains a simplex 𝑈 ∈ S that
is not contained in any S+

𝑗 for 𝑗 ≠ 𝑖. This, and the facts that T𝑖 ∩ T ∗
𝑗 = ∅ for all 1 ≤ 𝑖, 𝑗 ≤ 𝑚 and

�𝑚𝑖=1S+
𝑖 = S , imply that �𝑚𝑖=1T𝑖 is a simplicial k-cycle that is properly contained in S , so S is not a

simplicial k-circuit. Since S satisfies (ii) from the statement of the theorem, it follows from Lemma 5.1
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that S = T � T ∗, where T = �𝑖=1T𝑖 and |𝑉 (T ) ∩ 𝑉 (T ∗) | ≥ max{2(𝑘 − 𝑡), 𝑘 + 1, 2𝑡} =: 𝑐. Moreover,
also by Lemma 5.1, T must be a simplicial k-circuit.

Note that 𝐺 (T ) ⊆
⋃𝑚
𝑖=1 𝐺 (T𝑖) and 𝐺 (T ∗) ⊆

⋃𝑚
𝑖=1 𝐺 (T ∗

𝑖 ), so
⋃𝑚
𝑖=1 𝐺 (T𝑖) and

⋃𝑚
𝑖=1 𝐺 (T ∗

𝑖 ) also have
at least c common vertices. We can now use (5.10), Theorem 2.8 and Lemma 5.4(b) to deduce that𝐺 (S)
is Γ-rigid, contradicting our choice of S . This final contradiction completes the proof of the theorem. �

Theorem 5.8 immediately gives the following sufficient condition for the Γ-rigidity of Z2-symmetric
simplicial circuits.

Theorem 5.11. Let (S , ∗) be a Z2-symmetric simplicial k-circuit with 𝑘 ≥ 2. Then (𝐺 (S), ∗) is Γ-rigid
in R𝑘+1 if either 𝑘 ≥ 3 or 𝑘 = 2 and Γ is not the half-turn rotation group.

Since every pseudomanifold is a simplicial circuit, [11, Conjecture 8.3] follows immediately as a
special case of Theorem 5.11.

6. The lower bound theorem

The lower bound theorem for Z2-irreducible k-cycles is an immediate corollary of Theorem 5.8 and
Lemma 2.2.

Theorem 6.1. Let (S , ∗) be a nontrivial simplicial Z2-irreducible k-cycle for some 𝑘 ≥ 2. Suppose
that 𝐺 (S) − 𝑋 is connected for all 𝑋 ⊂ 𝑉 which satisfy 𝑋∗ = 𝑋 and |𝑋 | ≤ 2𝑘 . Then 𝑔2 (S) =
|𝐸 (S) | − (𝑘 + 1) |𝑉 (S) | +

(𝑘+2
2
)
≥

(𝑘+1
2
)
− (𝑘 + 1).

Proof. We can apply Theorem 5.8 in the case when Γ = Γ0,𝑘+1 is a point inversion to deduce that
(𝐺 (S), ∗) is Γ-rigid. The case 𝑡 = 0 of Lemma 2.2 now gives 𝑔2(S) ≥

(𝑘+1
2
)
− (𝑘 + 1). �

A similar argument using Theorem 5.11 and Lemma 2.2 gives the following:

Theorem 6.2. Let (S , ∗) be aZ2-symmetric simplicial k-circuit with 𝑘 ≥ 2. Then 𝑔2(S) ≥
(𝑘+1

2
)
−(𝑘+1).

Since every pseudomanifold is a simplicial circuit, this immediately gives the following lower bound
result for pseudomanifolds and hence verifies the inequality part of [11, Conjecture 8.1]

Corollary 6.3. Let (S , ∗) be aZ2-symmetric k-pseudomanifold with 𝑘 ≥ 2. Then 𝑔2 (S) ≥
(𝑘+1

2
)
−(𝑘+1).

7. Closing remarks

7.1. Characterising Γ1,3-rigid simplicial 2-circuits

Theorem 5.8 resolves the Γ𝑡 ,𝑘+1-rigidity question for Z2-symmetric simplicial k-circuits in R𝑘+1, except
in the case when 𝑡 = 1 and 𝑘 = 2. In this case, Lemma 2.2 implies that the boundary complex of a Z2-
symmetric simplicial polyhedron cannot be Γ1,3-rigid in R3. Other examples can be obtained from the
boundary complex P of a Z2-symmetric simplicial polyhedron by choosing a face F of P and ‘inserting’
an arbitrary simplicial 2-circuit T into both F and 𝐹∗. More precisely, we choose a copy T ∗ of T , label
the vertices of T so that 𝐹 ∈ T and 𝑉 (P) ∩𝑉 (T ) = 𝐹, and then put S = P�(T � T ∗).

We believe that all examples of Z2-symmetric simplicial 2-circuits which are not Γ1,3-rigid in R3 can
be obtained by recursively applying this insertion operation to the boundary complex of a 𝑍2-symmetric
simplicial polyhedron. This would imply the following conjecture.

