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In this paper, we consider a d-node GI|GI|1 tandem queue with i.i.d. inter-arrival process
and service processes that are independent of each other. Our main interest is to estimate
the probability to reach a high level N in a busy cycle of the system using simulation.
As crude simulation does not give a sufficient precision in reasonable time, we use impor-
tance sampling. We introduce a method to find a state-independent change of measure
and we show that this is equivalent to a change of measure that was earlier, but implicitly,
described by Parekh and Walrand [8]. We also show that this change of measure is the
only exponential state-independent change of measure that may result in an asymptoti-
cally efficient estimator. Lastly, we provide necessary conditions for this state-independent
change of measure to give an asymptotically efficient estimator.
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1. INTRODUCTION

Rare events can play an important role in many practical situations, including in logistics or
telecommunications systems. For instance, the event in which some storage buffer becomes
too full may lead to expensive loss of material, while an overflowing data buffer may lead
to loss of important information. Even though such events may have a very low probability
of occurring, their impact on the performance of the system as a whole can be profound,
which explains why it may be important to obtain accurate estimates of such probabilities.
Many other examples exist, but the ones we mentioned here can be modeled as overflow in
a queueing system, which is the topic of this paper.

Importance sampling is one of the methods used to estimate the (small) probability
of a so-called rare event using stochastic simulation. In importance sampling, the event of
interest is made less rare by changing the underlying probability distributions. This change
of the probability distributions is also called the change of measure or tilting. During the

1 This work is partly based on earlier unpublished work, see [1].
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simulation, one keeps track of the likelihood ratio, which is the ratio between the probabil-
ities in the original system and the probabilities in the changed system. The results of the
simulation are weighted by this ratio and hence one obtains an unbiased estimator.

In this paper, we consider importance sampling for GI|GI|1 tandem queues. More
specifically, we are interested in estimating the probability that in a busy cycle of the
queueing system the total number of customers reaches some high level N . The goal is
to obtain a so-called asymptotically efficient estimator, so that the relative error of the
estimator grows less than exponentially with N .

One of the first papers to consider importance sampling in queueing networks is by
Parekh and Walrand [8]. Their interest is in the same probability as in the current paper.
To estimate this probability for the single queue, they propose a simple, explicit, change
of measure, and for networks of queues, they implicitly describe how to find a change of
measure. Their proposed change of measure is state-independent, that is, the change of
measure does not depend on the current state of the system. In the remainder of this paper,
the change of measure proposed by Parekh and Walrand will be referred to as the P&W
change of measure. To determine this change of measure, an equation needs to be solved.
Frater and Anderson [6] partially solved the equation proposed by P&W, resulting in a
simpler but still implicit description of the P&W state-independent change of measure for
a class of GI|GI|1 tandem queues.

Sadowsky [9] shows that for the single GI|GI|m queue the P&W change of measure gives
an asymptotically efficient estimator under some mild conditions. However, Glasserman and
Kou [7] show that for the M |M |1 tandem queue the P&W change of measure may or may
not give an asymptotically efficient estimator. They provide necessary conditions and (other)
sufficient conditions for asymptotic efficiency. De Boer [3] extends these results, but also
shows that the P&W change of measure is the only state-independent change of measure
that can possibly yield an asymptotically efficient estimator for the M |M |1 tandem queue.

To the best of our knowledge, no results on asymptotic efficiency for the GI|GI|1 tandem
queue had been obtained so far. The generalization from M |M |1 tandem queues to GI|GI|1
tandem queues is important because in practice, queueing networks usually do not have a
Markovian arrival and/or service process. The contribution of this paper is threefold. First,
we introduce another, simpler, method to obtain a change of measure for GI|GI|1 tandem
queues, based on knowledge of the decay rate of the probability of interest which has been
determined in Buijsrogge et al. [2]. This method is not implicit, and we show that it is
equivalent to the earlier method, in the sense that it results in the same change of measure
as P&W. Secondly, we show that the change of measure proposed by P&W is the only
exponential state-independent change of measure that may give an asymptotically efficient
estimator. Lastly, we provide necessary conditions for this exponential state-independent
change of measure to give an asymptotically efficient estimator.

Based on results for the M |M |1 tandem queue, it is clear that for the GI|GI|1 tan-
dem queue the P&W change of measure does not always give an asymptotically efficient
estimator. In [4,5], Dupuis et al. prove that a certain state-dependent change of measure
is asymptotically efficient for Markovian networks. This change of measure roughly coin-
cides with the P&W change of measure in most of the state space, but deviates from it
near the edges. We expect the same for the GI|GI|1 case, which motivates our interest in
the (state-independent) P&W change of measure: even though it fails to be asymptotically
efficient in some models, it seems plausible that it will be an important ingredient for any
asymptotically efficient state-dependent change of measure.

This paper is structured as follows. In Section 2, we introduce the model and the change
of measure as derived from the decay rate obtained in Buijsrogge et al. [2]. In Section 3, we
show that this is equivalent to the change of measure of Frater and Anderson [6] and thus
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P&W. In Section 4, we show that this P&W change of measure is the only exponential state-
independent change of measure that can give an asymptotically efficient estimator. Other
necessary conditions for the state-independent change of measure to give an asymptotically
efficient estimator are presented in Section 5. In Section 6, we give some numerical results,
and the conclusions are presented in Section 7.

2. MODEL AND PRELIMINARIES

2.1. The model

In this paper, we consider d GI|GI|1 queues in tandem; in Section 5 and 6, we consider the
special case d = 2. Let Ak be the inter-arrival time at queue 1 between customers k and
k + 1 and let B

(j)
k be the service time of customer k at queue j. The arrival process and all

service processes are assumed to be i.i.d. and are independent of each other. After service
completion at queue j < d, the customer enters queue j + 1, so there is no probabilistic
routing. Note that the arrival process at queue j > 1 is obviously not independent and
identically distributed. When the customer finishes service at queue d, the customer leaves
the system. Starting with customer 1 in queue 1 and all other queues empty, we are interested
in the event that there are N customers in the system before the system is empty again. We
define KN as the index of the first customer who reaches the overflow level N . Likewise, K0

is the index of the first customer after customer 1 who sees an empty system upon arrival.
Let K = min(K0,KN ). Then the indicator 1{K = KN} defines if we have reached our rare
event in the busy cycle or not, and the probability of this rare event, denoted by pN , is
equal to E[1{K = KN}].

We denote the distribution functions of Ak and B
(j)
k by FA and FB(j) , respectively, and

their moment generating functions by MA(t) and MB(j)(t); for notational convenience, we
let ΛA(t) = log MA(t) and ΛB(j)(t) = log MB(j)(t). Throughout this paper, we assume that
for all j = 1, . . . , d, MB(j)(t) exists for some t > 0. We also assume that the system is stable,
that is, E[B(j)] < E[A] ∀j = 1, . . . , d. If at least one of the queues would be unstable, then
our event of interest would not be rare and, therefore, no importance sampling would be
needed in order to obtain a good estimation of the probability of the event. Also, we make
the non-triviality assumptions that P(B(j) > A) > 0 for at least one queue j, so that the
number of customers can reach any high level N in a busy cycle of the system, and that
P

(
A >

∑d
j=1 B(j)

)
> 0, so that the system can become empty.

Under these assumptions, it is shown in [2] that the decay of pN is given by

lim
N→∞

1
N

log pN = ΛA(−θ∗), (1)

where θ∗ is the minimum of θ(1), . . . , θ(d), with θ(j) given as

θ(j) = sup{θ : MA(−θ)MB(j)(θ) ≤ 1}, (2)

or equivalently

θ(j) = sup{θ : ΛA(−θ) + ΛB(j)(θ) ≤ 0},
for all queues j. We say θ(j) = ∞ when MA(−θ)MB(j)(θ) < 1 for all θ > 0, which only
happens when P(B(j) > A) = 0, see Lemma A.1. As a consequence of the stability and
non-triviality assumption, 0 < θ∗ < ∞.
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2.2. Importance sampling simulation

In importance sampling, the rare event is made less rare by changing the underlying prob-
ability distribution. For a single GI|GI|1 queue, so d = 1, it is suggested by Parekh and
Walrand [8] to apply an exponential tilt θ = θ(1), with θ(1) as in (2), for both the inter-arrival
times and the service times in the following way,

dF θ
A(a) =

e−θa

MA(−θ)
dFA(a), (3)

dF θ
B(1)(b) =

eθb

MB(1)(θ)
dFB(1)(b), (4)

where F θ
A(a) and F θ

B(1)(b) denote the distribution functions under the change of measure. It
is shown by Sadowsky in [9] that this change of measure results in an asymptotically efficient
estimator, assuming that E[B(1)] < E[A] (stability), that P(B(1) > A) > 0 (non-triviality),
and that P(B(1) < M) = 1 for some finite constant M (bounded service times). The last
assumption is the only real restriction, but it was claimed that this is a mere technicality,
and not essential for the result to hold.

