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For a Mach 4.5 flat-plate adiabatic boundary layer, we study the sensitivity of the
first, second Mack modes and streaks to steady wall-normal blowing/suction and wall
heat flux. The global instabilities are characterised in frequency space with resolvent
gains and their gradients with respect to wall-boundary conditions are derived through
a Lagrangian-based method. The implementation is performed in the open-source
high-order finite-volume code BROADCAST and algorithmic differentiation is used to
access the high-order state derivatives of the discretised governing equations. For the
second Mack mode, the resolvent optimal gain decreases when suction is applied upstream
of Fedorov’s mode S/mode F synchronisation point, leading to stabilisation, and the
converse when applied downstream. The largest suction gradient is in the region of
branch I of mode S neutral curve. For heat-flux control, strong heating at the leading
edge stabilises both the first and second Mack modes, the former being more sensitive to
wall-temperature control. Streaks are less sensitive to any boundary control in comparison
with the Mack modes. Eventually, we show that an optimal actuator consisting of a single
steady heating strip located close to the leading edge manages to damp the linear growth
of all three instability mechanisms.

Key words: boundary layer control, boundary layer stability, compressible boundary layers

1. Introduction

The performance of all vehicles is significantly reduced when they are submitted to
turbulent flows. At subsonic/transonic/low supersonic speeds, additional viscous drag is
produced by the larger turbulent wall-shear stresses. At higher speeds, they also generate
high wall temperature requiring thicker thermal protection. Conversely, a turbulent flow
may be desired to maintain a given flow topology or to avoid the detachment inherent
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to laminar flows over convex geometries. Controlling laminar-to-turbulent transition is a
critical technology for design. Transition mechanisms depend strongly on the geometry
of the configuration, the type and level of environmental disturbances. Small-amplitude
free-stream disturbances (vortical or acoustic waves) as well as wall roughness may excite
instabilities, through the receptivity process, which are subsequently amplified by various
linear mechanisms, such as the Mack modes (Mack 1963) or non-modal streaks (Morkovin
1994).

Linear stability theories predict the early stages of the amplification before the nonlinear
interactions play a leading role, resulting in the breakdown towards laminar/turbulent
transition. Supersonic boundary layer flows can be studied by local stability theory (LST)
(Malik 1989) and parabolised stability equations (PSE) (Stuckert, Lin & Herbert 1995)
for weakly non-parallel flows. For more general configurations, resolvent analyses, which
also take into account the non-modal phenomena arising from the non-normality of the
Navier–Stokes operator (Sipp & Marquet 2013), have become computationally affordable
in the recent years.

Stability analysis of supersonic flows reveals an infinity of modes, called Mack modes
(Mack 1963) for high Mach numbers. At Mach 4.5, the first and second Mack modes
are predominant among the others (Ma & Zhong 2003; Bugeat et al. 2019). The oblique
first Mack mode corresponds to a local unstable mode which consists of an inviscid wave
located around the generalised inflection point. The two-dimensional second Mack mode
is a trapped acoustic wave close to the wall resulting from the synchronisation of the phase
speed of the local Fedorov’s modes F and S (Fedorov & Tumin 2011), respectively, a fast
and a slow acoustic wave, that promotes the instability of the latter.

Laminar flow control includes two main families: wave-cancellation methods, which
attenuate the instabilities with out-of-phase waves (Joslin 1998; Nibourel et al. 2023) and
steady mean-flow manipulations, which we will focus on in the present article, with a
special interest in blowing/suction and heating/cooling control systems.

Firstly, suction control, when applied to incompressible flows, is optimal to damp the
two-dimensional Tollmien–Schlichting waves when the actuator is located near branch
I (beginning of the unstable region of the local mode, similar location to the optimal
forcing from the resolvent analysis) according to the asymptotic analysis (Reed & Nayfeh
1986), the experimental work (Reynolds & Saric 1986) and the local scattering approach
(Huang & Wu 2016). For supersonic boundary layers, asymptotic analyses demonstrated
that the second Mack mode is also highly receptive to unsteady blowing/suction located
near branch I of mode S (Fedorov & Khokhlov 2002). Wang, Zhong & Ma (2011) showed
that unsteady blowing/suction strongly excites the mode S (slow) if located upstream of the
point where mode F (fast) and S phase velocities synchronise (called the synchronisation
point in the rest of the article) while the effect is much lower when the actuator is
downstream. The synchronisation point seems to be linked to the optimal location for
local control as Fong, Wang & Zhong (2014) noticed an opposite effect on the growth of
mode S if a roughness element is located before or after the synchronisation point in the
direct numerical simulations (DNS) of a supersonic boundary layer.

Secondly, cooling/heating control has been investigated. Mack (1993) showed that the
growth of the Mack modes is sensitive to the wall temperature: a uniformly cooled wall
damps the first Mack mode but destabilises the second Mack mode. Therefore, for Mach
numbers much below 4 (Mack 1993), cooling the wall in order to modify the base flow
represents a control technique to delay the laminar-to-turbulent transition. Wang & Zhong
(2009) found that the supersonic boundary layer is less sensitive to unsteady temperature
perturbation than unsteady blowing/suction. For subsonic boundary layers, a heating strip
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at the leading edge has a stabilising effect (Kazakov, Kogan & Kuparev 1995) and the
opposite effect if located further downstream (Masad 1995). For supersonic boundary
layers, Masad & Abid (1995) found by N-factor analysis that a heating strip upstream also
stabilises by damping the first Mack mode. The experimental work (Sidorenko et al. 2015)
on a cone at higher Mach number showed that the second Mack mode instability is damped
by localised wall cooling. To find the optimal location of a wall heating device, DNS
simulations of supersonic flows were carried out. Fedorov et al. (2014) showed that the
region upstream of the neutral point is optimal to place a heating device in order to stabilise
the second Mack mode but Soudakov, Fedorov & Egorov (2015) underlined that this
location depends on the receptivity region for a sharp cone at Mach 6. Recent studies (Zhao
et al. 2018; Batista & Kuehl 2020) found that cooling upstream of the synchronisation
point and heating downstream damp the second Mack mode. Furthermore, localised strips
of wall cooling and heating combinations are nearly as effective as controlling the whole
boundary (Batista & Kuehl 2020). On a Mach 6 cone, Oz et al. (2023) showed using
local stability analysis that uniform wall cooling over the entire surface destabilises the
boundary layer but a local wall cooling strip upstream of the synchronisation point damps
the instabilities and the converse is true if it is located downstream.

The previous studies presented above were based on parametric analyses which cannot
span the full range of optimal locations. General approaches using gradient-based
optimisation have been proposed thereafter. They rely on the adjoint-based linear
sensitivity of the base flow, i.e. the indicator of the regions where small modifications
of the base flow have the highest impact on the growth of instabilities.

An adjoint method to find the optimum suction distribution on a Blasius boundary
layer through the minimisation of the N-factor was explored by Balakumar & Hall
(1999). Parabolised stability equations and their adjoint equations were later solved to
perform sensitivity analysis of compressible flows (Pralits et al. 2000). Sensitivity was
later exploited to iteratively decrease the energy of the Tollmien–Schlichting (T–S) waves
(Walther, Airiau & Bottaro 2001) through wall transpiration or to damp the T–S waves,
streaks and oblique waves (Pralits, Hanifi & Henningson 2002) via steady suction. During
the same period, Airiau et al. (2003) developed a similar framework and extended the
analysis to suction panels of finite length. While previous methods computed the optimal
suction control to damp a fixed disturbance, Zuccher, Luchini & Bottaro (2004) offered a
‘robust’ control, which damps the most disrupting instability for the controlled flow. The
extension of the sensitivity analysis of steady blowing to the global analysis framework
was later given by Brandt et al. (2011) for an incompressible boundary layer. Sensitivity
of the global eigenvalue problem has also been computed for shape optimisation. Iterative
methods (Wang et al. 2019; Martinez-Cava et al. 2020) have been employed to optimise
the geometry in order to gradually damp the growth rate of the most unstable mode.
However, these techniques require us to repeat expensive computations of the base flow, its
stability and sensitivity as they are valid only in the linear regime. Boujo (2021) offered a
second-order sensitivity method to extend the validity of the linear sensitivity and therefore
reduce the total number of iterations to optimise a geometry.

The present work aims at finding the optimal location for small-amplitude steady wall
blowing/suction or heating/cooling actuators to damp the main instabilities in the Mach
number 4.5 boundary layer by computing their linear sensitivity in the global stability
framework. The sensitivity is computed here only once around the base flow as the aim
is not the optimisation of a finite-amplitude control, but the physical understanding of
the local gradient for wall-based control around the base flow. The flat-plate zero pressure
gradient boundary layer flow can be studied in a weakly non-parallel framework and would

978 A16-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.993


A. Poulain, C. Content, G. Rigas, E. Garnier and D. Sipp

H =
∂2R
∂q2

H̃  =
∂2R
∂q∂p

∂R
,

∂p
Sensitivity to

boundary control

∇p μ2

Sensitivity to

base-flow ∇q̄ μ2

A =
∂R
∂q

f̌ , q̌, μ2,

Optimal forcing f̌

Base-flow

R(q̄, p) = 0

4.5

4.0
3.5

3.0

2.5

2.0

1.5

1.0
0.5

0
0

0 0.5 × 106

2 × 104

2 × 104

1 × 104
1 × 104

1 × 106

1 × 106 1.5 × 106
Rex

Rex Rex

Rey Rey

2 × 104

1 × 104

Rey

2 × 106

2 × 106

0 0.5 × 106 1 × 106 1.5 × 106

Rex

0 0.5 × 106 1 × 106 1.5 × 106 2 × 106

2 × 104

1 × 104

Stability: resolvent

(iωI – A)–1∗ QE(iωI – A)–1 f̌  = μ2 QFf̌

Optimal response q̌

,
∂QE
∂q

∂QF
∂q

Figure 1. Workflow for sensitivity computation. Application to the second Mack mode in the M = 4.5
boundary layer. Mach number contours for base flow q̄. Real part of the streamwise momentum forcing for
the optimal forcing f̌ . Real part of the pressure disturbances for the optimal response q̌. Sensitivity of the
optimal gain to streamwise momentum base-flow modifications contours for the sensitivity to base flow ∇q̄μ

2.

have likely produced similar results because the non modal mechanisms seem weak here.
Indeed, the sensitivity of incompressible boundary layers had already been computed with
adjoint PSE (Pralits et al. 2000) while one-way Navier–Stokes equations can be exploited
to construct efficiently the resolvent operator (Towne et al. 2022). However, the global
framework is retained here to address more general configurations in the future.

The outline of the paper follows the workflow for the computation of the sensitivity,
shown in figure 1 for boundary control of the second Mack mode. After presenting the
theoretical tools and implementation of stability and sensitivity analyses (§ 2), we consider
the supersonic boundary layer case at M = 4.5 in § 3. The base flow is first computed
(§ 3.1) and resolvent analysis is performed to find the most predominant two-dimensional
and three-dimensional modes (§ 3.2). Sensitivity to base-flow modifications is computed
(Appendix G) and projected to get the sensitivity of the three main instabilities to steady
wall blowing and to wall heating (§ 3.3). Eventually, the preliminary design of an optimal
wall-control actuator is presented in § 3.5.

2. Methods

After presenting the governing equations (§ 2.1), we recall briefly the definitions of a
base flow and resolvent modes/optimal gains (§ 2.2). Then, we show the sensitivity of
the optimal gains (§ 2.3) while the numerical details are given in § 2.5.
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2.1. Governing equations
We consider the compressible Navier–Stokes equations written in conservative form

∂q
∂t

+ ∇ · F (q) = 0, (2.1)

with q = (ρ, ρv, ρE) denoting, respectively, the density, momentum and total energy of
the fluid and F (q) the associated fluxes. In expanded form, the Navier–Stokes equations
read

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.2)

∂(ρv)

∂t
+ ∇ · (ρvv + pI − τ ) = 0, (2.3)

∂(ρE)
∂t

+ ∇ · ((ρE + p)v − τ · v − λ∇T) = 0, (2.4)

with E = p/(ρ(γ − 1))+ 1
2v · v, τ = η(∇v + (∇v)T)− 2

3η(∇ · v)I , I the identity
tensor, p the pressure, η the dynamic viscosity, v the velocity, T the temperature, λ =
ηcp/Pr, cp the isobaric heat capacity and Pr the Prandtl number (Pr = 0.72). To close the
system, two more equations are required. First, one assumes a homogeneous, thermally
and calorically perfect gas. The perfect gas law is

p = ρrT, (2.5)

with r = 287.1 J kg−1 K−1 the specific gas constant. Then, Sutherland’s law is selected to
link the viscosity η to the temperature (Sutherland 1893)

η(T) = ηref

(
T

Tref

)3/2 Tref + S
T + S

, (2.6)

with S = 110.4 K the Sutherland temperature, ηref = 1.716 × 10−5 kg m−1 s−1 and Tref =
273.15 K.