Conjecture 7.1. Suppose that (S , ∗) is a Z2-symmetric simplicial 2-circuit such that 𝐺 (S) is 4-
connected and non-planar. Then 𝐺 (S) is Γ1,3-rigid in R3.

A graph 𝐺 = (𝑉, 𝐸) is redundantly rigid in R𝑑 if 𝐺 − 𝑒 is rigid in R𝑑 for all 𝑒 ∈ 𝐸 . We showed
in [6] that if G is the graph of a simplicial k-circuit for some 𝑘 ≥ 3 and G is (𝑘 + 1)-connected, then
G is redundantly rigid in R𝑘+1, and we used this to deduce that equality in the Lower Bound Theorem
can only hold for simplicial k-circuits when they are stacked k-spheres. We believe that an analogous
approach may work for Γ-rigidity and our symmetric lower bound theorem.
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7.2. Redundant Γ-rigidity of simplicial circuits

Conjecture 7.2. Let (S , ∗) be a Z2-symmetric simplicial k-circuit such that 𝑘 ≥ 3, S ≠ B𝑘 and 𝐺 (S) is
(𝑘 +1)-connected. Then, for all point groups Γ in R𝑘+1 of order two and all 𝑒 ∈ 𝐸 (S), (𝐺 (S) −𝑒−𝑒∗, ∗)
is Γ-rigid in R𝑘+1.

Conjecture 7.2 would imply that equality can only hold in Theorem 6.2 when S is a symmetrically
stacked sphere (see [11] for a definition) and would verify [11, Conjecture 8.1] as a special case.

7.3. Non-adjacent vertex pairings

The Bricard octahedron shows that Theorem 4.5 will become false if we remove the hypothesis that
|𝑋 | ≤ 2𝑘 . More generally, any Z2-symmetric boundary complex of a polyhedron will not be Γ-rigid in
R3 when Γ is the half turn rotation group by Lemma 2.2. It is conceivable, however, that the hypothesis
that |𝑋 | ≤ 2𝑘 is not necessary in certain special cases. Indeed, [11, Conjecture 8.4] is precisely this
statement in the case when 𝑘 = 2, S is a simplicial sphere and Γ is a point inversion group.

7.4. More general group actions

Adin [1], and later Jorge [9], extended Stanley’s lower bound theorem to rational polytopes with a cyclic
linear symmetry group of prime power order. Their methods are very different from ours, relying on
algebraic properties of the Stanley-Reisner ring of a simplicial complex.

It is natural to ask if the rigidity-based approach can be used to extend these results to simplicial
circuits and/or other point groups. In this paper, we frequently use the fact that ∗ is free and Γ is a point
group of order two. Relaxing either of these restrictions in a rigidity-based approach remains an open
problem.

7.5. The lower bound conjecture for higher dimensional faces

Let 𝜙 𝑗 (𝑛, 𝑘) be the number of j-faces of a symmetrically stacked k-sphere with n vertices. One can
easily verify by induction on n that

𝜙 𝑗 (𝑛, 𝑘) =

{
2 𝑗+1 (𝑘+1

𝑗+1
)
+ (𝑛 − 2𝑘 − 2)

(𝑘+1
𝑗

)
if 𝑗 ≤ 𝑘 − 1

2𝑘+1 + 𝑘 (𝑛 − 2𝑘 − 2) if 𝑗 = 𝑘

For a simplicial complex S , let 𝑓 𝑗 (S) be the number of j-faces of S .

Conjecture 7.3. Suppose that 𝑘 ≥ 2 and S is a simplicial k-circuit with n vertices and ∗ is a free
simplicial involution on S . Then 𝑓 𝑗 (S) ≥ 𝜙𝑛 (𝑛, 𝑘) for 𝑗 = 1, . . . , 𝑘 . Moreover, if equality occurs for
any j, then S must be a k-sphere and, in the case that 𝑘 ≥ 3, must be a symmetrically stacked k-sphere.

In the non-symmetric setting, the analogous conjecture for simplicial manifolds can be derived from
the case 𝑗 = 1 by an induction argument based on the fact that the link of any proper face in a simplicial
manifold is a simplicial sphere of lower dimension (see [10] for details). However, in the Z2-symmetric
case, this argument does not generalise easily since the the link of F is not Z2-symmetric. One might
consider the union of the links of F and 𝐹∗, but that is not necessarily a simplicial manifold, even when
S is a simplicial sphere.

A further difficulty for Conjecture 7.3, and indeed for the non-symmetric version [6, Conjecture 8.2],
arises from the fact that the class of simplicial circuits is not link closed. In general, the link of a j-face
in a nontrivial simplicial k-circuit will be a simplicial (𝑘 − 𝑗 − 1)-cycle but not necessarily a simplicial
(𝑘 − 𝑗 − 1)-circuit.
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