Let us now consider d GI|GI|1 queues in tandem and let θ = (θ0, . . . , θd) be a vector of
exponential tilts. Then Eθ[·] and Pθ(·) denote expected values and probabilities under this
change of measure θ, and we denote the distribution function and the moment generating
function of a random variable X under this change of measure as F θ

X(x) = Pθ(X ≤ x) and
Mθ

X(t) = Eθ[etX ], respectively. For the distribution functions of A and B(j) we have

dF θ
A(a) =

e−θ0a

MA(−θ0)
dFA(a), (5)

dF θ
B(j)(b) =

eθjb

MB(j)(θj)
dFB(j)(b), j = 1, . . . , d. (6)

Note that the difference compared with Eqs. (3) and (4) is that now the inter-arrival time
distribution and service time distributions of all queues j may be tilted differently. As a
result, the moment generating functions of A and B(j) under the change of measure θ are

Mθ
A(t) =

MA(t − θ0)
MA(−θ0)

, (7)

Mθ
B(j)(t) =

MB(j)(t + θj)
MB(j)(θj)

, j = 1, . . . , d,

and we find the expected values under the change of measure θ to be

Eθ [A] =
M ′

A(−θ0)
MA(−θ0)

=
−dΛA

dθ
(−θ0), (8)

Eθ
[
B(j)

]
=

M ′
B(j)(θj)

MB(j)(θj)
=

dΛB(j)

dθ
(θj), j = 1, . . . , d. (9)

In the sequel it will become clear that the “best” tilt θ∗ = (θ∗0 , . . . , θ∗d) is such that θ∗0 = θ∗j∗

and θ∗j = 0, j �= 0, j∗, where j∗ is the “bottleneck queue” in some sense. Next, we discuss
how to find queue j∗ and the tilt-parameter θ∗j∗ . In Section 3 it turns out that the change
of measure described above is, in fact, the P&W change of measure, although this is not
immediately clear from [8].
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2.3. Specific change of measure θ∗

Based on our knowledge of the decay rate from [2], see (1), we propose a specific change of
measure. We start by solving the equations in (2), then we define the notion of bottleneck
queue in the following way.

Definition 2.1: Queue j∗ is a θ-bottleneck queue, when θ(j∗) = θ∗, where θ(j) is defined in
(2) for all j, and θ∗ = minj θ(j).

Assumption 2.1: In addition to

• stability of the system, that is, E[B(j)] < E[A] ∀j = 1, . . . , d;
• non-triviality, that is, P(B(j) > A) > 0 for at least one queue j and

P
(
A >

∑d
j=1 B(j)

)
> 0; and

• existence of MB(j)(t) for some t > 0,

(all mentioned earlier), we assume that

• the bottleneck queue is unique, that is, θ∗ < θ(j) for all j �= j∗; and
• the inequality in definition (2) for j = j∗ holds with equality:

MA(−θ∗)MB(j∗)(θ∗) = 1. (10)

Due to the uniqueness assumption, we are now ready to introduce the change of measure
based on [2]: it is simply a θ-tilt as given in (5) and (6), where we choose the exponential
tilt to be θ = θ∗ with θ∗ = (θ∗, 0, . . . , 0, θ∗, 0, . . . , 0). This means that we only tilt the
inter-arrival times and the service times of the bottleneck queue j∗, with the same tilting
parameter θ∗.

We will refer to this change of measure as the θ∗-tilt. As mentioned earlier, in Section 3
we will show that this θ∗-tilt coincides with the P&W change of measure for cases in which
this is properly defined (that is, when (10) holds), and in Section 4 we will show that it
is the only reasonable exponential change of measure, since taking θ �= θ∗ will result in an
estimator that is not asymptotically efficient.

Remark 2.1: The notion of bottleneck queue mentioned in Definition 2.1 does not necessarily
coincide with that of the ρ-bottleneck queue, that is, queue j∗ is not necessarily the queue
with the largest server utilization ρ. However, both notions may yield the same bottleneck;
for example, in case of an M |M |1 tandem queue, this is always the case.

3. COMPARISON WITH FRATER AND ANDERSON

In this section, we compare our method to obtain j∗ and θ∗ for the change of measure for
the GI|GI|1 tandem queue to the earlier developed method by Frater and Anderson [6].
They presented one way to obtain a change of measure for the GI|GI|1 tandem queue in the
early 90s. Their method is based on Parekh and Walrand [8] and is written in an implicit
form. In Section 3.1, we present the method of Frater and Anderson; then in Section 3.2,
we show that the two are equivalent in all cases where they are properly defined.
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3.1. Method by Frater and Anderson [6]

In [6], the change of measure proposed by Parekh and Walrand is further explored. Based
on large deviations theory, Parekh and Walrand defined a cost function H that needs to
be minimized in order to find the change of measure. Frater and Anderson simplify this
function (see (37) in [6]) to

H(λ′
1, μ

′
1, . . . , μ

′
d, R) =

1
λ′

1 − μ′
R

⎡⎣λ′
1hA

(
1
λ′

1

)
+

d∑
j=1

μ′
jhB(j)

(
1
μ′

j

)⎤⎦ , (11)

where λ′
1 is the arrival rate at queue 1 and μ′

j the service rate of queue j, where each rate
is just the inverse of the corresponding expectation, and where the primes denote that the
values should be optimized to find the change of measure. Furthermore, hA(·) and hB(j)(·)
denote the Cramér transforms of the inter-arrival time distribution and the service time
distribution at queue j, respectively (where the Cramér transform of a random variable X
is defined as hX(y) = sups[sy − log MX(s)]). Finally, R is the index of the rightmost unstable
queue under the change of measure, that is, R is the largest index j for which μ′

j < λ′
1 under

the change of measure. (Note that Frater and Anderson write M instead of R.)
Then they explain how to find the minimum of (11). They show that for all queues

j �= R the optimal value of μ′
j is μj and since hB(j)(1/μj) = 0 (see [8]) this implies that H

reduces to a function of λ′
1, μ′

R and R in the following way,

H(λ′
1, μ

′
R, R) =

1
λ′

1 − μ′
R

[
λ′

1hA

(
1
λ′

1

)
+ μ′

RhB(R)

(
1

μ′
R

)]
, (12)

see (43) in [6]. Next, they note the two problems that remain in order to find the change of
measure:

1. to find the value of R that is optimal, that is, the value of R that minimizes
H(λ′

1, μ
′
R, R),

2. given R, to find the values of λ′
1 and μ′

R that minimize H(λ′
1, μ

′
R, R).

Assuming the first problem is solved, that is, given R, the solution of the second problem is
not hard, using a similar method as for the single GI|GI|1 queue, and Frater and Anderson
show how to obtain the optimal values of λ′

1 and μ′
R, referring to [8]. From these values,

again using [8], the change of measure now follows, which prescribes exponential tilting of
the distributions such that their rates become equal to the optimal rates. This change of
measure turns out to be precisely as in (5) and (6) above, with the tilting vector given by
θ = θ̃ ≡ (θ̃(R), 0, . . . , 0, θ̃(R), 0, . . . , 0), with θ̃j = 0 for all j �= 0, R, and θ̃0 = θ̃R = θ̃(R) > 0,
where the latter is such that it satisfies

MA(−θ̃(R))MB(R)(θ̃(R)) = 1. (13)

As a result, the expectations of A and B(R) under the change of measure become 1/λ′
1 and

1/μ′
R, as they should, so given the optimal value of R the problem is solved.
However, finding the optimal R is difficult since (the index of) the rightmost unstable

queue under the change of measure depends on this change of measure itself. Only for a
certain class of problems, Frater and Anderson show that R can be chosen simply as the
“rho-bottleneck” (see Remark 2.1 above). For the general case, they need to calculate for
each possible value of R the optimal λ′

1 and μ′
R, and then substitute these in H(λ′

1, μ
′
R, R)

to obtain a function H(R) that only depends on R, after which the optimal value R̃ needs
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to be picked such that it minimizes H(R). When there are multiple candidates for R they
seem to suggest that R should be chosen as large as possible, but this is not entirely clear
to us.