After spatial discretisation (see § 2.5), the discrete residual is noted R(q) = −∇ · F (q).

2.2. Base flow, resolvent modes and optimal gains
The boundary layer base flow q̄ is a steady solution of the governing equations

R(q̄) = 0. (2.7)

It is an amplifier flow (Huerre & Monkewitz 1990), for which all small-amplitude
perturbations are exponentially stable in time (globally stable but convectively unstable).
In such flows, it is more relevant to perform a resolvent analysis to study the linear
dynamics of the flow and identify the pseudo-resonances of the flow. For this, we transform
to frequency space and consider a small-amplitude forcing field f ′(t) = eiωt f̌ that is
applied to the right-hand side of (2.1) and which may be restricted, through a prolongation
matrix P, to specific regions of the flow or specific components of the state. Here,
P is a rectangular matrix, containing only zeros and ones, and of size equal to the
dimension of the state q times the dimension of the forcing f . The linear response of
the flow q′(t) = eiωtq̌ is then governed by q̌ = RPf̌ , with R = (iωI − A)−1 denoting
the resolvent operator, A = ∂R/∂q the Jacobian and I the identity tensor. The resolvent

978 A16-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.993


A. Poulain, C. Content, G. Rigas, E. Garnier and D. Sipp

operator corresponds to a transfer function between the input (forcing) and the response
(perturbations). The optimal forcings/responses are then computed by optimising the
input–output gain μ2 between the energy of the response and the energy of the forcing

μ2 = sup
f̌

‖q̌‖2
q

‖ f̌ ‖2
f

, (2.8)

with ‖·‖q and ‖·‖f the user-selected norms to evaluate the amplitude of the fluctuations and
the forcing. These measures are defined with their associated discrete positive Hermitian
matrices Qq and Qf

‖q̌‖2
q = q̌∗Qqq̌, ‖ f̌ ‖2

f = f̌
∗
Qf f̌ , (2.9a,b)

where only Qf is required to be definite. For compressible flows, a common choice for Qq
and Qf consists of Chu’s energy (Chu 1965) in order to take into account the pressure (p̌)
and entropy (š) disturbances, which writes for dimensionless fluctuations

EChu = q̌∗QChuq̌ = 1
2

∫
Ω

(
ρ̄‖v̌‖2 + 1

γ

p̌2

p̄
+ γ (γ − 1)M4 p̄ š2

)
dΩ. (2.10)

Chu’s energy is the sum of the kinetic energy of the perturbation and a thermodynamic
component (potential energy from compression and from heat exchange) with appropriate
coefficients to exclude the conservative compression work (Hanifi, Schmid & Henningson
1996) in order to obtain a norm which does not increase in time in the absence of sources of
energy (George & Sujith 2011). Matrix Qq = Qf = QChu for Chu’s energy norm is block
diagonal and may be written with conservative variables, as detailed in Appendix A.

Solving for μ2
i over a range of frequencies ω provides the most receptive frequency

(where μi(ω)
2 is the largest) and the associated optimal forcing mode f̌ i.

From an algorithmic point of view, we solve for the optimal gain in (2.8) by rewriting

μ2 = sup
f̌

q̌∗Qqq̌

f̌
∗
Qf f̌

= sup
f̌

(RPf̌ )∗Qq(RPf̌ )

(Pf̌ )∗Qf (Pf̌ )
= sup

f̌

f̌
∗
P∗R∗QqRPf̌

f̌
∗
Qf f̌

. (2.11)

The optimisation problem defined by (2.11) is the Rayleigh quotient. It is equivalent to the
generalised Hermitian eigenvalue problem

P∗R∗QqRPf̌ i = μ2
i Qf f̌ i. (2.12)

Its eigenvalues are ranked such that μ2
i ≥ μ2

i+1 and the associated eigenvectors are f̌ i,

which we normalise to f̌
∗
i Qf f̌ i = 1. The normalised responses (q̌∗

i Qqq̌i = 1) are then
obtained through

q̌i = μ−1
i RPf̌ i. (2.13)

The bases f̌ i and q̌i are orthonormal bases of the input and output spaces.

2.3. Sensitivity of optimal gains to base-flow variations, steady forcing and parameter
variations

Linear sensitivity of eigenvalues to a general flow parameter has been addressed by
Martínez-Cava (2019). Here, we focus on optimal gains, as in Brandt et al. (2011).
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Following the discrete framework introduced in Mettot, Renac & Sipp (2014) for
eigenvalues, we extend the work of Martínez-Cava (2019) to optimal gains and emphasise
the link with the concepts of linear sensitivity of the optimal gain to base-flow
modifications δq̄ and steady forcing δf̄ , that were initially described in detail in Marquet,
Sipp & Jacquin (2008). We consider the general case of the sensitivity of the optimal gain
μ2

i to any flow parameter written p, such that

δμ2
i = (∇pμ

2
i )

∗Qpδp, (2.14)

where Qp is a given scalar product. The parameter p can be either a scalar number as
Reynolds number, M, T∞, . . . or a large-dimensional vector such as the prescribed inlet
profile or control vectors (wall-normal velocity or wall-temperature profiles). The latter
will be considered for application in the next section. The only restriction in the following
is that the control parameter p has to be invariant in time and in the z-direction, as the
base flow is assumed to remain steady and two-dimensional when varying the control
parameter. We consider that the residual depends on the parameter p i.e. R(q) = R(q, p)
and consequently also the Jacobian A(q, p) = ∂R(q, p)/∂q.

The objective of the optimisation is maximising the optimal gain μ2
i under the constraint

given by the eigenvalue problem written in (2.12) and that the base flow is a solution of
R(q̄, p) = 0. Because of the space or component restriction (P may be degenerate), it is
necessary to split the generalised eigenvalue problem (2.12) into three equations in order
to handle only matrices without inverses

Pf̌ i = μi(iωI − A)q̌i, μiQqq̌i = (−iωI − A∗)ǎ, P∗ǎ = μ2
i Qf f̌ i. (2.15a–c)

This system involves an additional component ǎ within the eigenproblem. We therefore
define the Lagrangian function L as a function of the state (the optimal gain μ2

i , the
optimal forcing f̌ i and response q̌i, the additional variable ǎ, the base flow q̄), the four
Lagrangian multipliers λ1, λ2, λ3 and λ4 and the control vector p

L([μ2
i , f̌ i, q̌i, ǎ, q̄], λ1···4, p) = μ2

i + 〈λ1,Pf̌ i − μi(iωI − A(q̄, p))q̌i〉
+ 〈λ2, μiQq(q̄)q̌i + (iωI + A(q̄, p)∗)ǎ〉
+ 〈λ3,P∗ǎ − μ2

i Qf (q̄)f̌ i〉 + 〈λ4,R(q̄, p)〉. (2.16)

Here, 〈a, b〉 = a∗b is the Hermitian scalar product. By zeroing the variation of L with the
state, taking into account that 〈 f̌ i,Qf f̌ i〉 = 1, we obtain that

λ1 = ǎ, λ2 = μiq̌i, λ3 = f̌ i, λ4 = Qf ∇f̄μ
2
i , (2.17a–d)

where
∇f̄μ

2
i

μ2
i

= −Q−1
f A−1∗Qq

∇q̄μ
2
i

μ2
i
, (2.18)

∇q̄μ
2
i

μ2
i

= Q−1
q

[
2 Re

(
H ′∗R∗Qqq̌i

)+
(
∂(Qqq̌i)

∂q

)∗
q̌i −

(
∂(Qf f̌ i)

∂q

)∗
f̌ i

]
, (2.19)

are two vectors called sensitivity to steady volume forcing and sensitivity to base-flow
variations (Marquet et al. 2008; Brandt et al. 2011; Mettot et al. 2014) that satisfy

δμ2
i = (∇f̄μ

2
i )

∗Qf δf̄ = (∇q̄μ
2
i )

∗Qqδq̄. (2.20)
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Matrix H ′ is defined as H ′δq̄ = H(q̌i, δq̄) for all δq̄, where H = ∂A/∂q = ∂2R/∂q2

is the Hessian rank-3 tensor. Details of the computation of the sensitivity to base-flow
modifications is given in Appendix B.

In expression (2.19), the components ∂Qq,f /∂q are non-zero in the case of Chu’s
energy norm. As an aside, Brandt et al. (2011) has introduced an additional physical
constraint (the time-invariant continuity equation (2.2)) to study the sensitivity to
physically relevant base-flow modifications. Details of the computation of the sensitivity
to momentum-divergence-free base-flow modifications is given in Appendix C.

Finally, the variation of L with the control vector p provides the gradient of interest

∇pμ
2
i

μ2
i

= Q−1
p

[(
∂R
∂p

)∗
Qf

∇f̄μ
2
i

μ2
i

+ 2 Re
(

H̃
′∗R∗Qqq̌

)]
, (2.21)

with H̃
′
defined as H̃

′
δp = H̃(q̌i, δp) for all δp, H̃ = ∂A/∂p = ∂2R/∂q∂p being a rank-3

tensor.
In expression (2.21), the first term is interpreted as the variation of the optimal gain

induced by the modification of the Jacobian due to the change of the base flow A(q)
while the second term is the variation of the Jacobian due to the variation of the control
parameter A(p), keeping the base flow constant. It has been described in a similar context
in Guo et al. (2021) for eigenvalue sensitivity: route I is the distortion of the base flow
which induces a modification of the eigenvalue problem, route II is the direct distortion of
the linear operator. Depending on the parameter p chosen to compute the sensitivity, one
route or another is favoured.

2.4. Interpretation of ∇pμ
2
i and ∇q̄μ

2
i

We consider the following optimisation problem:

δpm = argmax‖δp‖p=1 δμ
2
i (δp), (2.22)

where δμ2
i and δp are related through (2.14) and m indicates the optimal (maximal) parietal

vector. It is straightforward to show that

δpm = ∇pμ
2
i

‖∇pμ
2
i ‖p

. (2.23)

The gradient is therefore the best profile (of given small amplitude measured with ‖·‖p)
that optimally increases the gain and therefore optimally strengthens the instability.
Conversely, because of linearity, −δpm is the optimal open-loop control to damp the
optimal gain.

For interpretation, δμ2
i |m := δμ2

i (δp
m) may be rewritten as

δμ2
i |m
μ2

i
=
[
2Q−1

p Re
(

H̃
′∗R∗Qqq̌

)]∗
Qpδp

m︸ ︷︷ ︸
δEm

A

+
(

∇q̄μ
2
i

μ2
i

)∗
Qqδq̄

m

︸ ︷︷ ︸
δEm

q̄

, (2.24)

where the first term on the right-hand side, δEm
A , is the variation of the gain due to the

induced modification of the Jacobian, and the second part, δEm
q , is the variation due to the
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induced change in base flow

δq̄m = −A−1
(
∂R
∂p

)
δpm. (2.25)

Finally, the optimal gain variation due to the induced base-flow modification may be
broken down into three pieces

δEm
q̄ = δEm

k + δEm
p + δEm

s , (2.26)

where

δEm
k =

∫
Ω

ρ̄δv̄b · δv̄m

2
dΩ, δEm

p =
∫
Ω

δp̄bδp̄m

2γ p̄
dΩ,

δEm
s = γ (γ − 1)M4

2

∫
Ω

p̄δs̄bδs̄m dΩ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.27)

Here, the notation (δv̄b, δp̄b, δs̄b) corresponds to the velocity–pressure–entropy variations
associated with δq̄b := ∇q̄μ

2
i /μ

2
i , with b denoting the optimal base-flow modification

vector, and (δv̄m, δp̄m, δs̄m) to δq̄m. In the following, we will represent the contributions
δEm

A , δEm
k , δEm

p and δEm
s to assess the importance of Jacobian, base-flow kinetic energy,

pressure and entropy modifications in the gain variation associated with the optimal
control δpm.