Finally, it has to be checked whether under the resulting change of measure θ̃, the
corresponding R̃ is indeed the rightmost unstable queue. If this is not the case it is not clear
how to proceed, but we will show in Section 3.2 that R̃ is indeed the rightmost unstable
queue under the change of measure.

3.2. Comparison of the two methods

In this section, we show that the method based on the decay rate (as described in Section 2.3)
and the method by Frater and Anderson [6] (as described in Section 3.1) are equivalent.
First of all it is clear that both methods consider the same type of exponential tilting based
on (5) and (6), and that the tilting vectors θ∗ and θ̃ have the same structure, so that only
the inter-arrival times and the service times of one of the queues are tilted. Frater and
Anderson find optimal values for λ′

1 and μ′
R, where R is the particular queue to be tilted,

but as described above this optimization is equivalent to finding the corresponding θ̃(R).
(In fact, their use of λ′

1 and μ′
j , j = 1, . . . , d in minimizing (11) and (12) can be seen as

an alternative (one-to-one) parametrization to optimize the tilting parameters θ0 and θj ,
j = 1, . . . , d.) Given the optimal value of R, the value of the tilting parameter θ̃(R) is given
in the same way as the θ(j) in our method, compare (13) with (2), and note that (13) also
shows that [6] and [8] only consider cases in which (2) holds with equality (as we assume
for our j∗, see Assumption 2.1).

As a consequence, the change of measure is exactly the same for both methods if
the same queue is tilted. Therefore, we only need to show that the bottleneck queue j∗

as described in Section 2.3 minimizes the function H(R), and then do the “Frater and
Anderson check” to see if queue j∗ is indeed the rightmost unstable queue under the change
of measure, as described in Section 3.1. We show these statements in the following two
lemmas.

The first lemma relates the θ∗-bottleneck queue to minimizing H(R). We start by
briefly motivating how to rewrite H(R). As mentioned, for fixed R, Frater and Anderson
choose the values for λ′ and μ′

R which minimize the function H(λ′
1, μ

′
R, R) in (12). The

optimization is done in exactly the same manner as was done by Parekh and Walrand in [8]
for the single GI|GI|1 queue. We will not copy the details but only mention they set the
partial derivatives of H(λ′

1, μ
′
R, R) with respect to λ′ and μ′

R equal to zero, and combine
this with properties of the Cramér transform and with the implicit assumption that (13)
holds; for more details see Equations (37)–(44) in [8]. The result is simply that H(R) can
be written as

H(R) = −ΛA(−θ̃(R)).

Lemma 3.1: H(j∗) < H(j) for all j �= j∗.

Proof: As mentioned before, θ̃(R) coincides with our θ∗ when j∗ = R. Indeed, H(j) =
−ΛA(−θ(j)) is minimal for the choice j = j∗ since θ∗ < θ(j) for all j �= j∗, and −ΛA(−θ) is
a strictly increasing function of θ. �

In the second lemma, we check that queue j∗ is the rightmost unstable queue in the
θ∗-tilted system.
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Figure 1. A graphical interpretation of the inequalities presented in (14).

Lemma 3.2: Under Assumption 2.1, queue j∗ is the rightmost unstable queue in the θ∗-tilted
system and, in particular, Eθ∗

[B(j∗)] > Eθ∗
[A].

Proof: We show that: (i) queue j∗ is unstable under the θ∗-tilt and Eθ∗
[B(j∗)] > Eθ∗

[A];
and (ii) all queues k > j∗ are stable under the θ∗-tilt, which proves the lemma.

(i) We say that a queue is unstable when the service rate of that queue
is smaller than the local arrival rate to that queue. Under the θ∗-tilt
the service rate at queue j∗ is 1/Eθ∗

[B(j∗)], while the arrival rate at
queue j∗ is min{1/Eθ∗

[A], 1/Eθ∗
[B(1)], . . . , 1/Eθ∗

[B(j∗−1)]}. We will show that both
Eθ∗

[B(j∗)] > Eθ∗
[A] and Eθ∗

[B(j∗)] > Eθ∗
[B(k)] for all k = 1, . . . , j∗ − 1, implying

instability of queue j∗. To show that Eθ∗
[B(j∗)] > Eθ∗

[A], we let f(θ) = ΛA(−θ) +
ΛB(j∗)(θ). We know that f(0) = f(θ∗) = 0 and f ′(0) < 0. By convexity of the log
moment generating functions it must hold that f ′(θ∗) > 0 and so it follows, using (8)
and (9), that Eθ∗

[B(j∗)] > Eθ∗
[A]. We conclude this part of the proof by show-

ing that Eθ∗
[B(j∗)] > Eθ∗

[B(k)] = E[B(k)] for all k = 1, . . . , j∗ − 1. For a graphical
interpretation, see Figure 1.
Again using (8) and (9), we have for any k �= j∗

E[B(k)] =
dΛB(k)(0)

dθ
≤ ΛB(k)(θ∗)

θ∗
<

ΛB(j∗)(θ∗)
θ∗

≤ dΛB(j∗)(θ∗)
dθ

= Eθ∗
[B(j∗)],

(14)

where the first and the final inequality follow from the convexity of ΛB(k)(θ) and
ΛB(j∗)(θ), and the second inequality follows by definition and uniqueness of θ∗

(that is, if ΛB(j∗)(θ∗) > ΛB(k)(θ∗) queue k would be the bottleneck queue instead of
queue j∗, and if ΛB(j∗)(θ∗) = ΛB(k)(θ∗) the bottleneck queue would not be unique).
Hence we have that queue j∗ is unstable under the θ∗-tilt and, in particular,
Eθ∗

[B(j∗)] > Eθ∗
[A].

(ii) Finally, we show that queue j∗ is the rightmost unstable queue under the θ∗-tilt. If
j∗ = d this statement is trivial, so suppose for the remainder of the proof that j∗ < d.
By (i), the arrival rate for queue j∗ + 1 is equal to the service rate of the unstable
queue j∗. Queue j∗ + 1 is stable, as we have Eθ∗

[B(j∗+1)] = E[B(j∗+1)] < Eθ∗
[B(j∗)]

by Eq. (14). Since queue j∗ + 1 is stable, the arrival rate for queue j∗ + 2 also

https://doi.org/10.1017/S0269964818000426 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000426


IMPORTANCE SAMPLING FOR THE GI |GI |1 TANDEM QUEUE 139

equals the service rate of queue j∗. Now look at any queue k ∈ [j∗ + 2, d] (if any). If
all queues between j∗ and k are stable, queue k is also stable because Eθ∗

[B(k)] =
E[B(k)] < Eθ∗

[B(j∗)], which follows immediately from Eq. (14), and hence the arrival
rate at queue k equals the service rate of queue j∗. Thus, by induction, the result
follows. �

Theorem 3.3: Under Assumption 2.1 and when R̃ is unique, we have j∗ = R̃, and hence the
θ∗-tilt described in Section 2.3 and the P&W method as described in Frater and Anderson
give the same change of measure.

Proof: Consider the θ∗-tilt with bottleneck queue j∗, then j∗ is the rightmost unstable
queue in the θ∗-tilted system by Lemma 3.2. We also know, in view of the uniqueness
of j∗, that θ∗ < minj �=j∗ θ(j) and by Lemma 3.1 that j∗ minimizes H(R). Hence j∗ = R̃.
The equivalence of the two corresponding changes of measure is then immediate from the
fact that both are based on (5) and (6) with θ = θ̃ = θ∗. �

We note that −H(j∗) = ΛA(−θ∗) is the rate of decay, see (1). This implies that the
large deviations approximation made in Parekh and Walrand is actually good.

4. THE θ-TILT IS NOT ASYMPTOTICALLY EFFICIENT WHEN θ �= θ∗

Having determined that the θ-tilt is the same as the P&W change of measure by Parekh and
Walrand [8], in this section we show that it is the only exponential state-independent change
of measure that may give an asymptotically efficient estimator. In Section 4.1, we introduce
the likelihood ratio Lθ of a path that reaches level N in a busy cycle of the system and give
the mathematical definition of asymptotic efficiency in terms of the second moment of this
random variable. Then in Section 4.2, we show the main result of this section, Theorem 4.3.

4.1. Definitions

Suppose we use the exponential change of measure θ. Remembering that by definition we
have K = min(K0,KN ), we let the likelihood ratio Lθ of a path that consists of K arrivals
be,

Lθ =
K−1∏
k=1

dFA

dF θ
A

(Ak)
d∏

j=1

kj∏
k=1

dFB(j)

dF θ
B(j)

(B(j)
k ). (15)

Here, kj is the number of initiated services in queue j just before the K-th arrival, formally
defined as kj = K − 1 −∑j

k=1 nk + 1{nj > 0} for j = 1, . . . , d, where nj is the number of
customers in queue j just before the K-th arrival. When K = KN it holds that

∑d
k=1 nk =

N − 1, so in that case we can also write kj = K − N +
∑d

k=j+1 nk + 1{nj > 0}.

Remark 4.1: In principle, one could reduce the estimator variance a bit further by dividing
the likelihood ratio in (15) by the likelihood ratio of the remaining service times upon
reaching level N (but for a clearer presentation we decided not to do this).

Under the tilt θ, Lθ1{K = KN} is an unbiased estimator for pN , that is, pN =
Eθ[Lθ1{K = KN}]. The goal of importance sampling simulation is to get an asymptotically
efficient estimator, which can be defined as follows (see for example [7]).
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Definition 4.1: An unbiased estimator is asymptotically efficient if

lim inf
N→∞

log Eθ
[(

Lθ
)2

1{K = KN}
]

log pN
≥ 2.

Note that we always have lim supN→∞ log Eθ[(Lθ)21{K = KN}]/ log pN ≤ 2 by
Jensen’s inequality. Hence, alternatively, we could replace the inequality in Definition 4.1
by an equality sign (and the liminf by a limit).

The meaning of the definition is that for an asymptotically efficient estimator, the
second moment vanishes at twice the rate of the estimator itself. As a consequence, the
relative error increases sub-exponentially.

Using (1), we find that the estimator is asymptotically efficient if

lim sup
N→∞

1
N

log Eθ
[(

Lθ
)2

1{K = KN}
]
≤ 2ΛA(−θ∗). (16)

4.2. Main result

In this section, we show that using an exponential tilt other than the P&W change of
measure cannot give an asymptotically efficient estimator. By the above, we need to show
that an estimator based on the tilt θ �= θ∗ satisfies

lim sup
N→∞

1
N

log Eθ
[(

Lθ
)2

1{K = KN}
]

> 2ΛA(−θ∗). (17)

Before we state the theorem, we need the following lemmas. Even though the statements
seem obvious, they are not entirely trivial (especially the first one when d > 1); we present
the proofs in the appendix.

Lemma 4.1: Suppose we have d GI|GI|1 queues in tandem. Under the change of measure
θ∗ for which Eθ∗

[B(j∗)] > Eθ∗
[A], we have for all N that Pθ∗

(K = KN ) ≥ Pθ∗
(E) > 0,

where E is the event that the system never empties. Moreover, we have as N → ∞ that
KN/N → Eθ∗

[B(j∗)]/Eθ∗
[B(j∗)] − Eθ∗

[A] with probability 1.

Lemma 4.2: Consider a sequence {XN} of random variables that converges to a constant c
with probability 1 as N →∞ and let E be an event with P(E) > 0. Then E[limN→∞ XN | E]
= E[limN→∞ XN ] = c.

Now we are ready to prove our theorem.

Theorem 4.3: Consider d GI|GI|1 queues in tandem. Under Assumption 2.1 the θ∗-
tilt is the only exponential state-independent change of measure that can possibly give an
asymptotically efficient estimator.

Proof: Consider an exponential tilt θ �= θ∗, then the goal is to show (17) when θ �= θ∗.
To rewrite the second moment of the likelihood ratio in terms of the expectation under θ∗,
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rather than θ, notice that

Eθ
[(

Lθ
)2

1{K = KN}
]

= Eθ∗ [
LθLθ∗

1{K = KN}
]
.

Let E denote the event that the system never empties, as in Lemma 4.1. We find

lim sup
N→∞

1
N

log Eθ∗ [
LθLθ∗

1{K = KN}
]

≥ lim inf
N→∞

1
N

log Eθ∗ [
LθLθ∗

∣∣∣E]+ lim inf
N→∞

1
N

log Pθ∗
(E)

≥ lim inf
N→∞

log Eθ∗
[(

LθLθ∗)1/N
∣∣∣∣E] (by Jensen’s inequality and Lemma 4.1)

≥ log Eθ∗
[
lim inf
N→∞

(
LθLθ∗)1/N

∣∣∣∣E] (by Fatou’s Lemma)

≥ Eθ∗
[
lim inf
N→∞

1
N

log
(
LθLθ∗)∣∣∣∣E] (by Jensen’s inequality)

≥ Eθ∗
[
lim inf
N→∞

1
N

log Lθ

∣∣∣∣E]+ Eθ∗
[
lim inf
N→∞

1
N

log Lθ∗
∣∣∣∣E] . (18)

From (15) and then (5) and (6) it follows that

1
N

log Lθ = ΛA(−θ0)
K − 1

N
+

θ0

N

K−1∑
k=1

Ak +
d∑

j=1

⎛⎝ΛB(j)(θj)
kj

N
− θj

N

kj∑
k=1

B
(j)
k

⎞⎠ ,

and so the first term of the right-hand side of (18) is greater than or equal to

f(θ) = Eθ∗
[
lim inf
N→∞

(
ΛA(−θ0)

K − 1
N

+
θ0

N

K−1∑
k=1

Ak

)∣∣∣∣∣E
]

+
d∑

j=1

Eθ∗

⎡⎣lim inf
N→∞

⎛⎝ΛB(j)(θj)
kj

N
− θj

N

kj∑
k=1

B
(j)
k

⎞⎠∣∣∣∣∣∣E
⎤⎦ .

Observe that with probability 1 we have limN→∞ 1/KN

∑KN−1
k=1 Ak = Eθ∗

[A] and
limN→∞ 1/kj

∑kj

k=1 B
(j)
k = Eθ∗

[B(j)] for all j = 1, . . . , d. Conditional on the event E, for
which we have Pθ∗

(E) > 0, we can replace K by KN and note that with probability 1 the
liminf is a constant as KN − N ≤ kj ≤ KN . Then applying Lemmas 4.1 and 4.2, we can
remove the conditioning from all terms of f(θ) and change the liminf to a limit in the first
term. Thus, we have

f(θ) =
(
ΛA(−θ0) + θ0Eθ∗

[A]
)

Eθ∗
[

lim
N→∞

KN

N

]

+
d∑

j=1

(
Eθ∗

[
lim inf
N→∞

(
ΛB(j)(θj) − θjE

θ∗ [
B(j)

]) kj

N

])
.

We now first show that a unique minimum of the above (and hence the tightest lower
bound of (18)) is achieved at θ = θ∗ and conclude the proof by showing that f(θ∗) =
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ΛA(−θ∗). To find the minimum of f(θ), we note that we only have to consider θ such
that ΛB(j)(θj) − θjE

θ∗
[B(j)] ≤ 0 for all j = 1, . . . , d, so that we can take this constant out

of the liminf which then becomes limsup. It is not hard to see that such θ exists (for
example, by the convexity of ΛB(j)(θj) and by (9), we have for all θ with 0 ≤ θj ≤ θ∗j that
ΛB(j)(θj) ≤ θjE

θ[B(j)] ≤ θjE
θ∗

[B(j)]). For all such θ we can write

f(θ) =
(
ΛA(−θ0) + θ0Eθ∗

[A]
)

Eθ∗
[

lim
N→∞

KN

N

]

+
d∑

j=1

(
ΛB(j)(θj) − θjE

θ∗ [
B(j)

])
Eθ∗

[
lim sup
N→∞

kj

N

]
. (19)

We take partial derivatives of f(θ):

∂f(θ)
∂θ0

=
(
−Eθ [A] + Eθ∗

[A]
)

Eθ∗
[

lim
N→∞

KN

N

]
,

∂f(θ)
∂θj

=
(
Eθ

[
B(j)

]
− Eθ∗ [

B(j)
])

Eθ∗
[
lim sup
N→∞

kj

N

]
, j = 1, . . . , d.