Finally, it is also straightforward to show that the above δq̄b is also the solution to the
following optimisation problem:

δq̄b = argmax‖δq̄‖q=‖μ−2
i ∇q̄μ

2
i ‖q
δμ2

i (δq̄), (2.28)

where δμ2
i and δq̄ are related through (2.20). Hence, the maximum δμ2

i |b := δμ2
i (δq̄

b),
can be rewritten and decomposed as

δμ2
i |b
μ2

i
=
∥∥∥∥∥∇q̄μ

2
i

μ2
i

∥∥∥∥∥
2

q

= δEb
k + δEb

p + δEb
s , (2.29)

where

δEb
k =

∫
Ω

ρ̄‖δv̄b‖2

2
dΩ, δEb

p =
∫
Ω

(
δp̄b)2
2γ p̄

dΩ, δEb
s = γ (γ − 1)M4

2

∫
Ω

p̄
(
δs̄b
)2

dΩ.

(2.30a–c)
In the following, we will represent the contributions δEb

k , δEb
p and δEb

s to assess the
importance of base-flow kinetic energy, pressure and entropy modifications in the gain
variation associated with the base-flow modification δq̄b.

2.5. Numerical methods

2.5.1. Numerical discretisation and algorithms
The BROADCAST code includes all the tools required to compute the base flow, the global
stability analysis and the linear sensitivity analysis. A detailed description of the various
numerical methods and their validation for stability and sensitivity in BROADCAST can
be found in Poulain et al. (2023).
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The two-dimensional space discretisation for the inviscid flux follows the seventh-order
FE-MUSCL (flux-extrapolated monotonic upstream-centred scheme for conservation
laws) scheme (Cinnella & Content 2016) which had been assessed in hypersonic flow
simulations by Sciacovelli et al. (2021), showing excellent results in accuracy and shock
capturing features. The viscous fluxes are computed on a five-point compact stencil which
is fourth-order accurate (Shen, Zha & Chen 2009).

The Jacobian as well as all the other operators derived to compute the gradients
are constructed by algorithmic differentiation (AD) through the software TAPENADE
(Hascoet & Pascual 2013). The matrix operators are explicitly built by matrix-vector
products (Mettot 2013). They correspond to linearised discrete residuals given by AD
and are stored in a sparse format. For sensitivity computation, for instance in the case
of the wall velocity (p = vw), the numerical method to compute the sparse residual and
Jacobian operators ∂R/∂vw and ∂A/∂vw which appear in ∇vwμ

2 consists of writing the
wall-boundary condition which appears inside the residual R as a function of the input
vw (taken equal to 0 for base flow) and linearising through AD. A description of the
implementation of the wall-boundary condition is given in Appendix D.

All linear systems involving sparse matrices are then solved using the PETSC software
interface (Balay et al. 2019) which includes the direct sparse lower-upper decomposition
(LU) solver from MUMPS (Amestoy et al. 2001). With the BROADCAST code being
written in the Python language, the petsc4py version is used (Dalcin et al. 2011).
The base-flow solution is solved with a Newton method which consists of an iterative
method, where from a state qn, we build qn+1 = qn + δqn, with A(qn) δqn = −R(qn) and
A(qn) = ∂R/∂q|qn is the Jacobian operator evaluated at q = qn. To ease convergence, a
pseudo-transient continuation method (or relaxation method) is used following Crivellini
& Bassi (2011). To solve the generalised eigenvalue problem from resolvent analysis,
we use the SLEPc library (Roman et al. 2015), which implements various Krylov–Schur
methods (Hernández et al. 2007).

The gradients do not depend on the domain height, given that the full forcing/response
support is included in the domain, and have been validated by comparing the results with
a finite difference method

lim
ε→0

μ2
i (p + ε∇pμ

2
i )− μ2

i (p)
ε

→ ‖∇pμ
2
i ‖2. (2.31)

Furthermore, a comparison of the gradient of the optimal gain with wall blowing between
the discrete and continuous frameworks is performed on a low Mach boundary layer in
Appendix E.

2.5.2. Building the Jacobian and Hessian for three-dimensional perturbations
The extension of global stability analysis to linear three-dimensional (3-D) perturbations
follows Bugeat et al. (2019) and has been adapted to BROADCAST in Poulain et al. (2023).
The base flow being homogeneous in the z-direction, the perturbation field can be searched
under the form

q′(x, y, z, t) = q̌(x, y) exp(i(ωt + βz)), (2.32)

where β is the real wavenumber in the z-direction. A similar form is assumed for the
optimal forcing. These perturbations can therefore be studied on the same 2-D mesh
without discretisation of the z-direction. The z-dependency of the forcing and response
are taken into account analytically. One can split the 3-D residual R3D as the sum of the
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2-D discretised residual R and its z-derivative components Rz

R3D(q) = R(q)+ Rz(q). (2.33)

For the compressible Navier–Stokes equations, the Rz residual in conservative form can
be written as the sum of four functions whose expressions can be found in Poulain et al.
(2023)

Rz(q) = B(q)
∂q
∂z

+ C1(q)
∂2q
∂z2 + ∂C2

∂q
∂q
∂z
∂q
∂z

+ D1(q)
∂q
∂z


 D2(q)
∂q
∂z
. (2.34)

Notation 
 refers to the element-wise product of two matrices or vectors (Hadamard
product). Given that the base flow is homogeneous in the z-direction and keeping only
the first-order terms for small fluctuations q′, the linearisation of (2.33) yields

A3D (q̄)q′ = (A(q̄)+ Az(q̄)) q′ = (A(q̄)+ iβB(q̄)− β2C1(q̄))q′. (2.35)

Linear sensitivity described in § 2.3 may also be extended to 3-D perturbations.
However, the following expansions are correct only for 2-D sensitivity (homogeneous
gradient in the z-direction) of the eigenvalue/optimal gain of 3-D modes. Similarly to
the equation (2.35), the 3-D Hessian operator can be written as H3D(q̌, q̄) = H(q̌, q̄)+
H z(q̌, q̄). One should notice that the base flow q̄ remains two-dimensional and only the
response q̌ brings a new 3-D contribution. The 3-D Hessian is defined as

H3D(q̌, q̄) = ∂
(
A3Dq̌

)
∂q

∣∣∣∣∣
q̄

. (2.36)

From (2.35), the following expression may be derived:

H ′
3D = H ′ + iβ

∂B
∂q

q̌ − β2 ∂C1

∂q
q̌. (2.37)

Therefore, the 2-D sensitivity of a 3-D mode is given by the same equations as the one
of a 2-D mode but by replacing the 2-D Hessian by the 3-D Hessian written in (2.37).

3. Supersonic boundary layer

3.1. Configuration and base flow
We consider an adiabatic flat plate close to the configuration studied in Bugeat et al. (2019).
All quantities are made non-dimensional with the following density, velocity, length and
temperature scales: ρ∞, U∞, ν∞/U∞, T∞. The free-stream Mach number and free-stream
temperature are respectively M = 4.5 and T∞ = 288 K. The spatial coordinates (x, y, z)
then correspond to (Rex,Rey,Rez), where, for example, Rex = U∞x/ν∞.

The flat-plate geometry is studied in a rectangular computational domain. The domain
starts with a thin boundary layer profile at Rex,in = 8160 and ends at Rex,out = 2 × 106.
The height of the domain is high enough in order not to affect the development of the
boundary layer or the stability analysis. In practice, the domain height is approximately
9 δ∗out with δ∗out the compressible displacement thickness at the outlet. This gives Rey,top =
119 000. The Cartesian mesh is equi-spaced in the x-direction and stretched in the
wall-normal direction (y-direction). The stretching has the following properties: maximum
y+ � 1 at the wall, cell height geometric growth rate of 2 % from y = 0 to y = 3δ99 with
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0.5

0

1 × 104

Rey

Figure 2. Mach number field of the base flow. Solid line indicates the boundary layer thickness δ99. Dashed
line indicates the displacement thickness δ∗.

δ99 the boundary layer thickness, where �y+ ≈ 10 is reached and then a growth rate
increase from 2 % to 10 % from y = 3δ99 to y = Ly where �y+ ≈ 130. The mesh has
the size (Nx,Ny) = (1000, 150) which gives N = 150 000 grid points.

Four different boundary conditions are applied around the rectangular domain. At the
inlet, a Dirichlet boundary condition is applied. The imposed flow profile corresponds
to a compressible self-similar solution for u, v, ρ and T . At the outlet, an extrapolation
boundary condition is imposed (the flow is overall assumed supersonic). An adiabatic
no-slip wall is prescribed at the bottom while a non-reflecting condition (Poinsot & Lele
1992) is employed at the top boundary.

The two-dimensional steady base flow (figure 2) is computed by a pseudo-transient
continuation method, the compressible self-similar solution being taken as initial state.
The algorithm converges in 7 iterations (high initial CFL (Courant–Friedrichs–Lewy
number) as the self-similar solution is close to the base-flow solution) and decreases the
residual L2 norms by 12 orders of magnitude.

3.2. Stability
The global stability (resolvent) analysis of the M = 4.5 boundary layer over an adiabatic
flat plate has been thoroughly studied by Bugeat et al. (2019) and validated with the
present tools in Poulain et al. (2023). Therefore, more details can be found in the first
cited paper, and only the most important stability results are recalled here because they
represent necessary steps to perform the sensitivity analysis.

We recall that the frequency is normalised as F = ων∞/U2∞ and the spanwise
wavenumber β with the reference length ν∞/U∞. The measures Qq and Qf correspond to
Chu’s energy, both being restricted through P to Rex � 1.75 × 106 and Rey � 59 500 to
remove the top and outlet boundary conditions from the optimisation domain. The forcing
f̌ is therefore only defined in this region and is applied to all five equations. At M = 4.5,
the second Mack mode exhibits a large gain,μ0 = 1.80 × 107, which is obtained for β = 0
and F = 2.3 × 10−4. The optimal gains are also computed with β /= 0 (figure 3a). The 3-D
gains highlight streaks (μ0 = 4.66 × 107) around β = 2 × 10−4 at zero frequency and the
first oblique Mack mode is the strongest instability (μ0 = 1.16 × 108) for approximately
β = 1.2 × 10−4 and F = 3 × 10−5.

978 A16-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.993


Linear sensitivity of a supersonic boundary layer

0 0.5 × 106 1.0 × 106

Rex

1.5 × 106 2.0 × 106

d C
hu

3 × 10–6

108

107

2 × 10–6

1 × 10–6

40

35

30

25

20

15

10

10 20 30

5

0

0

F (×105)

β
 (

×1
05 )

(b)(a)

Figure 3. Resolvent analysis. (a) Optimal gain μ0 with respect to the frequency F and the spanwise
wavenumber β. White circle denotes the first Mack mode, black triangle the streaks and black square the
second Mack mode. (b) Energy density dChu of the optimal forcing (dashed lines) and response (solid lines) of
the streaks (blue), the first (red) and second (green) Mack modes. Black vertical lines indicate branch I of first
Mack mode (dashed line), branch I of the mode S linked to the second Mack mode (dotted line), branch II of
the same mode S (dashed-dotted line) and the end of the optimisation domain for resolvent analysis (solid line).

The streamwise evolution of the resolvent modes is illustrated through their streamwise
energy growth. An energy density is defined as the integral of Chu’s energy in the
wall-normal direction. For example, dChu(x) = ∫ ymax

0 q̌(x, y)∗QChu(x, y)q̌(x, y) dy for the
optimal response. Chu’s energy densities of the forcing and response for the streaks,
first and second Mack modes are plotted in figure 3(b). A spatial local stability analysis
(description of the method in Appendix F) has been performed at the frequency (ω) and
wavenumber (β) of the first and second Mack modes (see symbols in figure 3a). The
streamwise locations of branch I (respectively II) which is the beginning (respectively end)
of the unstable region in the x-direction of the local modes are also plotted in figure 3(b).
The maximal optimal forcing locations for the first and second Mack modes agree well
with the branch I location of their respective local modes. Branch II of the first Mack
mode is downstream of the domain end while branch II of the local mode S (linked to the
second Mack mode) is slightly upstream of the maximal optimal response location of the
second Mack mode. As suggested by Sipp & Marquet (2013), the discrepancies between
local branches and maxima of the resolvent analysis are explained both by non-parallel
effects (Gaster 1974) and Orr mechanism, the non-modal non-parallel unstable region
being therefore larger than the local modal one. Furthermore, in comparison with the first
Mack mode, larger differences between local and resolvent analyses are noticed for the
second (higher frequency) where the Orr mechanism is stronger (Sipp & Marquet 2013).