These partial derivatives are zero if and only if θj = θ∗j , j = 0, . . . , d, since all limsups exist
and are strictly positive constants. Since the log-moment generating functions ΛA(−θ0) and
ΛB(j)(θj), j = 1, . . . , d, are strictly convex functions (unless their distributions are determin-
istic), the right-hand side of (19) is a strictly convex function (unless all distributions are
deterministic, but this is ruled out by the non-triviality and stability assumption). There-
fore, and because θ∗ is one of the values of θ for which (19) holds, we are justified in
concluding that θ∗ is indeed a global minimum. Hence f(θ) is minimal only for θ = θ∗.

To show that f(θ∗) = ΛA(−θ∗), we take θ = θ∗ in (19) above. With θ∗0 = θ∗j∗ = θ∗,
and θ∗j = 0 for all other j, only two terms remain: one for the inter-arrival time A,
involving Eθ∗

[limN→∞ KN/N ], which is given in Lemma 4.1, and one for the bottle-
neck service time B(j∗), involving Eθ∗

[lim supN→∞ kj∗/N ], for which we can use kj∗ =
K − N +

∑d
j=j∗+1 nj + 1{nj∗ > 0}. This leads to

f(θ∗) =
(
ΛA(−θ∗) + θ∗Eθ∗

[A]
) Eθ∗ [

B(j∗)
]

Eθ∗ [
B(j∗)

]− Eθ∗ [A]

+
(
ΛB(j∗)(θ∗) − θ∗Eθ∗ [

B(j∗)
])

×
(

Eθ∗
[A]

Eθ∗ [
B(j∗)

]− Eθ∗ [A]
+ Eθ∗

[
lim sup
N→∞

∑d
j=j∗+1 nj

N

])
.

Since queues j∗ + 1, . . . , d are stable queues under the θ∗-tilt and we have, by assumption,
that ΛA(−θ∗) + ΛB(j∗)(θ∗) = 0, we find f(θ∗) = ΛA(−θ∗). Thus, (17) holds when θ �= θ∗.

�

Remark 4.2: Note that the tilt θ = θ∗ can still give an asymptotically efficient estimator,
but this is not guaranteed.

Remark 4.3: In case of a single queue, Sadowsky showed that the θ∗-tilt is the unique
change of measure that is asymptotically efficient, see [9, Theorem 3]; however, he assumes
bounded support for the service time distribution, which we do not need.
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5. NECESSARY CONDITIONS FOR ASYMPTOTIC EFFICIENCY WHEN d = 2

Having found that the θ∗-tilt is the only exponential state-independent change of measure
that can possibly give an asymptotically efficient estimator, we show that additional con-
ditions are needed for this change of measure to actually give an asymptotically efficient
estimator. In this section, we assume that we have two queues in tandem (d = 2). First, we
derive the conditions in Section 5.1, then we zoom in to the Markovian case and compare
with earlier work in Section 5.2.

5.1. Derivation of necessary conditions

To work with (16), we first rewrite the likelihood Lθ as given in (15), using (5) and (6).
Taking d = 2 and θ = θ∗ (with θ∗0 = θ∗j∗ = θ∗, for which we have MA(−θ∗)MB(j∗)(θ∗) = 1,
and θ∗3−j∗ = 0), we find

Lθ∗
=

MA(−θ∗)K−1−kj∗

e
−θ∗

(∑K−1
k=1 Ak−

∑kj∗
k=1 B

(j∗)
k

) . (20)

To rewrite the denominator of (20), we note the following relation for Ij , the idle time of
queue j during the busy cycle, when K = KN ,

Ij =
K−1∑
k=1

Ak −
kj∑

k=1

B
(j)
k + B̄(j),

where B̄(j) is the residual service time of the customer in service (if any) in queue j just
before the overflow level N is reached; in the event that queue j is empty just before N is
reached (which is unlikely when j = j∗), we set B̄(j) = 0. Combining with (16) and (20) we
have asymptotic efficiency when

lim sup
N→∞

1
N

log Eθ∗
[
MA(−θ∗)2(K−1−kj∗ )

e−2θ∗(Ij∗−B̄(j∗))
1{K = KN}

]
≤ 2ΛA(−θ∗).

For the numerator, we distinguish between two cases, depending on which queue is the
bottleneck. When this is queue 1 (j∗ = 1), we have K − 1 − kj∗ = n1 − 1{n1 > 0}, so that
we have asymptotic efficiency if and only if

lim sup
N→∞

1
N

log Eθ∗ [
MA(−θ∗)2(n1−1{n1>0})e2θ∗(I1−B̄(1))1{K = KN}

]
≤ 2ΛA(−θ∗). (21)

When queue 2 is the bottleneck queue (j∗ = 2), we have K − 1 − kj∗ = n1 + n2 − 1{n2 > 0}
= N − 1 − 1{n2 > 0}, so that the condition is

lim sup
N→∞

1
N

log Eθ∗ [
MA(−θ∗)−21{n2>0}e2θ∗(I2−B̄(2))1{K = KN}

]
≤ 0, (22)

where we used that lim supN→∞ 1/N log MA(−θ∗)2(N−1) equals the right-hand side in (16),
2ΛA(−θ∗).

In the sequel we will give necessary conditions for these inequalities to hold by consider-
ing specific sample paths which are very unlike the “typical” paths that lead to overflow. The
advantage of this approach, which is also used in Glasserman and Kou [7] for the Markovian
case, is that the chosen unlikely paths are easy to analyze, and the process spends much
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Figure 2. Sample paths considered in the proofs of Theorems 5.1 (left, j∗ = 2) and 5.2
(right, j∗ = 1).

time on the boundaries of the state space which we know is problematic for asymptotic
efficiency, at least in the Markovian case.

The specific paths we will consider are illustrated in Figure 2, and will be used in the
proofs of the following theorems. After stating the theorems we will consider the Markovian
case, also comparing with De Boer [3] and Glasserman and Kou [7].

We start with the necessary condition for asymptotic efficiency when queue 2 is the
bottleneck queue since this is the easiest case, and show what it looks like for some special
cases, including the M |M |1 tandem queue case.

Theorem 5.1: Consider 2 GI|GI|1 queues in tandem and suppose queue 2 is the bottleneck
queue (j∗ = 2). Under Assumption 2.1 a necessary condition for asymptotic efficiency of
the θ∗-tilt is

lim sup
N→∞

1
N

log
(∫ ∞

0

e2θ∗x[1 − FB(1)(x)] dF θ∗
A,N−1(x)

)
≤ 0, (23)

where F θ∗
A,N−1(x) is the (N − 1)-fold convolution of F θ∗

A (x), the probability distribution
function of A under tilt θ∗.

More specifically, when the service times of the first queue are exponentially distributed
with rate μ1, this condition becomes

MA(θ∗ − μ1) ≤ MA(−θ∗), (24)

and for an M |M |1 tandem queue with arrival rate λ and service rates μ1 and μ2 (with
μ1 > μ2), the condition becomes

2μ2 ≤ 2λ + μ1. (25)

Proof: Consider the specific sample path with no service completions before level N is
reached, that is, the path that moves N − 1 steps to the right from (1, 0) to (N, 0), see
Figure 2, left panel. Based on this path we find a lower bound on the left-hand side of (22).
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Since for this path 1{n2 > 0} = 0, B̄(2) = 0 and I2 =
∑N−1

k=1 Ak, it follows that

Eθ∗ [
MA(−θ∗)−21{n2>0}e2θ∗(I2−B̄(2))1{K = KN}

]
≥ Eθ∗ [

e2θ∗ ∑N−1
k=1 Ak1

{∑N−1
k=1 Ak < B

(1)
1

}]
=
∫ ∞

0

e2θ∗x[1 − FB(1)(x)]dF θ∗
A,N−1(x),

where the inequality follows because we only consider one possible path to reach the overflow
level. Thus the general necessary condition for asymptotic efficiency in (23) follows.