3.3. Sensitivity to wall-boundary control
After the computation of the sensitivity to base-flow modifications and steady forcing in
Appendix G, whose results in the global framework match those of the literature on LST
(Park & Zaki 2019; Guo et al. 2021), the sensitivity of the streaks, first and second Mack
modes to two types of modifications of the wall-boundary condition are analysed:

(i) Small-amplitude wall-normal blowing/suction δvw(x) at the surface of the flat plate
(Appendix H).

(ii) Small-amplitude heat flux δφw(x) at the surface of the flat plate (§ 3.4).
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2nd mode
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Figure 4. Optimal wall-control profiles to damp the different instabilities i.e. opposite of the sensitivity of the
optimal gain for each instability: −δpm. (a) Optimal wall-velocity profile −δvw. (b) Optimal wall heat-flux
profile −δφw.

In both cases, the identity Qp = I is chosen for the norm associated with the parameter
spaces p = vw and p = φw as the discretisation along the x-direction is uniform.

In the following, we discuss the opposite of the sensitivity −δpm (see (2.23)), which
corresponds to the optimal wall profile to be prescribed at the surface in order to mitigate
the instability. This profile is plotted for blowing/suction control in figure 4(a) and for
heat-flux control in figure 4(b). In figure 4, the marker ‘max. Forc.’ refers to the maximal
optimal forcing location of the first Mack mode, ‘branch I’ to the streamwise location of
branch I of the local mode linked to the first Mack mode and ‘max. ampli.’ to the location
of the maximal amplification rate (max(−αi)) of the local mode.

Both wall velocity and heat-flux control gradients highlight that the streaks are not
sensitive to boundary control in comparison with the Mack modes. Furthermore, the
profile to damp the streaks has a similar behaviour for both types of wall control i.e.
negative in the downstream part of the domain where the optimal response of the streaks
lies. In figure 4(a), the second Mack mode is confirmed to be the most sensitive instability
to wall-velocity control. Furthermore, it is the only instability among the three which is
stabilised by steady wall blowing (downstream Rex = 1.2 × 106). The gradient for the
second Mack mode is studied in detail in Appendix H. Optimal suction actuator locations
to stabilise each instability are different: Rex = 0.6 × 106 for the first Mack mode (close
to the location of the maximal amplification rate of the local mode), Rex = 1 × 106 for
the second Mack mode and Rex = 1.7 × 106 for the streaks. However, a suction actuator
located anywhere upstream Rex = 1.2 × 106 would damp both Mack modes without
affecting much the streaks. The effect of applying the second Mack mode gradient on the
stability of the other instabilities is investigated in § 3.5, where the design of an optimal
wall-control actuator is attempted.

In figure 4(b), it is seen that the first Mack mode is the most sensitive to wall heat
flux control. The profile to damp the optimal gain of the first Mack mode has one
heating zone upstream until Rex = 0.21 × 106 (located slightly downstream of branch
I) and one cooling region downstream with the largest sensitivity close to the location
of the maximal amplification rate of the local mode. The variations of the optimal wall
heat-flux profile to damp the second Mack mode are more complex and are studied in
detail in § 3.4. By comparing both Mack modes’ wall heat-flux profiles, they overall
display an opposite behaviour with respect to wall heat-flux changes (Mack 1993),

978 A16-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.993


Linear sensitivity of a supersonic boundary layer

however, in some streamwise regions, they follow similar trends. First, at the leading
edge, upstream Rex = 0.21 × 106, heating the wall would damp both Mack modes and
secondly, downstream, between Rex = 1.045 × 106 and Rex = 1.33 × 106, cooling would
produce the same effect. The effect of the application of the first Mack mode gradient
on the stability of the other instabilities is investigated in § 3.5. Furthermore, based on
the zones where the gradients’ sign matches between the first and second Mack modes, a
control that damps both instabilities will also be discussed in this section.

One may remark that the optimal wall-control profiles given by figure 4 may have been
partially predicted from the sensitivity ∇ fμ

2
0/μ

2
0 in figure 18 in Appendix G. Indeed,

by looking at the sign of the gradient close to the wall, one may see that the gradients
∇fT

μ2
0/μ

2
0 for both Mack modes have similar trends for the wall gradient ∇φwμ

2
0. To

a factor, they predict the same streamwise variations, however, the exact derivation of
the sensitivity to wall-boundary control is necessary as the optimal wall-control profiles
will be injected at the wall-boundary condition to compute new controlled base flows and
perform further resolvent analysis. Therefore, for optimisation, it is required to compute
this gradient, but to get general information about the sensitivity, the sensitivity to steady
forcing seems sufficient for quantities slowly varying close to the boundary condition such
as the temperature (adiabatic condition).

From the optimal wall-control profile δpm, one may compute the linear base-flow
variations δq̄m induced by δpm using (2.25). This informs us on the base-flow variations
induced by the wall control, which in turn then change the optimal gain of the instability.

First, the optimal wall-normal velocity control δvw (which consists of blowing) of
the first Mack mode induces a decrease of streamwise momentum (figure 5a) between
the boundary layer thickness δ99 and the displacement thickness δ∗ and a temperature
increase (figure 5b) close to the displacement thickness, leading to the thickening of
the boundary layer. The patterns are quite constant in the streamwise direction, which
reflects the quasi-uniform blowing profile δvw of the first Mack mode. The variations
of temperature (positive here) are opposite to those of streamwise momentum, showing
that a deceleration of the flow in the boundary layer is accompanied to an increase of its
temperature. Second, as the wall-normal velocity control δvw of the second Mack mode
involves blowing and suction along Rex, the base-flow variations in streamwise momentum
(figure 5c) and temperature (figure 5d) exhibit similar streamwise wavy patterns, since
these fields are affected both by the induced advection linked to the blowing/suction
profile. By comparing the variations δq̄m induced by wall-normal velocity control δvw
(figure 5) with the gradient ∇q̄μ

2
0/μ

2
0 (figure 17 in Appendix G), which is the optimal

base-flow variation δq̄b, one may notice how wall control efficiently acts in the sensitive
regions. The wall-normal velocity control δvw indeed manages to act in the most sensitive
region of the momentum component of the base flow, it, however, fails to induce a shear,
which is optimal to control the Mack modes.

Secondly, the wall heat-flux control δφw of both Mack modes induces a variation of
streamwise momentum (figure 6a,c) between the boundary layer thickness δ99 and the
displacement thickness δ∗, acting in the same region as the wall-normal velocity control
δvw. The variations of temperature induced by the wall heat-flux control δφw of both
Mack modes reproduce the optimal base-flow variations δq̄b within the boundary layer
(figures 6(b) and 6(d) compared with 18(b) and 18(d) in Appendix G). Because of its
application at the wall, the control is maximal there, which favours the first Mack mode
where the largest sensitivity region is at the wall, while the largest sensitivity region of
the second Mack mode is above the critical layer. This may explain why the wall heat-flux
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Figure 5. Linear base-flow variations δq̄m induced by the optimal wall-velocity control δpm = δvw. Solid
line represents the boundary layer thickness, dash-dotted line indicates the generalised inflection point and
dashed line is the displacement thickness. (a,b) First Mack mode (δvw corresponds to blowing B). (c,d) Second
Mack mode (δvw corresponds to blowing/suction BS). (a,c) Streamwise component of the momentum δρum.
(b,d) Temperature component δT̄

m
.

control has a larger effect on the first Mack mode (a factor 3 in terms of magnitude with
respect to the second Mack mode).

Finally, the components of the linear gain variation induced by wall-boundary control
are computed for both Mack modes and reported in figure 7. As will be confirmed in the
next section for the second Mack mode, the variation of gain induced by the modification
of the Jacobian is small in comparison with the one induced by base-flow modification for
both Mack modes. By analysing the contributions driven by the base-flow modification,
the pressure component is always the smallest. The streamwise momentum and entropy
components represent most of the energy, except for the gain variation of the first Mack
mode induced by the optimal heat-flux profile and the streaks where the wall-normal
component contributes as much as the entropy in the energy. The streamwise momentum
energy modification exhibits an effect opposite to the one of the entropy for both Mack
modes. The opposite behaviour with respect to wall heat flux control between the first and
second Mack modes is once again highlighted by an opposite sign of entropy energy. In
nearly all cases, the linear gain variation is driven by the streamwise momentum base-flow
change, except for the second Mack mode with heat-flux control, where it is the entropy
modification of the base flow. This raises the possibility of simultaneous control of both
Mack modes if a heat-flux actuator is designed to trigger variations of same sign in
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Figure 6. Linear base-flow variations δq̄m induced by the optimal wall heat-flux control δpm = δφw. Solid
line represents the boundary layer thickness, dash-dotted line indicates the generalised inflection point and
dashed line is the displacement thickness. (a,b) First Mack mode (δφw corresponds to cooling/heating cH).
(c,d) Second Mack mode (δφw corresponds to cooling/heating/cooling ChC). (a,c) Streamwise component of
the momentum δρum. (b,d) Temperature component δT̄

m
.

the streamwise momentum and entropy components (the optimal profiles discussed here
trigger opposite effects in these two components).

3.4. Sensitivity of the second Mack mode to steady wall heating
The variations of the optimal wall heat-flux velocity profile to damp the second Mack
mode are analysed in further details. Then, linear predictions are compared with nonlinear
computations for increasing heating amplitudes to assess the predicting capabilities of
linear gradients.

The optimal wall heat-flux profile to damp the second Mack mode and its decomposition
into various components is plotted in figure 8. As seen from the integral energy in figure 7,
the gradient ∇φwμ

2
0 is mainly produced from the sensitivity term due to the base-flow

variation as the term due to the Jacobian variation is of smaller amplitude. In figure 8,
the markers ‘max. Forc’ and ‘max. Resp’ indicate, respectively, the locations of maximal
optimal forcing and response for the second Mack modes (peak values from figure 3b).
The markers ‘branch I’ and ‘branch II’ refer, respectively, to the beginning and end in the
downstream direction of the unstable region of the local mode S. The marker ‘max. ampli.’
denotes the location of the largest negative amplification rate of the local mode S. The
marker ‘sync. S/F’ indicates the synchronisation point which is the streamwise location
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Figure 7. Chu’s energy norm components of the linear gain variation induced by the wall-boundary control
normalised for each instability. The first bar refers to the optimal wall-velocity control δvw: blowing for the
first Mack mode, blowing/suction for the second Mack mode and blowing/suction/blowing for the streaks.
The second bar refers to the optimal wall heat flux control δφw: cooling/heating for the first Mack mode,
cooling/heating/cooling for the second Mack mode and heating/cooling/heating for the streaks. The Jacobian
and pressure components are not apparent as they are more than one order of magnitude below the other
components.

0 0.5 × 106 1.0 × 106

Rex

1.5 × 106 2.0 × 106

0.2

0.1

–0.1

0

–(
∇ φ

w
μ
2 0)
/μ

2 0

Branch IIBranch I

max. ampli.

max. Forc.

Sync. S/F

max. Resp.

–δpm
q

–δpm
A

–δpm

Figure 8. Optimal wall heat-flux profile to damp the second Mack mode i.e. opposite of the sensitivity of
the optimal gain of the second Mack mode to wall heat flux −δpm = −δφw. Base-flow component −δpm

q̄ and
Jacobian component −δpm

A are also indicated, the latter being almost zero.

where the phase velocities of mode S and F are equal. Furthermore, we give evidence in
Appendix I that the location of the above points within the gradients (for both types of
wall control) remain relatively constant for different frequencies.

The gradient shows two heating zones and one cooling zone. First, the largest sensitivity
is close to the leading edge. This large sensitivity upstream of the forcing was already
highlighted by Fedorov et al. (2014) through the analysis of the effect of a local volume
energy source term. Then, two local maxima of the gradient in the heating zone seem to
correspond with the maximal forcing and response zones. Then, the cooling sensitivity
region is located in the wavemaker region where forcing and response overlap, more
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Figure 9. Local stability analysis of the uncontrolled base flow (solid lines) and the controlled base flow
(dashed lines) with the optimal wall heat-flux profile −∇φwμ

2
0/μ

2
0 for C′

θ = 1.0 × 10−2. (a) Phase velocity
cr/U∞. Dashed lines denote, respectively, from top to bottom the phase velocities 1 + 1/M∞, 1 and
1 − 1/M∞. (b) Amplification rate αiδ

∗.

precisely between branch I and branch II of mode S. Previous studies (Zhao et al. 2018;
Batista & Kuehl 2020) have found that cooling upstream of the synchronisation point and
heating downstream damp the second Mack mode. In the present result, the shift between
cooling and heating regions of sensitivity is not located at the synchronisation point (but
close to branch II of mode S). This discrepancy may be explained by the fact that, contrary
to previous studies where the forcing structure was kept fixed when control was applied,
we let the forcing adapt and be optimised as the control is applied (see figure 10b).