When B(1) ∼ exp(μ1), the argument of the logarithm of the left-hand side in (23)
reduces to ∫ ∞

0

e2θ∗x[1 − F
B

(1)
1

(x)]dF θ∗
A,N−1(x) =

∫ ∞

0

e(2θ∗−μ1)xdF θ∗
A,N−1(x)

=
[
Mθ∗

A (2θ∗ − μ1)
]N−1

,

so the necessary condition for asymptotic efficiency becomes

Mθ∗
A (2θ∗ − μ1) ≤ 1,

which, using (7), leads to (24). Finally, (25) follows immediately from (24) by noting that
θ∗ = μ2 − λ for an M |M |1 tandem queue with j∗ = 2. �

Next, we provide a necessary condition for an asymptotically efficient estimator when
queue 1 is the bottleneck queue. Here, we will assume that the service times of the second
queue are exponentially distributed (with rate μ2) in order to give a useful expression for
the necessary conditions. We also consider some special cases, including the M |M |1 tandem
queue.

Theorem 5.2: Consider 2 GI|GI|1 queues in tandem and suppose queue 1 is the bottleneck
queue (j∗ = 1) and that the service times of queue 2 are exponentially distributed with
rate μ2. Under Assumption 2.1 a necessary condition for asymptotic efficiency of the θ∗-tilt
is ∫ ∞

0

e(2θ∗−μ2)x

∫ x

0

e−2θ∗y dF θ∗
B(1)(y)dF θ∗

A (x) ≤ MA(−θ∗)2, (26)

where, as before, F θ∗
A (x) and F θ∗

B(1)(y) denote the probability distribution functions of
A and B(1) under the tilt θ∗.
More specifically, when both queues have exponential services with rates μ1 and μ2

respectively, this condition becomes

μ1 − θ∗

θ∗ + μ1
[MA(θ∗ − μ2) − MA(−(μ1 + μ2))] ≤ MA(−θ∗)3, (27)

and for an M |M |1 tandem queue with arrival rate λ and service rates μ1 and μ2 (with
μ1 < μ2), the condition becomes

μ1

2μ1 − λ

[
1

2λ + μ2 − μ1
− 1

λ + μ1 + μ2

]
≤ λ

μ2
1

. (28)
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Proof: We determine a lower bound on the expected value in (21) by considering the
sample path that alternates between 0 and 1 customers in queue 1, with no depar-
tures from queue 2, until level N is reached; that is, the path moves from (1, 0) to
(0, 1), (1, 1), (0, 2), (1, 2), (0, 3), . . . , to (1, N − 1), see Figure 2, right panel. It is not hard
to see that on this path we have B

(1)
k < Ak, k = 1, . . . , N − 1, and also

∑N−1
k=1 Ak < B

(1)
1 +

B
(2)
1 . Obviously every B

(1)
k should be smaller than B

(1)
1 + B

(2)
1 as well, but this condition

is implied by the above.
Also on this path we have n1 = 0, B̄(1) = 0, K = KN = N and k1 = N − 1, so

Eθ∗ [
MA(−θ∗)2(n1−1{n1>0})e2θ∗(I1−B̄(1))1{K = KN}

]
≥ Eθ∗

[
e
2θ∗

(∑N−1
k=1 Ak−

∑N−1
k=1 B

(1)
k

)
1{B(1)

k < Ak, ∀k = 1, . . . , N − 1}

× 1
{∑N−1

k=1 Ak < B
(1)
1 + B

(2)
1

}]
≥ Eθ∗

[
e
2θ∗

(∑N−1
k=1 Ak−

∑N−1
k=1 B

(1)
k

) (N−1∏
k=1

1{B(1)
k < Ak}

)
1
{∑N−1

k=1 Ak < B
(2)
1

}]
, (29)

where the first inequality follows because there are more paths that reach the overflow level
than just the one we consider here. Next, since B(2) has the memoryless property, we can
write

1

{
N−1∑
k=1

Ak < B
(2)
1

}
d=

N−1∏
k=1

1
{

Ak < B
(2)
1,k

}
,

where the B
(2)
1,k are i.i.d. copies of B

(2)
1 , independent of all else and d= denotes an equality

in distribution. Note that, by assuming j∗ = 1, the service times of queue 2 remain expo-
nentially distributed with rate μ2 under the θ∗-tilt, and hence still have the memoryless
property. As a consequence, the right-hand side of (29) can be written as

Eθ∗
[

N−1∏
k=1

e
2θ∗

(
Ak−B

(1)
k

)
1{B(1)

k < Ak}1{Ak < B
(2)
1,k}

]

=
(∫ ∞

0

∫ x

0

e2θ∗(x−y) [1 − FB(2)(x)] dF θ∗
B(1)(y)dF θ∗

A (x)
)N−1

,

where in the last step the independence of Ai and B
(1)
i is used. The general neces-

sary condition for asymptotic efficiency in (26) now follows from applying (21) and
B(2) ∼ exp(μ2).
When B(1) ∼ exp(μ1) (and B(2) ∼ exp(μ2) as before), the left-hand side of (26) reduces to

(μ1 − θ∗)
∫ ∞

0

e(2θ∗−μ2)x

∫ x

0

e−(θ∗+μ1)ydydF θ∗
A (x)

=
μ1 − θ∗

θ∗ + μ1

[
Mθ∗

A (2θ∗ − μ2) − Mθ∗
A (−(μ1 + μ2 − θ∗))

]
.

from which (27) follows by using (7). Finally (28) follows from (27) by noting that θ∗ =
μ1 − λ for an M |M |1 tandem queue with j∗ = 1. �
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5.2. Comparison of necessary conditions for the M |M |1 tandem queue

In this section, we will make a comparison with earlier papers in the Markovian case. Since
these papers always consider simulation in discrete time, we will first explain how this relates
to our current work.

5.2.1. Continuous-time vs. discrete-time models. In the current paper, we represent the
GI/GI/1 queueing systems in continuous time, and we simulate in continuous time, by
which we mean that we tilt the (typically continuous) distributions of the Ak and B

(j)
k .

Alternatively, if all distributions are exponential, the system state can also be represented by
a discrete-time Markov chain, embedded at transition epochs, which can also be simulated.
We will refer to this as simulation in discrete time.

Parekh and Walrand [8] consider both simulation in continuous and in discrete time.
For the single Markovian queue, they show that their heuristic for both continuous and
discrete-time leads to the same change of measure, namely an interchange of the arrival
and service rates (or probabilities). In the same way, any exponential change of measure
in the discrete-time Markov chain (changing transition probabilities) can easily be shown
to be equivalent to an exponential change of measure in the corresponding continuous-time
Markov chain (changing transition rates).

We will now compare all known conditions for asymptotic efficiency from De Boer [3] and
Glasserman and Kou [7], who apply simulation in discrete time, and the current paper. For
ease of comparison, we will normalize the (continuous time) rates such that λ + μ1 + μ2 = 1,
so that on the interior of the state space they coincide with the (discrete time) transition
probabilities .

5.2.2. Queue 2 is bottleneck. First, we consider the case in which queue 2 is the bot-
tleneck, which now means that μ1 > μ2. With the normalization, our necessary condition
in Theorem 5.1 becomes μ1 + 4μ2 ≤ 2, and since μ1 > μ2 it follows in particular that a nec-
essary condition for asymptotic efficiency is μ2 < 2/5. This is stricter than μ2 ≤ √

2 − 1,
which was obtained in Glasserman and Kou [7], simulating in discrete time. Thus, if
μ2 ∈ [2/5,

√
2 − 1] our estimator cannot be asymptotically efficient, while the estimator in

[7] could be asymptotically efficient. Although this situation seems very unlikely, we cannot
rule out the possibility since the two estimators are different.

5.2.3. Queue 1 is bottleneck. Next, we look at the case in which queue 1 is the bottle-
neck, which for the M |M |1 tandem queue means that μ1 < μ2. For this case, importance
sampling has never been studied analytically before, because in the Markovian network both
servers are interchangeable without changing the probability of overflow, see [10]. Never-
theless in [3] it is shown by numerical computations that in terms of asymptotic efficiency
both servers are not interchangeable. Before we continue to summarize all known neces-
sary conditions for the M |M |1 tandem queue in a figure, we present the “missing” result
in Glasserman and Kou [7], namely a necessary condition for asymptotic efficiency of the
estimator for simulation in discrete time, when queue 1 is the bottleneck queue. The proof
is completely analogous to their approach for the other case, except that we consider the
path in the right panel of Figure 2 (in discrete time), rather than the left panel.