We now prescribe the heat-flux profile given by −∇φwμ
2
0 at the wall, compute a new

base flow and repeat the resolvent analysis. To quantify the wall heat-flux control applied
to the base flow, we define an energy coefficient C′

θ based on the ratio of energy injected
at the wall over the free-stream energy deficit

C′
θ =

∫
y=0
λ

∣∣∣∣∂T
∂y

∣∣∣∣ dx∫
x=xout

(ρ∞E∞U∞ − ρEu) dy
, (3.1)

with λ(∂T/∂y) the heat flux injected (the uncontrolled case being adiabatic) where λ =
ηcp/Pr and η is the dynamic viscosity. To understand the effect of the control profile
shown in figure 8, we compare local stability (spatial LST) analysis results applied on the
uncontrolled base flow and on the controlled base flow with the full stabilising gradient at
C′
θ = 1.0 × 10−2.
Phase velocities and amplification rates of modes S and F are shown in figure 9 with and

without the application of the stabilising wall profile. The phase velocity of both modes
F and S of the controlled base flow slightly deviates from the original ones in the control
region. This results in a shorter synchronisation region between mode F and S leading to
a shorter unstable region for the amplification rate of mode S induced by the modification
of both the branch I and II locations. Zhao et al. (2018) noticed the same behaviour for the
phase velocity in the case of heating and cooling strip control with a stronger increase of
the phase velocity of mode F.
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Figure 10. Resolvent analysis for different base flows controlled with the optimal wall heat-flux profile
−∇φwμ

2
0/μ

2
0. (a) Optimal gain μ for β = 0 as a function of frequency F for C′

θ = 0 (blue), C′
θ = 1.9 × 10−3

(red), C′
θ = 1.0 × 10−2 (yellow) and C′

θ = 2.1 × 10−2 (green). Solid lines indicate the optimal gain μ0 while
dashed lines indicate the first suboptimal gain μ1. The stars indicate the linear gain predicted from the gradient.
(b) Energy density dChu of the optimal forcing (dashed lines) and response (solid lines) of the second Mack
mode without control (green) and for the controlled base flow at C′

θ = 1.0 × 10−2 (red). Black vertical line
indicates the end of the optimisation domain for resolvent analysis.

In the following, we compare the predictions obtained by the gradient approach and the
exact results obtained by computing the modified base flow and the resolvent analysis.

We plot in figure 10(a) the optimal gain for β = 0 as a function of frequency F (around
the first and second Mack modes’ frequencies) computed for the controlled base flow with
different values of C′

θ . The exact ‘nonlinear’ optimal gain variations are given with lines
and the linear predictions with stars of same colour. The linear predictions are evaluated
by writing (2.31) as μ2

0(p − ε∇pμ
2
0) = μ2

0(p)− ε‖∇pμ
2
0‖2 with ε a function of C′

θ . The
maximal optimal gain reduction for different values of C′

θ is reported in the table 1. At
C′
θ = 1.9 × 10−4, the linear prediction remains accurate while above C′

θ = 1.0 × 10−2,
the nonlinear (0.809) and linear (0.658) predicted optimal gain ratios of the second Mack
mode start to significantly deviate from each other. The linear predictions for the 2-D first
Mack mode remain accurate for larger C′

θ . The control applied to the base flow reduces the
optimal gain for the frequencies around the second Mack mode but strongly increases it for
the lower frequencies corresponding to the 2-D first Mack mode, up to the point where this
mode becomes the dominant one at C′

θ = 2.1 × 10−2. Furthermore, the first suboptimal
gain μ1 for the different energy coefficients are also plotted in figure 10(a). While the
optimal gain μ0 is effectively damped with an increased wall-temperature control, the
suboptimal gain μ1 increases. This results in a low-rank loss of the system i.e. the optimal
response alone will not be sufficient to describe the dynamics of the boundary layer for a
large-amplitude wall-temperature control.

Chu’s energy densities of the optimal forcing and response with heating/cooling control
at C′

θ = 1.66 × 10−2 are plotted in figure 10(b) and compared with the results without
control. Both the optimal forcing and response densities exhibit a larger support with
control than without (we recall that the response energy is normalised by 〈q̌,Qqq̌〉 = 1
so that the integral under the curve is 1). There is both a downstream shift of the optimal
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C′
θ Gain μ0 Gain ratio Linear gain ratio

1.9 × 10−4 1.789 × 107 0.997 0.994
1.9 × 10−3 1.716 × 107 0.956 0.942
1.0 × 10−2 1.451 × 107 0.809 0.658

Table 1. Optimal gain evolution of the second Mack mode with respect to the optimal wall heat-flux profile
−∇φwμ

2
0/μ

2
0 at various energy coefficient C′

θ intensities. Gain ratio is computed by μ0(C′
θ /= 0)/μ0(C′

θ = 0).

The expected linear gain ratio is computed by
√
μ2

0 − ε‖∇pμ
2
0‖2/μ0 with ε a function of C′

θ .

forcing and an upstream shift of the optimal response. This can be understood from spatial
LST results, where branch I is seen to be shifted downstream and branch II upstream.

A similar detailed analysis of the optimal steady wall blowing/suction profile to damp
the second Mack mode is performed in Appendix H.

3.5. Design of a wall actuator targeting all instabilities
Once the sensitivity regions of the three instabilities to wall control have been identified
(§ 3.3), the initial steps for the design of an optimal wall-control actuator can be performed.
We first consider the full stabilising profiles given by the gradients −∇pμ

2
0/μ

2
0 (figure 4)

of largest magnitude for blowing/suction and cooling/heating:

(i) The wall-normal blowing/suction profile −∇vwμ
2
0/μ

2
0 of the second Mack mode.

(ii) The wall heat-flux profile −∇φwμ
2
0/μ

2
0 of the first Mack mode.

We apply these profiles at the wall, compute a new base flow and repeat the resolvent
analysis over the whole range of spanwise wavenumbers and frequencies, to assess the
overall performance of each control strategy. We perform these computations at the finite
control amplitude Cθ = 3.2 × 10−4 for blowing/suction control, at C′

θ = 6.4 × 10−3 and
C′
θ = 4.0 × 10−2 for heat-flux control. Mach number and temperature of the controlled

base flows are plotted in figure 11, resolvent gain maps in figure 12. Table 2 summarises
the optimal gain reduction for all the actuators considered.

For blowing/suction control, we observe in figure 12(a) that the first Mack mode has
also been reduced (optimal gain ratio of 0.80) because of the suction upstream. For
2-D disturbances, as seen in Appendix H, the second Mack mode is damped around
the frequency where the gradient has been computed but increased at lower and higher
frequencies, resulting in a shift of the second Mack mode to lower frequencies. Therefore,
the overall optimal gain peak ratio of the second Mack mode is decreased to 0.53, however,
the blowing/suction mechanism is difficult to apply to realistic configurations.

Considering heat-flux control, in figure 12(b), the frequencies around the first Mack
mode have been reduced, leading to an optimal gain ratio of 0.69. Nonetheless, as expected
from the heat-flux gradients in figure 4(b), the second Mack mode is promoted by wall
cooling, frequencies higher than F = 2.2 × 10−4 being amplified. Increasing the intensity
of the control (figure 12c) leads to the same results exhibiting a larger optimal gain for the
second Mack mode while the first Mack mode is damped such that the local peak of this
instability vanishes, making the streaks the most dominant mechanism (highest optimal
gain).

In order to design a wall-control actuator which damps all instabilities, two avenues are
revealed from the computations above (combining blowing and heating is not considered
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Figure 11. Mach number (a–c) and temperature (d– f ) of the controlled base flows. (a,d) Blowing control
given by the wall-velocity profile −∇vwμ

2
0/μ

2
0 for the second Mack mode at Cθ = 3.2 × 10−4. (b,e) Heat-flux

control given by the wall heat-flux profile −∇φwμ
2
0/μ

2
0 for the first Mack mode at C′

θ = 6.4 × 10−3. (c, f )
Heat-flux control given by the wall heat flux profile −∇φwμ

2
0/μ

2
0 for the first Mack mode at C′

θ = 4.0 × 10−2.
In (a–c), solid line indicates the boundary layer thickness with control and dashed line indicates the boundary
layer thickness of the uncontrolled base flow (see figure 2). In (d– f ), dash-dotted line indicates the total energy
deficit thickness δE = ∫ +∞

y=0 (1 − ρEu/ρ∞E∞U∞) dy and dotted line indicates δE of the uncontrolled base flow.
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Figure 12. Optimal gain μ0 of controlled boundary layers. White circle denotes the first Mack mode, black
triangle denotes the streaks and black square denotes the second Mack mode. Contour lines denote the ratio
of the optimal gain with control over the optimal gain without control μ0(C′

θ /= 0)/μ0(C′
θ = 0) given by

figure 3(a). (a) Blowing/suction control with wall-velocity profile −∇vwμ
2
0/μ

2
0 for the second Mack mode

at Cθ = 3.2 × 10−4. (b) Heat-flux control with wall heat-flux profile −∇φwμ
2
0/μ

2
0 for the first Mack mode at

C′
θ = 6.4 × 10−3. (c) Heat-flux control given with wall heat-flux profile −∇φwμ

2
0/μ

2
0 for the first Mack mode

at C′
θ = 4.0 × 10−2.

in this work). The first would be a series of suction actuators in the upstream part of the
flat plate which would damp both Mack modes but this option is not selected because of
practical implementation challenges in realistic configurations. The second is a series of
constant heating and cooling strips with an appropriate location so that they would damp
both Mack modes. By inspecting the heat-flux gradients in figure 4(b), the gradients for
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Type of wall control Intensity 1st mode 2nd mode Streaks Global peak
gain ratio gain ratio gain ratio ratio

−∇vwμ
2
0 for 2nd Mack mode Cθ = 3.2 × 10−4 0.80 0.53 1.07 0.80

−∇φwμ
2
0 for 1st Mack mode C′

θ = 6.4 × 10−3 0.69 1.06 0.99 0.69
−∇φwμ

2
0 for 1st Mack mode C′

θ = 4.0 × 10−2 — 1.27 1.06 0.42
Heating strip C′

θ = 0.9 × 10−2 0.83 0.72 0.98 0.83
Cooling strip C′

θ = 0.9 × 10−2 0.75 1.03 0.93 0.75
Heating and Cooling strips C′

θ = 6.4 × 10−3 0.83 0.85 0.97 0.83
Heating and Cooling strips C′

θ = 0.9 × 10−2 0.81 0.73 0.92 0.81

Table 2. Optimal gain evolution with respect to different wall-control profiles. Gain ratio is computed by
μ0(Cθ /= 0)/μ0(Cθ = 0). Note that 1st (respectively 2nd and streak) gain ratio refers to the maximum gain
over (F, β) in the region of the 1st Mack (respectively 2nd Mack and streak) mode. The last column, global
peak ratio, represents the global maximum over the whole domain (F, β): maxμ0(Cθ /= 0)/maxμ0(Cθ = 0).

0

Rex

Rey

0.5 × 106

1 × 104

2 × 104

0

1 × 104

2 × 104

7.14

6.36

5.58

4.80

4.02

3.24

2.46

1.68

0.90

7.14

6.36

5.58

4.80

4.02

3.24

2.46

1.68

0.90

7.14

6.36

5.58

4.80

4.02

3.24

2.46

1.68

0.90
0

1 × 104

2 × 104

1.5 × 106

Rex

0.5 × 106 1.5 × 106

Rex

0.5 × 106 1.5 × 106

(b)(a) (c)

Figure 13. Temperature of the controlled base flows. Solid line (respectively dashed) indicates the boundary
layer thickness of the uncontrolled (respectively controlled) base flow. Dotted line (respectively dash-dotted)
indicates the total energy deficit thickness δE of the uncontrolled (respectively controlled) base flow.
(a) Heating strip upstream with C′

θ = 0.9 × 10−2. (b) Cooling strip downstream with C′
θ = 0.9 × 10−2.

(c) Heating strip upstream and cooling strip downstream with C′
θ = 0.9 × 10−2.

both Mack modes have the same direction in two locations: heating from the leading edge
until Rex = 0.21 × 106 and cooling between Rex = 1.045 × 106 and Rex = 1.33 × 106.
Therefore, we apply a constant heating strip at the first location and a constant cooling strip
at the second location, the relative intensity of the heating/cooling strips being computed
from the integrals (within each strip location) of the sum of the heat-flux gradients of both
Mack modes, such that any of the mode is favoured. This yields to a similar amplitude for
heating and cooling, the cooling being stronger by 1.175 than the heating.

We first study the effect of both strips independently and then together, at the same level
of C′

θ . The temperature fields of the base flows are plotted in figure 13 and the resolvent
gain maps in figure 14. First, for a single heating strip (figure 14a), two specific F − β

regions are damped: the first Mack mode/streak region and the second Mack mode region.
There is also a region in the F–β plane, where the instabilities are strengthened by the
control, but the instabilities were weak initially in that region, so this actuator indeed
attenuates all instabilities. Then, for a single cooling strip (figure 14b), instabilities for all
wavenumbers and frequencies below F = 2.4 × 10−4 are damped. Similarly to the cases
where the full heat-flux gradient profile was prescribed at the wall, the second Mack mode
is shifted to higher frequencies and amplified. Therefore, this actuator is very efficient to
damp the first Mack mode but it is not robust enough to mitigate all the instabilities as a
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Figure 14. Optimal gain μ0 of controlled boundary layers. White circle denotes the first Mack mode, black
triangle denotes the streak mode and black square denotes the second Mack mode. Contour lines denote the
ratio of the optimal gain with control over the optimal gain without control μ0(C′

θ /= 0)/μ0(C′
θ = 0) given

by figure 3(a). (a) Heating strip upstream with C′
θ = 0.9 × 10−2. (b) Cooling strip downstream with C′

θ =
0.9 × 10−2. (c) Heating strip upstream and cooling strip downstream with C′

θ = 0.9 × 10−2.

second Mack mode appearing at a larger frequency might be promoted by the cooling strip.
Eventually, the control through a heating strip upstream and a cooling strip downstream
(figure 14c) leads to a similar resolvent map and reduces by the same amount the optimal
gains of both Mack modes than with a single heating strip. Moreover, the streaks are
more damped with the additional cooling strip. Therefore, for the same energy spent,
depending on the context, two strips may represent a better actuator as each strip requires
the production of a smaller heat flux than a single heating strip but the mechanism would
involve both a heating and a cooling strip.

To compare both types of control, a ratio of energy flux may be defined. However,
since the induced mean skin-friction reduction cannot be inferred from the present linear
analysis, it is not possible to interpret this ratio as an energetic efficiency (a full nonlinear
analysis as in Rigas, Sipp & Colonius (2021) needs to be conducted to evaluate the power
saved due to the drag reduction with respect to the injected control power). Here, we
compare, for both types of control, the ratio of the reduction of the outgoing disturbance
energy flux, similarly to what was offered in the incompressible framework (Barbagallo
et al. 2012; Sipp & Marquet 2013), with the power provided at the wall. The flux
of Chu’s energy of the perturbations at the outlet of the optimisation domain φChu =∫

x=xopt
[q̌(x, y)∗QChu(x, y)q̌(x, y)]u( y) dy saved by the actuator is compared with the power

consumed by the actuator. The ratios of power for heat-flux ηHC and blowing/suction ηBS
control write

ηHC = (u′
max)

2 �φ∫
y=0
λ

∣∣∣∣∂T
∂y

∣∣∣∣ dx
, (3.2)

ηBS = (u′
max)

2 �φ∫
y=0

ρv2|v| dx
, (3.3)

where �φ = (φChu(C′
θ = 0)− φChu(C′

θ /= 0))/max |ǔ|2 is the normalised reduction of
disturbance energy flux, a constant that can be evaluated for given control efforts Cθ or
C′
θ and a given spatial structure. Furthermore, the analysis being linear, we choose the

amplitude of the disturbances by the maximal value u′
max of the streamwise fluctuation

velocity amplitude of the uncontrolled flow at the end of the optimisation domain.

978 A16-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.993


Linear sensitivity of a supersonic boundary layer

Considering the worst set of frequencies/spanwise wavenumbers given in table 2 and
picking u′

max = 0.01U∞ to remain within the linear regime, the heat-flux actuator power
ratio is ηHC = 0.0029 for the full gradient −∇φwμ

2
0 at C′

θ = 6.4 × 10−3. For an actuator
based on local strips, it decreases to ηHC = 0.0010 for a single heating strip (figure 14a)
but only to ηHC = 0.0019 for two strips (figure 14c). For blowing/suction control, applying
the full gradient −∇vwμ

2
0 computed for the 2nd Mack mode at Cθ = 3.2 × 10−4, the

reduction of the global peak ratio is obtained with ηBS = 348. Therefore, a control based
on the wall velocity mitigates better the fluctuations in comparison with wall-temperature
control, however, the latter may be a better candidate for realistic applications.

To conclude, a relevant initial design for a wall actuator would be a thin steady heating
strip located close to the leading edge (and possibly a second cooling strip downstream)
which would modify the base flow so that the boundary layer is less receptive to streaks,
first and second Mack modes. However, only linear computations were performed in this
work. To properly design an optimal finite-amplitude actuator, one must perform a full
iterative nonlinear evaluation (base-flow/stability/sensitivity analyses).

4. Conclusion

Optimal steady wall blowing and wall heating actuator locations for a Mach 4.5 boundary
layer over an adiabatic flat plate have been calculated. Firstly, resolvent analyses have
been performed around a base flow, highlighting the three main instabilities: the streaks,
first and second Mack modes. An adjoint-based optimisation technique then allowed us to
identify the optimal steady wall actuators to mitigate/strengthen the various instabilities.

Wall blowing/suction control induces streamwise momentum modifications in the
corresponding sensitive region of the flow i.e. between the critical layer and the boundary
layer thickness for both Mack modes. Wall heating/cooling control acts in the region of the
flow sensitive to temperature variations for the first Mack mode i.e. within the boundary
layer close to the wall but fails to induce temperature modifications above the critical
layer where it is more optimal for the second Mack mode. For both Mack modes, the
variations of optimal gain are driven by the streamwise momentum modifications always
counterbalanced by the entropy modifications, except for the wall heat-flux control of the
second Mack mode, where it is the entropy which promotes the optimal gain modification.

For steady wall blowing control, several conclusions are drawn. First, the second Mack
mode is the most sensitive to blowing/suction control. Suction control is optimal to
dampen the mode if located upstream of the synchronisation point and conversely for
blowing control, in agreement with previous results found for roughness control. Secondly,
the second Mack mode is optimally damped by a local suction device located in the region
of branch I of the local mode S while the optimal region for the first Mack mode is
around the maximum amplification rate of the local first mode. A steady blowing can
damp the second Mack mode only if it is applied in the region of branch II of mode S.
The application of the optimal wall suction and blowing control, computed for the second
Mack mode, in the nonlinear regime (finite-amplitude control) yields a reduction of the
optimal gain of the second Mack mode but shifts its peak to lower or higher frequencies,
triggers a small decrease of the first Mack mode gains and leaves the streaks unaffected.
Therefore, only a local suction actuator would efficiently dampen all instabilities.

The stability and sensitivity analyses have been repeated to find an optimal steady
wall heat-flux actuator. The first Mack mode appears as the most sensitive instability
to heating/cooling control. In agreement with previous findings (Mack 1993), the first
and second Mack modes have an opposite sensitivity with respect to wall-temperature
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changes, however, wall heating located close to the leading edge damps both Mack modes.
In the downstream region, a large cooling region damps the first Mack mode while only
a local cooling strip located in the unstable region of mode S damps the second Mack
mode but this is suboptimal in comparison with the leading edge region. The application
of the optimal wall heating and cooling control, computed for the first Mack mode, at
a nonlinear regime yields a strong reduction of the first Mack mode gains but strongly
amplifies the second Mack mode. The application of a single local steady heating strip
close to the leading edge (and possibly a cooling strip downstream in the unstable region
of mode S) manages to dampen all the instabilities and might be considered as an actuator
to delay transition towards turbulence for a various range of frequencies and spanwise
wavenumbers.
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Appendix A. Chu’s energy matrix

The Chu’s energy (Chu 1965) may be expressed into different forms depending on the set
of variables used. For the following fluctuation variables: velocity v̌ = (ǔ, v̌, w̌), density
ρ̌, pressure p̌, temperature Ť and entropy š, Chu’s energy writes, for instance, with
dimensionless variables

EChu = q̌∗QChuq̌ = 1
2

∫
Ω

(
ρ̄ ‖v̌‖2 + 1

γ

p̌2

p̄
+ γ (γ − 1)M4 p̄ š2

)
dΩ

= 1
2

∫
Ω

(
ρ̄ ‖v̌‖2 + T̄

ρ̄γM2 ρ̌
2 + ρ̄

(γ − 1)γM2T̄
Ť2
)

dΩ, (A1)

with q̄ indicating a base-flow variable. As the Navier–Stokes equations are written in
conservative form with the state vector q = (ρ, ρv, ρE), Chu’s energy must be expressed
with the conservative variables. For a spanwise homogeneous base flow (w̄ = 0), the
disturbance variables defined around the base flow q̄ write

ǔ = 1
ρ̄
( ˇ(ρu)− ūρ̌), (A2)

Ť = (γ − 1)γM2

ρ̄

[(
1
2
(ū2 + v̄2)− ē

)
ρ̌ − ū ˇ(ρu)− v̄ ˇ(ρv)+ ˇ(ρE)

]
, (A3)

with v̌ and w̌ defined similarly to ǔ.
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Following Bugeat et al. (2019), two base-flow variables are introduced to simplify the
notations

a1 = (γ − 1)γM2ρ̄

T̄
, (A4)

a2 =

(
1
2
(ū2 + v̄2)− ē

)
ρ̄

. (A5)

Therefore, Chu’s energy matrix writes in conservative form

QChu = 1
2

dΩ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ū2 + v̄2

ρ̄
+ T̄
ρ̄γM2 + a1a2

2 − ū(1 + a1a2)

ρ̄
− v̄(1 + a1a2)

ρ̄
0

a1a2

ρ̄

− ū(1 + a1a2)

ρ̄

1
ρ̄

+ ū2a1

ρ̄2
ūv̄a1

ρ̄2 0 − ūa1

ρ̄2

− v̄(1 + a1a2)

ρ̄

ūv̄a1

ρ̄2
1
ρ̄

+ v̄2a1

ρ̄2 0 − v̄a1

ρ̄2

0 0 0
1
ρ̄

0

a1a2

ρ̄
− ūa1

ρ̄2 − v̄a1

ρ̄2 0
a1

ρ̄2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A6)

Appendix B. Details of the sensitivity to base-flow modifications

The derivation of the sensitivity of the optimal gain to base-flow modifications is detailed

〈
∂L
∂ q̄
, δq̄
〉

=
〈
λ1, μi

∂(Aq̌i)

∂q
δq̄
〉
+
〈
λ2, μi

∂(Qqq̌i)

∂q
δq̄ + ∂(A∗ǎ)

∂q
δq̄
〉
−
〈
λ3, μ

2
i
∂(Qf f̌ i)

∂q
δq̄
〉

=
〈
ǎ, μi

∂(Aq̌i)

∂q
δq̄
〉
+
〈
μiq̌i, μi

∂(Qqq̌i)

∂q
δq̄ + ∂(A∗ǎ)

∂q
δq̄
〉
−
〈
f̌ i, μ

2
i
∂(Qf f̌ i)

∂q
δq̄
〉

= μi

〈(
∂(Aq̌i)

∂q

)∗
ǎ, δq̄

〉
+ μi

〈(
∂(A∗ǎ)
∂q

)∗
q̌i, δq̄

〉

+ μ2
i

〈(
∂(Qqq̌i)

∂q

)∗
q̌i, δq̄

〉
− μ2

i

〈(
∂(Qf f̌ i)

∂q

)∗
f̌ i, δq̄

〉
. (B1)

By writing the operators in component notations, one can find that(
∂(A∗ǎ)
∂q

)∗
q̌i = ǎ∗

(
∂(Aq̌i)

∂q

)
, (B2)
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and therefore the sum of both complex conjugates gives rise to twice the real part〈
∂L
∂ q̄
, δq̄
〉

=
〈
2μi Re

((
∂(Aq̌i)

∂q

)∗
ǎ
)

+ μ2
i

(
∂(Qqq̌i)

∂q

)∗
q̌i

− μ2
i

(
∂(Qf f̌ i)

∂q

)∗
f̌ i, δq̄

〉
, (B3)

and getting from (2.15a–c) that μiQqq̌i = R−1∗ǎ, one has〈
∂L
∂ q̄
, δq̄
〉

=
〈
2μ2

i Re
((

∂(Aq̌i)

∂q

)∗
R∗Qqq̌i

)
+ μ2

i

(
∂(Qqq̌i)

∂q

)∗
q̌i

− μ2
i

(
∂(Qf f̌ i)

∂q

)∗
f̌ i, δq̄

〉
,

⇒ ∇q̄μ
2
i = 2μ2

i Re
(
H ′∗R∗Qqq̌i

)+ μ2
i

(
∂(Qqq̌i)

∂q

)∗
q̌i − μ2

i

(
∂(Qf f̌ i)

∂q

)∗
f̌ i, (B4)

where Re(·) is the real part. Expressing the sparse Hessian operator H as

Hijk = ∂2Ri

∂qj∂qk

∣∣∣∣
q̄
, (B5)

we get that H(q̌, δq̄) = (∂(Aq̌)/∂q)δq̄. We can then define the matrix H ′ as H ′δq̄ =
H(q̌, δq̄) and then equation (B4) gives the sensitivity of the optimal gain to base-flow
modifications (2.19).