Proposition 5.3: For an M |M |1 tandem queue, simulated in discrete time, with arrival
rate λ and service rates μ1 and μ2 such that λ < μ1 < μ2 (queue 1 is bottleneck), a necessary
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condition for asymptotic efficiency of the corresponding estimator is

μ3
1(μ1 + μ2) ≤ λ(λ + μ2)2(λ + μ1 + μ2).

Proof: In this case, the change of measure (here denoted as Q) prescribes to interchange
λ and μ1. The definition for asymptotic efficiency is (cf. the continuous-time analog in
Definition 4.1),

lim sup
N→∞

1
N

log EQ
[
L21{K = KN}] ≤ log

λ2

μ2
1

. (30)

Here L is the likelihood ratio of the path as simulated in discrete time, that is, L =
Πi P(ti)/Q(ti) where the product is taken over all transitions ti on the path, and P(ti)
and Q(ti) are the probabilities of ti under the original and changed measure respectively. In
order to get a lower bound on EQ[L21{K = KN}], we consider the path in the right panel
of Figure 2 (in discrete time) and note the following.

For each transition, ti which is an arrival to queue 1, the contribution P(ti)/Q(ti) to
the likelihood ratio is

λ
λ+μ2

μ1
μ1+μ2

=
λ

μ1

μ1 + μ2

λ + μ2
.

In order to reach the overflow level, there are N − 1 arrivals to queue 1 (as we start with
one customer in queue 1).
For each departure from queue 1, except for the first one, the contribution to the likelihood
ratio is

μ1
λ+μ1+μ2

λ
λ+μ1+μ2

=
μ1

λ
.

The contribution to the likelihood ratio of the first departure from queue 1 is

μ1
μ1+λ

λ
λ+μ1

=
μ1

λ
.

In total, there are N − 1 departures from queue 1. Therefore, the total likelihood ratio for
this path is (

λ

μ1

μ1 + μ2

λ + μ2

)N−1 (μ1

λ

)N−1

=
(

μ1 + μ2

λ + μ2

)N−1

.

Similarly, the probability of this path under the change of measure Q, is
(μ1/μ1 + μ2)N−1(λ/λ + μ1 + μ2)N−2λ/μ1 + λ. Hence we have that

EQ
[
L21{K = KN}] ≥ (

μ1

μ1 + μ2

)N−1(
λ

λ + μ1 + μ2

)N−2
λ

μ1 + λ

(
μ1 + μ2

λ + μ2

)2(N−1)

,

so that the left-hand side of (30) is at least

log
(

μ1

λ + μ2

λ

λ + μ1 + μ2

μ1 + μ2

λ + μ2

)
.

Solving (30) concludes the proof. �
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Figure 3. Summary of results for the M |M |1 tandem queue with arrival rate λ and service
rates μ1 and μ2 for queues 1 and 2, respectively.

5.2.4. Comparison. We are now ready to summarize all necessary conditions from [3],
[7] and this section for the M |M |1 tandem queue (with the convention that λ + μ1 + μ2 = 1)
in Figure 3. For each estimator this figure shows for which parameter settings the estimator
is certainly not asymptotically efficient, and for which settings it could be:

• Between the dash-dotted (blue) lines the change of measure as discussed in the cur-
rent paper (simulated in continuous time) does not give an asymptotically efficient
estimator according to Theorems 5.1 and 5.2.

• Between the dashed (red) lines the change of measure as discussed in [7] (simulated
in discrete time) does not give an asymptotically efficient estimator according to [7]
and Proposition 5.3.

• Between the dotted (yellow) and solid (black) line the change of measure as discussed
in [7] (simulated in discrete time) does not give an asymptotically efficient estimator
according to [3].

When we compare the areas where asymptotic efficiency is certainly not attained, as derived
from considering some unlikely path, that is, the area between the blue dash-dotted lines
(simulated in continuous time), and the area between the red dashed lines (simulated in
discrete time), we see that the first is largest. The method used by De Boer [3] gives an
even bigger area for the discrete-time estimator, but this approach is different and only for
the case where queue 2 is the bottleneck. Unfortunately this method cannot be used for
simulation in continuous time.
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6. NUMERICAL RESULTS

In this section, we give an example of the conditions that have been shown in the previous
section. In order to easily show both bottleneck cases in one figure, we consider a tandem
queue with exponentially distributed service times. Also we compare our results for the
M |M |1 tandem queue with the results obtained by De Boer [3].

In Figure 4, we give an example to show that the necessary conditions for asymptotic
efficiency are not always satisfied. In Tables 1 and 2, we show some simulation results for
parameters as in Figures 3 and 4. In these tables RE denotes the relative error, that is,
1.96 times the standard deviation of the estimator divided by the mean of the estimator,
and AE is given by

AE =
log 1

S

∑S
i=1 L2(i)I2(i)

log 1
S

∑S
i=1 L(i)I(i)

,

where S is the total number of simulations, L(i) is the likelihood ratio in simulation i, and
I(i) indicates whether level N has been reached in simulation i or not. This value should
be 2 in case of asymptotic efficiency as N goes to infinity, see also Definition 4.1 and the
text below it.

In Table 1, we present the results in case of a two node M |M |1 tandem queue, where
the parameters are chosen such that the second queue is the bottleneck, and the necessary
conditions for asymptotic efficiency given by De Boer [3] and Glasserman and Kou [7] are
satisfied, while the conditions in Theorem 5.1 are not satisfied. In Table 2, we give results
for a tandem queue with uniform arrivals and exponential service times at both queues,
where the first queue is the bottleneck. Again, the parameters are such that the necessary
conditions in Theorem 5.2 are not satisfied.

Figure 4. A tandem queue with A ∼ U [0, 2]. Here λ = 1/E[A]. The colored area shows for
which parameter values the necessary conditions for asymptotic efficiency are not satisfied.
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Table 1. Simulation results for a two node M |M |1 tandem queue
with λ = 0.04, μ1 = 0.6, and μ2 = 0.36. The number of simulations
is 106.

N pn RE AE

100 7.61236×10−095 0.0251669 1.97642

120 6.15669×10−114 0.0101619 1.98723

140 5.05552×10−133 0.0100353 1.98915

160 4.19910×10−152 0.0165730 1.98771

180 3.49391×10−171 0.0153721 1.98946

200 2.81984×10−190 0.0161061 1.99031

220 2.32997×10−209 0.0095608 1.99332

240 1.90921×10−228 0.0153529 1.99212

260 1.58646×10−247 0.0132837 1.99323

280 1.29246×10−266 0.0096219 1.99474

300 1.07142×10−285 0.0129584 1.99421

Table 2. Simulation results when A ∼ U [0, 2], B(1) ∼ exp(3) and
B(2) ∼ exp(5.5). The number of simulations is 106.

N pn RE AE

100 7.51653×10−068 0.0709869 1.95355

120 1.86154×10−081 0.0286627 1.97111

140 4.58798×10−095 0.0236072 1.97706

160 1.14667×10−108 0.0272791 1.97879

180 2.92085×10−122 0.0317422 1.98008

200 7.75733×10−136 0.1271680 1.97317

220 1.90697×10−149 0.1065780 1.97666

240 4.50666×10−163 0.0548901 1.98217

260 1.08825×10−176 0.0261362 1.98720

280 2.77072×10−190 0.0254623 1.98824

300 6.72588×10−204 0.0211566 1.98981

These tables suggest that the estimators are asymptotically efficient, as AE tends to 2
when N goes to infinity, although, in fact, they are not since they do not satisfy the con-
ditions in Theorems 5.1 and 5.2. We can explain this in the following way. Firstly, in the
proofs of Theorems 5.1 and 5.2 we considered very unlikely paths. So it is likely that these
paths did not occur during these simulations and therefore it still seems that the estimator
is asymptotically efficient.

Secondly, from Figures 5 and 6 we can indeed see that there are (very) unlikely paths
with a large contribution to the likelihood ratio.