Appendix C. Sensitivity to momentum-divergence-free base-flow modifications

From the sensitivity to base-flow modifications ∇q̄μ
2
i given by (2.19), a restriction to

momentum-divergence-free base-flow variations can be performed. Denoting ∇df
ρ̄uμ

2
i and

∇df
ρ̄v
μ2

i the sensitivities to momentum-divergence-free modifications of the base-flow
momentum, any momentum-divergence-free base-flow modifications δdf ρ̄u and δdf ρ̄v
yield

δμ2
i = 〈∇df

ρ̄uμ
2
i , δ

df ρ̄u〉 + 〈∇df
ρ̄v
μ2

i , δ
df ρ̄v〉 = 〈∇ρ̄uμ

2
i , δ

df ρ̄u〉 + 〈∇ρ̄vμ
2
i , δ

df ρ̄v〉. (C1)

As the sensitivity and the momentum base-flow modifications are both momentum-
divergence free, they can be written as functions of scalars

∇df
ρ̄uμ

2
i = ∂ψ

∂y
, ∇df

ρ̄v
μ2

i = −∂ψ
∂x
, δdf ρ̄u = ∂φ

∂y
, δdf ρ̄v = −∂φ

∂x
. (C2a–d)

Injecting (C2a–d) into (C1) and assuming that the equation should be valid for any scalar
φ, an integration by parts leads to the Poisson equation

−�ψ = ∂∇ρ̄vμ
2
i

∂x
− ∂∇ρ̄uμ

2
i

∂y
, (C3)

with the boundary conditions ∇ψ · n = ny∇ρ̄uμ
2
i − nx∇ρ̄vμ

2
i and n = (nx, ny) the

boundary normal.
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Appendix D. Wall-boundary condition for blowing and heat flux

The implementation of the boundary conditions in the code BROADCAST is described
in further details in Poulain et al. (2023). They are enforced through the addition of
ghost cells to prescribe characteristic-based conditions for permeable boundaries or mixed
Dirichlet–Neumann conditions for solid boundaries. The wall-boundary conditions with
non-zero heat flux and wall-normal velocity is derived below as they play a major role in
the computation of the sensitivity.

The boundary layer assumption is performed involving a zero pressure gradient in the
wall-normal direction: ∂p/∂n = 0 with n the wall-normal direction. From the derivative
in the wall-normal direction of the perfect gas law (2.5), computed at the wall, one gets

∂p
∂n

∣∣∣∣
w

= ρwr
∂T
∂n

∣∣∣∣
w

+ rTw
∂ρ

∂n

∣∣∣∣
w
, (D1)

with the subscript ·w indicating the values at the wall. The temperature Tw is replaced by
pw/(ρwr) from the perfect gas law. The pressure at the wall pw is known from the value in
the first cell as ∂p/∂n = 0 and the temperature gradient writes as a heat flux φ = λ∂T/∂n.
Therefore, assuming a first-order extrapolation for the density, (D1) becomes a function of
a single unknown, the wall density ρw

− r
2λpw

φwρ
2
w + ρw − ρ1 = 0, (D2)

with ρ1 the density at the first cell centre. For an adiabatic wall condition φw = 0, we get
ρw = ρ1, otherwise we obtain ρw = (1 − √

1 − 2rφwρ1/(λpw))/(rφw/(λpw)). However,
the latter expression for ρw is not differentiable around φw = 0. Then, in order to compute
the Jacobian and Hessian of an adiabatic flow, which respectively involve the first and
second derivatives of the wall-boundary conditions, (D2) is solved by a Newton method
to compute ρw, this iterative method being then linearised by AD to build the derivative
operators. Eventually, all the conservative variables are prescribed at the wall: ρw, (ρu)w =
0 (no-slip), (ρv)w = ρw × vw (with a non-zero vw for a wall-normal blowing/suction
condition) and (ρE)w = pw/(γ − 1)+ 0.5ρwv

2
w.

Appendix E. Validation on a low Mach number boundary layer

The discrete linear sensitivity of the optimal gain to steady blowing is validated on an
adiabatic flat plate in the low Mach number regime against Brandt et al. (2011) where the
sensitivity analysis had been derived in a continuous and incompressible framework.

The free-stream Mach number is M = 0.1, the Reynolds number is Re = 6 × 105.
The computational domain extends from Rex,in = 4300 to Rex,out = 7.5 × 105, the
optimisation for the resolvent mode is restrained up to Rex � 6 × 105 inside Qq and P.
The height of the domain is about 9 δ with δ the displacement thickness at Rex = 6 × 105.
The following boundary conditions are applied: Blasius solution prescribed at the inlet
(non-reflecting subsonic), adiabatic no-slip wall at the bottom, non-reflecting condition at
the top and non-reflecting subsonic condition at the outlet with the free-stream pressure
taken as reference (zero pressure gradient assumed). A Cartesian mesh similar to the
supersonic boundary layer case is chosen with (Nx,Ny) = (1000, 150).

In Brandt et al. (2011), the largest optimal gain at zero frequency is obtained for the
streaks at βδ = 0.94. The sensitivity of this 3-D mode to steady wall blowing is plotted
in figure 15. They show good agreement while we compare two different frameworks:
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Figure 15. Normalised sensitivity of the optimal gain of the streaks (βδ = 0.94) to wall blowing ∇vwμ
2.

Comparison with Brandt et al. (2011).

discrete linearisation in a low Mach compressible framework in our work while Brandt
et al. (2011) used a continuous linearisation in the incompressible framework. However,
slight discrepancies are noticed in the leading edge part, which can be explained by the
fact that the leading edge was included inside the computational domain used in Brandt
et al. (2011) while we start at Rex,in = 4300.

Appendix F. Local stability analysis

In this study, local stability analysis is applied only to characterise the gradients given by
the sensitivity of the optimal gains but is never required to perform the sensitivity analysis
itself.

Linear LST is valid only on parallel flows in the streamwise direction. Under this
assumption, an ansatz of the fluctuations is made of the form

q′ = q̂( y) exp(i(αx − ωt + βz)). (F1)

For the spatial LST (Schmid, Henningson & Jankowski 2002), the frequency ω is set real
(ω = ωr) and the streamwise wavenumber α is complex (α = αr + iαi). Linearising the
Navier–Stokes equations and injecting (F1) leads to a dispersion relation between α, ω,
Rex and M. Fixing the three latter parameters, the dispersion relation gives the complex
value of α. Depending on the sign of αi, the disturbances exponentially decay (αi > 0) or
grow (αi < 0) in the streamwise direction. The phase velocity c is defined as

c = cr + ici = ω

α
= ωrαr

|α|2 − i
ωrαi

|α|2 . (F2)

The linear LST numerical method relies on a Chebyshev collocation method for the
wall-normal direction and the dispersion relation is solved through LAPACK library. An
isothermal boundary condition is prescribed for the linearised disturbances (T ′ = 0 at
wall). The code has been developed by Chanteux et al. (2022) following the Saint-James
(2020) framework and validated on a supersonic boundary layer by Nibourel et al. (2023).
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Figure 16. Normalised Chu energy norm components of the sensitivity to base-flow modifications ∇q̄μ
2
0/μ

2
0

(first bar), to momentum-divergence-free base-flow modifications ∇df
q̄ μ

2
0/μ

2
0 (second bar) and to steady forcing

∇f̄ μ
2
0/μ

2
0 (third bar).

Appendix G. Sensitivity to base-flow modifications and steady forcing

The sensitivities of the optimal gain of the first and second Mack modes to base-flow
modifications ∇q̄μ

2
0 are computed. To highlight the most predominant contributions in the

sensitivity, the total optimal gain variation has been split (2.29) into base-flow variation
components of streamwise kinetic energy δEb

kx
, wall-normal kinetic energy δEb

ky
, pressure

δEb
p and entropy δEb

s . These quantities have been reported in figure 16. The largest
component for both Mack modes seems to be the wall-normal kinetic energy. However,
as noticed in previous studies (Brandt et al. 2011; Park & Zaki 2019), a strong wall-normal
base-flow velocity modification is not physical since base-flow momentum fields are
momentum-divergence free (∂xδρ̄u + ∂yδρ̄v = 0). The addition of this constraint strongly
damps the wall-normal velocity component of the sensitivity. Therefore, the largest
component of the sensitivity becomes the streamwise velocity for both Mack modes
followed by the entropy δEb

s and pressure δEb
p components, which are one order of

magnitude lower for both Mack modes. Overall, the second Mack mode is more sensitive
than the first Mack mode. The same conclusions are drawn for the streaks with a sensitivity
much below the first Mack mode.

In figure 17(a,c), the sensitivity to local modifications of the streamwise base-flow
momentum ∇ρuμ

2
0 is plotted for both Mack modes. The sensitivity of the first Mack

mode extends longer in the streamwise direction than the second Mack mode, as
expected from the wavemaker support (overlap of optimal forcing and response from the
resolvent analysis). These sensitivities are strongest in the region between the displacement
thickness δ∗ and the boundary layer thickness δ99 (u( y = δ99) = 0.99U∞). This recalls
the local results found for Fedorov’s mode S (Park & Zaki 2019) or for the incompressible
T–S waves (Brandt et al. 2011), the sensitivities ∇ρuμ

2
0 of the first and second Mack

modes being negative at the critical layer yc (McKeon & Sharma 2010) (u( yc) = cr with
cr = Re(ω/α) the phase velocity of the mode) and positive in the vicinity above and
below. Park & Zaki (2019) and Guo et al. (2021) showed that the mean shear modification
contributes the most to the sensitivity resulting in a receptive region around the critical
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Figure 17. Linear sensitivity of the optimal gain to base-flow modifications ∇q̄μ
2
0/μ

2
0. Solid line represents

the boundary layer thickness, dash-dotted line indicates the generalised inflection point, dashed line is
the displacement thickness and dotted line is the critical layer. (a,b) Sensitivity of the first Mack mode.
(c,d) Sensitivity of the second Mack mode. (a,c) Streamwise component of the momentum ∇ρuμ

2
0/μ

2
0 (similar

to the momentum-divergence-free component). (b,d) Temperature component ∇T̄μ
2
0/μ

2
0.

layer. Besides, from figure 17(c), it is seen that, for the second Mack mode, the generalised
inflection line yGIP (∂[ρ∂u/∂y]/∂y( yGIP) = 0) of the base flow, where the optimal forcing
and optimal entropy response are maximal, is close to the critical layer yc of the optimal
response.

In figure 17(b,d), the sensitivity to local modifications of the base-flow temperature
∇T̄μ

2
0 is plotted for both Mack modes. The gradient ∇T̄μ

2
0 is computed from the

components of ∇q̄μ
2
0 through the linearisation of the definition of the total energy E (chain

rule)

∇T̄μ
2
0 = (γ − 1)γM2

ρ̄

((
1
2
(ū2 + v̄2)− ē

)
∇ρ̄μ

2
0 − ū∇ρuμ

2
0 − v̄∇ρvμ

2
0 + ∇ ¯ρEμ

2
0

)
.

(G1)

The gradient ∇T̄μ
2
0 is not solely located between yc and δ99 anymore. A strong region of

the gradient also exists closer to the wall for both Mack modes. In the case of the first Mack
mode, the critical layer yc line separates a positive (y < yc) and a negative (y > yc) region
of the gradient, likely resulting once again from the mean shear distortion. For the second
Mack mode, although the sensitivity ∇T̄μ

2
0 is similar to ∇ρuμ

2
0, there is an additional

region of large sensitivity to changes of the base-flow temperature close to the wall from
Rex = 106 until the end of the domain.
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Figure 18. Linear sensitivity of the optimal gain to steady forcing ∇f̄ μ
2
0/μ

2
0. Solid line represents the

boundary layer thickness, dash-dotted line indicates the generalised inflection point, dashed line is the
displacement thickness and dotted line is the critical layer. (a,b) Sensitivity of the first Mack mode.
(c,d) Sensitivity of the second Mack mode. (a,c) Streamwise component of the momentum ∇fρu

μ2
0/μ

2
0.

(b,d) Temperature component ∇fT
μ2

0/μ
2
0.

From the sensitivity to base-flow modifications ∇q̄μ
2
0, the sensitivity of the optimal

gain to a steady volume forcing term ∇ f̄μ
2
0 is deduced. Chu’s energy norm of the

sensitivity ∇ f̄μ
2
0, as well as its decomposition into different components, is reported

in figure 16. The different contributions reflect those of the momentum-divergence-free
base-flow gradient ∇df

q̄ μ
2
0 for both Mack modes, however, the components induced by

base-flow pressure variations are larger than those induced by entropy variations and their
sum δEb

p + δEb
s exhibits a magnitude similar to the streamwise kinetic energy component

δEb
kx

. For the streaks, the pressure component δEb
p is equivalent to the streamwise kinetic

energy component δEb
kx

while its entropy component δEb
s is much smaller. The three

instabilities display a sensitivity of similar magnitude.
In figure 18(a,c), the sensitivity to a steady streamwise momentum source term ∇fρu

μ2
0

is plotted for both Mack modes. The gradients for both Mack modes are very similar with
a positive region around the boundary layer thickness δ99 and a negative region around
the displacement thickness δ∗. The mechanism below this gradient might be the local
thickening of the boundary layer by the increase of the streamwise mean velocity above
the edge and its decrease below.
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Figure 19. Optimal wall-velocity profile to damp the second Mack mode i.e. opposite of the sensitivity of
the optimal gain of the second Mack mode to wall blowing −δpm = −δvw. Base-flow component −δpm

q̄ and
Jacobian component −δpm

A are also indicated, the latter being almost zero.

Then, the sensitivity to a steady heating source term ∇fT
μ2

0, computed with (G1) by
replacing the components of ∇q̄μ

2
0 by ∇ f̄μ

2
0, is plotted in figure 18(b,d) for both Mack

modes. As for ∇T̄μ
2
0, the sensitivity ∇fT

μ2
0 has strong distortions inside the boundary

layer. For the first Mack mode, the gradient is mainly positive from the wall up to the
critical layer (y < yc) except in the region close to the leading edge. However, in the case
of the second Mack mode, the largest region of sensitivity (negative gradient) is between
the displacement thickness and the boundary layer thickness. Inside the boundary layer,
closer to the wall, the gradient varies a lot in the streamwise direction for the second Mack
mode. From an overall perspective, a steady heating source term has an opposite effect
inside the boundary layer between the first and the second Mack modes. This recalls the
well-known effect of stabilisation by cooling for the first Mack mode and by heating for
the second Mack mode (Mack 1993).

Appendix H. Sensitivity of the second Mack mode to steady wall blowing

The sensitivity analysis and all the subsequent steps performed for the steady wall heating
control are repeated in the case of the steady wall blowing/suction control. The optimal
steady wall-normal velocity profile to damp the second Mack mode and its decomposition
into various components are plotted in figure 19. As seen from the integral energy in
figure 7, the gradient ∇vwμ

2
0 is mainly produced from the sensitivity term due to the

base-flow variation as the term due to the Jacobian variation is of smaller amplitude.
The low impact of the Jacobian modifications on the gradient is due to the fact that the
wall-normal velocity prescribed at the wall only appears in the energy equation in the
linearised wall-boundary condition.

The total gradient may be split into two main parts: suction in the upstream region up
to Rex ≈ 1.2 × 106 and blowing downstream. The same behaviour is noticed at a different
frequency (see Appendix I).

In the following, to fix the control amplitude, similarly to the energy coefficient C′
θ , we

introduce the momentum coefficient Cθ as the ratio between the momentum injected at
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Figure 20. Local stability analysis of an uncontrolled base flow (solid lines) and a controlled base flow (dashed
lines) with the optimal wall-velocity profile −∇vwμ

2
0/μ

2
0 at Cθ = 3.2 × 10−6. (a) Phase velocity cr/U∞.

Dashed lines denote from top to bottom the phase velocities 1 + 1/M∞, 1 and 1 − 1/M∞. (b) Amplification
rate αiδ

∗.

the wall and the free-stream momentum deficit

Cθ =

∫
y=0

|(ρv2)′| dx∫
x=xout

(ρ∞U2
∞ − ρu2) dy

, (H1)

with (ρv2)′ the difference of wall-normal momentum ρv2 between controlled and
uncontrolled base flows. To understand the effect of the control profile shown in figure 19,
we compare local stability (spatial LST) analysis results applied to the uncontrolled base
flow and to the controlled base flow with the full stabilising gradient at Cθ = 3.2 × 10−6.
Fong et al. (2014) indeed showed that the location of a roughness element upstream or
downstream the synchronisation point results in opposite stabilisation effects. We find
similar trends as the intersection of the phase velocities of Fedorov’s modes F and S
is close to the point where the gradient is null in figure 19. We also highlight that the
locations of branch I and branch II of mode S are respectively close to the maxima for
suction and for blowing.

Phase velocities and amplification rates of modes S and F are shown in figure 20 with
and without the application of the stabilising wall profile. Unlike the heating/cooling case,
the phase velocity of mode S remains quite similar in both cases while the phase velocity
of mode F of the controlled base flow slightly deviates from the original in the control
region. This results in a shorter synchronisation region between modes F and S, leading
to a shorter unstable region for the amplification rate of mode S only induced by the
modification of branch I location. Zhao et al. (2018) noticed the same behaviour for the
phase velocity in the case of heating and cooling strip control.

In the following, we compare the prediction obtained by the gradient approach and the
exact results obtained by computing the modified base flow and the associated resolvent
gains.

We plot in figure 21(a) the optimal gain variations for β = 0 as a function of frequency
F. The maximal optimal gain reduction for different values of Cθ is reported in table 3.
At Cθ = 3.2 × 10−8, the linear prediction remains accurate while from Cθ = 3.2 × 10−6,
the nonlinear (0.811) and linear (0.686) predicted optimal gain ratios of the second Mack
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Figure 21. Resolvent analysis for different base flows controlled with the optimal wall-velocity profile
−∇vwμ

2
0/μ

2
0. (a) Optimal gainμ for β = 0 with respect to the frequency F for Cθ = 0 (blue), Cθ = 3.2 × 10−6

(red), Cθ = 1.3 × 10−5 (yellow), Cθ = 1.2 × 10−4 (green) and Cθ = 3.2 × 10−4 (orange). Solid lines indicate
the optimal gain μ0 while dashed lines indicate the first suboptimal gain μ1. The stars indicate the linear gain
predicted from the gradient. (b) Energy density dChu of the optimal forcing (dashed lines) and response (solid
lines) of the second Mack mode without control (green) and for the controlled base flow at Cθ = 3.2 × 10−6

(red). Black vertical line indicates the end of the optimisation domain for resolvent analysis.

Cθ Gain μ0 Gain ratio Linear gain ratio

3.2 × 10−8 1.755 × 107 0.978 0.973
3.2 × 10−6 1.456 × 107 0.811 0.686
1.3 × 10−5 1.304 × 107 0.727 X
1.2 × 10−4 1.110 × 107 0.618 X
3.2 × 10−4 1.120 × 107 0.624 X

Table 3. Optimal gain evolution of the second Mack mode with respect to the optimal wall-velocity
profile −∇vwμ

2
0/μ

2
0 at various momentum coefficient Cθ intensities. Gain ratio is computed by

μ0(Cθ /= 0)/μ0(Cθ = 0). The expected linear gain ratio is computed by
√
μ2

0 − ε‖∇pμ
2
0‖2/μ0 with ε being a

function of Cθ . The X indicates that the linear gain ratio would predict a negative value.

mode deviate from each other (the 2-D first Mack mode being well predicted by the linear
sensitivity according to figure 21a). Increasing further the blowing momentum coefficient
Cθ allows reaching of an optimal gain ratio of 0.62 at Cθ = 1.2 × 10−4. However, we
observe from the curve μ(F) in figure 21(a) that the control damps efficiently the optimal
gain at the frequency where it was computed but not for lower or higher frequencies,
resulting in a split of the second Mack mode into two peak regions: a first peak at F =
2 × 10−4 and a second for higher frequencies above F = 3 × 10−4. This effect was also
noticed by Miró Miró & Pinna (2018) on the growth rate. The optimisation procedure
could in principle be pursued by computing a new descend direction to eventually reach a
local/global minimum.

Figure 21(a) overall shows that the control applied to the base flow strongly reduces the
optimal gain μ0 for the initial frequency of the second Mack mode without modifying
the gains of the sub-optimal gain μ1. While the optimal gain is effectively damped with an
increased wall-normal velocity control, the sub-optimal gain remains of similar magnitude
compared with the no-control case and does not increase. This results in a low-rankness
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Figure 22. Resolvent analysis on short and long domains. (a) Two-dimensional optimal gainμ0 with respect to
the frequency F for short (red) and long (blue) domains. (b) Energy density dChu of the optimal forcing (dashed
lines) and response (solid lines) of the second Mack mode for the short (red) and long (green) domains. Black
vertical lines indicate the end of the optimisation domain for resolvent analysis for the short domain (dashed
line) and for the long domain (solid line).

loss of the system (ratio of approximately 4 between optimal and suboptimal gains which
decreases to 2 for Cθ = 1.2 × 10−4). Therefore, as for heating/cooling control, for larger
control intensity, the optimal gain alone is not sufficient anymore to characterise the linear
dynamics of the boundary layer.

Chu’s energy densities of the optimal forcing and response with blowing/suction control
at Cθ = 3.2 × 10−6 are plotted in figure 21(b) and compared with the results without
control. The optimal forcing has been shifted slightly downstream while the optimal
response exhibits a slightly smaller support. The downstream shift of the optimal forcing is
expected as the boundary layer thickness has been locally reduced because of the suction
at the wall until Rex = 1.2 × 106. The response is not shifted downstream as the wall
blowing control increases again the boundary layer thickness to almost recover its value
without control (an example of boundary layer thicknesses with and without control is
shown in figure 11a). This can be understood from spatial LST results, where branch I is
shifted downstream while branch II does not move.

Appendix I. Gradient dependence with frequency

To check how the gradients evolve with the instability frequency, 2-D stability and
sensitivity are repeated on a shorter domain which ends at Rex,out = 1 × 106 (half of the
previous one). From figure 22(a), the second Mack mode is maximal for larger frequencies
(F = 3 × 10−4). The gradients to steady wall control (figure 23) preserve a very similar
trend in terms of variations along Rex, however, their relative amplitudes vary. Eventually,
the gradient zones highlighted by local or global stability analyses remain similar on both
domain lengths.

Appendix J. Gradient to wall temperature and to wall heat flux

The gradient of the optimal gain to steady wall temperature −∇T wμ
2
0 and to steady wall

heat flux −∇φwμ
2
0 are compared in figure 24. The trends for the three instabilities are

similar, however, it might be noticed that the gradient to wall heat flux for the first Mack
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Figure 23. Opposite of the sensitivity of the optimal gain for short (dashed lines) and long (solid lines)
domains; (a) −∇vwμ

2
0/μ

2
0 for short and long domains, (b) −∇φwμ

2
0/μ

2
0 for short and long domains.

0
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Figure 24. Comparison of the opposite of the sensitivity of the optimal gain for the streaks (blue), the first
(red) and second (green) Mack modes to steady wall heat flux −∇φwμ

2
0 (solid lines) with to wall heating

−∇T wμ
2
0 (dashed lines) normalised by their maximum.

mode is relatively much lower at the leading edge than for the wall temperature. This may
be partially explained by the largest difference at leading edge between the prescribed
constant wall temperature (T w = 4.395T∞) for the isothermal case (∇T wμ

2
0 case) and

the adiabatic wall temperature (∇φwμ
2
0 case). Therefore, both gradients provide the same

knowledge on the sensitivity location. The analysis of the gradient to wall heat flux has
been performed in this work as the input data during an experiment would be a heat flux
and not a temperature.
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