These figures show AE for three fixed values of N against the number of simulation
runs S. We see that, even though for increasing N the value of AE seems to increase to 2
(as in Tables 1 and 2), the value of AE is clearly decreasing as the number of simulations
increases. Therefore, the estimator cannot be asymptotically efficient. Moreover, the big
jumps are caused by (rare) paths that have a large contribution to the likelihood ratio
and they suggest that there exist paths that are even more unlikely to occur. Those paths
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Figure 5. A possible explanation of why it seems that the estimator in Table 1 is
asymptotically efficient, while we proved that it is not.

Figure 6. Similar possible explanation as in Figure 5, but corresponding to the situation
as in Table 2.

probably have an even larger contribution to the likelihood ratio such that the estimator is
not asymptotically efficient.

Next, we compare our results for the M |M |1 tandem queue with the results obtained
numerically by De Boer [3]. Both our and [3]’s results concern P&W changes of measure,
but ours in continuous time and [3]’s in discrete time; cf. Section 5.2.1. In order to compare
all these results, we use the convention that λ + μ1 + μ2 = 1 and we transform Figure 3
from [3], see Figure 7, such that λ/μ1 and λ/μ2 are along the x -axis and y-axis, respectively
(which has been used more often throughout this paper).
What we see in Figure 7 is that when queue 1 is the bottleneck queue our necessary condition
is within the blue area. When queue 2 is the bottleneck queue it seems that our necessary
condition does not coincide with the numerical results of [3]. This means that there are
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Figure 7. Figure 3 of [3], displayed with different x -axis and y-axis, together with our
necessary conditions from Theorems 5.1 and 5.2. The green part has bounded relative error,
the blue part does not give an asymptotically efficient estimator but has finite variance and
the red part has infinite variance. Between the black lines, our necessary conditions are not
satisfied.

certain parameter choices where our estimator is not asymptotically efficient, while the
numerical results of [3] tell that the estimator considered there has bounded relative error.
This can be explained by the fact that in [3] the queueing system is simulated in discrete
time, while we simulate it in continuous time.

7. CONCLUSIONS

Parekh and Walrand [8] introduced a method to estimate the probability that the total
number of customers in a queueing network reaches some level N in a busy cycle using
simulation, but unfortunately for a network of GI|GI|1 queues it is not clear how to do
so. Frater and Anderson [6] found this change of measure for the GI|GI|1 tandem queue,
but only specified it implicitly, in the form of a minimization over all possible “guesses” for
which queue would become the rightmost unstable queue. Fortunately, there is another way
to explicitly find the change of measure for the GI|GI|1 tandem queue, based on the decay
rate determined in Buijsrogge et al. [2]. In the present paper, we have shown that these two
methods result in the same change of measure for the GI|GI|1 tandem queue for all cases
where they are properly defined.

Also, we proved that this change of measure is the only exponential change of mea-
sure that can possibly result in an asymptotically efficient estimator. In other words, for a
state-independent change of measure one should only consider using the P&W change of
measure. However, using this change of measure does not guarantee asymptotic efficiency.
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We have identified some additional necessary conditions for this change of measure to be
asymptotically efficient in case of a two node tandem queue.

For future research, it seems useful to look for sufficient conditions for asymptotic effi-
ciency, examine the tightness of the necessary conditions or maybe to improve the likelihood
ratio with respect to Remark 4.1. However, it may be better to focus on state-dependent
change of measures as these could be asymptotically efficient in the whole parameter space.
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APPENDIX A

Here we present the proofs of Lemma 4.1 and Lemma 4.2, which we copy for convenience, along
with (the proof of) Lemma A.1.

Lemma 4.1. Suppose we have d GI|GI|1 queues in tandem. Under the change of measure θ∗

for which Eθ∗
[B(j∗)] > Eθ∗

[A], we have for all N that Pθ∗
(K = KN ) ≥ Pθ∗

(E) > 0, where E
is the event that the system never empties. Moreover, we have as N → ∞ that KN/N →
Eθ∗

[B(j∗)]/(Eθ∗
[B(j∗)] − Eθ∗

[A]) with probability 1.

Proof of Lemma 4.1: Let NA(t) denote the number of arrivals to the system up to time t, ND(t) be
the number of departures from the system up to time t and NB(j∗)(t) be the number of departures
from queue j∗ at time t if its server would work continuously. Then by renewal theory, under the
change of measure θ∗, with probability 1,

lim
t→∞

NA(t) − ND(t)

t
≥ lim

t→∞
NA(t) − NB(j∗)(t)

t
=

1

Eθ∗
[A]

− 1

Eθ∗ [
B(j∗)

] > 0,
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because ND(t) ≤ NB(j∗)(t), since the number of departures of the system as a whole can never
exceed the number of departures at the rightmost unstable queue if it would work continu-
ously. Now if we would assume that Pθ∗

(E) = 0, that is, the system always empties, this would
lead to a contradiction, since in the long run, the expected number of arrivals to the system
would then equal the number of departures from the system. Hence, Pθ∗

(E) > 0. Clearly, we also

have Pθ∗
(K = KN ) ≥ Pθ∗

(E), because the event E implies that K = KN , so the first statement
follows.

For the second statement, we let Xt be the total number of customers in the system at time t.
In Lemma 3.2 it has been shown that queue j∗ is the rightmost unstable queue under the θ∗-

tilt. Accordingly, we write Xt = X
(1,...,j∗)
t + X

(j∗+1,..,d)
t , where X

(j∗+1,...,d)
t is the total number

of customers in the (stable) queues j∗ + 1, . . . , d at time t, and X
(1,...,j∗)
t is the total number of

customers in the (not necessarily stable) queues 1, . . . , j∗ at time t. Hence, with probability 1 under
the θ∗-tilt,

lim
t→∞

Xt

t
= lim

t→∞
X

(1,...,j∗)
t

t
+ 0

= lim
t→∞

NA(t) − ND(j∗)(t)

t
,

where ND(j∗)(t) is the number of departures from queue j∗ up to time t. Since with probability 1,
from a certain time onwards queue j∗ does not empty, it follows that

lim
t→∞

NA(t) − ND(j∗)(t)

t
=

1

Eθ∗
[A]

− 1

Eθ∗ [
B(j∗)

] .
Note that Xt is the number of customers at (continuous) time t, but we need a discrete time result,
so let X̃k be the total number of customers in queue 1, . . . , d right after the kth arrival and let tk
be the time of the arrival of customer k, then with probability 1

lim
k→∞

X̃k

k
= lim

k→∞
tk
k

Xtk

tk
= E

θ∗
[A]

(
1

Eθ∗
[A]

− 1

Eθ∗ [
B(j∗)

]) .

But then also, when N → ∞,

N

KN
= E

θ∗
[A]

(
1

Eθ∗
[A]

− 1

Eθ∗ [
B(j∗)

]) , w.p. 1,

as by definition KN = min{k : Xk = N}. This concludes the proof. �

Lemma 4.2. Consider a sequence {XN} of random variables that converges to a constant c
with probability 1 as N → ∞ and let E be an event with P(E) > 0. Then E[limN→∞ XN | E] =
E[limN→∞ XN ] = c.

Proof of Lemma 4.2: The lemma follows from elementary principles. Clearly, when P(limN→∞
XN = c) = 1, also E[limN→∞ XN ] = c. To show that conditioning on some event E with P(E) > 0
does not change this assertion, let event F = {limN→∞ XN = c} and note that P(F ) = 1 implies
P(F | E) = P(F ∩ E)/P(E) = 1, and hence also E[limN→∞ XN | E] = c. �

Lemma A.1: P(B(j) > A) = 0 ⇐⇒ θ(j) = ∞.
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Proof: Suppose that P(B(j) > A) = 0, then MA(−θ)MB(j)(θ) = E[eθ(B(j)−A)] < 1 for all θ > 0.

For the reverse statement, suppose that P(B(j) − A > 0) > 0. Then we also have P(B(j) − A >
ε) > 0 for some ε > 0. Hence,

E[eθ(B(j)−A)] >

∫ ∞

ε
eθxdFB(j)−A(x) > eθεP (B(j) − A > ε),

which goes to ∞ as θ → ∞. Therefore, E[eθ(B(j)−A)] can only be smaller than or equal to 1 if

θ < ∞. Hence, θ(j) < ∞ if P(B(j) − A > 0) > 0 and so the reverse statement holds. �
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